Design Guide: TIDC-HYBRID-WMBUS-PLC Extending Network Coverage and Reliability With Standards-Based Protocols Reference Design

Texas Instruments

Description

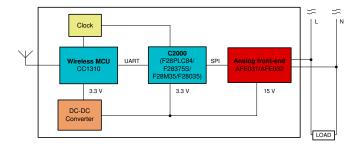
The importance of on-time response and monitoring in Advanced metering infrastructure (AMI) and distribution automation networks increases demands on reliable communications. Standards-based communications are becoming a requirement in most smart grid deployments as service operators and regulators take advantage of interoperability. This reference design addresses these issues by implementing a solution with standard-based wireless M-Bus and G3-PLC power line communication (PLC).

This design may help improve network performance, reliability, capacity, and scalability. The CC13xx wireless MCU acts as both the RF protocol processor and the host for the PLC processor, resulting in additional cost-saving for the system design. This design is based on a wireless M-Bus RF solution with G3-PLC. To view a TI proprietary RF solution-based version, refer to the TIDC-HYBRID-RF-PLC Design.

Resources

TIDC-HYBRID-WMBUS-PLC	Design Folder
CC310	Product Folder
F28PLC84	Product Folder
F28375S	Product Folder
F28M35H52C	Product Folder
AFE031	Product Folder
AFE032	Product Folder
TMDSPLCKITV4-CEN	Tools Folder
LAUNCHXL-CC1310	Tools Folder
TI-PLC-G3-CENELEC-SN	Tools Folder
SIMPLELINK-CC13X0-SDK	Tools Folder
WMBUS	Tools Folder

Search Our E2E[™] support forums


Features

- Improves network reliability through simultaneous transmission over wireless M-Bus and PLC networks
- Improves network capacity through spatial multiplexing by using wireless M-Bus and PLC networks to simultaneously transmit independent data
- Improves network scalability by acting as bridge between wireless M-Bus and PLC networks, extending area covered within territory
- Fully programmable protocol design provides various options for PLC/wireless M-Bus communication protocols (PRIME, G3-PLC, and PLC-Lite) over CENELEC, ARIB, and FCC frequency bands and wireless M-Bus C-/T-/S-Mode TRX support over 868-MHz frequency bands

Applications

- Distribution automation
- Smart meters
- Smart plugs
- Smart grid communications

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other important disclaimers and information.

1 System Description

This design provides a reliable communication system solution with standard-based wireless M-Bus and PLC communications for end equipment of smart grid applications. This design is built on top of the existing TI PLC and wireless M-Bus solutions, which improves network performance and provides more features by combining the communication modems and the inherited advantages from the existing PLC and wireless M-Bus solutions.

The ARM® Cortex[™]-M3 processor in the CC1310 Simplelink[™] wireless microcontroller (MCU) is the CPU that controls the RF and PLC links. In this design, the CC1310 Wireless MCU is connected to the C2000 PLC MCU through UART and acts as the external host processor for the PLC modem. The PLC MCU is loaded with the G3-PLC stacks. The wireless MCU also runs the host applications for the system by simultaneously transmitting packets on both networks or acting as a bridge between the different physical networks. Section 4 describes the hybrid wireless M-Bus PLC example project that uses this architecture.

Figure 1 shows the wireless M-Bus with a G3-PLC full-stack based system architecture.

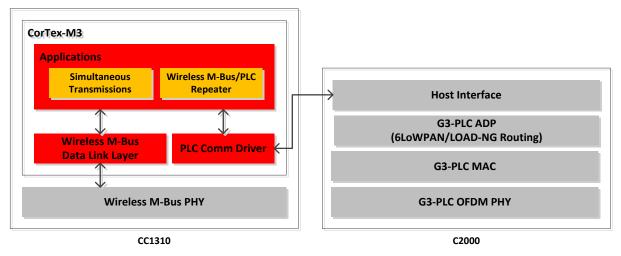


Figure 1. System Architecture (Wireless M-Bus With PLC)

2 Block Diagrams

The primary devices for this design are CC1310, TMS320F28PLC84, and AFE031. The CC1310 includes two core processors: ARM[™] Cortex-M0 for RF communication and ARM[™] Cortex-M3 for applications, network stacks, and host-level RF/PLC communication drivers. The TMS320F28PLC84 with AFE031 (PLC analog front end) is for PLC communication.

Figure 2 shows the block diagram.

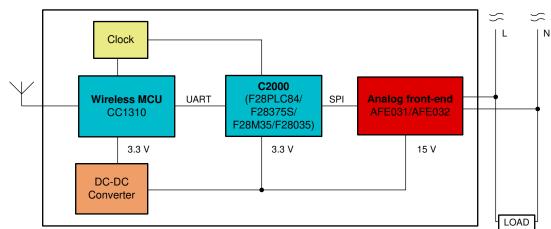


Figure 2. Block Diagram

2.1 Highlighted Products

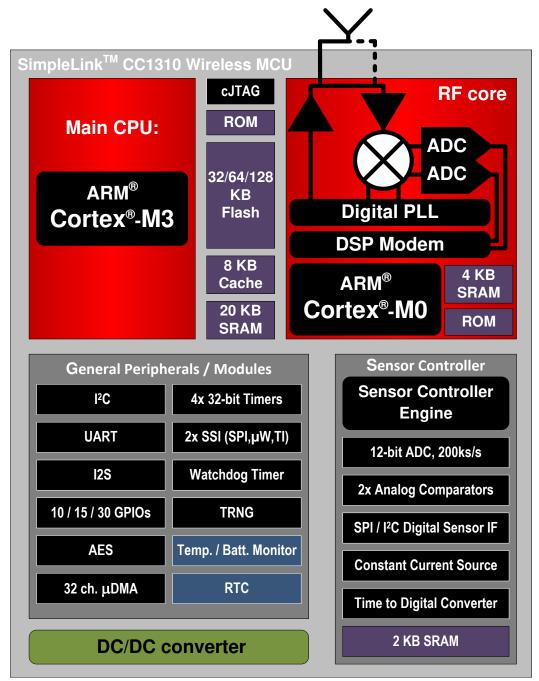
The Reference Design features the following devices:

- CC1310 combines a flexible, low-power RF transceiver with a powerful 48-MHz ARM[™] Cortex-M3 microcontroller in a platform supporting wireless M-Bus stacks.
- TMS320F28PLC84 provides optimized PLC OFDM performance with VCU and allows programmable, flexible PLC design that may upgrade to different PLC solutions without hardware modification.
- AFE031 provides high reliability for PLC applications by using a monolithic integrated circuit with thermal and overcurrent protection.

