SLUS973A October   2009  – November 2016 TPS54290 , TPS54291 , TPS54292

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Voltage Reference
      2. 8.3.2  Oscillator
      3. 8.3.3  Input UVLO and Start-Up
      4. 8.3.4  Enable and Timed Turnon of the Outputs
      5. 8.3.5  Soft Start
      6. 8.3.6  Output Voltage Regulation
      7. 8.3.7  Inductor Selection
      8. 8.3.8  Maximum Output Capacitance
      9. 8.3.9  Feedback Loop Compensation
      10. 8.3.10 Bootstrap for N-Channel MOSFET
      11. 8.3.11 Output Overload Protection
      12. 8.3.12 Operating Near Maximum Duty Cycle
      13. 8.3.13 Dual-Supply Operation
      14. 8.3.14 Bypassing and Filtering
    4. 8.4 Device Functional Modes
      1. 8.4.1 PWM Operation
      2. 8.4.2 Standby Operation
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 TPS54291 Design Example
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1  Duty Cycle Estimation
          2. 9.2.1.2.2  Inductor Selection
          3. 9.2.1.2.3  Output Capacitor Selection
          4. 9.2.1.2.4  Input Capacitor Selection
          5. 9.2.1.2.5  Feedback
          6. 9.2.1.2.6  Compensation Components
          7. 9.2.1.2.7  Compensation Gain Setting Resistor
          8. 9.2.1.2.8  Compensation Integrator Capacitor
          9. 9.2.1.2.9  Bootstrap Capacitor
          10. 9.2.1.2.10 Power Dissipation
        3. 9.2.1.3 Application Curves
      2. 9.2.2 TPS54290 Cascaded Design Example
        1. 9.2.2.1 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 PowerPAD™ Package
    2. 11.2 Layout Examples
    3. 11.3 Overtemperature Protection and Junction Temperature Rise
    4. 11.4 Power Derating
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Related Links
    3. 12.3 Receiving Notification of Documentation Updates
    4. 12.4 Community Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

Application Information

TPS5429X is a synchronous buck converter. It can convert an input voltage of 4.5 V to 18 V to two lower voltages. Channel 1 is rated for 1.5-A output, while Channel 2 is rated for 2.5-A output.

Typical Applications

TPS54291 Design Example

The following example illustrates the design process and component selection for a 12-V to 5-V or 3.3-V dual non-synchronous buck regulator using the TPS54291 converter.

TPS54290 TPS54291 TPS54292 de_schematic_lus973.gif Figure 17. TPS54291 Design Example 1 Schematic

Design Requirements

A definition of symbols used can be found in Table 1. The efficiency, line regulation, and load regulation from printed-circuit boards built using this design are shown in Figure 19 and Figure 20.

Table 1. Design Example Electrical Characteristics

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
INPUT CHARACTERISTICS
VIN Input voltage 8 12 14 V
IIN Input current VIN = nom, IOUT = max A
No load input current VIN = nom, IOUT = 0 A 12 20 mA
VIN(UVLO) Input UVLO IOUT = min to max 4 4.2 4.4 V
OUTPUT CHARACTERISTICS
VOUT1 Output voltage 1 VIN = nom, IOUT = nom 3.2 3.3 3.4 V
VOUT2 Output voltage 2 VIN = nom, IOUT = nom 1.15 1.2 1.25 V
Line regulation VIN = min to max 1%
Load regulation IOUT = min to max 1%
VOUT1(ripple) Output1 voltage ripple VIN = nom, IOUT1 = max 50 mVPP
VOUT2(ripple) Output2 voltage ripple VIN = nom, IOUT2 = max 24 mVPP
IOUT1 Output current 1 VIN = min to max 0 1.5 A
IOUT2 Output current 2 VIN = min to max 0 2.5 A
IOCP1 Output overcurrent Channel 1 VIN = nom, VOUT = (VOUT1 – 5%) 1.8 2.2 2.6 A
IOCP2 Output overcurrent Channel 2 VIN = nom, VOUT = (VOUT2 – 5%) 3.2 3.8 4.6 A
TRANSIENT RESPONSE
ΔVOUT Change from load transient ΔIOUT = 1 A at 3 µA/s 200 mV
Settling time to 1% of VOUT 1 ms
SYSTEMS CHARACTERISTICS
fSW Switching frequency 500 600 700 kHz
ηPEAK Peak efficiency VIN = nom 90%
η Full load efficiency VIN = nom, IOUT = max 80%
TOP Operating temperature VIN = min to max, IOUT = min to max 0 25 60 °C

