

Using the CC1200 Under ARIB STD T108

Torstein Ermesjø

ABSTRACT

This application report outlines the expected performance when operating CC1200 under ARIB T108 in the 920 MHz frequency band. It is assumed that you are familiar with CC1200 and ARIB T108 regulatory limits. Lab measurements show that CC1200 meets ARIB T108 requirements.

Project collateral and source code discussed in this document can be downloaded from the following URL: http://www.ti.com/lit/zip/swra445.

Contents

1	Introduction	2
2	Overview of ARIB STD T108	3
3	TX Conducted Measurements: CC1200EM 868-930	8
4	RX Conducted Measurements: CC1200EM 868-930	19
5	RX Conducted Measurements: CC1200EM 920	29
6	TX Conducted Measurements: CC1200 920 IPC	30
7	RX Conducted Measurements: CC1200EM 920 IPC	39
8	References	40
Appen	dix A EM Schematics	41

List of Figures

1	Detector: Max Hold	7
2	Detector: RMS	7
3	Channel Plan for 920 MHz Band Radio Equipment	8
4	Spurious Emission 40 MHz - 710 MHz	11
5	Spurious Emission 710 MHz - 900 MHz	12
6	Spurious Emission 900 MHz - 915 MHz	13
7	Spurious Emission 915 MHz - 920.4 MHz	14
8	Spurious Emission 920.8 MHz - 930 MHz	15
9	Spurious Emission 930 MHz - 1000 MHz	16
10	Spurious Emission 1000 MHz - 1215 MHz	17
11	Spurious Emission Above 1215 MHz	18
12	Spurious Emission 40 MHz - 710 MHz	22
13	Spurious Emission 710 MHz - 900 MHz	23
14	Spurious Emission 900 MHz - 915 MHz	24
15	Spurious Emission 915 MHz - 920.4 MHz	25
16	Spurious Emission 920.8 MHz - 930 MHz	26
17	Spurious Emission 930 MHz - 1000 MHz	27
18	Spurious Emission 1000 MHz - 1215 MHz	28
19	Spurious Emission Above 1215 MHz	29
20	Spurious Emission 40 MHz - 710 MHz	32
21	Spurious Emission 710 MHz - 900 MHz	33

All trademarks are the property of their respective owners.

23	Spurious Emission 915 MHz - 920.4 MHz	5
24	Spurious Emission 920.8 MHz - 930 MHz	3
25	Spurious Emission 930 MHz - 1000 MHz	7
26	Spurious Emission 1000 MHz - 1215 MHz 38	3
27	Spurious Emission Above 1215 MHz	Э
	List of Tables	
1	TX Summary CC1200EM 868 930 3	3
2	TX Summary CC1200EM 920 3	3
3	TX Summary CC1200EM 920	3
4	Key Parameters and Functionality	4
5	Permissible Values for Unwanted Emission Intensity (antenna input)	4
6	Limit on Secondary Radiated Emissions, and so forth at Receiver	1
7	Key Parameters and Functionality	5
8	Unit Channel Bandwidth	5
9	Permissible Values for Unwanted Emission Intensity (antenna input)	3
10	Limit on Secondary Radiated Emissions, and so Forth at Receiver	3
11	Output Power +13 dBm)
12	Output Power 0 dBm)
13	ACP Mask 1 Results 10)
14	ACP Mask 2 Results 10)
15	ACP Mask 3 Results 10)
16	ACP Mask 4 Results 11	1
17	Sensitivity19	3
18	Output Power +13 dBm 19	3
19	Output Power 0 dBm 19	3
20	ACP Mask 1 Results 20)
21	ACP Mask 2 Results 20)
22	ACP Mask 3 Results 21	1
23	ACP Mask 4 Results 21	1
24	Sensitivity	3
25	Output Power +13 dBm 30)
26	Output Power 0 dBm 30)
27	ACP Mask 1 Results	1
28	ACP Mask 2 Results 31	1
29	ACP Mask 3 Results	1
30	ACP Mask 3 Results 32	2
31	Sensitivity	3

Spurious Emission 900 MHz - 915 MHz 34

1 Introduction

32

Introduction

22

Three different evaluation modules (EM) are used in this document:

- CC1200EM 868-930: <u>http://www.ti.com/tool/cc1200emk-868-930</u>
- CC1200 920: An extension of the 868-930 EM where extra bandpass filtering is added around 800 MHz

 CC1200 IPC 920: Murata has developed an IPC for the 920 MHz T-108 band with extra bandpass filtering integrated

Frequency	Measured [dBm]	Specification [dBm]	Margin [dBm]
f <= 710 MHz	-57	-36	21
710 MHz < f <= 900 MHz	-57	-55	2
900 MHz < f <= 915 MHz	-57	-55	2
915 MHz < f <= 930 MHz	-39	-36	3
930 MHz < f <= 1000 MHz	-58	-55	3
1000 MHz < f <= 1,215 MHz	-58	-45	13
1,215 MHz < f	-40	-30	10

Table 2. TX Summary CC1200EM 920

Frequency	Measured [dBm]	Specification [dBm]	Margin [dBm]
f <= 710 MHz	-61	-36	25
710 MHz < f <= 900 MHz	-57	-55	2
900 MHz < f <= 915 MHz	-57	-55	2
915 MHz < f <= 930 MHz	-38	-36	2
930 MHz < f <= 1000 MHz	-57	-55	2
1000 MHz < f <= 1,215 MHz	-45	-45	10
1,215 MHz < f	-40	-30	10

Table 3. TX Summary CC1200EM 920

Frequency	Measured [dBm]	Specification [dBm]	Margin [dBm]
f <= 710 MHz	-58	-36	22
710 MHz < f <= 900 MHz	-57	-55	2
900 MHz < f <= 915 MHz	-57	-55	2
915 MHz < f <= 930 MHz	-40	-36	4
930 MHz < f <= 1000 MHz	-57	-55	2
1000 MHz < f <= 1,215 MHz	-58	-45	13
1,215 MHz < f	-33	-30	3

2 Overview of ARIB STD T108

The radio equipment defined in this standard utilizes the frequency band from 915 MHz to 930 MHz. The ARIB STD-T108 defines two different types of possible categories of application:

- Convenience Radio Stations
- Low-Power Radio Stations

The main differences between the possible categories are output power and which band frequency is used. The following sections give a short description of the two categories.

