ZHCSG16A January   2017  – May 2017 LMK61E0M

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics - Power Supply
    6. 6.6  3.3-V LVCMOS Output Characteristics
    7. 6.7  OE Input Characteristics
    8. 6.8  ADD Input Characteristics
    9. 6.9  Frequency Tolerance Characteristics
    10. 6.10 Frequency Margining Characteristics
    11. 6.11 Power-On/Reset Characteristics (VDD)
    12. 6.12 I2C-Compatible Interface Characteristics (SDA, SCL)
    13. 6.13 Other Characteristics
    14. 6.14 PLL Clock Output Jitter Characteristics
    15. 6.15 Additional Reliability and Qualification
    16. 6.16 Typical Characteristics
  7. Parameter Measurement Information
    1. 7.1 Device Output Configurations
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Device Block-Level Description
      2. 8.3.2  Device Configuration Control
      3. 8.3.3  Register File Reference Convention
      4. 8.3.4  Configuring the PLL
      5. 8.3.5  Integrated Oscillator
      6. 8.3.6  Reference Divider and Doubler
      7. 8.3.7  Phase Frequency Detector
      8. 8.3.8  Feedback Divider (N)
      9. 8.3.9  Fractional Engine
      10. 8.3.10 Charge Pump
      11. 8.3.11 Loop Filter
      12. 8.3.12 VCO Calibration
      13. 8.3.13 High-Speed Output Divider
      14. 8.3.14 High-Speed Clock Output
      15. 8.3.15 Device Status
        1. 8.3.15.1 Loss of Lock
    4. 8.4 Device Functional Modes
      1. 8.4.1 Interface and Control
      2. 8.4.2 DCXO Mode and Frequency Margining
        1. 8.4.2.1 DCXO Mode
        2. 8.4.2.2 Fine Frequency Margining
        3. 8.4.2.3 Coarse Frequency Margining
    5. 8.5 Programming
      1. 8.5.1 I2C Serial Interface
      2. 8.5.2 Block Register Write
      3. 8.5.3 Block Register Read
      4. 8.5.4 Write SRAM
      5. 8.5.5 Write EEPROM
      6. 8.5.6 Read SRAM
      7. 8.5.7 Read EEPROM
    6. 8.6 Register Maps
      1. 8.6.1 Register Descriptions
        1. 8.6.1.1  VNDRID_BY1 Register; R0
        2. 8.6.1.2  VNDRID_BY0 Register; R1
        3. 8.6.1.3  PRODID Register; R2
        4. 8.6.1.4  REVID Register; R3
        5. 8.6.1.5  SLAVEADR Register; R8
        6. 8.6.1.6  EEREV Register; R9
        7. 8.6.1.7  DEV_CTL Register; R10
        8. 8.6.1.8  XO_CAPCTRL_BY1 Register; R16
        9. 8.6.1.9  XO_CAPCTRL_BY0 Register; R17
        10. 8.6.1.10 CMOSCTL Register; R20
        11. 8.6.1.11 DIFFCTL Register; R21
        12. 8.6.1.12 OUTDIV_BY1 Register; R22
        13. 8.6.1.13 OUTDIV_BY0 Register; R23
        14. 8.6.1.14 RDIVCMOSCTL Register; R24
        15. 8.6.1.15 PLL_NDIV_BY1 Register; R25
        16. 8.6.1.16 PLL_NDIV_BY0 Register; R26
        17. 8.6.1.17 PLL_FRACNUM_BY2 Register; R27
        18. 8.6.1.18 PLL_FRACNUM_BY1 Register; R28
        19. 8.6.1.19 PLL_FRACNUM_BY0 Register; R29
        20. 8.6.1.20 PLL_FRACDEN_BY2 Register; R30
        21. 8.6.1.21 PLL_FRACDEN_BY1 Register; R31
        22. 8.6.1.22 PLL_FRACDEN_BY0 Register; R32
        23. 8.6.1.23 PLL_MASHCTRL Register; R33
        24. 8.6.1.24 PLL_CTRL0 Register; R34
        25. 8.6.1.25 PLL_CTRL1 Register; R35
        26. 8.6.1.26 PLL_LF_R2 Register; R36
        27. 8.6.1.27 PLL_LF_C1 Register; R37
        28. 8.6.1.28 PLL_LF_R3 Register; R38
        29. 8.6.1.29 PLL_LF_C3 Register; R39
        30. 8.6.1.30 PLL_CALCTRL Register; R42
        31. 8.6.1.31 NVMSCRC Register; R47
        32. 8.6.1.32 NVMCNT Register; R48
        33. 8.6.1.33 NVMCTL Register; R49
        34. 8.6.1.34 MEMADR Register; R51
        35. 8.6.1.35 NVMDAT Register; R52
        36. 8.6.1.36 RAMDAT Register; R53
        37. 8.6.1.37 NVMUNLK Register; R56
        38. 8.6.1.38 INT_LIVE Register; R66
        39. 8.6.1.39 SWRST Register; R72
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 PLL Loop Filter Design
        2. 9.2.2.2 Spur Mitigation Techniques
          1. 9.2.2.2.1 Phase Detection Spur
          2. 9.2.2.2.2 Integer Boundary Fractional Spur
          3. 9.2.2.2.3 Primary Fractional Spur
          4. 9.2.2.2.4 Sub-Fractional Spur
        3. 9.2.2.3 Device Programming
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Ensured Thermal Reliability
      2. 11.1.2 Best Practices for Signal Integrity
      3. 11.1.3 Recommended Solder Reflow Profile
    2. 11.2 Layout Example
  12. 12器件和文档支持
    1. 12.1 文档支持
      1. 12.1.1 相关文档
    2. 12.2 接收文档更新通知
    3. 12.3 社区资源
    4. 12.4 商标
    5. 12.5 静电放电警告
    6. 12.6 Glossary
  13. 13机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VDD Device supply voltage –0.3 3.6 V
VIN Input voltage range for logic inputs –0.3 VDD + 0.3 V
VOUT Output voltage range for clock outputs –0.3 VDD + 0.3 V
TJ Junction temperature 150 °C
TSTG Storage temperature –40 125 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VDD Device supply voltage 3.135 3.3 3.465 V
TA Ambient temperature –40 25 85 °C
TJ Junction temperature 115 °C
tRAMP VDD power-up ramp time 0.1 100 ms