For more information on each of these devices, refer to the TIDC-HYBRID-WMBUS-PLC product folders.

2.1.1 CC1310

The device is a member of the CC26xx and CC13xx families of cost-effective, ultra low-power, 2.4 GHz and sub 1-GHz RF devices. Low active RF, MCU current, and low-power mode current consumption provide excellent battery lifetime and allow operation on small coin-cell batteries and energy-harvesting applications. The CC1310 device is the first part in a Sub-1 GHz family of cost-effective, ultra low-power wireless MCUs. The CC1310 device combines a flexible, low-power RF transceiver with a powerful 48-MHz Cortex M3 MCU in a platform that supports multiple physical layers and RF standards. A dedicated radio controller (Cortex-M0) handles low-level RF protocol commands that are stored in ROM or RAM, which ensures ultra low-power and flexibility. The low-power consumption of the CC1310 device does not come at the expense of RF performance—the CC1310 device has excellent sensitivity, selectivity and blocking performance. The CC1310 device is a highly integrated, single-chip solution that incorporates a complete RF system and an on-chip DC-DC converter. Sensors may be handled in a low-power manner by a dedicated autonomous ultra low-power MCU that may be configured to handle analog and digital sensors, so the main MCU (Cortex-M3) may maximize sleep time. The CC1310 power, clock management, and radio systems require specific configuration and software handling to operate correctly. This has been implemented in the TI RTOS, and TI recommends that this software framework is used for all application development on the device. The CC1310 includes an Advanced Encryption Standard (AES) engine with 128-bit key support. In addition, the source code offers the complete TI-RTOS and device drivers.

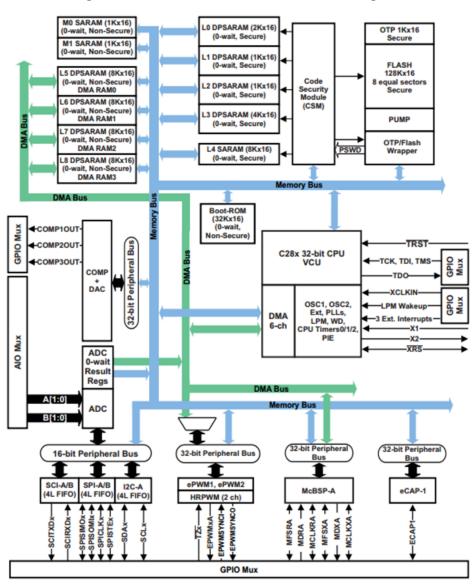

3

Block Diagrams

4

www.ti.com

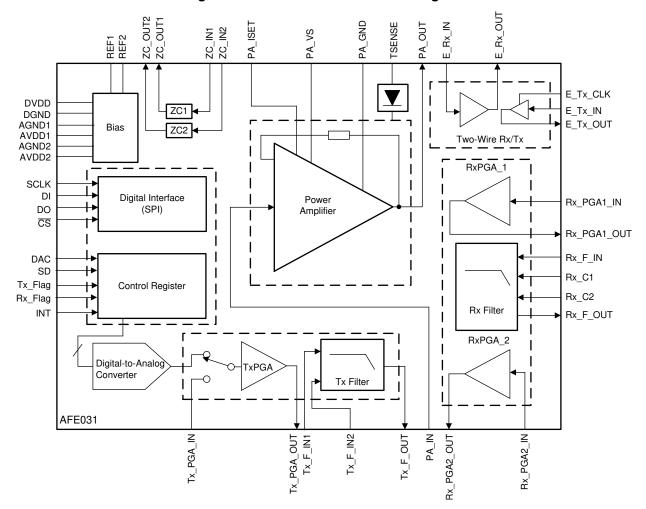
Figure 3 shows the block diagram.


Figure 3. CC1310 Functional Block Diagram

2.1.2 TMS320F28PLC84

The TMS320F28PLC84 PLC processors are optimized to meet the requirements for AMI networks in Smart Grid installations that will use narrowband PLC in the CENELEC frequency band. The CENELEC band is defined to range from 35 kHz to 90 kHz. The F28PLC84 processor is designed to execute the entire PLC protocol stack for the supported industry standards. TI supplies these firmware libraries to execute on the F28PLC84 processor with no additional license fees or royalties. The F28PLC84 processor is also used in PLC data concentrators, which act as neighborhood-area collectors of electricity usage information from multiple end nodes. The F28PLC84 processors are optimized to work with the AFE031 analog front end for the PLC. The AFE031 is an integrated analog front end for narrowband PLC that may drive a transformer-coupled connection to the AC Mains power line. It is ideal for driving high-current, low-impedance lines driving up to 1.9 A into reactive loads. The AFE031 is compliant with CENELEC A, B, C, and D (EN50065-1, -2, -3, -7) frequency bands.

Figure 4 shows the functional block diagram.


6

2.1.3 **AFE031**

The AFE031 is a low-cost, integrated, PLC analog front-end device that is capable of capacitive or transformer-coupled connections to the powerline while controlled by a DSP or microcontroller. It is ideal for driving low-impedance lines that require up to 1.5 A in reactive loads. The integrated receiver may detect signals down to 20 µVRMS and is capable of a wide range of gain options to adapt to varying input signal conditions. This monolithic integrated circuit provides high reliability in demanding powerline communications applications. The AFE031 transmit power amplifier operates from a single supply from 7 V — 24 V. At maximum output current, a wide output swing provides a $12-V_{PP}$ ($I_{OUT} = 1.5$ A) capability with a nominal 15-V supply. The analog and digital signal processing circuitry operates from a single 3.3-V power supply.

The AFE031 is internally protected against over temperature and short-circuit conditions. It also provides an adjustable current limit. The provided interrupt output indicates the current limit and thermal limit. There is also a shutdown pin that may quickly put the device into its lowest power state. Through the four-wire serial peripheral interface, or SPI[™], each functional block may be enabled or disabled to optimize power dissipation. The AFE031 is housed in a thermally-enhanced, surface-mount Power PAD package (QFN-48). Operation is specified over the extended industrial junction temperature range of -40°C to 125°C.