2.1 Convenience Radio Stations

The contents of communication are primarily the signals for telemetry, telecontrol and data transmission system. The key parameters are listed in Table 4.

Item		Parameters and Functionality
Frequency Band		920.5 MHz - 923.5 MHz
Transmission Power		<250 mW
Transmission Method	Contents	Data Signal
	Modulation System	Not specified
Antenna Gain		3 dBi or less (absolute gain). However, in case EIRP is less than the value of 3 dBi plus 250 mW of antenna power, it is allowed to fill in the gap by the antenna gain.

Table 4. Key Parameters and Functionality

A radio channel consists of up to five consecutive unit radio channels with center frequency between 920.6 MHz and 923.4 MHz, with 200 kHz separation and 200 kHz bandwidth. The permitted occupied bandwidth is (200xn) kHz or less where *n* is the number of unit radio channels. The frequency tolerance should be within 20 ppm.

Two masks are defined for adjacent channel power: one for the 920.5 MHz – 922.3 MHz band and one for 922.3 MHz - 923.5 MHz band.

Table 5 describes permitted unwanted emissions.

Table 5. Permissible Values for Unwanted Emission Intensity (antenna input)

Frequency Band	Spurious Emission Strength (average power)	Reference Bandwidth
f <= 710 MHz	-36 dBm	100 kHz
710 MHz < f <= 900 MHz	-55 dBm	1 MHz
900 MHz < f <= 915 MHz	-55 dBm	100 kHz
915 MHz < f <= 920.3 MHz	-36 dBm	100 kHz
920.3 MHz < f <= 924.3 MHz (except for f-fc <= (200+100xn) kHz)	-55 dBm	100 kHz
924.3 MHz < f <= 930 MHz	-36 dBm	100 kHz
930 MHz < f <= 1000 MHz	-55 dBm	100 kHz
1000MHz < f <= 1,215 MHz	-45 dBm	1 MHz
1,215 MHz < f	-30 dBm	1 MHz

Table 6 describes secondary radiated emission limits.

Table 6. Limit on Secondary Radiated Emissions, and so forth at Receiver

Frequency Band	Limit on Secondary Radiated Emissions, and so Forth (antenna input)	Reference Bandwidth
f <= 710 MHz	-54 dBm	100 kHz
710 MHz < f <= 900 MHz	-55 dBm	1 MHz
900 MHz < f <= 915 MHz	-55 dBm	100 kHz
915 MHz < f <= 930 MHz	-54 dBm	100 kHz
930 MHz < f <= 1000 MHz	-55 dBm	100 kHz
1000 MHz < f	-47 dBm	1 MHz

2.2 Low-Power Radio Stations

The contents of communication are primarily the signals for telemetry, telecontrol and data transmission system. The key parameters are listed in Table 7.

Item		Parameters and Functionality
Frequency Band		915.9 MHz - 916.9 MHz 920.5 MHz - 929.7 MHz
Transmission Power		<20 mW (13 dBm) for 920.5 MHz - 928.15 MHz <1 mW (0 dBm) for 916.0 MHz - 916.8 MHz and 928.15 MHz - 929.65 MHz
Transmission Method	Contents	Data Signal
	Modulation System	Not specified
Antenna Gain		3 dBi or less (absolute gain). However, in case EIRP is less than the value of 3 dBi plus 1 mW or 20 mW of antenna power, it is allowed to fill in the gap by the antenna gain.

Table 7. Key Parameters and Functionality

A radio channel consists of up to five consecutive unit radio channels. A unit channel is 100 kHz or 200 kHz wide depending on the frequency band.

Table 8. Unit Channel Bandwidth

Center Frequency	Unit Channel Separation/Bandwidth
916.0 MHz-916.8 MHz	200 kHz
920.6 MHz-928.0 MHz	200 kHz
928.15 MHz-929.65 MHZ	100 kHz

The permitted occupied bandwidth is $(200 \times n)$ kHz or less where *n* is the number of unit radio channels except for when the center frequency is from 928.15 MHz to 929.65 MHz where the maximum bandwidth is (100xn) kHz. The frequency tolerance should be within 20 ppm.

For adjacent channel power five masks are defined:

- From 915.9 MHz to 916.9 MHz
- From 920.5 MHz to 922.3 MHz
- From 922.3 MHz to 928.1 MHz (For transmission power <0 dBm)
- From 922.3 MHz to 928.1 MHz (For transmission power between 0 dBm and 13 dBm)
- From 928.1 MHz to 929.7 MHz

Table 9 describes permitted unwanted emissions.

	Spurious Emission Strength	
Frequency Band	(average power)	Reference Bandwidth
f <= 710 MHz	-36 dBm	100 kHz
710 MHz < f <= 900 MHz	-55 dBm	1 MHz
900 MHz < f <= 915 MHz	-55 dBm	100 kHz
915 MHz < f <= 930 MHz* (Except for f-fc <= (200 + 100xn) kHz if bandwidth of unit radio channel is 200 kHz, except for f-fc <= (100 + 50xn) kHz if bandwidth of unit radio channel is 100 kHz. Except for f-fc <= (100 + 100xn) kHz if frequency band is 915.9 MHz <= f <= 916.9 MHz and 920.5 MHz <= 922.3 MHz. Where <i>n</i> is a number of unit radio channels constituting the radio channel and is an integer from 1 to 5)	-36 dBm	100 kHz
930 MHz < f <= 1000 MHz	-55 dBm	100 kHz
1000 MHz < f <= 1,215 MHz	-45 dBm	1 MHz
1,215 MHz < f	-30 dBm	1 MHz

Table 9. Permissible Values for Unwanted Emission Intensity (antenna input)

Table 10 describes secondary radiated emission limits.

