• Menu
  • Product
  • Email
  • PDF
  • Order now
  • LM290xLV-Q1 工业标准、低电压车用运算放大器

    • ZHCSLQ1B August   2020  – October 2021 LM2902LV-Q1 , LM2904LV-Q1

      PRODUCTION DATA  

  • CONTENTS
  • SEARCH
  • LM290xLV-Q1 工业标准、低电压车用运算放大器
  1. 1 特性
  2. 2 应用
  3. 3 说明
  4. 4 Revision History
  5. 5 Pin Configuration and Functions
  6. 6 Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information: LM2904LV-Q1
    5. 6.5 Thermal Information: LM2902LV-Q1
    6. 6.6 Electrical Characteristics
    7. 6.7 Typical Characteristics
  7. 7 Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Operating Voltage
      2. 7.3.2 Common-Mode Input Range Includes Ground
      3. 7.3.3 Overload Recovery
      4. 7.3.4 Electrical Overstress
      5. 7.3.5 EMI Susceptibility and Input Filtering
    4. 7.4 Device Functional Modes
  8. 8 Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
  9. 9 Power Supply Recommendations
    1. 9.1 Input and ESD Protection
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Related Links
    3. 11.3 接收文档更新通知
    4. 11.4 支持资源
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 术语表
  12. 12Mechanical, Packaging, and Orderable Information
  13. 重要声明

封装选项

机械数据 (封装 | 引脚)
  • DYY|14
    • MPSS114C
  • PW|14
    • MPDS360A
  • D|14
    • MPDS177H
散热焊盘机械数据 (封装 | 引脚)
订购信息
  • zhcslq1b_oa
  • zhcslq1b_pm
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

DATA SHEET

LM290xLV-Q1 工业标准、低电压车用运算放大器

本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。

1 特性

  • 适用于成本敏感型系统的业界通用放大器
  • 低输入失调电压:±1mV
  • 共模电压范围包括接地
  • 单位带宽增益积:1MHz
  • 低宽带噪声:40nV/√Hz
  • 低静态电流:90µA/通道
  • 单位增益稳定
  • 可在 2.7V 至 5.5V 的电源电压下运行
  • 提供双通道和四通道型号
  • 严格的 ESD 规格:2kV HBM、1kV CDM
  • 扩展工作温度范围:–40°C 至 125°C

2 应用

  • 针对 AEC-Q100 1 级应用进行了优化
  • 信息娱乐系统与仪表组
  • 被动安全
  • 车身电子装置和照明
  • 混合动力汽车/电动汽车逆变器和电机控制
  • 车载充电器 (OBC) 和无线充电器
  • 动力总成电流传感器
  • 高级驾驶辅助系统 (ADAS)
  • 单电源、低侧、单向电流感应电路

3 说明

LM290xLV-Q1 系列包括双路 LM2904LV-Q1 和四路 LM2902LV-Q1 运算放大器。这些器件可在 2.7V 至 5.5V 的电源电压范围下工作。

在对成本敏感的低压应用中,这些运算放大器可作为 LM2904-Q1 和 LM2902-Q1 的替代产品。LM290xLV-Q1 器件可在低电压下可提供比 LM290x-Q1 器件更佳的性能,并且功耗更低。这些运算放大器具有单位增益稳定性,并且在过驱情况下不会出现相位反转。ESD 设计为 LM290xLV-Q1 系列提供 2kV 的 HBM 规格。

LM290xLV-Q1 系列采用业界通用封装。可用的封装包括 SOIC、VSSOP 和 TSSOP 封装。

器件信息
器件型号 (1)封装封装尺寸(标称值)
LM2902LV-Q1SOIC (14)8.65mm × 3.91mm
TSSOP (14)4.40mm × 5.00mm
SOT23 (14) 4.20mm × 1.90mm
LM2904LV-Q1SOIC (8)3.91mm × 4.90mm
VSSOP (8)3.00mm × 3.00mm
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。
GUID-8F963DB4-283C-4CA5-8337-0F5C3285910E-low.gif单极低通滤波器

4 Revision History

Changes from Revision A (April 2021) to Revision B (October 2021)

  • 删除了器件信息 表中 TSSOP (14) 和 SOT-23 (14) 封装的预发布说明Go
  • Updated PW package thermal information in Thermal Information: LM2902LV-Q1 tableGo

Changes from Revision * (August 2020) to Revision A (April 2021)