Figure 5 shows the functional block diagram.

Figure 5. AFE031 Functional Block Diagram

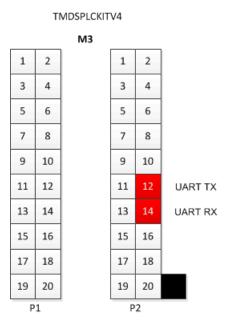
3 Getting Started Hardware

The hybrid wireless M-Bus and PLC communications design are built with two standard EVMs: LAUNCHXL-CC1310 andTMDSPLCKITV4-CEN, as shown respectively in Figure 6 and Figure 7.

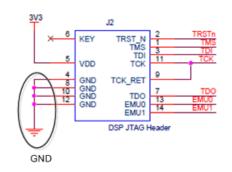
The reference design configures as CENELEC-A band in software with a TMDSPLCKITV4-CEN platform for the PLC. Depending on user applications, TIDM-SOMPLC-FCC or TMDSPLCKITV4-ARIB may work with the LAUNCHXL-CC1310.

Figure 6. LAUNCHXL-CC1310

Figure 7. TMDSPLCKITV4-CEN

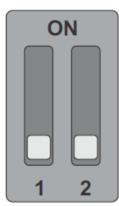

Getting Started Hardware

8


3.1 EVM Configuration

The major hardware modification on the hybrid wireless M-Bus or PLC system is to connect the UART pins (UART_TX, UART_RX and GND) between the LAUNCHXL-CC1310 and the TMDSPLCKITV4 EVM.

- Figure 8 shows UART pins 0n the TMDSPLCKITV4 connected to the LAUNCHXL-CC1310.
- The M3:P2-12 (PLC_SCIA_TX) pin in Figure 8 is connected to UART RX pin (DIO 2) on the LAUNCHXL-CC1310.
- M3:P2-14 (PLC_SCIA_RX) (Figure 8) connects to UART TX pin (DIO 3) on the LAUNCHXL-CC1310.
- The GND pin in the TMDSPLCKITV4 EVM, as shown in Figure 8, is connected to GND pin on the LAUNCHXL-CC1310.



As Figure 10 shows, an additional configuration change is to switch the SW2 position to OFF. Turning off the SW2 blocks UART communication with the mini-USB port in TMDSPLCKITV4, which allows the M3 module to communicate with the external device through the UART without interruptions.

Figure 9. SW2 Position in TMDSPLCKITV4 EVM

4 **Getting Started Firmware**

This reference design provides a HYBRID-WMBUS-PLC software example which includes applications for simultaneous transmissions, repeaters, wireless M-Bus lower-layer stacks and PLC communication host drivers. This section covers details of the example software architecture, and how to build and flash the example project using the TI Code Composer Studio™ (CCS) software.

The software example can be built with CCS v9.0.1 (or above). Figure 10 and Figure 11 show the compiler and CC13x0 SDK versions (SIMPLELINK-CC13X0-SDK v3.10.0.11) used to compile the software example.

Figure 10. Software Example Compiler Version

Properties for HybridWmbusPlcE	xample_CC1310_LAUN	VCHXL_tirtos_ccs						
type filter text	General 🔶 • 🔶 • •							
 Resource General Build ARM Compiler 	Configuration: det	bug [Active]					▼ Mana	ge Configurations
Processor Options Optimization	📧 Project 🛋 Proe	ducts						
Include Options ULP Advisor Predefined Symbols	Device Family: ARM	A						Ţ
Advanced Options	Variant <se< td=""><td>elect or type filter text></td><td></td><td>•</td><td>CC1310F128</td><td></td><td></td><td>•</td></se<>	elect or type filter text>		•	CC1310F128			•
ARM Linker ARM Hex Utility [Disable)	Connection: Texa	as Instruments XDS110 US	5B Debug Probe [Default]	•	Verify	(applies to whole project)		
Debug	V M	lanage the project's targe	et-configuration automatically					
Project Natures	Tool-chain							
	Compiler version	TI v18.12.1.LTS					•	More
	Output type:	Executable					-	
	Output form at	eabi (ELF)					•	
	Device endiannes	ss: little					•	
	Linker command	file: CC1310_LAUNCH	IXL_TIRTOS.cm d				-	Browse
	Runtime support	library:					•	Browse
<►								
Show advanced settings							Apply and Close	Cancel

Figure 11. Software Example CC1310 SDK Version

Properties for HybridWmbusPlc	Example_CC1310_LAUNCHXL_tintos_ccs	
type filter text	General	↓ ↓ ↓ ↓
P Resource General ARM Compiler Processor Options Optimization Include Options ULP Advisor Predefined Symbols Advanced Options ARM Linker ARM Hex Utility (Disablet	Configuration: debug [Active] Project Products Second Structure	Manage Configurations_ Select All Deselect All
Project Natures		E .
Show advanced settings		Apply and Close Cancel

Copyright © 2016–2019, Texas Instruments Incorporated

4.1 TIDC-HYBRID-WMBUS-PLC Software Example

This example project is provided as a working example that may be used as baseline software for endproduct development. The example runs on top of TI-RTOS in the ARM[™] Cortex-M3. For PLC communication, the default configuration in the example is set to CENELEC-A, TMR ON and the TX level of 0x20 (maximum). The wireless M-Bus RF configuration is defined in smartrf_setting.c. The precompiled binaries are available in the directory of *debug*. The wireless M-Bus can be configured as one of three modes C-, T-, or S-mode) by enabling one of them in application/config.h. The *debug_RF_only* configuration run a standalone W-Mbus communication to test with the Hybrid W-Mbus and PLC solution. The *debug_RF_only* configuration enables ECHO_BACK_MODE macro to respond back to the Hybrid WMBUS-PLC node with the same data received from the node.

To run the software example with different PLC frequency bands of FCC or ARIB, change the following one-line code in the init_plcHandler() to *TONEMASK_FCC_FULL_BAND* or *TONEMASK_FCC_ARIB_54*. The TX power level and TMR configuration may also be changed in the same function.

Figure 13 shows the PLC frequency band.