Table 10. Limit on Secondary Radiated Emissions, and so Forth at Receiver

Frequency Band	Limit on Secondary RadiatedEmissions, and so Forth (antenna input)	Reference Bandwidth
f <= 710 MHz	-54 dBm	100 kHz
710 MHz < f <= 900 MHz	-55 dBm	1 MHz
900 MHz < f <= 915 MHz	-55 dBm	100 kHz
915 MHz < f <= 930 MHz	-54 dBm	100 kHz
930 MHz < f <= 1000 MHz	-55 dBm	100 kHz
1000 MHz < f	-47 dBm	1 MHz

2.3 Spectrum Analyzer Setup

Section 2.4 under "Test Item: The intensity of Spurious Emission or unwanted emission" in TELEC-T245 outlines the procedure of the measurement operation. First, a sweep using max hold should be performed with the RBW setting defined for the defined frequency ranges. If the measured amplitude is above the limit 0 Hz span has to be used and a single sweep should be performed for all frequencies that exceed the standard value to find the average value of the spurious emission. Using a spectrum analyzer, this is equivalent to using the rms detector. Figure 1 and Figure 2 show the difference between using max hold and rms.

Figure 1. Detector: Max Hold

Figure 2. Detector: RMS

TX Conducted Measurements: CC1200EM 868-930

www.ti.com

2.4 Channel Plan for 920 MHz Band Radio Equipment

Channels						1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Frequency	915.0				0110	E.CIE				016 O	C.OTC																	
1mW																												
20mW																												
250mW		L	L																									
100kHz channel spacing	Γ.	Γ.	Γ-	Γ.	[]]				[-		ſΠ	רו		
200kHz channel spacing																												

Channels	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38
Frequency c	C'07C								د د د ه	0.770					
1mW															
20mW															
250mW															
100kHz channel spacing															
200kHz channel spacing															

Channels	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61
Frequency c	0.030																						
1mW																							
20mW																							
250mW																							
100kHz channel spacing		Γ-	— -	Γ.	— -	—												— •		[]		_	
200kHz channel spacing																							

Channels	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	
Frequency G	1.010															929.7	930.0
1mW																	
20mW																	
250mW																	
100kHz channel spacing																	
200kHz channel spacing																	

Figure 3. Channel Plan for 920 MHz Band Radio Equipment

3 TX Conducted Measurements: CC1200EM 868-930

The TX conducted measurements are measured according to the "low-power radio station" standard referenced in Section 2.2.

3.1 Output Power

8

Dependent on frequency band the maximum output power is 1 mW (0 dBm) or 20 mW (+13 dBm). To achieve +13 dBm with this evaluation module the bias current in the PA is increased by setting PA_CFG3 = 0x02.

TX Conducted Measurements: CC1200EM 868-930

Table 11. Output Power +13 dBm

Setting [PA_CFG1]	Output Power [dBm]
F	14.0
7E	13.8
7D	13.4
7C	13.1
7B	12.8

For 0 dBm, nominal PA bias current is used.

Table 12. Output Power 0 dBm

Setting [PA_CFG1]	Output Power [dBm]
68	0.9
67	0.4
66	0
65	-0.6
64	-1.0

The following register settings are used for the measurements in this section:

- +13 dBm
 - PA_CFG1 = 0x7C
 - PA_CFG3 = 0x02
 - FS DIG1 = 0x04
 - FS DIG0 = 0x55
- 0 dBm
 - PA_CFG1 = 0x66

3.2 Occupied Bandwidth (OBW)

The permitted occupied bandwidth is defined as 99% of the power within nxUnit Channel bandwidth where the Unit Channel Bandwidth is 100 kHz or 200 kHz depending on the sub frequency band and n is the number of Unity Channels. The OBW is dependent on the modulation.

- 50 kbps, 25 kHz deviation (2GFSK): OBW = 83 kHz
- 100 kbps, 50 kHz deviation (2GFSK): OBW = 171 kHz

3.3 ACP

The Adjacent Channel leakage power requirements are divided into four different masks dependent on the frequency. The measurements are done with the stated data rate and unit channels:

- 50 kbps, 25 kHz deviation (2GFSK)
- 100 kbps, 50 kHz deviation (2GFSK)

TX Conducted Measurements: CC1200EM 868-930

3.3.1 ACP Mask 1

Frequency	915.9 MHz – 916	6.8 MHz. Max 0 dBm	
Specification	Required [dBm]	Measured [dBm]	
Power @channel edge	-20	-40	@50 kbps, unit ch num 1
		-12	@100 kbps, unit ch num 1
		-43	@100 kbps, unit ch num 1,2
ACP	<-26	-49	@50 kbps, unit ch num 1
		-29	@100 kbps, unit ch num 1
		-50	@100 kbps, unit ch num 1,2

Table 13. ACP Mask 1 Results

To comply with the power at the channel edge, requirement 2 unit channels have to be used if the data rate is 100 kbps.

3.3.2 ACP Mask 2

Frequency	920.5 MHz – 922.	3 MHz. Max +13 dBm	
Specification	Required [dBm]	Measured [dBm]	
Power @channel edge	-7	-30	@50 kbps, unit ch num 24
		-4	@100 kbps, unit ch num 24
		-31	@100 kbps, unit ch num 24,25
ACP	<-15	-36	@50 kbps, unit ch num 24
		-17	@100 kbps, unit ch num 24
		-39	@100 kbps, unit ch num 24,25

Table 14. ACP Mask 2 Results

The ACP limit changes to < -26 dBm if the output power is less than 0 dBm. The ACP mask 2 measurements were performed using +13 dBm output power in this application report.

To comply with the power at the channel edge requirement 2 unit channels have to be used if the data rate is 100 kbps.

3.3.3 ACP Mask 3

Table 15. ACP Mask 3 Results

Frequency	922.3 MHz – 928	.1 MHz	
Specification	Required [dBm]	Measured [dBm]	
ACP (output power < 0 dBm)	<-26	-49	@50 kbps, unit ch num 33
		-29	@100 kbps, unit ch num 33
		-49	@100 kbps, unit ch num 33,34
ACP 13 dBm)	<-15	-36	@50 kbps, unit ch num 33
		-16	@100 kbps, unit ch num 33
		-49	@100 kbps, unit ch num 33,34

3.3.4 ACP Mask 4

Table 16. ACP Mask 4 Results									
928.1 MHz – 929.7 MHz. Max 0 dBm									

TX Conducted Measurements: CC1200EM 868-930

Frequency	928.1 MHz – 929.7 MHz. Max 0 dBm		
Specification	Required [dBm]	Measured [dBm]	
ACP	<-26	-30	@50 kbps, unit ch num 62
		-49	@100 kbps, unit ch num 62,63

3.4 Unwanted Emission Intensity

The allowed levels for spurious emissions are described in Table 9.