  • 删除了器件信息 表中 TSSOP (8) 封装信息。Go
  • 删除了器件信息 表中 VSSOP (8) 封装信息的预发布说明。Go
  • Deleted PW package from Pin Configuration and Functions section.Go
  • Added note 5 to the differential input voltage in Absolute Maximum Ratings table Go
  • Updated DGK package thermal information in Thermal Information: LM2904LV-Q1 tableGo
  • Updated DYY package thermal information in Thermal Information: LM2902LV-Q1 tableGo

5 Pin Configuration and Functions

Figure 5-1 LM2904LV-Q1 D and DGK Packages
8-Pin SOIC and VSSOP
Top View
Table 5-1 Pin Functions: LM2904LV-Q1
PIN I/O DESCRIPTION
NAME NO.
IN1– 2 I Inverting input, channel 1
IN1+ 3 I Noninverting input, channel 1
IN2– 6 I Inverting input, channel 2
IN2+ 5 I Noninverting input, channel 2
OUT1 1 O Output, channel 1
OUT2 7 O Output, channel 2
V– 4 — Negative (low) supply or ground (for single-supply operation)
V+ 8 — Positive (high) supply
Figure 5-2 LM2902LV-Q1 D, PW, DYY Packages
14-Pin SOIC, TSSOP, SOT-23
Top View
Table 5-2 Pin Functions: LM2902LV-Q1
PIN I/O DESCRIPTION
NAME NO.
IN1– 2 I Inverting input, channel 1
IN1+ 3 I Noninverting input, channel 1
IN2– 6 I Inverting input, channel 2
IN2+ 5 I Noninverting input, channel 2
IN3– 9 I Inverting input, channel 3
IN3+ 10 I Noninverting input, channel 3
IN4– 13 I Inverting input, channel 4
IN4+ 12 I Noninverting input, channel 4
OUT1 1 O Output, channel 1
OUT2 7 O Output, channel 2
OUT3 8 O Output, channel 3
OUT4 14 O Output, channel 4
V– 11 — Negative (low) supply or ground (for single-supply operation)
V+ 4 — Positive (high) supply

6 Specifications

6.1 Absolute Maximum Ratings

over operating junction temperature range (unless otherwise noted)(1)
MINMAXUNIT
Supply voltage, ([V+] – [V–])06V
Signal input pinsVoltage(2)Common-mode(V–) – 0.5(V+) + 0.5V
Differential(5)(V+) – (V–) + 0.2V
Current(2)–1010mA
Output short-circuit(3)(4)Continuous
Operating, TA–55125°C
Operating junction temperature, TJ150°C
Storage temperature, Tstg–65150°C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) Input pins are diode-clamped to the power-supply rails. Input signals that may swing more than 0.5 V beyond the supply rails must be current limited to 10 mA or less.
(3) Short-circuit to ground, one amplifier per package.
(4) Long term continuous current limit is determined by electromigration limits
(5) Differential input voltages greater than 0.5 V applied continuously can result in a shift to the input offset voltage above the maximum specification of this parameter. The magnitude of this effect increases as the ambient operating temperature rises.

6.2 ESD Ratings

VALUEUNIT
V(ESD)Electrostatic dischargeHuman-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)±2000V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)±1000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating junction temperature range (unless otherwise noted)
MINMAXUNIT
VSSupply voltage [(V+) – (V–)]2.75.5V
VCMInput-pin voltage range(V–) – 0.1(V+) – 1V
TASpecified temperature–40125°C

6.4 Thermal Information: LM2904LV-Q1

THERMAL METRIC(1) LM2904LV-Q1 UNIT
D (SOIC) DGK (VSSOP)
8 PINS 8 PINS
RθJA Junction-to-ambient thermal resistance 151.9 196.6 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 92.0 86.2 °C/W
RθJB Junction-to-board thermal resistance 95.4 118.3 °C/W
ψJT Junction-to-top characterization parameter 40.2 23.2 °C/W
ψJB Junction-to-board characterization parameter 94.7 116.7 °C/W
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.

6.5 Thermal Information: LM2902LV-Q1

THERMAL METRIC(1) LM2902LV-Q1 UNIT
D (SOIC) DYY (SOT-23) PW (TSSOP)
14 PINS 14 PINS 14 PINS
RθJA Junction-to-ambient thermal resistance 115.1 154.3 135.3 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 71.2 86.8 63.5 °C/W
RθJB Junction-to-board thermal resistance 71.1 67.9 78.4 °C/W
ψJT Junction-to-top characterization parameter 29.6 10.1 13.6 °C/W
ψJB Junction-to-board characterization parameter 70.7 67.5 77.9 °C/W
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.

