高速差分线路接收器

SN65LVDT388 不推荐用于新设计
虽然我们会继续生产此产品供先前的设计使用,但不推荐在新设计中使用此产品。请考虑从这些替代产品中选择一款:
open-in-new 比较替代产品
功能与比较器件相似
SN65LVDT388A 正在供货 八路 LVDS 接收器 This is a newer generation of this product

产品详情

Function Receiver Protocols LVDS Number of transmitters 0 Number of receivers 8 Supply voltage (V) 3.3 Signaling rate (MBits) 630 Input signal LVDS Output signal LVCMOS, LVTTL Rating Catalog Operating temperature range (°C) -40 to 85
Function Receiver Protocols LVDS Number of transmitters 0 Number of receivers 8 Supply voltage (V) 3.3 Signaling rate (MBits) 630 Input signal LVDS Output signal LVCMOS, LVTTL Rating Catalog Operating temperature range (°C) -40 to 85
TSSOP (DBT) 38 62.08 mm² 9.7 x 6.4
  • Eight Line Receivers Meet or Exceed the Requirements of ANSI TIA/EIA-644 Standard
  • Integrated 110- Line Termination Resistors on LVDT Products
  • Designed for Signaling Rates Up To 630 Mbps
  • SN65 Version's Bus-Terminal ESD Exceeds 15 kV
  • Operates From a Single 3.3-V Supply
  • Propagation Delay Time of 2.6 ns (Typ)
  • Output Skew 100 ps (Typ) Part-To-Part Skew Is Less Than 1 ns
  • LVTTL Levels Are 5-V Tolerant
  • Open-Circuit Fail Safe
  • Flow-Through Pin Out
  • Packaged in Thin Shrink Small-Outline Package With 20-mil Terminal Pitch

Signaling rate, 1/t, where t is the minimum unit interval and is expressed in the units bits/s (bits per second)

  • Eight Line Receivers Meet or Exceed the Requirements of ANSI TIA/EIA-644 Standard
  • Integrated 110- Line Termination Resistors on LVDT Products
  • Designed for Signaling Rates Up To 630 Mbps
  • SN65 Version's Bus-Terminal ESD Exceeds 15 kV
  • Operates From a Single 3.3-V Supply
  • Propagation Delay Time of 2.6 ns (Typ)
  • Output Skew 100 ps (Typ) Part-To-Part Skew Is Less Than 1 ns
  • LVTTL Levels Are 5-V Tolerant
  • Open-Circuit Fail Safe
  • Flow-Through Pin Out
  • Packaged in Thin Shrink Small-Outline Package With 20-mil Terminal Pitch

Signaling rate, 1/t, where t is the minimum unit interval and is expressed in the units bits/s (bits per second)

The \x91LVDS388 and \x91LVDT388 (T designates integrated termination) are eight differential line receivers that implement the electrical characteristics of low-voltage differential signaling (LVDS). This signaling technique lowers the output voltage levels of 5-V differential standard levels (such as EIA/TIA-422B) to reduce the power, increase the switching speeds, and allow operation with a 3-V supply rail. Any of the eight differential receivers will provide a valid logical output state with a ±100-mV differential input voltage within the input common-mode voltage range. The input common-mode voltage range allows 1 V of ground potential difference between two LVDS nodes. Additionally, the high-speed switching of LVDS signals always require the use of a line impedance matching resistor at the receiving end of the cable or transmission media. The LVDT product eliminates this external resistor by integrating it with the receiver.

The intended application of this device and signaling technique is for point-to-point baseband data transmission over controlled impedance media of approximately 100 . The transmission media may be printed-circuit board traces, backplanes, or cables. The large number of drivers integrated into the same substrate along with the low pulse skew of balanced signaling, allows extremely precise timing alignment of clock and data for synchronous parallel data transfers. When used with its companion, 8-channel driver, the SN65LVDS389 over 150 million data transfers per second in single-edge clocked systems are possible with very little power. Note: The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media, the noise coupling to the environment, and other system characteristics.