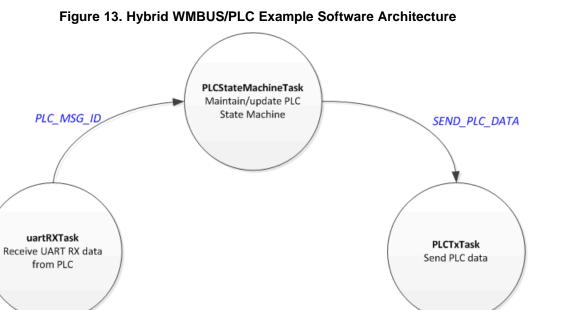
Figure 12. PLC Frequency Band Configuration

plcHandle. g3ToneMaskSelection = TONEMASK_CENELEC_A_36;

The software example runs simultaneous transmissions (sending data to both RF and PLC channels). In addition, the RF-PLC repeater feature can be supported on top of the simultaneous transmissions by enabling RF_PLC_REPEATER macro definition in the software.

Figure 14 shows the overall software architecture that consists of five tasks shown in the following list:

- uartRXTask
- PLCStateMachineTask
- RFTxTask
- PLCTxTask
- applicationTask



SEND_PLC_DATA

www.ti.com

Getting Started Firmware

SEND_RF_DATA

applicationTask

Generate Application

data

SEND_RF_DATA

RFTxTask

Send RF data

4.1.1 uARTRxTask

The uartRXTask processes PLC host messages that are received from the C2000 PLC device. The task waits for a 6-byte PLC host message header that contains a host message type, payload length, and header CRC. If the CRC passes, the task extracts the remaining bytes including payload CRC, payload sub-header, and payload. If the payload CRC passes and the message details confirmation information, then the task passes the message to the PLCStateMachineTask. If **RF_PLC_REPEATER** is enabled, and the received message contains application data, then this task passes the received data to RFTxTask.

4.1.2 PLCStateMachineTask

The PLCStateMachineTask maintains a G3-PLC service node state machine. When the power is on, the PLCStateMachine task starts to initialize G3-PLC with the default configuration and joins the G3-PLC network once the G3-PLC DC is detected. When all steps have completed, the task changes the state machine to a NORMAL state, which allows the PLCTxTask to start data transmissions.

The details of the G3-PLC host message sequences may be found in Section 4.2. This example covers basic message sequences for G3-PLC operation.

4.1.3 RFTxTask

The RFTxTask waits for the mailbox message of **SEND_RF_DATA**. When the task receives the mailbox message, it constructs the application data in a wireless M-Bus packet and sends the wireless M-Bus packet to the wireless M-Bus PHY. The task then changes to the receive state. If the wireless M-Bus is working only for TX mode, the receive-related commands may be removed.

4.1.4 PLCTxTask

The PLCTxTask waits for the mailbox message of **SEND_PLC_DATA**. If the task receives the mailbox message, it sends the data over UART to the PLC C2000 device for PLC transmissions and then copies the data into PLC_HoldQueue to handle re-transmissions. When re-transmission happens, the task sends the data in the PLC_HoldQueue through UART.

4.1.5 ApplicationTask

The applicationTask emulates the application data source. This task creates 10B data, stores the data in the TX queue, and signals to both the RFTxTask and PLCTxTask for simultaneous transmissions. This event happens every five seconds with the default configuration. The application data size and interval can be configurable in application/app.c.

4.1.6 LED Configuration

The example project has two activated light-emitting diodes (LEDs) to trace software activities. The LED configuration only works for the LAUNCHXL-CC1310 EVM.

Table 1 lists the LED number mapping to the specific software activity.

Table 1. LED Mapping

LED NUMBER	BEHAVIOR MAPPING TO SOFTWARE ACTIVITY
DIO6	PLC TX/RX activities
DIO7	WMBus TX/RX activities

Getting Started Firmware

www.ti.com

4.2 Build HYBRID-WMBUS-PLCSoftware Example Using CCS™

The software project can be built with CCS v9.0.1 (or above). The two project files of HybridWmbusPlcExample_CC1310_LAUNCHXL_tirtos_ccs and tirtos_builds_CC1310_LAUNCHXL_release_ccs need to be opened and the CCS project of HybridWmbusPlcExample_CC1310_LAUNCHXL_tirtos_ccs needs to be built. The screen capture of the CCS projects is shown in Figure 15. Once the compilation is successful, the binary file (HybridWmbusPlcExample_CC1310_LAUNCHXL_tirtos_ccs.out) will be generated under the directory of *debug*.

Figure 14. Build HYBRID-WMBUS-PLC CCS Project

hybrid-wmbus-pic - HybridWmbusPicExample_CC1310_AUNCHXL_tirtos_ccs/applicat file Edit View Navigate Project Run Scripts Window Help	ion/EasyLinkkt.c - Co	ade composer Studio		()	
📩 두 🔡 🐚 🖳 🛊 두 🔐 두 🔦 두 🔎 🧭 두 📴 🔟 😳 🗇 두 다 두				Quick Access	8 6 %
ခြဲ Project Explorer 🛛	🖻 😫 🗸 🗖 🗖	☑ EasyLinkRf.c ⋈			- 0
		E FaylinkHt X 31 */ 32 33 #include stdlib.h> 33 #include stdlib.h> 34 #include stdlib.h> 34 #include stdlib.h> 34 #include stdlib.h> 34 #include stdlib.h> 35 #include stdlib.h> 35 #include stdlib.h> 36 #include stdlib.h> 36 #include stdlib.h> 37 #include stdlib.h> 38 #include stdlib.h> 39 #include stdlib.h> 30 #include stdlib.h> 39 #include stdlib.h> 30 #include stdlib.h> 30 #include stdlib.h> 31 #include stdlib.h> 35 #include "easylink/Easylink.h" 35 #include "application/coriig.h" 35 #include "application/solt.h" 35 #include "application/solt.h" 39 #include "application/solt.h" 39 #include "application/solt.h" 39 #include "application/solt.h" 30 #include "application/solt.h" 31 #include "application/solt.h" 32 #include "application/solt.h" 33 #include "application/solt.h" 34 #include "application/solt.h" 35 #include "application/solt.h" 30 #include "application/solt.h" 31 #include "application/solt.h" 32 #include "application/solt.h" 33 #include "application/solt.h" 34 #include "application/solt.h" 35 #include "application/solt.h" 35 #include "application/solt.h" 35 #include "application/solt.h" 36 #include "application/solt.h" 37 #include "application/solt.h" 35 #include "application/solt.h" 35 #include "application/solt.h" 35 #include "application/solt.h" 36 #include "application/solt.h" 37 #include "application/solt.h" 38 #include the application/solt.h" 39 #include the application/solt.h" 30 #include the application/solt.h" 30 #include the application/solt.h" 30	■ E Problems ♥ Advice ≅ ♥ Search 2items Description ▷ i Optimization Advice (2 items)		
			•		•

4.3 Flashing Binaries Using CCS™

This section explains the F28PLC84 (for G3-PLC) and CC1310 (for Hybrid wireless M-Bus/PLC application devices) flash software binary procedure.