6.6 Electrical Characteristics

For VS = (V+) – (V–) = 2.7 V to 5.5 V (±1.35 V to ±2.75 V), TA = 25°C, RL = 10 kΩ connected to VS / 2, and VCM = VOUT = VS / 2 (unless otherwise noted)
PARAMETER(1) TEST CONDITIONS MIN TYP MAX UNIT
OFFSET VOLTAGE
VOS Input offset voltage VS = 5 V ±1 ±3 mV
VS = 5 V, TA = –40°C to 125°C ±5
dVOS/dT VOS vs temperature TA = –40°C to 125°C ±4 µV/°C
PSRR Power-supply rejection ratio VS = 2.7 V to 5.5 V, VCM = (V–) 80 100 dB
INPUT VOLTAGE RANGE
VCM Common-mode voltage range No phase reversal (V–) – 0.1 (V+) – 1 V
CMRR Common-mode rejection ratio VS = 2.7 V, (V–) – 0.1 V < VCM < (V+) – 1 V
TA = –40°C to 125°C
84 dB
VS = 5.5 V, (V–) – 0.1 V < VCM < (V+) – 1 V
TA = –40°C to 125°C
63 92
INPUT BIAS CURRENT
IB Input bias current VS = 5 V ±15 pA
IOS Input offset current ±5 pA
NOISE
En Input voltage noise (peak-to-peak) ƒ = 0.1 Hz to 10 Hz, VS = 5 V 5.1 µVPP
en Input voltage noise density ƒ = 1 kHz, VS = 5 V 40 nV/√ Hz
INPUT CAPACITANCE
CID Differential 2 pF
CIC Common-mode 5.5 pF
OPEN-LOOP GAIN
AOL Open-loop voltage gain VS = 2.7 V, (V–) + 0.15 V < VO < (V+) – 0.15 V, RL = 2 kΩ 110 dB
VS = 5.5 V, (V–) + 0.15 V < VO < (V+) – 0.15 V, RL = 2 kΩ 125
FREQUENCY RESPONSE
GBW Gain-bandwidth product VS = 5 V 1 MHz
φm Phase margin VS = 5.5 V, G = +1 75 °
SR Slew rate VS = 5 V, G = +1 1.5 V/µs
tS Settling time To 0.1%, VS = 5 V, 2-V step, G = 1, CL = 100 pF 4 µs
To 0.01%, VS = 5 V, 2-V step, G = 1, CL = 100 pF 5
tOR Overload recovery time VS = 5 V, VIN × gain > VS 1 µs
THD+N Total harmonic distortion + noise VS = 5.5 V, VCM = 2.5 V, VO = 1 VRMS, G = 1, ƒ = 1 kHz,
80-kHz measurement BW
0.005%
OUTPUT
VOH Voltage output swing from positive supply RL ≥ 2 kΩ, TA = –40°C to 125°C 1 V
VOL Voltage output swing from negative supply RL ≤ 10 kΩ, TA = –40°C to 125°C 40 75 mV
ISC Short-circuit current VS = 5.5 V ±40 mA
ZO Open-loop output impedance VS = 5 V, ƒ = 1 MHz 1200 Ω
POWER SUPPLY
VS Specified voltage range 2.7 (±1.35) 5.5 (±2.75) V
IQ Quiescent current per amplifier IO = 0 mA, VS = 5.5 V 90 150 µA
IO = 0 mA, VS = 5.5 V, TA = –40°C to 125°C 160
(1) Overtemperature limits are assuredy by characterization.

6.7 Typical Characteristics

at TA = 25°C, V+ = 2.75 V, V– = –2.75 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)

GUID-1F1B180B-01EF-4028-86C1-66891656FFE3-low.gifFigure 6-1 IB and IOS vs Common-Mode Voltage
GUID-EB662B22-B9CC-400E-A4F8-066192FD8A13-low.gif
CL = 10 pF
Figure 6-3 Open-Loop Gain and Phase vs Frequency
GUID-B6159960-08E6-4F26-9222-2096E3D95395-low.gif
CL = 10 pF
Figure 6-5 Closed-Loop Gain vs Frequency
GUID-F901DD95-7E26-4899-8D2B-FD67420768AE-low.gifFigure 6-2 Open-Loop Gain vs Temperature
GUID-170265BA-BCC3-48BE-B56F-AB1FCA8CAC1D-low.gif
 