The SN65LVDS388 and SN65LVDT388 is characterized for operation from -40°C to 85°C. The SN75LVDS388 and SN75LVDT388 is characterized for operation from 0°C to 70°C.

The \x91LVDS388 and \x91LVDT388 (T designates integrated termination) are eight differential line receivers that implement the electrical characteristics of low-voltage differential signaling (LVDS). This signaling technique lowers the output voltage levels of 5-V differential standard levels (such as EIA/TIA-422B) to reduce the power, increase the switching speeds, and allow operation with a 3-V supply rail. Any of the eight differential receivers will provide a valid logical output state with a ±100-mV differential input voltage within the input common-mode voltage range. The input common-mode voltage range allows 1 V of ground potential difference between two LVDS nodes. Additionally, the high-speed switching of LVDS signals always require the use of a line impedance matching resistor at the receiving end of the cable or transmission media. The LVDT product eliminates this external resistor by integrating it with the receiver.

The intended application of this device and signaling technique is for point-to-point baseband data transmission over controlled impedance media of approximately 100 . The transmission media may be printed-circuit board traces, backplanes, or cables. The large number of drivers integrated into the same substrate along with the low pulse skew of balanced signaling, allows extremely precise timing alignment of clock and data for synchronous parallel data transfers. When used with its companion, 8-channel driver, the SN65LVDS389 over 150 million data transfers per second in single-edge clocked systems are possible with very little power. Note: The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media, the noise coupling to the environment, and other system characteristics.

The SN65LVDS388 and SN65LVDT388 is characterized for operation from -40°C to 85°C. The SN75LVDS388 and SN75LVDT388 is characterized for operation from 0°C to 70°C.

下载 观看带字幕的视频 视频

技术文档

star =有关此产品的 TI 精选热门文档
未找到结果。请清除搜索并重试。
查看全部 1
类型 标题 下载最新的英语版本 日期
* 数据表 High-Speed Differential Line Receivers 数据表 (Rev. A) 2001年 6月 1日

设计和开发

如需其他信息或资源,请点击以下任一标题进入详情页面查看(如有)。

模拟工具

PSPICE-FOR-TI — 适用于 TI 设计和模拟工具的 PSpice®

PSpice® for TI 可提供帮助评估模拟电路功能的设计和仿真环境。此功能齐全的设计和仿真套件使用 Cadence® 的模拟分析引擎。PSpice for TI 可免费使用,包括业内超大的模型库之一,涵盖我们的模拟和电源产品系列以及精选的模拟行为模型。

借助 PSpice for TI 的设计和仿真环境及其内置的模型库,您可对复杂的混合信号设计进行仿真。创建完整的终端设备设计和原型解决方案,然后再进行布局和制造,可缩短产品上市时间并降低开发成本。

在 PSpice for TI 设计和仿真工具中,您可以搜索 TI (...)
模拟工具

TINA-TI — 基于 SPICE 的模拟仿真程序

TINA-TI 提供了 SPICE 所有的传统直流、瞬态和频域分析以及更多。TINA 具有广泛的后处理功能,允许您按照希望的方式设置结果的格式。虚拟仪器允许您选择输入波形、探针电路节点电压和波形。TINA 的原理图捕获非常直观 - 真正的“快速入门”。

TINA-TI 安装需要大约 500MB。直接安装,如果想卸载也很容易。我们相信您肯定会爱不释手。

TINA 是德州仪器 (TI) 专有的 DesignSoft 产品。该免费版本具有完整的功能,但不支持完整版 TINA 所提供的某些其他功能。

如需获取可用 TINA-TI 模型的完整列表,请参阅:SpiceRack - 完整列表 

需要 HSpice (...)

用户指南: PDF
英语版 (Rev.A): PDF
封装 引脚 下载
TSSOP (DBT) 38 查看选项

订购和质量

包含信息:
  • RoHS
  • REACH
  • 器件标识
  • 引脚镀层/焊球材料
  • MSL 等级/回流焊峰值温度
  • MTBF/时基故障估算
  • 材料成分
  • 鉴定摘要
  • 持续可靠性监测
包含信息:
  • 制造厂地点
  • 封装厂地点

支持和培训

视频