4.3.1 Flashing Hybrid Wireless M-Bus/PLC Binary to CC1310 Using CCS™

This section explains how to flash the HYBRID-WMBUS-PLC software example binary on the CC1310 device using CCS. The instructions are in the following list:

- 1. Connect the USB cable to the LAUNCHXL-CC1310 EVM.
- 2. Launch the target configuration for CC1310 and connect to the device in the CCS debug mode
- 3. Select *Run* → *Load* → *Load Program* and flash **HybridWmbusPlcExample_CC1310_LAUNCHXL_tirtos_ccs.out** under the *debug* directory.

4.3.2 Flashing PLC Binary to TMS320F28PLC84

The step-by-step procedure may be found in Section 7.1 (with C2Prog tool) and Section 7.2 (with the CCS tool) in the System on Module for G3 Power Line Communication (CENELEC Frequency Band) design guide [4]. The latest G3-PLC software may be found in TI-PLC-G3-CENELEC-SN-F28PLC84.

Hybrid Wireless M-Bus/PLC Test

Texas Instruments

www.ti.com

5 Hybrid Wireless M-Bus/PLC Test

The goal of the hybrid wireless M-Bus/PLC test is to prove the wireless M-Bus/PLC repeater functionality with a 3-node set up that includes one wireless M-Bus, one PLC and one hybrid wireless M-Bus/PLC node.

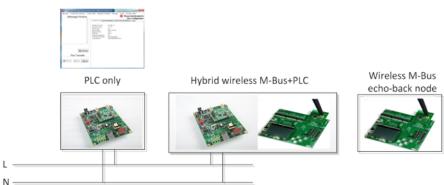
5.1 Test Setup

To run the Hybrid RF/PLC test, a LAUNCHXL-CC1310 and TMDSPLCKITV4-CEN is required. Both EVMs are available in the TI store at TI.com.

Table 2 lists the required tools and software to run the hybrid wireless M-Bus/PLC test.

DEVICE	EVM	HARDWARE MODIFICATION	FLASH FIRMWARE	GUI TOOL
Wireless M- Bus only	LAUNCXL-CC1310	No	Yes ⁽¹⁾	No (Running as stand alone mode)
PLC only	TMDSPLCKITV4-CEN	No	Yes (Section 4.3.2)	Yes (Zero-configuration GUI) ⁽²⁾
Hybrid wireless M-Bus with PLC	CC1310DK TMDSPLCKITV4-CEN	No	Yes (Section 4.3.1)	No (Running as stand alone mode)

Table 2. Tools for Hybrid Wireless M-Bus/PLC Test Setup


⁽¹⁾ The pre-built wireless M-Bus standalone binary can be found in the *debug_RF_only* directory. Flashing instructions are given in Section 4.3.1.

⁽²⁾ Zero-Configuration GUI is used to run PLC node as a mini-DC to start the G3-PLC network. The G3-PLC software package will install the GUI automatically.

5.2 Running Hybrid Wireless M-BUS/PLC Test

Figure 19 shows a 3-node test set-up. The PLC-only node runs with the zero-configuration GUI tool. The hybrid wireless M-Bus/PLC node and wireless M-Bus echo-back node run in standalone mode.

Figure 15. Hybrid Wireless M-Bus/PLC Test Setup

For the hybrid wireless M-Bus/PLC test, the PLC-only node is configured as G3-PLC mini-DC node. The wireless M-Bus echo-back node may run as an echo-back mode to send back the received wireless M-Bus packet to the hybrid node.

Once the power is on, the hybrid wireless M-Bus/PLC node starts to join to the PLC mini-DC (PLC only node) as the G3-PLC service node. The wireless M-Bus stacks in the hybrid node does not require a joining process. Once joined to the PLC network, the PLC-only node (running as mini-DC) may initiate echo-back data transfer.

NOTE: To bridge echo-back data received from W-MBus node to the PLC mini-DC on the hybrid W-MBus/PLC node, the RF_PLC_REPEATER macro needs to be enabled on the hybrid node and then recompile the software example.

Figure 20 shows the details of the data flow.

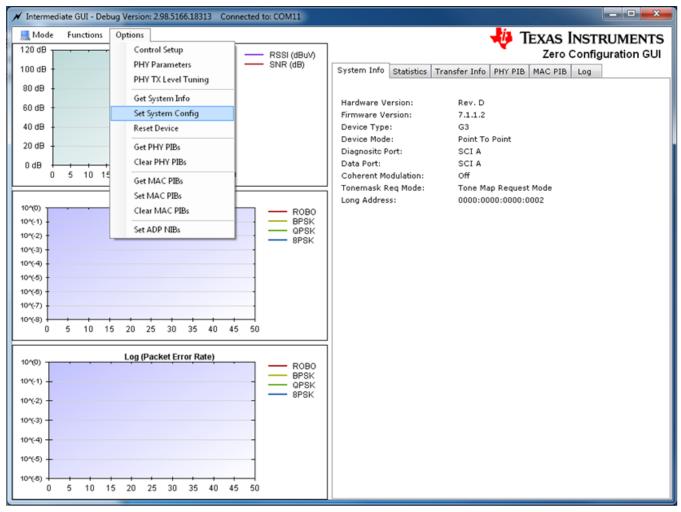
Figure 16. Data Flow for Hybrid Wireless M-Bus/PLC Test

- 1. The PLC node sends UDP/IPv6 data through the power line.
- 2. The hybrid wireless M-Bus/PLC node receives the data, and passes the data to the wireless M-Bus echo-back node through the RF path.
- 3. The wireless M-Bus echo-back node takes the UDP/IPv6 header from the received data and then sends it back to the Hybrid wireless M-Bus/PLC node through the RF path
- 4. The hybrid node adds a UDP/IPv6 header on the received data because the G3-PLC only accepts IPv6 packets.
- 5. The hybrid node sends the data to the PLC node through the power line.