Detailed Design Procedure

The list of materials for this application is shown below in Table 2.

Table 2. Design Example List of Materials

REFERENCE
DESIGNATOR
QTY VALUE DESCRIPTION SIZE PART NUMBER MFR
C12 1 4.7 µF Capacitor, Ceramic, 10 V, X5R, 20% 0805 Std Std
C2, C14 2 22 µF Capacitor, Ceramic, 6.3 V, X5R, 20% 1206 C3216X5R0J226M TDK
C3, C13 2 470 pF Capacitor, Ceramic, 25 V, X7R, 20% 0603 Std Std
C4, C11 2 0.047 µF Capacitor, Ceramic, 25 V, X7R, 20% 0603 Std Std
C5, C10 2 10 µF Capacitor, Ceramic, 25 V, X5R, 20% 1210 C3225X5R1E106M TDK
C6 2 1.8 nF Capacitor, Ceramic, 25 V, X7R, 20% 0603 Std Std
C7 1 15 pF Capacitor, Ceramic, 25 V, X7R, 20% 0603 Std Std
C8 1 47 pF Capacitor, Ceramic, 25 V, X7R, 20% 0603 Std Std
C9 1 1.2 nF Capacitor, Ceramic, 25 V, X7R, 20% 0603 Std Std
L1 1 8.2 µH Inductor, SMT, 4.38 A, 20 mΩ 0.402 × 0.394 inch MSS1048-822L Coilcraft
L2 1 3.3 µH Inductor, SMT, 5.04 A, 10 mΩ 0.402 × 0.394 inch MSS1048-332L Coilcraft
R10 1 40.2 kΩ Resistor, Chip, 1/16W, 1% 0603 Std Std
R2, R11 2 10 Ω Resistor, Chip, 1/16W, 5% 0603 Std Std
R3, R12 2 20.5 kΩ Resistor, Chip, 1/16W, 1% 0603 Std Std
R4 1 6.49 kΩ Resistor, Chip, 1/16W, 1% 0603 Std Std
R6 1 7.87 kΩ Resistor, Chip, 1/16W, 1% 0603 Std Std
R7 1 4.64 kΩ Resistor, Chip, 1/16W, 1% 0603 Std Std
U1 1 2.5 A/1.5 A, 600 Hz Dual Output Fully Synchronous Buck Converter w/Integrated FET CSP TPS54291PWP TI

Duty Cycle Estimation

The duty cycle of the main switching FET is estimated by Equation 12 and Equation 13.

Equation 12. TPS54290 TPS54291 TPS54292 qde_dmaxx_lus973.gif
Equation 13. TPS54290 TPS54291 TPS54292 qde_dminx_lus973.gif

Inductor Selection

The peak-to-peak ripple must be limited to between 20% and 30% of the maximum output current (see Equation 14 and Equation 15).

Equation 14. TPS54290 TPS54291 TPS54292 qde_ltrip1max_lus973.gif
Equation 15. TPS54290 TPS54291 TPS54292 qde_ltrip2max_lus973.gif

The minimum inductor size can be estimated by Equation 16 and Equation 17.