3.4.1 Spurious Emission 40 MHz – 710 MHz

The allowed level of spurious emissions within the 40 MHz -710 MHz frequency band is specified as less than -36 dBm in any 100 kHz bandwidth. The channel center frequency selected for this measurement is 920.6 MHz. The measured spurious emissions within this frequency band are shown in Figure 4.

Figure 4. Spurious Emission 40 MHz - 710 MHz

Limit:	-36 dBm/100 kHz
Measured:	-57 dBm (max over 6 samples)
Margin:	21 dB (Pass)

TX Conducted Measurements: CC1200EM 868-930

3.4.2 Spurious Emission 710 MHz – 900 MHz

The allowed level of spurious emissions within the 710 MHz - 900 MHz frequency band is specified as less than -55 dBm in any 1 MHz bandwidth. The channel center frequency selected for this measurement is 920.6 MHz. The measured spurious emissions within this frequency band are shown in Figure 5.

Limit:	-55 dBm/1 MHz
Measured:	-56.5 dBm (max of 6 samples)
Margin:	1.5 dB (Pass)

TX Conducted Measurements: CC1200EM 868-930

www.ti.com

3.4.3 Spurious Emission 900 MHz – 915 MHz

The allowed level of spurious emissions within the 900 MHz - 915 MHz frequency band is specified as less than -55 dBm in any 100 kHz bandwidth. The channel center frequency selected for this measurement is 920.6 MHz. The measured spurious emissions within this frequency band are shown in Figure 6.

Limit:	-55 dBm/100 kHz
Measured:	-57 dBm (max over 6 samples)
Margin:	2 dB (Pass)

3.4.4 Spurious Emission 915 MHz - 930 MHz

The allowed level of spurious emissions within the 915 MHz -930 MHz frequency band is specified as less than -36 dBm in any 100 kHz bandwidth ⁽¹⁾.

The measurement method that should be used is outlined in TELEC-T245. According to 2(5) in TELEC-T245 the frequency band between 915 MHz and 930 MHz should be measured with a RBW equal to 3 kHz⁽²⁾ with max peak detector with a single sweep. The result of this measurement is shown in Figure 7 and Figure 8. If the measured amplitude of spurious emission using single sweep exceeds the standard the spurious emission should be calculated according to TELEC-T245 in Chapter 4 (7) to (16):

- Measure the total average power (Pb)
- Measure the average power in the used unit channel(s) (Pc) in watts
- Measure the average power of the spurious emission for all frequencies that exceed the limit in watts. (Ps)
- Calculate the unwanted emission power as (Ps/Pc)*Pb
- (1) Except for |f-fc| > (200+100xn) kHz for unit channel bandwidth 200 kHz and |f-fc| < (100+50xn) kHz for 100 kHz unit channel bandwidth For 915.9 MHz < f < 916.9 MHz and 920.5 MHz < f < 922.3 MHz: Except |f-fc| < (100+100xn) kHz.
 (2) The limit is then ediusted by 10% performance of the second se
- ²⁾ The limit is then adjusted by 10*log10(100 kHz/3 kHz).

A Matlab script was developed to simplify the calculation.

Figure 7. Spurious Emission 915 MHz - 920.4 MHz

Limit:	-36 dBm/100 kHz
Measured:	-39 dBm ⁽¹⁾
Margin:	3 dB (Pass)

⁽¹⁾ Measured using the Matlab script.

TX Conducted Measurements: CC1200EM 868-930

3.4.5 Spurious Emission 930 MHz - 1000 MHz

The allowed level of spurious emissions within the 930 MHz - 1000 MHz frequency band is specified as less than -55 dBm in any 100 kHz bandwidth. The channel center frequency selected for this measurement is 920.6 MHz. The measured spurious emissions within this frequency band are shown in Figure 9.

Figure 9. Spurious Emission 930 MHz - 1000 MHz

Limit:	-55 dBm/100 kHz
Measured:	-58 dBm (max over 6 samples)
Margin:	3 dB (Pass)

TX Conducted Measurements: CC1200EM 868-930

3.4.6 Spurious Emission 1000 MHz - 1215 MHz

The allowed level of spurious emissions within the 1000 MHz -1215 MHz frequency band is specified as less than -45 dBm in any 1 MHz bandwidth. The channel center frequency selected for this measurement is 920.6 MHz. The measured spurious emissions within this frequency band are shown in Figure 10.

Figure 10. Spurious Emission 1000 MHz - 1215 MHz

Limit:	-45 dBm/1 MHz
Measured:	-58 dBm (max over 6 samples)
Margin:	13 dB (Pass)

TX Conducted Measurements: CC1200EM 868-930

www.ti.com

3.4.7 Spurious Emission 1215 MHz ->

The allowed level of spurious emissions above 1215 MHz frequency is specified as less than -30 dBm in any 1 MHz bandwidth. The channel center frequency selected for this measurement is 920.6 MHz. The measured spurious emissions within this frequency band are shown in Figure 11.

Figure 11. Spurious Emission Above 1215 MHz

Limit:	-30 dBm/1 MHz
Measured:	-40 dBm (max over 6 samples)
Margin:	10 dB (Pass)

4 RX Conducted Measurements: CC1200EM 868-930

Sensitivity is measured with the following settings:

- 50 kbps, 25 kHz deviation (2GFSK), RX BW 100 kHz
- 100 kbps, 50 kHz deviation (2GFSK), RX BW 200 kHz

Table 17. Sensitivity

Data Rate	Sensitivity [dBm]
50 kbps	-108
100 kbps	-106

TX Conducted Measurements: CC1200EM 920

The TX conducted measurements are measured according to the "low-power radio station" part of the standard.

4.1 Output Power

Dependent on frequency band the maximum output power is 1 mW (0 dBm) or 20 mW (+13 dBm). To achieve +13 dBm with this EM, the bias current in the PA is increased by setting PA_CFG3=0x02.