Figure 6-4 Open-Loop Gain vs Output Voltage
GUID-409B4475-DC55-409E-9AFD-5B6285600B44-low.gifFigure 6-6 Output Voltage vs Output Current (Claw)
GUID-DC8CB7D6-7546-4383-998F-35D3A0A97073-low.gif
VS = 2.7 V to 5.5 V
Figure 6-8 DC PSRR vs Temperature
GUID-C110C276-5124-4551-8E32-49165C9C0604-low.gif
VCM = (V–) – 0.1 V to (V+) – 1.5 V
Figure 6-10 DC CMRR vs Temperature
GUID-B43E3978-9DA5-4EA8-873A-5E65E28D9F16-low.gif
 
Figure 6-12 Input Voltage Noise Spectral Density
GUID-646E7BDC-AE45-48D9-9DA6-3D1B73D6ACA9-low.gif
VS = 5.5 V VCM = 2.5 V f = 1 kHz
G = 1 BW = 80 kHz
Figure 6-14 THD + N vs Amplitude
GUID-E7AE9264-16FD-4147-BAA4-FAEE8FC8C6B1-low.gif
 
Figure 6-16 Quiescent Current vs Temperature
GUID-E5DE7838-13D8-4509-8004-741F7E053C6E-low.gif
G = 1 VIN = 100 mVpp
Figure 6-18 Small Signal Overshoot vs Capacitive Load
GUID-10109B7F-0737-4C14-A228-855D740E8B81-low.gif
 
Figure 6-20 Phase Margin vs Capacitive Load
GUID-7E9AAAC3-3FCA-4F66-BF5E-730A22B7359F-low.gif
G = –10 VIN = 600 mVPP
Figure 6-22 Overload Recovery
GUID-FD34359F-318E-4437-9E1A-883A825E96E1-low.gif
G = 1 CL = 10 pF VIN = 4 VPP
Figure 6-24 Large-Signal Step Response
GUID-702F5A82-315F-4D68-B753-4A9D146BE5EB-low.gif
G = 1 CL = 100 pF 2-V step
Figure 6-26 Large-Signal Settling Time (Positive)
GUID-760FF8F6-D9B2-4FF2-8138-80B1FC284080-low.gif
 
Figure 6-28 Electromagnetic Interference Rejection Ratio Referred to Noninverting Input (EMIRR+) vs Frequency
GUID-CE926940-A0E5-43B9-AE6C-130C49271224-low.gifFigure 6-7 PSRR vs Frequency
GUID-0BE6C35B-C3F5-4F76-A4CA-FA277A2FE8E5-low.gif
 
Figure 6-9 CMRR vs Frequency
GUID-62B7CF78-D65E-4C34-8599-37C6073E69E0-low.gif
 
Figure 6-11 0.1-Hz to 10-Hz Integrated Voltage Noise
GUID-20CB5BD4-24C6-46A7-ABA3-F993C40F3448-low.gif
VS = 5.5 V VCM = 2.5 V G = 1
BW = 80 kHz VOUT = 0.5 VRMS
Figure 6-13 THD + N vs Frequency
GUID-C997D199-9283-4DC3-89F1-6D1334CACC13-low.gif
 
Figure 6-15 Quiescent Current vs Supply Voltage
GUID-1AC882D3-82D7-429B-9B1E-4A1F134034E9-low.gif
 
Figure 6-17 Open-Loop Output Impedance vs Frequency
GUID-CC932797-F29B-41FE-BA2D-0ECB0FF9372D-low.gif
G = –1 VIN = 100 mVpp
Figure 6-19 Small Signal Overshoot vs Capacitive Load
GUID-4B4584AF-E105-40D3-99FB-7108FE01DCFA-low.gif
G = 1 VIN = 6.5 VPP
Figure 6-21 No Phase Reversal
GUID-2C308386-032B-4372-BEDF-B5B10FC776ED-low.gif
G = 1 VIN = 100 mVPP CL = 10 pF
Figure 6-23 Small-Signal Step Response
GUID-383F4DA1-69A2-4227-9BA5-B0BBBE1B6DF7-low.gif
G = 1 CL = 100 pF 2-V step
Figure 6-25 Large-Signal Settling Time (Negative)
GUID-169DCE0B-5AE3-4B11-A5D3-B2D6E73469A1-low.gif
 
Figure 6-27 Short-Circuit Current vs Temperature
GUID-FD82FAE6-9381-4C66-A334-BC965D631D2E-low.gif
 
Figure 6-29 Channel Separation

7 Detailed Description

7.1 Overview

The LM290xLV-Q1 family of low-power op amps is intended for cost-optimized systems. These devices operate from 2.7 V to 5.5 V, are unity-gain stable, and are designed for a wide range of general-purpose automotive applications. The input common-mode voltage range includes the negative rail and allows the LM290xLV-Q1 family to be used in many single-supply applications.

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale