ZHCSSL6B July   2023  – March 2024 TPS7H6003-SP , TPS7H6013-SP , TPS7H6023-SP

PRODMIX  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Device Comparison Table
  6. Device Options Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Switching Characteristics
    7. 7.7 Quality Conformance Inspection
    8. 7.8 Typical Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Input Voltage
      2. 8.3.2  Linear Regulator Operation
      3. 8.3.3  Bootstrap Operation
        1. 8.3.3.1 Bootstrap Charging
        2. 8.3.3.2 Bootstrap Capacitor
        3. 8.3.3.3 Bootstrap Diode
        4. 8.3.3.4 Bootstrap Resistor
      4. 8.3.4  High-Side Driver Startup
      5. 8.3.5  Inputs and Outputs
      6. 8.3.6  Dead Time
      7. 8.3.7  Input Interlock Protection
      8. 8.3.8  Undervoltage Lockout and Power Good (PGOOD)
      9. 8.3.9  Negative SW Voltage Transients
      10. 8.3.10 Level Shifter
    4. 8.4 Device Functional Modes
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Bootstrap and Bypass Capacitors
        2. 9.2.2.2 Bootstrap Diode
        3. 9.2.2.3 BP5x Overshoot and Undershoot
        4. 9.2.2.4 Gate Resistor
        5. 9.2.2.5 Dead Time Resistor
        6. 9.2.2.6 Gate Driver Losses
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Examples
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 接收文档更新通知
    3. 10.3 支持资源
    4. 10.4 Trademarks
    5. 10.5 静电放电警告
    6. 10.6 术语表
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • HBX|48
散热焊盘机械数据 (封装 | 引脚)
订购信息

Negative SW Voltage Transients

Though enhancement mode GaN FETs do not contain a body diode like silicon FETs, the devices are capable of reverse conduction due to the symmetrical device structure. During the reverse conduction periods, the source-drain voltage of the GaN FET is typically higher than what is encountered with a traditional silicon FET, largely depending on the type of GaN device that is being used. As such, the switch node pins of the driver (ASW and PSW, collectively referred to as SW) have a negative voltage present. This negative transient can lead to an excessive bootstrap voltage, since BOOT is always referenced to SW. Furthermore, the printed circuit board layout and device parasitic inductances can further intensify the negative voltage transients. Operating at a bootstrap voltage above the absolute maximum of 16 V can be detrimental to the gate driver, so care must be taken to make sure that the maximum BOOT to SW voltage differential is not exceeded. Generally, BOOT follows SW instantaneously so that the BOOT to SW voltage does not overshoot significantly. However, an external Zener diode can be used between BOOT and SW to clamp the bootstrap voltage to acceptable values during operation.