Table 18. Output Power +13 dBm

Setting [PA_CFG1]	Output Power [dBm]
7F	14.0
7E	13.7
7D	13.2
7C	12.6
7B	12.1

For 0 dBm nominal PA bias current is used.

Table 19. Output Power 0 dBm

Setting [PA_CFG1]	Output Power [dBm]
6E	0.8
6D	0.3
6C	-0.2
6B	-0.7
6A	-1.3

The following register settings are used for the measurements in this section:

- +13 dBm:
 - PA_CFG1 = 0x7D
 - PA_CFG3 = 0x02
 - FS DIG1 = 0x04
 - FS DIG0 = 0x55
- 0 dBm:
 - PA_CFG1 = 0x66

4.2 Occupied Bandwidth (OBW)

The permitted occupied bandwidth is defined as 99% of the power within nxUnit Channel bandwidth where the Unit Channel Bandwidth is 100 kHz or 200 kHz depending on the sub frequency band and *n* is the number of Unity Channels. The OBW is dependent on the modulation.

- 50 kbps, 25 kHz deviation (2GFSK): OBW = 84 kHz
- 100 kbps, 50 kHz deviation (2GFSK): OBW = 166 kHz

4.3 ACP

The Adjacent Channel leakage power requirements are divided into four different masks dependent on the frequency. The measurements are done with the stated data rate and unit channels.

- 50 kbps, 25 kHz deviation (2GFSK)
- 100 kbps, 50 kHz deviation (2GFSK)

4.3.1 ACP Mask 1

Frequency	915.9 MHz – 916.8 MHz. Max 0 dBm		
Specification	Required [dBm]	Measured [dBm]	
Power @channel edge	-20	-44	@50 kbps, unit ch num 1
		-13	@100 kbps, unit ch num 1
		-46	@100 kbps, unit ch num 1,2
ACP	<-26	-51	@50 kbps, unit ch num 1
		-30	@100 kbps, unit ch num 1
		-53	@100 kbps, unit ch num 1,2

Table 20. ACP Mask 1 Results

To comply with the power at the channel edge requirement 2 unit channels have to be used if the data rate is 100 kbps.

4.3.2 ACP Mask 2

Table 21. ACP Mask 2 Results

Frequency	920.5 MHz – 922.3 MHz. Max +13 dBm		
Specification	Required [dBm]	Measured [dBm]	
Power @channel edge	-7	-27	@50 kbps, unit ch num 24
		0	@100 kbps, unit ch num 24
		-29	@100 kbps, unit ch num 24,25
ACP	<-15	-36	@50 kbps, unit ch num 24
		-16	@100 kbps, unit ch num 24
		-39	@100 kbps, unit ch num 24,25

The ACP limit change to < -26 dBm if the output power is less than 0dBm. For measurements for this mask only 13 dBm output power is used.

To comply with the power at the channel edge requirement 2 unit channels have to be used if the data rate is 100 kbps.

4.3.3 ACP Mask 3

Table 22. ACP Mask 3 Results

RX Conducted Measurements: CC1200EM 868-930

Frequency	922.3 MHz – 928.1 MHz		
Specification	Required [dBm]	Measured [dBm]	
Power @channel edge	-26	-51	@50 kbps, unit ch num 33
		-30	@100 kbps, unit ch num 33
		-49	@100 kbps, unit ch num 33,34
ACP	<-15	-37	@50 kbps, unit ch num 33
		-16	@100 kbps, unit ch num 33
		-39	@100 kbps, unit ch num 33,34

4.3.4 ACP Mask 4

Table 23. ACP Mask 4 Results

Frequency	928.1 MHz – 929.7 MHz. Max 0 dBm		
Specification	Required [dBm]	Measured [dBm]	
ACP	<-26	-30	@50 kbps, unit ch num 62
		-50	@100 kbps, unit ch num 62,63

4.4 Unwanted Emission Intensity

The allowed levels for spurious emissions are described in Table 9.

4.4.1 Spurious Emission 40 MHz – 710 MHz

The allowed level of spurious emissions within the 40 MHz -710 MHz frequency band is specified as less than -36 dBm in any 100 kHz bandwidth. The channel center frequency selected for this measurement is 920.6 MHz. The measured spurious emissions within this frequency band are shown in Figure 12.

Figure 12. Spurious Emission 40 MHz - 710 MHz

Limit:	-36 dBm/100 kHz
Measured:	-61 dBm (max over 6 samples)
Margin:	25 dB (Pass)

RX Conducted Measurements: CC1200EM 868-930

4.4.2 Spurious Emission 710 MHz – 900 MHz

The allowed level of spurious emissions within the 710 MHz - 900 MHz frequency band is specified as less than -55 dBm in any 1 MHz bandwidth. The channel center frequency selected for this measurement is 920.6 MHz. The measured spurious emissions within this frequency band are shown in Figure 13.

Figure 13. Spurious Emission 710 MHz - 900 MHz

Limit:	-55 dBm/1 MHz
Measured:	-56.5 dBm (max over 6 samples)
Margin:	1.5 dB (Pass)

RX Conducted Measurements: CC1200EM 868-930

4.4.3 Spurious Emission 900 MHz – 915 MHz

The allowed level of spurious emissions within the 900 MHz - 915 MHz frequency band is specified as less than -55 dBm in any 100 kHz bandwidth. The channel center frequency selected for this measurement is 920.6 MHz. The measured spurious emissions within this frequency band are shown in Figure 14.

Figure 14. Spurious Emission 900 MHz - 915 MHz

Limit:	-55 dBm/100 kHz
Measured:	-57 dBm (max over 6 samples)
Margin:	2 dB (Pass)

RX Conducted Measurements: CC1200EM 868-930

www.ti.com

4.4.4 Spurious Emission 915 MHz - 930 MHz

The allowed level of spurious emissions within the 915 MHz -930 MHz frequency band is specified as less than -36dBm in any 100 kHz bandwidth ⁽¹⁾.