5.2.1 Test Procedure

This section covers the step-by-step procedure for running the hybrid wireless M-Bus/PLC testing.

- 1. Start the PLC only node as a mini-DC (Refer to Steps 1 4 in Section 5.2.2).
- 2. Turn on the Wireless M-Bus echo-back node and the hybrid wireless M-Bus/PLC node to start standalone mode
- 3. Start data transfer testing by clicking **Start Test** in the GUI window in the mini-DC (Refer to Step 6 in Section 5.2.2).


5.2.2 PLC Only Node Setup

This section covers how to run the PLC only node as a mini-DC with GUI.

- 1. Connect the PLC only node to the PC and open the intermediate GUI.
- 2. Set a unique long address for each device by using Set System Config.

Hybrid	Wireless	M-Bus/F	ЪС	Test
--------	----------	---------	----	------

💉 G3 System	Configuration - CO	M11 X
Device Type	G3	FW Ver. 7.01.01.02
Hdw Rev.	Rev. D	
Device Mode	Point To Point	•
Ports		
Host F	Port	Diag Port
🔽 SCI-A	SCI-B	🗹 SCI-A 🔲 SCI-B
Address Extended Ad	dress 00:00:00:00:00	:00:00:02
PHY Paramet	ers	
V Tonemas	k Request Enabled	Coherent Modulation Enabled
ОК	Apply	Refresh Cancel

Figure 18. G3-PLC System Configuration

3. Start a device as a mini-DC by selecting Functions \rightarrow Start Base Node.

Figure 19. Start Base Node

✗ Intermediate GUI - Version: 2.99 Connected to: COM3	
Mode Functions Options 120 dB Send Message Pression (dB) 100 dB Send File Send File 80 dB Flash Firmware SNR (dB) 60 dB Monitor Messages Monitor Messages 40 dB MAC Command Start Base Node	VEXAS INSTRUMENTS Zero Configuration GUI System Info Statistics Transfer Info PHY PIB MAC PIB Log 2014-03-28 11:24 25:4478: Log Panel Cleared
0 dB Start Service Node Send Raw Data Log (Bit Error Rate) ROBO ROBO	
10°(-1) 10°(-2) 10°(-3) 10°(-3) 10°(-4) 10°	
Log (Packet Error Rate) ROBO 10^(7)	
10°(6) 0 5 10 15 20 25 30 35 40 45 50	

4. In the pop-up window of the G3 Base Node, click **Start Network**.

Figure 20. G3-PLC	Base Node Window
-------------------	------------------

N Interme	ediate GUI - Version: 2.99 Connected to: COM3	
📃 Mode	Functions Options	🔱 Texas Instruments
120 dB -		Zero Configuration GUI
100 dB ·		System Info Statistics Transfer Info PHY PIB MAC PIB Log
80 dB		Device Mode: Normal
	G3 Base Node - COM3	
60 dB		SCIA
40 dB	AES 📝 Min Data Packet Size 30 Max Data Packet Size	SUU Lycles I Start Network de: Non Designated
20 dB	Inter-Packet Delay (ms) 1000 Pan Id 0x7455 DRoute Enabl	ed 🗸 Use ICMP 📄 Start Test 0x00 00 00 00 00 00 00 01
Bb 0		BF 9D 11 01 0x00 01 00 00 01 00 01 G3 MAC PIB Request
		NES - 0x01000111:
		en= 1 ndex= 0
10 ⁴ (0) T		/alue=0x01
10^(-1) -		00 00 00 00
10^(-2) - 10^(-3) -		et MAC PIB.Repty: Status= Success - 0x0000
10%(-4)		62 66 02 00
101(-5) -		Info.Request: TLV Id= G3 PHY TX
10*(-6) -		00 00 00 00 0 0x02 00 12 00 00 00 20 00
10^(-7) -		p0 00 00 00 0x00 00
10*(-8) +		et Information: Response:
U U		B3 PHY TX
		Ion Designated
10^(0) -		ENELEC
10^(.1) -		1080
10*(-2) -		x17 24 FF FF FF FF FF FF 0F 00 00 00 00 00 00
10^(-3) -		59 CF 55 74
		2014-03-2011:25:47.3322: Senang: (0x00)= 03 Network Start Request: PAN Id: 0x7455
10^(-4) -		2014-03-28 11:25:47.3322: Message Received: 0x08 00 06 00 65 2F 00 00 00 00
10^(-5)	-	2014-03-28 11:25:47.3322: Receiving: (0x08) - Network Register Start.Reply: Status= Success
10^(-6)		- 0x0000
0	5 10 15 20 25 30 35 40 45 50	•

5. Once the hybrid wireless M-Bus/PLC node is joined, the IPv6 information for the joined node will be available.

Figure 21. Joining Node Information

G3 Base Node - COM3	- • ×
AES 📝 Min Data Packet Size 30 Max Data Packet Size 500 Cycles 1	Network
Inter-Packet Delay (ms) 1000 Pan Id 0x7455 DRoute Enabled 🗹 Use ICMP 🗐	Start Test
2014-03-28 11:26:30.1230: Network Started 2014-03-28 11:28:14.2686: Adding node: 0x00 00 00 00 00 00 00 00 - FE80:0000:0000:0000:7455:00FF:FE00:	0001
2014-03-20 11.20.14.2000. Adding hole, badd bo	

6. Set the **Max Data Packet Size** to *184* due to the maximum size limitation of the wireless M-Bus specification. Then, start data echo-back testing by selecting **Start Test**.

Figure 22. Start Data Echo-Back Test

G3 Base Node - COM3		
AES 📝 Min Data Packet Size	30 Max Data Packet Size 500 Cycles 1	Network
Inter-Packet Delay (ms) 1000	Pan Id 0x7455 DRoute Enabled 💟 Use ICI	MP 📃 Start Test
2014-03-28 11:26:30.1230: Network St 2014-03-28 11:28:14.2686: Adding not	arted e: 0x00 00 00 00 00 00 00 00 - FE80:0000:0000:0000:745	5:00FF:FE00:0001

5.3 Hybrid Wireless M-Bus/PLC Test Results

This section shows the hybrid wireless M-Bus/PLC test results to verify wireless M-Bus/PLC repeater functionality.