Equation 16. TPS54290 TPS54291 TPS54292 qde_lmin1_lus973.gif
Equation 17. TPS54290 TPS54291 TPS54292 qde_lmin2_lus973.gif

The standard inductor values of 8.2 µH and 3.3 µH are selected for Channel 1 and Channel 2, respectively. The actual ripple currents are estimated by Equation 18 and Equation 19.

Equation 18. TPS54290 TPS54291 TPS54292 qde_iripple1_lus973.gif
Equation 19. TPS54290 TPS54291 TPS54292 qde_iripple2_lus973.gif

The RMS current through the inductor is approximated by Equation 20 and Equation 21.

Equation 20. TPS54290 TPS54291 TPS54292 qde_ilrms1_lus973.gif
Equation 21. TPS54290 TPS54291 TPS54292 qde_ilrms2_lus973.gif

A DC current with 30% peak-to-peak ripple has an RMS current approximately 0.4% above the average current.

The peak inductor current is estimated by Equation 22 and Equation 23.

Equation 22. TPS54290 TPS54291 TPS54292 qde_ilpeak1_lus973.gif
Equation 23. TPS54290 TPS54291 TPS54292 qde_ilpeak2_lus973.gif

A 8.2-µH inductor with a minimum RMS current rating of 1.51 A and minimum saturation current rating of 3.7 A must be selected. A Coilcraft MSS1048-822ML 8.2-µH, 4.38-A inductor is chosen for Channel 1 and a Coilcraft MSS1048-332 3.3-µH inductor is chosen for Channel 2.

Output Capacitor Selection

Output capacitors are selected to support load transients and output ripple current. The minimum output capacitance to meet the transient specification is given by Equation 24 and Equation 25.

Equation 24. TPS54290 TPS54291 TPS54292 qde_cout1min_lus973.gif
Equation 25. TPS54290 TPS54291 TPS54292 qde_cout2min_lus973.gif

The maximum ESR to meet the ripple specification is given by Equation 26 and Equation 27.

Equation 26. TPS54290 TPS54291 TPS54292 qde_esrmax1_lus973.gif
Equation 27. TPS54290 TPS54291 TPS54292 qde_esrmax2_lus973.gif

A single 22-µF ceramic capacitor with approximately 2.5 mΩ of ESR is selected to provide sufficient margin for capacitance loss due to DC voltage bias.

Input Capacitor Selection

A minimum 10-µF ceramic input capacitor on each PVDD pin is recommended. The ceramic capacitor must handle the RMS ripple current in the input capacitor.

The RMS current in the input capacitors is estimated by Equation 28 and Equation 29.

Equation 28. TPS54290 TPS54291 TPS54292 qde_irmscin1_lus973.gif
Equation 29. TPS54290 TPS54291 TPS54292 qde_irmscin2_lus973.gif

One 1210 10-µF, 25-V, X5R, ceramic capacitor with 2-mΩ ESR and a 2-A RMS current rating are selected for each PVDD input. Higher voltage capacitors are selected to minimize capacitance loss at the DC bias voltage to ensure the capacitors have sufficient capacitance at the working voltage.

Feedback

The primary feedback divider resistor (RFB) from VOUT to FB must be selected between 10-kΩ and 100-kΩ to maintain a balance between power dissipation and noise sensitivity. For a 3.3-V and 5-V output, 20.5 kΩ is selected and the lower resistor is given by Equation 30.

Equation 30. TPS54290 TPS54291 TPS54292 qde_rbias_lus973.gif

For RFB = 20.5 kΩ and VFB = 0.8 V, RBIAS = 6.56 kΩ and 41.0 kΩ (6.49 kΩ and 40.2 kΩ selected) for 3.3 V and 1.2 V, respectively. It is common to select the next lower available resistor value for the bias resistor. This biases the nominal output voltage slightly higher, allowing additional tolerance for load regulation.

Compensation Components

The TPS54291 controller uses a transconductance error amplifier, which is compensated with a series capacitor and resistor to ground plus a high-frequency capacitor to reduce the gain at high frequency. To select the component, Equation 31 to Equation 33 define the control loop and power stage gain and transfer function.