The measurement method that should be used is outlined in TELEC-T245. According to 2(5) in TELEC-T245, the frequency band between 915 MHz and 930 MHz should be measured with a RBW equal to 3 kHz⁽²⁾ with max peak detector with a single sweep. The result of this measurement is shown in Figure 15 and Figure 16. If the measured amplitude of spurious emission using single sweep exceeds the standard, the spurious emission should be calculated according to TELEC-T245 Chapter 4 (7) to (16):

- Measure the total average power (Pb)
- Measure the average power in the used unit channel(s) (Pc) in watts
- Measure the average power of the spurious emission for all frequencies that exceed the limit in watts. (Ps)
- Calculate the unwanted emission power as (Ps/Pc)*Pb

A Matlab script was developed to simplify the calculation.

Figure 15. Spurious Emission 915 MHz - 920.4 MHz

⁽¹⁾ Except for |f-fc| > (200+100xn) kHz for unit channel bandwidth 200 kHz and |f-fc| < (100+50xn) kHz for 100 kHz unit channel bandwidth. For 915.9 MHz < f < 916.9 MHz and 920.5 MHz < f < 922.3 MHz: Except |f-fc| < (100+100xn) kHz.

⁽²⁾ The limit is then adjusted by 10*log10(100 kHz/3 kHz).

Figure 16. Spurious Emission 920.8 MHz - 930 MHz

Limit:	-36 dBm/100 kHz
Measured:	-38 dBm
Margin:	2 dB (Pass)

RX Conducted Measurements: CC1200EM 868-930

4.4.5 Spurious Emission 930 MHz - 1000 MHz

The allowed level of spurious emissions within the 930 MHz - 1000 MHz frequency band is specified as less than -55 dBm in any 100 kHz bandwidth. The channel center frequency selected for this measurement is 920.6 MHz. The measured spurious emissions within this frequency band are shown in Figure 17.

Figure 17. Spurious Emission 930 MHz - 1000 MHz

Limit:	-55 dBm/100 kHz
Measured:	-57 dBm (max over 6 samples)
Margin:	2 dB (Pass)

RX Conducted Measurements: CC1200EM 868-930

4.4.6 Spurious Emission 1000 MHz - 1215 MHz

The allowed level of spurious emissions within the 1000 MHz -1215 MHz frequency band is specified as less than -45 dBm in any 1 MHz bandwidth. The channel center frequency selected for this measurement is 920.6 MHz. The measured spurious emissions within this frequency band are shown in Figure 18.

Figure 18. Spurious Emission 1000 MHz - 1215 MHz

Limit:	-45 dBm/1 MHz
Measured:	-55 dBm (max over 6 samples)
Margin:	10 dB (Pass)

4.4.7 Spurious Emission 1215 MHz ->

The allowed level of spurious emissions above 1215 MHz frequency is specified as less than -30 dBm in any 1 MHz bandwidth. The channel center frequency selected for this measurement is 920.6 MHz. The measured spurious emissions within this frequency band are shown in Figure 19.

Limit:	-30 dBm/1 MHz
Measured:	-40 dBm (max over 6 samples)
Margin:	10 dB (Pass)

5 RX Conducted Measurements: CC1200EM 920

Sensitivity is measured with the following settings:

- 50 kbps, 25 kHz deviation (2GFSK), RX BW 100 kHz
- 100 kbps, 50 kHz deviation (2GFSK), RX BW 200 kHz

Table 24. Sensitivity

Data Rate	Sensitivity [dBm]
50 kbps	-107
100 kbps	-104

6 TX Conducted Measurements: CC1200 920 IPC

The TX conducted measurements are measured according to the "low-power radio station" standard referenced in Section 2.

6.1 Output Power

Dependent on frequency band, the maximum output power is 1 mW (0 dBm) or 20 mW (+13 dBm). To achieve +13 dBm with this EM, the bias current in the PA is increased by setting PA_CFG3 = 0x02.

Table 25. Output Power +13 dBm

Setting [PA_CFG1]	Output Power [dBm]
7F	13.3
7E	13.1
7D	12.9
7C	12.6
7B	12.4

For 0 dBm, nominal PA bias current is used.

Table 26. Output Power 0 dBm

Setting [PA_CFG1]	Output Power [dBm]
68	0.7
67	0.2
66	-0.2
65	-0.8
64	-1.3

The following register settings are used for the measurements in this section:

- +13 dBm:
 - PA_CFG1 = 0x7E
 - PA_CFG3 = 0x02
 - FS_DIG1 = 0x04
 - FS_DIG0 = 0x55
- 0 dBm:
 - PA_CFG1 = 0x67

6.2 Occupied Bandwidth (OBW)

The permitted occupied bandwidth is defined as 99% of the power within nxUnit Channel bandwidth where the Unit Channel Bandwidth is 100 kHz or 200 kHz depending on the sub frequency band and n is the number of Unity Channels. The OBW is dependent on the modulation.

- 50 kbps, 25 kHz deviation (2GFSK): OBW = 84 kHz
- 100 kbps, 50 kHz deviation (2GFSK): OBW = 170 kHz

6.3 ACP

The Adjacent Channel leakage power requirements are divided into four different masks dependent on the frequency. The measurements are done with the stated data rate and unit channels.

- 50 kbps, 25 kHz deviation (2GFSK)
- 100 kbps, 50 kHz deviation (2GFSK)

6.3.1 ACP Mask 1

Table 27. ACP Mask 1 Results

Frequency	915.9 MHz – 916.8 MHz. Max 0 dBm		
Specification	Required [dBm]	Measured [dBm]	
Power @channel edge	-20	-52	@50 kbps, unit ch num 1
		-20	@100 kbps, unit ch num 1
		-50	@100 kbps, unit ch num 1,2
ACP	<-26	-48	@50 kbps, unit ch num 1
		-30	@100 kbps, unit ch num 1
		-50	@100 kbps, unit ch num 1,2

To comply with the power at the channel edge, requirement 2 unit channels have to be used if the data rate is 100 kbps.

6.3.2 ACP Mask 2

Frequency	920.5 MHz – 922.3 MHz. Max 13 dBm		
Specification	Required [dBm]	Measured [dBm]	
Power @channel edge	-7	-37	@50 kbps, unit ch num 24
		-8	@100 kbps, unit ch num 24
		-39	@100 kbps, unit ch num 24,25
ACP	<-15	-35	@50 kbps, unit ch num 24
		-16	@100 kbps, unit ch num 24
		-37	@100 kbps, unit ch num 24,25

Table 28. ACP Mask 2 Results

The ACP limit change to < -26 dBm if the output power is less than 0dBm. For measurements for this mask, only 13 dBm output power is used.

