SNOSBH4E May   1998  – October 2015 LM10

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 Recommended Operating Conditions
    3. 6.3 Thermal Information
    4. 6.4 Electrical Characteristics LM10/LM10B
    5. 6.5 Electrical Characteristics, LM10C
    6. 6.6 Electrical Characteristics, LM10BL
    7. 6.7 Electrical Characteristics, LM10CL
    8. 6.8 Typical Characteristics
      1. 6.8.1 Typical Characteristics (Op Amp)
      2. 6.8.2 Typical Characteristics (Reference)
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Operating Characteristics
      2. 7.3.2 Common-Mode Voltage Range
      3. 7.3.3 Operational Amplifier
      4. 7.3.4 Voltage Reference
    4. 7.4 Device Functional Modes
      1. 7.4.1 Floating Mode
      2. 7.4.2 Linear Operation
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
    3. 8.3 System Examples
      1. 8.3.1 Operational Amplifier Offset Adjustment
      2. 8.3.2 Positive Regulators
      3. 8.3.3 Reference and Internal Regulator
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Device Nomenclature
        1. 11.1.1.1 Definition of Terms
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

7 Detailed Description

7.1 Overview

The LM10 is a dual-operational amplifier combined with a voltage reference capable of a single-supply operation down to 1.1 V. It provides high overall performance, making it ideal for many general-purpose applications. The circuit can also operate in a floating mode, powered by residual voltage, independent of fixed supplies and it is well-protected from temperature drift.

7.2 Functional Block Diagram

LM10 00565216.png

7.3 Feature Description

7.3.1 Operating Characteristics

The LM10 is specified for operation from 1.2 V to 40 V. Many of the specifications apply from –55⁰C to 125⁰C. Parameters that can exhibit significant variance with regard to operating voltage or temperature are presented in electrical characteristics tables under Specifications and in the Typical Characteristics section.

7.3.2 Common-Mode Voltage Range

The input common-mode voltage range of the LM10 extends from the negative rail to 0.85 V less than the positive rail.

7.3.3 Operational Amplifier

The minimum operating voltage is reduced to nearly one volt and the current gain is less affected by temperature, resulting in a fairly flat bias current over temperature.

7.3.4 Voltage Reference

Second-order nonlinearities are compensated for which eliminates the bowed characteristics of conventional designs, resulting in better temperature stability.

7.4 Device Functional Modes

7.4.1 Floating Mode

To use the device in a floating mode, the operational amplifier output is shorted to V+ which disables the PNP portion of the output stage. Thus, with a positive input signal, neither halves of the output conducts and the current between the supply terminals is equal to the quiescent supply current. With negative input signals, the NPN portion of the output begins to turn on, reaching the short circuit current for a few hundred microvolts overdrive.

7.4.2 Linear Operation

This device can also operate linearly while in the floating mode. An example of this is shown in the Typical Application section.