Figure 27 shows the echo-back test results. For the testing, mini-DC configures minimum packet size to 6B, maximum packet size to 184B, test cycles to 1000 cycles, and the packet interval to 2000 msec. The packet size increases by 1B every transmission. As shown in the result, all the data is successfully echobacked through the RF and PLC mixed paths, which proves that the hybrid wireless M-Bus/PLC routes the PLC and wireless M-Bus packets between the PLC only and wireless M-Bus only nodes.

Figure 23. Hybrid Wireless M-Bus and PLC Echo-Back Test Result

🚽 G3 Base Node - COM	10	X
Min Data Packet Size :	6 Max Data Packet Size 184 Cycles 1000 Inter-Packet Delay (ms) 2000 Network Sta	urted
Pan Id 0x7455	Use ICMP 📄 DRoute Enabled 🔽 COH Enable 📄 Message Timeout (ms) 20000 Stop Tes	at 👘
2016-05-11 16:54:39.9133:	Transmit Succeed: 468 ms - 0x00 00 00 00 00 00 00 01 - FE80:0000:0000:0000:7455:00FF:FE00:0001 - 80 bytes	4
016-05-11 16:54:42.3833:	Transmit Succeed: 469 ms - 0x00 00 00 00 00 00 00 01 - FE80:0000:0000:0000:7455:00FF:FE00:0001 - 81 bytes	
016-05-11 16:54:44.8221:	Transmit Succeed: 437 ms - 0x00 00 00 00 00 00 00 01 - FE80:0000:0000:0000:7455:00FF:FE00:0001 - 82 bytes	
016-05-11 16:54:47.3213:	Transmit Succeed: 483 ms - 0x00 00 00 00 00 00 00 01 - FE80:0000:0000:0000:7455:00FF:FE00:0001 - 83 bytes	
016-05-11 16:54:49.8205:	Transmit Succeed: 483 ms - 0x00 00 00 00 00 00 00 01 - FE80:0000:0000:0000:7455:00FF:FE00:0001 - 84 bytes	
016-05-11 16:54:52.3207:	Transmit Succeed: 499 ms - 0x00 00 00 00 00 00 00 01 - FE80:0000:0000:0000:7455:00FF:FE00:0001 - 85 bytes	
016-05-11 16:54:54.8209:	Transmit Succeed: 499 ms - 0x00 00 00 00 00 00 00 01 - FE80:0000:0000:0000:7455:00FF:FE00:0001 - 86 bytes	
)16-05-11 16:54:57.2929:	Transmit Succeed: 471 ms - 0x00 00 00 00 00 00 00 01 - FE80:0000:0000:0000:7455:00FF:FE00:0001 - 87 bytes	
16-05-11 16:54:59.7921:	Transmit Succeed: 483 ms - 0x00 00 00 00 00 00 00 01 - FE80:0000:0000:0000:7455:00FF:FE00:0001 - 88 bytes	
16-05-11 16:55:02.2747:	Transmit Succeed: 469 ms - 0x00 00 00 00 00 00 00 01 - FE80:0000:0000:0000:7455:00FF:FE00:0001 - 89 bytes	
16-05-11 16:55:04.7603:	Transmit Succeed: 484 ms - 0x00 00 00 00 00 00 00 01 - FE80:0000:0000:0000:7455:00FF:FE00:0001 - 90 bytes	
16-05-11 16:55:07.2519:	Transmit Succeed: 484 ms - 0x00 00 00 00 00 00 00 01 - FE80:0000:0000:0000:7455:00FF:FE00:0001 - 91 bytes	
16-05-11 16:55:09.7415:	Transmit Succeed: 484 ms - 0x00 00 00 00 00 00 00 01 - FE80:0000:0000:0000:7455:00FF:FE00:0001 - 92 bytes	
16-05-11 16:55:12.2271:	Transmit Succeed: 484 ms - 0x00 00 00 00 00 00 00 01 - FE80:0000:0000:0000:7455:00FF:FE00:0001 - 93 bytes	
16-05-11 16:55:15.0278:	Transmit Succeed: 797 ms - 0x00 00 00 00 00 00 00 01 - FE80:0000:0000:0000:7455:00FF:FE00:0001 - 94 bytes	
16-05-11 16:55:17.5904:	Transmit Succeed: 547 ms - 0x00 00 00 00 00 00 00 01 - FE80:0000:0000:7455:00FF:FE00:0001 - 95 bytes	
16-05-11 16:55:20.1676:	Transmit Succeed: 562 ms - 0x00 00 00 00 00 00 00 01 - FE80:0000:0000:7455:00FF:FE00:0001 - 96 bytes	
16-05-11 16:55:22.7312:	Transmit Succeed: 562 ms - 0x00 00 00 00 00 00 00 00 1 - FE80:0000:0000:0000:7455:00FF:FE00:0001 - 97 bytes	
16-05-11 16:55:25.3094:	Transmit Succeed: 577 ms - 0x00 00 00 00 00 00 00 01 - FE80:0000:0000:0000:7455:00FF:FE00:0001 - 98 bytes	
16-05-11 16:55:27.9063:	Transmit Succeed: 578 ms - 0x00 00 00 00 00 00 00 01 - FE80.0000:0000:0000:7455:00FF:FE00:0001 - 99 bytes	
16-05-11 16:55:30.4991:	Transmit Succeed: 578 ms - 0x00 00 00 00 00 00 00 01 - FE80.0000:0000:0000:7455:00FF:FE00:0001 - 100 bytes	
16-05-11 16:55:33.0893:	Transmit Succeed: 579 ms - 0x00 00 00 00 00 00 00 1 - FE80:0000:0000:0000:7455:00FF:FE00:0001 - 101 bytes	
16-05-11 16:55:35.6549:	Transmit Succeed: 563 ms - 0x00 00 00 00 00 00 00 1 - FE80:0000:0000:0000:7455:00FF:FE00:0001 - 102 bytes	
16-05-11 16:55:38.2331: 16-05-11 16:55:40.8269:	Transmit Succeed: 577 ms - 0x00 00 00 00 00 00 00 01 - FE80:0000:0000:7455:00FF:FE00:0001 - 103 bytes Transmit Succeed: 578 ms - 0x00 00 00 00 00 00 00 01 - FE80:0000:0000:0000:7455:00FF:FE00:0001 - 104 bytes	
16-05-11 16:55:40.8269:	Transmit Succeed: 5/8 ms - 0x00 00 00 00 00 00 00 01 - FE80:0000:0000:0000:7455:00FF:FE00:0001 - 104 bytes Transmit Succeed: 593 ms - 0x00 00 00 00 00 00 00 01 - FE80:0000:0000:0000:7455:00FF:FE00:0001 - 105 bytes	
16-05-11 16:55:46.0312:	Transmit Succeed: 593 ms - 0x00 00 00 00 00 00 00 01 - FE80.0000.0000.0000.7455.00FF;FE00.0001 - 105 bytes Transmit Succeed: 593 ms - 0x00 00 00 00 00 00 00 01 - FE80.0000.0000.0000.7455:00FF;FE00.0001 - 106 bytes	
16-05-11 16:55:48.6396:	Transmit Succeed: 592 ms - 0x00 00 00 00 00 00 00 01 - FE80:0000:0000:0000:7455:00FF:FE00:0001 - 106 bytes	
710-03-11 10:33.40.0350.	Hanshin Buccese, 352 ms - 5x65 65 65 65 65 65 65 65 67 - 7 E60.0001.0000.0000.7455.0011 - 107 Bytes	