To comply with the power at the channel edge requirement, 2 unit channels have to be used if the data rate is 100 kbps.

6.3.3 ACP Mask 3

Table 29. ACP Mask 3 Results

Frequency	922.3 MHz – 928.1 MHz		
Specification	Required [dBm]	Measured [dBm]	
Power @channel edge	<-26	-48	@50 kbps, unit ch num 33
		-16	@100 kbps, unit ch num 33
		-50	@100 kbps, unit ch num 33,36
ACP	<-15	-35	@50 kbps, unit ch num 33
		-16	@100 kbps, unit ch num 33
		-37	@100 kbps, unit ch num 33,36

TX Conducted Measurements: CC1200 920 IPC

TX Conducted Measurements: CC1200 920 IPC

6.3.4 ACP Mask 4

Frequency	928.1 MHz – 929.7 MHz. Max 0 dBm		
Specification	Required [dBm]	Measured [dBm]	
ACP	<-26	-29	@50 kbps, unit ch num 62
		-52	@100 kbps, unit ch num 62,63

Table 30. ACP Mask 3 Results

6.4 Unwanted Emission Intensity

The allowed levels for spurious emissions are described in Table 9.

6.4.1 Spurious Emission 40 MHz – 710 MHz

The allowed level of spurious emissions within the 40 MHz -710 MHz frequency band is specified as less than -36 dBm in any 100 kHz bandwidth. The channel center frequency selected for this measurement is 920.6 MHz. The measured spurious emissions within this frequency band are shown in Figure 20.

Limit:	-36 dBm/100 kHz
Measured:	-58 dBm (max over 6 samples)
Margin:	22 dB (Pass)

TX Conducted Measurements: CC1200 920 IPC

6.4.2 Spurious Emission 710 MHz – 900 MHz

The allowed level of spurious emissions within the 710 MHz - 900 MHz frequency band is specified as less than -55 dBm in any 1 MHz bandwidth. The channel center frequency selected for this measurement is 920.6 MHz. The measured spurious emissions within this frequency band are shown in Figure 21.

Figure 21. Spurious Emission 710 MHz - 900 MHz

Limit:	-55 dBm/1 MHz
Measured:	-56.6 dBm (max over 6 samples)
Margin:	1.5 dB (Pass)

TX Conducted Measurements: CC1200 920 IPC

6.4.3 Spurious Emission 900 MHz – 915 MHz

The allowed level of spurious emissions within the 900 MHz - 915 MHz frequency band is specified as less than -55 dBm in any 100 kHz bandwidth. The channel center frequency selected for this measurement is 920.6 MHz. The measured spurious emissions within this frequency band are shown in Figure 22.

Figure 22. Spurious Emission 900 MHz - 915 MHz

Limit:	-55 dBm/100 kHz
Measured:	-57 dBm (max over 6 samples)
Margin:	2 dB (Pass)

6.4.4 Spurious Emission 915 MHz - 930 MHz

The allowed level of spurious emissions within the 915 MHz -930 MHz frequency band is specified as less than -36dBm in any 100 kHz bandwidth . $^{\scriptscriptstyle (1)}$

The measurement method that should be used is outlined in TELEC-T245. According to 2(5) in TELEC-T245, the frequency band between 915 MHz and 930 MHz should be measured with a RBW equal to 3 kHz ⁽²⁾ with max peak detector with a single sweep. The result of this measurement is shown in Figure 23 and Figure 24. If the measured amplitude of spurious emission using single sweep exceeds the standard, the spurious emission should be calculated according to TELEC-T245 Chapter 4 (7) to (16):

- The limit is then adjusted by 10*log10(100 kHz/3 kHz)
- Measure the average power in the used unit channel(s) (Pc) in watts
- Measure the average power of the spurious emission for all frequencies that exceed the limit in watts. (Ps)
- Calculate the unwanted emission power as (Ps/Pc)*Pb
- (1) Except for |f-fc| > (200+100xn) kHz for unit channel bandwidth 200 kHz and |f-fc| < (100+50xn) kHz for 100 kHz unit channel bandwidth. For 915.9 MHz < f < 916.9 MHz and 920.5 MHz < f < 922.3 MHz: Except |f-fc| < (100+100xn) kHz.
 (2) The limit is then ediusted by 10ther10(100 kHz/2 kHz)
- ⁽²⁾ The limit is then adjusted by 10*log10(100 kHz/3 kHz).

A Matlab script was developed to simplify the calculation.

Figure 23. Spurious Emission 915 MHz - 920.4 MHz

Limit:	-36 dBm/100 kHz
Measured:	-40 dBm
Margin:	4 dB (Pass)

TX Conducted Measurements: CC1200 920 IPC

6.4.5 Spurious Emission 930 MHz - 1000 MHz

The allowed level of spurious emissions within the 930 MHz - 1000 MHz frequency band is specified as less than -55dBm in any 100 kHz bandwidth. The channel center frequency selected for this measurement is 920.6 MHz. The measured spurious emissions within this frequency band are shown in Figure 25.

Limit:	-55 dBm/100 kHz
Measured:	-56.5 dBm (max over 6 samples)
Margin:	1.5 dB (Pass)

TX Conducted Measurements: CC1200 920 IPC

www.ti.com

6.4.6 Spurious Emission 1000 MHz - 1215 MHz

The allowed level of spurious emissions within the 1000 MHz -1215 MHz frequency band is specified as less than -45 dBm in any 1 MHz bandwidth. The channel center frequency selected for this measurement is 920.6 MHz. The measured spurious emissions within this frequency band are shown in Figure 26.

Figure 26. Spurious Emission 1000 MHz - 1215 MHz

Limit:	-45 dBm/1 MHz
Measured:	-58 dBm (max over 6 samples)
Margin:	13 dB (Pass)

6.4.7 Spurious Emission 1215 MHz ->

The allowed level of spurious emissions above 1215 MHz frequency is specified as less than -30 dBm in any 1 MHz bandwidth. The channel center frequency selected for this measurement is 920.6 MHz. The measured spurious emissions within this frequency band are shown in Figure 27.

