UC2855B

正在供货

具有 10.5V/10V UVLO 和零电压转换模式、温度范围为 –40°C 至 85°C 的双极性 CCM PFC 控制器

产品详情

Vin (max) (V) 20 Operating temperature range (°C) -40 to 85 Control mode CCM Topology Boost Rating Catalog Duty cycle (max) (%) 95
Vin (max) (V) 20 Operating temperature range (°C) -40 to 85 Control mode CCM Topology Boost Rating Catalog Duty cycle (max) (%) 95
PDIP (N) 20 228.702 mm² 24.33 x 9.4 SOIC (DW) 20 131.84 mm² 12.8 x 10.3
  • Controls Boost PWM to Near Unity Power Factor
  • Fixed Frequency Average Current Mode Control Minimizes Line Current Distortion
  • Built-in Active Snubber (ZVT) Allows Operation to 500kHz, Improved EMI and Efficiency
  • Inductor Current Synthesizer allows Single Current Transformer Current Sense for Improved Efficiency and Noise Margin
  • Accurate Analog Multiplier with Line Compensator allows for Universal Input Voltage Operation
  • High Bandwidth (5MHz), Low Offset Current Amplifier
  • Overvoltage and Overcurrent protection
  • Two UVLO Threshold Options
  • 150&mirco;A Startup Supply Current Typical
  • Precision 1% 7.5V Reference
  • Controls Boost PWM to Near Unity Power Factor
  • Fixed Frequency Average Current Mode Control Minimizes Line Current Distortion
  • Built-in Active Snubber (ZVT) Allows Operation to 500kHz, Improved EMI and Efficiency
  • Inductor Current Synthesizer allows Single Current Transformer Current Sense for Improved Efficiency and Noise Margin
  • Accurate Analog Multiplier with Line Compensator allows for Universal Input Voltage Operation
  • High Bandwidth (5MHz), Low Offset Current Amplifier
  • Overvoltage and Overcurrent protection
  • Two UVLO Threshold Options
  • 150&mirco;A Startup Supply Current Typical
  • Precision 1% 7.5V Reference

The UC3855A/B provides all the control features necessary for high power, high frequency PFC boost converters. The average current mode control method allows for stable, low distortion AC line current programming without the need for slope compensation. In addition, the UC3855 utilizes an active snubbing or ZVT (Zero Voltage Transition technique) to dramatically reduce diode recovery and MOSFET turn-on losses, resulting in lower EMI emissions and higher efficiency. Boost converter switching frequencies up to 500kHz are now realizable, requiring only an additional small MOSFET, diode, and inductor to resonantly soft switch the boost diode and switch. Average current sensing can be employed using a simple resistive shunt or a current sense transformer. Using the current sense transformer method, the internal current synthesizer circuit buffers the inductor current during the switch on-time, and reconstructs the inductor current during the switch off-time. Improved signal to noise ratio and negligible current sensing losses make this an attractive solution for higher power applications.

The UC3855A/B also features a single quadrant multiplier, squarer, and divider circuit which provides the programming signal for the current loop. The internal multiplier current limit reduces output power during low line conditions. An overvoltage protection circuit disables both controller outputs in the event of a boost output OV condition.

Low startup supply current, UVLO with hysteresis, a 1% 7.5V reference, voltage amplifier with softstart, input supply voltage clamp, enable comparator, and overcurrent comparator complete the list of features. Available packages include: 20 pin N, DW, Q, J, and L.

The UC3855A/B provides all the control features necessary for high power, high frequency PFC boost converters. The average current mode control method allows for stable, low distortion AC line current programming without the need for slope compensation. In addition, the UC3855 utilizes an active snubbing or ZVT (Zero Voltage Transition technique) to dramatically reduce diode recovery and MOSFET turn-on losses, resulting in lower EMI emissions and higher efficiency. Boost converter switching frequencies up to 500kHz are now realizable, requiring only an additional small MOSFET, diode, and inductor to resonantly soft switch the boost diode and switch. Average current sensing can be employed using a simple resistive shunt or a current sense transformer. Using the current sense transformer method, the internal current synthesizer circuit buffers the inductor current during the switch on-time, and reconstructs the inductor current during the switch off-time. Improved signal to noise ratio and negligible current sensing losses make this an attractive solution for higher power applications.

The UC3855A/B also features a single quadrant multiplier, squarer, and divider circuit which provides the programming signal for the current loop. The internal multiplier current limit reduces output power during low line conditions. An overvoltage protection circuit disables both controller outputs in the event of a boost output OV condition.

Low startup supply current, UVLO with hysteresis, a 1% 7.5V reference, voltage amplifier with softstart, input supply voltage clamp, enable comparator, and overcurrent comparator complete the list of features. Available packages include: 20 pin N, DW, Q, J, and L.

下载 观看带字幕的视频 视频

技术文档

star =有关此产品的 TI 精选热门文档
未找到结果。请清除搜索并重试。
查看全部 5
类型 标题 下载最新的英语版本 日期
* 数据表 High Performance Power Factor Preregulator 数据表 (Rev. B) 2005年 10月 27日
应用手册 U-153 UC3855A/B High Performance Power Factor Preregulator (Rev. A) 2003年 9月 23日
应用手册 功率因子校正电路交流电要求 2002年 3月 28日
应用手册 Accurate PWM Duty Cycle Clamp 2002年 1月 25日
应用手册 DN-66 UC3854A/B and UC3855A/B Provide Power Limiting with Sinusoidal Input (Rev. A) 2001年 11月 6日

设计和开发

如需其他信息或资源,请点击以下任一标题进入详情页面查看(如有)。

封装 引脚 下载
PDIP (N) 20 查看选项
SOIC (DW) 20 查看选项

订购和质量

包含信息:
  • RoHS
  • REACH
  • 器件标识
  • 引脚镀层/焊球材料
  • MSL 等级/回流焊峰值温度
  • MTBF/时基故障估算
  • 材料成分
  • 鉴定摘要
  • 持续可靠性监测
包含信息:
  • 制造厂地点
  • 封装厂地点

支持和培训

视频