Equation 31. TPS54290 TPS54291 TPS54292 qde_fmtps5429x_lus973.gif

where

  • K = 5.6 × 105 for TPS54290
  • K = 1.5 × 106 for TPS54291
  • K = 3.6 × 106 for TPS54292

The overall DC gain of the converter control-to-output transfer function is approximated by Equation 32.

Equation 32. TPS54290 TPS54291 TPS54292 qde_fc_lus973.gif

With the power stage DC gain, it is possible to estimate the required mid-band gain to program a desired crossover frequency.

Equation 33. TPS54290 TPS54291 TPS54292 qde_kea_lus973.gif

Compensation Gain Setting Resistor

RCOMP programs the mid-band error amplifier gain to set the desired crossover frequency in Equation 34.

Equation 34. TPS54290 TPS54291 TPS54292 qde_rcomp_lus973.gif

Compensation Integrator Capacitor

An integrator capacitor provides maximum DC gain for the best possible DC regulation while programming the compensation zero to match the natural pole of the output filter (see Equation 35). CCOMP is selected by Equation 36.

Equation 35. TPS54290 TPS54291 TPS54292 qde_fpole_lus973.gif
Equation 36. TPS54290 TPS54291 TPS54292 qde_ccomp_lus973.gif

Bootstrap Capacitor

To ensure proper charging of the high-side FET gate and limit the ripple voltage on the boost capacitor, a 47-nF boot strap capacitor is recommended.

Power Dissipation

The power dissipation in the TPS54291 is made from FET conduction losses, switching losses and regulator losses.

Conduction losses are estimated by Equation 37 and Equation 38.

Equation 37. TPS54290 TPS54291 TPS54292 qde_pcon1_lus973.gif
Equation 38. TPS54290 TPS54291 TPS54292 qde_pcon2_lus973.gif

The switching losses are estimated by Equation 39 and Equation 40.

Equation 39. TPS54290 TPS54291 TPS54292 qde_psw1_lus973.gif
Equation 40. TPS54290 TPS54291 TPS54292 qde_psw2_lus973.gif

The regulator losses are estimated by Equation 41.

Equation 41. TPS54290 TPS54291 TPS54292 qde_preg_lus973.gif

Total power dissipation in the device is the sum of conduction losses and switching losses for both channels plus regulator losses, which is estimated to be 1.01 W.

Application Curves

TPS54290 TPS54291 TPS54292 sw_lus973.png Figure 18. TPS54291 Design Example
Switching Waveforms
TPS54290 TPS54291 TPS54292 eff_v_il33_lus973.gif Figure 20. Design Efficiency for 3.3-V Output
TPS54290 TPS54291 TPS54292 eff_v_il12_lus973.gif Figure 19. Design Efficiency for 1.2-V Output

TPS54290 Cascaded Design Example

TPS5429x can be configured as cascaded operation as shown in Figure 21. The 12-V input supply is applied to PVDD2 and the Channel 2 output is tied to PVDD1. The Channel 2 output is 3.3 V and capable of supporting 1.5 A to the load while generating power for the 1.2-V input for Channel 1.

TPS54290 TPS54291 TPS54292 de2_schematic01_lus973.gif Figure 21. Cascading Operation

Application Curves

For Figure 22: Channel 1 is a 12-V supply, Channel 2 is VOUT1 (1.2 V), and Channel 3 is VOUT2(3.3 V).

For Figure 23: Channel 1 is Channel 1 SW node and Channel 2 is Channel 1 output ripple; Channel 3 is Channel 2 output ripple and Channel 2 is Channel 2 SW node.

TPS54290 TPS54291 TPS54292 wavestartup_lus973.png Figure 22. Start-Up Waveforms
TPS54290 TPS54291 TPS54292 waveripple_lus973.png Figure 23. Output Ripple and SW Nodes