Thermal Information

THERMAL METRIC(1) LMK61E0 (2) (3) (4) UNIT
SIA (QFM)
8 PINS
Airflow (LFM) 0 Airflow (LFM) 200 Airflow (LFM) 400
RθJA Junction-to-ambient thermal resistance 54 44 41.2 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 34 n/a n/a °C/W
RθJB Junction-to-board thermal resistance 36.7 n/a n/a °C/W
ψJT Junction-to-top characterization parameter 11.2 16.9 21.9 °C/W
ψJB Junction-to-board characterization parameter 36.7 37.8 38.9 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance n/a n/a n/a °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
The package thermal resistance is calculated on a 4-layer JEDEC board.
Connected to GND with 3 thermal vias (0.3-mm diameter).
ψJB (junction-to-board) is used when the main heat flow is from the junction to the GND pad. See Layout Guidelines for more information on ensuring good system reliability and quality.

Electrical Characteristics - Power Supply(1)

VDD = 3.3 V ± 5%, TA = –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IDD Device current consumption LVCMOS 140 180 mA
IDD-PD Device current consumption when output is disabled OE = GND 120 mA
Refer to Parameter Measurement Information for relevant test conditions.

3.3-V LVCMOS Output Characteristics(1)

VDD = 3.3 V ± 5%, TA = –40°C to 85°C, outputs loaded with 2 pF to GND
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fOUT Output frequency Fast mode, R22[7:6] = 0x0 50 200 MHz
VOH Output high voltage IOH = 1 mA 2.5 V
VOL Output low voltage IOL = 1 mA 0.6 V
IOH Output high current –33 mA
IOL Output low current 33 mA
tR/tF(2) Output rise/fall time 20% to 80%, R22[7:6] = 0x2 1.1 ns
20% to 80%, R22[7:6] = 0x0 0.2 ns
PN-Floor Output phase noise floor (fOFFSET > 10 MHz) 70.656 MHz –150 dBc/Hz
ODC(2) Output duty cycle Fast mode, R22[7:6] = 0x0 45% 55%
ROUT Output impedance 50 Ω
Refer to Parameter Measurement Information for relevant test conditions.
Ensured by characterization.

OE Input Characteristics

VDD = 3.3 V ± 5%, TA = –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIH Input high voltage 1.4 V
VIL Input low voltage 0.6 V
IIH Input high current VIH = VDD –40 40 µA
IIL Input low current VIL = GND –40 40 µA
CIN Input capacitance 2 pF

ADD Input Characteristics

VDD = 3.3 V ± 5%, TA = –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIH Input high voltage 1.4 V
VIL Input low voltage 0.4 V
IIH Input high current VIH = VDD –40 40 µA
IIL Input low current VIL = GND –40 40 µA
CIN Input capacitance 2 pF

Frequency Tolerance Characteristics(1)

VDD = 3.3 V ± 5%, TA = –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fT Total frequency tolerance All frequency bands and device junction temperature up to 115°C; includes initial freq tolerance, temperature & supply voltage variation, solder reflow, and 5 year aging at 40°C ambient temperature –25 25 ppm
Ensured by characterization.

Frequency Margining Characteristics

VDD = 3.3 V ± 5%, TA = –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fT Frequency margining range from nominal –1000 1000 ppm

Power-On/Reset Characteristics (VDD)

VDD = 3.3 V ± 5%, TA = –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VTHRESH Threshold voltage(1) 2.72 2.95 V
VDROOP Allowable voltage droop(2) 0.1 V
tSTARTUP Start-up time(1) Time elapsed from VDD at 3.135 V to output enabled 10 ms
tOE-EN Output enable time(2) Time elapsed from OE at VIH to output enabled 50 µs
tOE-DIS Output disable time(2) Time elapsed from OE at VIL to output disabled 50 µs
Ensured by characterization.
Ensured by design.

I2C-Compatible Interface Characteristics (SDA, SCL)(1)(2)

VDD = 3.3 V ± 5%, TA = –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIH Input high voltage 1.2 V
VIL Input low voltage 0.6 V
IIH Input leakage –40 40 µA
CIN Input capacitance 2 pF
COUT Input capacitance 400 pF
VOL Output low voltage IOL = 3 mA 0.6 V
fSCL I2C clock rate 100 1000 kHz
tSU_STA START condition setup time SCL high before SDA low 0.6 µs
tH_STA START condition hold time SCL low after SDA low 0.6 µs
tPH_SCL SCL pulse width high 0.6 µs
tPL_SCL SCL pulse width low 1.3 µs
tH_SDA SDA hold time SDA valid after SCL low 0 0.9 µs
tSU_SDA SDA setup time 115 ns
tR_IN / tF_IN SCL/SDA input rise and fall time 300 ns
tF_OUT SDA output fall time CBUS = 10 pF to 400 pF 250 ns
tSU_STOP STOP condition setup time 0.6 µs
tBUS Bus free time between STOP and START 1.3 µs
Total capacitive load for each bus line ≤ 400 pF.
Ensured by design.

Other Characteristics

VDD = 3.3 V ± 5%, TA = –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fVCO VCO frequency range 4.6 5.6 GHz

PLL Clock Output Jitter Characteristics(1)(3)

VDD = 3.3 V ± 5%, TA = –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
RJ RMS phase jitter(2)
(12 kHz – 20 MHz)
fOUT ≥ 50 MHz, Fractional-N PLL, LVCMOS output 500 1000 fs RMS
Refer to Parameter Measurement Information for relevant test conditions.
Ensured by characterization.
Phase jitter measured with Agilent E5052 signal source analyzer.

Additional Reliability and Qualification

PARAMETER CONDITION / TEST METHOD
Mechanical Shock MIL-STD-202, Method 213
Mechanical Vibration MIL-STD-202, Method 204
Moisture Sensitivity Level J-STD-020, MSL3

Typical Characteristics

LMK61E0M waveform_01_LMK61E0M_70M656_nospur_snas692.png Figure 1. Typical Phase Noise of LVCMOS Output at 70.656 MHz