SNVS085Y July   2000  – January 2026 LM3478

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Overvoltage Protection
      2. 6.3.2 Slope Compensation Ramp
      3. 6.3.3 Frequency Adjust/Shutdown
      4. 6.3.4 Short-Circuit Protection
    4. 6.4 Device Functional Modes
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Applications
      1. 7.2.1 Typical High Efficiency Step-Up (Boost) Converter
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
          1. 7.2.1.2.1  Custom Design with WEBENCH Tools
          2. 7.2.1.2.2  Power Inductor Selection
          3. 7.2.1.2.3  Programming the Output Voltage
          4. 7.2.1.2.4  Setting the Current Limit
          5. 7.2.1.2.5  Current Limit with External Slope Compensation
          6. 7.2.1.2.6  Power Diode Selection
          7. 7.2.1.2.7  Power MOSFET Selection
          8. 7.2.1.2.8  Input Capacitor Selection
          9. 7.2.1.2.9  Output Capacitor Selection
          10. 7.2.1.2.10 Compensation
        3. 7.2.1.3 Application Curves
      2. 7.2.2 Typical SEPIC Converter
        1. 7.2.2.1 Design Requirements
        2. 7.2.2.2 Detailed Design Procedure
          1. 7.2.2.2.1 Power MOSFET Selection
          2. 7.2.2.2.2 Power Diode Selection
          3. 7.2.2.2.3 Selection of Inductors L1 and L2
          4. 7.2.2.2.4 Sense Resistor Selection
          5. 7.2.2.2.5 Sepic Capacitor Selection
          6. 7.2.2.2.6 Input Capacitor Selection
          7. 7.2.2.2.7 Output Capacitor Selection
        3. 7.2.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Third-Party Products Disclaimer
    2. 8.2 Custom Design with WEBENCH Tools
    3. 8.3 Receiving Notification of Documentation Updates
    4. 8.4 Documentation Support
      1. 8.4.1 Related Documentation
    5. 8.5 Support Resources
    6. 8.6 Trademarks
    7. 8.7 Electrostatic Discharge Caution
    8. 8.8 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息
Power Diode Selection

Observation of the boost converter circuit shows that the average current through the diode is the average load current, and the peak current through the diode is the peak current through the inductor. The diode should be rated to handle more than its peak current. The peak diode current can be calculated using Equation 27.

Equation 27. ID(Peak) = IOUT/ (1−D) + ΔIL

Thermally the diode must be able to handle the maximum average current delivered to the output. The peak reverse voltage for boost converters is equal to the regulated output voltage. The diode must be capable of handling this voltage. To improve efficiency, a low forward drop schottky diode is recommended.