ZHCSUS6G July   2003  – February 2024 MAX202

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Switching Characteristics
    7. 5.7 Typical Characteristics
  7.   Parameter Measurement Information
  8. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Power
      2. 6.3.2 RS-232 Driver
      3. 6.3.3 RS-232 Receiver
    4. 6.4 Device Functional Modes
      1. 6.4.1 VCC Powered by 5V
      2. 6.4.2 VCC Unpowered
      3. 6.4.3 Truth Tables
  9. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Capacitor Selection
        2. 7.2.2.2 ESD Protection
        3. 7.2.2.3 ESD Test Conditions
        4. 7.2.2.4 Human-Body Model (HBM)
      3. 7.2.3 Application Curve
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  10. Device and Documentation Support
    1. 8.1 接收文档更新通知
    2. 8.2 支持资源
    3. 8.3 Trademarks
    4. 8.4 静电放电警告
    5. 8.5 术语表
  11. Revision History
  12. 10Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Capacitor Selection

The capacitor type used for C1 through C4 is not critical for proper operation. The MAX202 requires 0.1µF capacitors. Capacitors up to 10µF can be used without harm. Ceramic dielectrics are suggested for the 0.1µF capacitors. When using the minimum recommended capacitor values, make sure the capacitance value does not degrade excessively as the operating temperature varies. If in doubt, use capacitors with a larger (for example, 2×) nominal value. The capacitors' effective series resistance (ESR), which usually rises at low temperatures, influences the amount of ripple on V+ and V–.

Use larger capacitors (up to 10µF) to reduce the output impedance at V+ and V–.

Bypass VCC to ground with at least 0.1µF. In applications sensitive to power-supply noise generated by the charge pumps, decouple VCC to ground with a capacitor the same size as (or larger than) the charge-pump capacitors (C1 to C4).