Design Files

6 Design Files

6.1 Schematics

To download the schematics, refer to the TIDC-HYBRID-WMBUS-PLC design files.

6.2 Bill of Materials

To download the bill of materials (BOM), refer to the TIDC-HYBRID-WMBUS-PLC design files.

6.3 Layout Prints

To download the layout prints for each board, refer to the TIDC-HYBRID-WMBUS-PLC design files.

6.4 Gerber Files

To download the Gerber files, refer to the TIDC-HYBRID-WMBUS-PLC design files.

6.5 Assembly Drawings

To download the assembly drawings, refer to the TIDC-HYBRID-WMBUS-PLC design files.

7 Software Files

To download the software files, refer to the TIDC-HYBRID-WMBUS-PLC design files.

8 Related Documentation

- 1. Texas Instruments, CC1310 SimpleLink[™] Ultralow Power Sub-1-GHz Wireless MCU, CC1310 Datasheet, SWRS181
- 2. Texas Instruments, *MS320F28PLC8x Power Line Communications (PLC) Processors*, TMS320F28PLC83/4 Datasheet, SPRS802
- 3. Texas Instruments, *Powerline Communications Analog Front-End*, TMS320F28PLC83/4 Datasheet, SBOS531
- 4. Texas Instruments, System on Module for G3 Power Line Communication (CENELEC Frequency Band), TIDM-SOMPLC-G3-CENELEC Design Guide, TIDU442
- 5. Texas Instruments, *Hybrid RF and PLC Reference Design to Extend Network Coverage and Reliability*, TIDC-HYBRID-RF-PLC Design Guide, TIDUBM3

8.1 Trademarks

E2E is a trademark of Texas Instruments.

9 Terminology

- 1. **PLC:** Power-line communication
- 2. RF: Radio frequency
- 3. **TMR:**Tone map request
- 4. DC: Data concentrator
- 5. VCU: Viterbi/complex math unit
- 6. AMI: Advanced metering infrastructure
- 7. AFE: Analog front end

10 About the Author

WONSOO KIM is a system engineer at Texas Instruments, where he is responsible for driving system solutions for Smart Grid applications, defining future requirements in the TI product roadmap, and providing system-level support and training focused on communication software and systems for Smart Grid customers. He received his Ph.D. in Electrical and Computer Engineering from the University of Texas at Austin in Austin, TX.

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (June 2016) to A Revision

Page

About the Author

-		5	
•	Changed LAUNCHXL-CC1310DK TO LAUNCHXL-CC1310		1
•	Changed TX/RX to TRX		1
•	Changed LAUNCHXLCC1310DK TO LAUNCHXLCC1310	'	7
•	Changed CC1310DK to LAUNCHXL-CC1310		7
•	Changed CC1310DK to LAUNCHXL-CC1310		7
•	Changed CC1310DK to LAUNCHXL-CC1310		8
•	Changed text from and shows UART pins connections between TMDSPLCKITV4 and CC1310DK to shows UART pin the TMDSPLCITV4 connected to the LAUNCHXL-CC1310.	(8
•	Changed EM-UART_RX in P412 shown in the CC1310DK docking board to UART_RX pin (DIO 2) on the LAUNCHXL CC1310	-	8
•	Changed EM-UART_RX to UART_TX pin (DIO 3) on the LAUNCHXL-CC1310		8
•	Changed one of the GND pins to The GND pin		8
•	Changed GND in P412 () to GND pin on the LAUNCHXL-CC1310	;	8
•	Changed software example (TI_Hybrid_WMBUS_PLC_example) to HYBRID-WMBUS-PLC software example	1	0
•	Added paragraph	1	0
•	Added Figure 10 and 11	1	0
•	Changed title from Hybrid_WMBUS_PLC_Project to TIDC-HYBRID-WMBUS-PLC Software example. Changed paragratext.	aph 1	า 1
•	Changed paragraph text	1	1
•	Changed paragraph text	1	1
•	Changed paragraph text	1:	3
•	Changed paragraph text	1	3
•	Changed four to two	1	3
•	Changed CC1310DK to LAUNCHXL-CC-1310	1	3
•	Changed title and paragraph	14	4
•	Changed title from Hybrid_WMBUS_PLC to HYBRID-WMBUS-LC CCS	14	4
•	Changed hybrid wireless M Bus/PLC to HYBRID-WMBUS-PLC software	14	4
•	Changed CC1310DK to LAUNCHXL-CC1310 EVM	14	4
•	Changed paragraph text	14	4
•	Changed paragraph text	14	4
•	Changed paragraph text	1	5
•	Changed CC1310DK to LAUNCHXL-CC1310	1	5
•	Added with	1	5
•	Deleted (and)		
•	Changed paragraph text		
•	Deleted paragraph text		
•	Added paragraph text	1	5
•	Added and deleted text	1	6

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated