SNAS416K July   2007  – November 2019 LM48511

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      EMI Graph: LM48511 RF Emissions — 3-Inch Cable
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics VDD = 5 V
    6. 6.6 Electrical Characteristics VDD = 3.6 V
    7. 6.7 Electrical Characteristics VDD = 3 V
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 General Amplifier Function
      2. 7.3.2 Differential Amplifier Explanation
      3. 7.3.3 Audio Amplifier Power Dissipation and Efficiency
      4. 7.3.4 Regulator Power Dissipation
      5. 7.3.5 Shutdown Function
      6. 7.3.6 Regulator Feedback Select
    4. 7.4 Device Functional Modes
      1. 7.4.1 7.4.1 Fixed Frequency
      2. 7.4.2 7.4.2 Spread Spectrum Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Proper Selection of External Components
        2. 8.2.2.2  Power Supply Bypassing
        3. 8.2.2.3  Audio Amplifier Gain Setting Resistor Selection
        4. 8.2.2.4  Audio Amplifier Input Capacitor Selection
        5. 8.2.2.5  Selecting Regulator Output Capacitor
        6. 8.2.2.6  Selecting Regulating Bypass Capacitor
        7. 8.2.2.7  Selecting the Soft-Start (CSS) Capacitor
        8. 8.2.2.8  Selecting Diode (D1)
        9. 8.2.2.9  Duty Cycle
        10. 8.2.2.10 Selecting Inductor Value
        11. 8.2.2.11 Inductor Supplies
        12. 8.2.2.12 Setting the Regulator Output Voltage (PV1)
        13. 8.2.2.13 Discontinuous and Continuous Operation
        14. 8.2.2.14 ISW Feed-Forward Compensation for Boost Converter
        15. 8.2.2.15 Calculating Regulator Output Current
        16. 8.2.2.16 Design Parameters VSW and ISW
      3. 8.2.3 Application Curve
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Power and Ground Circuits
      2. 10.1.2 Layout Helpful Hints
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Receiving Notification of Documentation Updates
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Shutdown Function

The LM48511 features independent amplifier and regulator shutdown controls, allowing each portion of the device to be disabled or enabled independently. SD_AMP controls the Class D amplifiers, while SD_BOOST controls the regulator. Driving either inputs low disables the corresponding portion of the device, and reducing supply current.

When the regulator is disabled, both FB_GND switches open, further reducing shutdown current by eliminating the current path to GND through the regulator feedback network. Without the GND switches, the feedback resistors as shown in the Functional Block Diagram would consume an additional 165 μA from a 5-V supply. With the regulator disabled, there is still a current path from VDD, through the inductor and diode, to the amplifier power supply. This allows the amplifier to operate even when the regulator is disabled. The voltage at PV1 and V1 will be:

Equation 2. (VDD – [VD + (IL x DCR)]

where

  • VD is the forward voltage of the Schottky diode
  • VD is the forward voltage of the Schottky diode
  • IL is the current through the inductor
  • DCR is the DC resistance of the inductor

Additionally, when the regulator is disabled, an external voltage from 5 V to 8 V can be applied directly to PV1 and V1 to power the amplifier.

It is best to switch between ground and VDD for minimum current consumption while in shutdown. The LM48511 may be disabled with shutdown voltages in between GND and VDD, the idle current will be greater than the typical 0.1-µA value. Increased THD+N may also be observed when a voltage of less than VDD is applied to SD_AMP .