Figure 27. Spurious Emission Above 1215 MHz

Limit:	-30 dBm/1 MHz
Measured:	-33 dBm (max over 6 samples)
Margin:	3 dB (Pass)

7 RX Conducted Measurements: CC1200EM 920 IPC

Sensitivity is measured with the following settings:

- 50 kbps, 25 kHz deviation (2GFSK), RX BW 100 kHz
- 100 kbps, 50 kHz deviation (2GFSK), RX BW 200 kHz

Table 31. Sensitivity

Data Rate	Sensitivity [dBm]	
50 kbps	-106	
100 kbps	-103	

References

www.ti.com

8 References

- 1. T108: <u>http://www.arib.or.jp/english/html/overview/doc/5-STD-T108v1_0-E2.pdf</u>
- 2. TELEC_T245: <u>http://www.telec.or.jp/eng/services/index.html</u>. For more information, contact TELEC.
- 3. CC1200EM 868-930: http://www.ti.com/tool/cc1200emk-868-930
- 4. CC1200 920:
- 5. CC1200 IPC 920:

Appendix A EM Schematics

A.1 CC1200EM 868-930

CC1200EM 920

A.2

www.ti.com

A.3 CC1200EM IPC 920

Table 32. CC1200 EM Rev 1.2.2 920 MHz IPC

C11	C_47N_0402_X7R_K_25			Capacitor, 47n, 0402, X7R, 10%, 25 V	Murata	
C1	C_1U_0805_X7R_K_16			Capacitor, 1 µ, 0805, X7R, 10%, 16 V	Murata	
C51	C_47N_0402_X7R_K_25			Capacitor, 47n, 0402, X7R, 10%, 25 V	Murata	
C61	C_220N_0402_X5R_K_10			Capacitor, 220n, 0402, X5R, 10%, 10 V	Murata	
C121	C_47N_0402_X7R_K_25			Capacitor, 47n, 0402, X7R, 10%, 25 V	Murata	
C131	C_47N_0402_X7R_K_25			Capacitor, 47n, 0402, X7R, 10%, 25 V	Murata	
C151	C_47N_0402_X7R_K_25			Capacitor, 47n, 0402, X7R, 10%, 25 V	Murata	
C171	C_10N_0402_X7R_K_25			Capacitor, 10n, 0402, X7R, 10%, 25 V	Murata	
C172	C_100P_0402_NP0_J_50			Capacitor, 100p, 0402, NP0, 5% 50 V	Murata	
C173	C_33P_0402_NP0_J_50			Capacitor, 33p, 0402, NP0, 5%, 50 V	Murata	
U201	T108 IPC+1		Will be supplied	Murata / JTI	Murata	
C202	C_100P_0402_NP0_J_50			Capacitor, 100p, 0402, NP0, 5% 50 V		
C203	C_1P0_0402_NP0_C_50			Capacitor, 1p, 0402, NP0, ±0.25 pF 50 V Murata	Murata	
C211	C_10N_0402_X7R_K_25			Capacitor, 10n, 0402, X7R, 10%, 25 V	Murata	
C221	C_47N_0402_X7R_K_25			Capacitor, 47n, 0402, X7R, 10%, 25 V	Murata	
C231	C_1N8_0402_U2J_J_10			Capacitor, 1n8, 0402, U2J, 5%, 10 V	Murata	
C251	C_47N_0402_X7R_K_25			Capacitor, 47n, 0402, X7R, 10%, 25 V	Murata	
C261	C_47N_0402_X7R_K_25			Capacitor, 47n, 0402, X7R, 10%, 25 V	Murata	
C271	C_47N_0402_X7R_K_25			Capacitor, 47n, 0402, X7R, 10%, 25 V	Murata	
C281	C_47N_0402_X7R_K_25			Capacitor, 47n, 0402, X7R, 10%, 25 V	Murata	
C291	C_47N_0402_X7R_K_25			Capacitor, 47n, 0402, X7R, 10%, 25 V	Murata	
C301	C_15P_0402_NP0_J_50			Capacitor, 15p, 0402, NP0, 5%, 50 V		
C302	C_0402	0	Do not mount		Murata	
C311	C_15P_0402_NP0_J_50			Capacitor, 15p, 0402, NP0, 5%, 50 V		
C321	C_100N_0402_X5R_K_10		Do not mount			
C322	C_22P_0402_NP0_J_50		Do not mount		Murata	
L1	L_BEAD_102_0402	1		EMI filter bead, 0402 1k Ω Tape GHz Band gen use	Murata	
L171	L_10N_0402_J	1		Inductor, 10n, 0402, ñ5%	Murata	
L204	L_12N_0402_J	1		Inductor, 12n, 0402, ñ5%	Murata	LQG15HS10NJ02D
L205	L_0402	0	Do not mount		Murata	LQG15HS10NJ02D
P1	SMD_SOCKET_2x10			SMD pinrow socket, .050 spacing, 2x10	Samtec	
P2	SMD_SOCKET_2x10	1		SMD pinrow socket, .050 spacing, 2x10	Samtec	
P3	SMA	1		SMA connector, straight, through hole		
R12	R_0_0402	1		Resistor, 0 Ω, 0402		
R141	R_56K_0402_F	1		Resistor, 56k Ω, 0402, 1%		

CC1200EM IPC 920

www.ti.com

Table 32. CC1200 EM Rev 1.2.2 920 MHz IPC (continued)

R171	R_10_0402_J	1		Resistor, 10 Ω, 0402, 5%	Коа	
R321	R_0402	0	Do not mount			
R201	R_0_0402	0	Do not mount			
R322	R_0_0402	0	Do not mount			
U1	CC1200	1	TI tranceiver	Texas Instruments		
X1	X_40.000/10/10/60/10	1	Crystal, 40.000000 MHz, FA-128, 10.0 pF, ±10 ppm (FT), ±10 ppm (FS), 60 Ω max.	Epson Toyocom	FA-128, 40MHz, 10PPM, 10PF, 2x1.6mm, -40/+85C,	ACTE
X2	TG_5021CG	0	Do not mount			

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconr	nectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated