
TMS320C64x/C64x+ DSP
CPU and Instruction Set

Reference Guide

Literature Number: SPRU732J

July 2010

2 SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

Contents

Preface .. 15

1 Introduction .. 17
1.1 TMS320 DSP Family Overview .. 18
1.2 TMS320C6000 DSP Family Overview .. 18
1.3 TMS320C64x DSP Features and Options ... 20
1.4 TMS320C64x/C64x+ DSP Architecture .. 21

1.4.1 Central Processing Unit (CPU) ... 23
1.4.2 Internal Memory .. 23
1.4.3 Memory and Peripheral Options .. 23

2 CPU Data Paths and Control ... 25
2.1 Introduction ... 26
2.2 General-Purpose Register Files ... 26
2.3 Functional Units .. 29
2.4 Register File Cross Paths .. 30
2.5 Memory, Load, and Store Paths ... 31
2.6 Data Address Paths ... 31
2.7 Galois Field ... 31

2.7.1 Special Timing Considerations ... 33
2.8 Control Register File .. 34

2.8.1 Register Addresses for Accessing the Control Registers ... 35
2.8.2 Pipeline/Timing of Control Register Accesses .. 35
2.8.3 Addressing Mode Register (AMR) ... 36
2.8.4 Control Status Register (CSR) .. 38
2.8.5 Galois Field Polynomial Generator Function Register (GFPGFR) ... 40
2.8.6 Interrupt Clear Register (ICR) ... 41
2.8.7 Interrupt Enable Register (IER) ... 42
2.8.8 Interrupt Flag Register (IFR) .. 43
2.8.9 Interrupt Return Pointer Register (IRP) .. 43
2.8.10 Interrupt Set Register (ISR) .. 44
2.8.11 Interrupt Service Table Pointer Register (ISTP) ... 45
2.8.12 Nonmaskable Interrupt (NMI) Return Pointer Register (NRP) ... 45
2.8.13 E1 Phase Program Counter (PCE1) .. 46

2.9 Control Register File Extensions .. 46
2.9.1 Debug Interrupt Enable Register (DIER) .. 47
2.9.2 DSP Core Number Register (DNUM) .. 48
2.9.3 Exception Clear Register (ECR) .. 48
2.9.4 Exception Flag Register (EFR) ... 49
2.9.5 GMPY Polynomial—A Side Register (GPLYA) ... 50
2.9.6 GMPY Polynomial—B Side Register (GPLYB) ... 50
2.9.7 Internal Exception Report Register (IERR) ... 51
2.9.8 SPLOOP Inner Loop Count Register (ILC) ... 52
2.9.9 Interrupt Task State Register (ITSR) ... 52
2.9.10 NMI/Exception Task State Register (NTSR) ... 53
2.9.11 Restricted Entry Point Register (REP) .. 53
2.9.12 SPLOOP Reload Inner Loop Count Register (RILC) ... 54

3SPRU732J–July 2010 Contents

Copyright © 2010, Texas Instruments Incorporated

www.ti.com

2.9.13 Saturation Status Register (SSR) ... 54
2.9.14 Time Stamp Counter Registers (TSCL and TSCH) ... 55
2.9.15 Task State Register (TSR) ... 57

3 Instruction Set .. 59
3.1 Instruction Operation and Execution Notations .. 60
3.2 Instruction Syntax and Opcode Notations .. 62

3.2.1 32-Bit Opcode Maps ... 63
3.2.2 16-Bit Opcode Maps ... 63

3.3 Delay Slots ... 64
3.4 Parallel Operations .. 65

3.4.1 Example Parallel Code .. 67
3.4.2 Branching Into the Middle of an Execute Packet ... 67

3.5 Conditional Operations ... 68
3.6 SPMASKed Operations ... 68
3.7 Resource Constraints ... 69

3.7.1 Constraints on Instructions Using the Same Functional Unit ... 69
3.7.2 Constraints on the Same Functional Unit Writing in the Same Instruction Cycle 69
3.7.3 Constraints on Cross Paths (1X and 2X) .. 69
3.7.4 Cross Path Stalls ... 70
3.7.5 Constraints on Loads and Stores .. 71
3.7.6 Constraints on Long (40-Bit) Data .. 71
3.7.7 Constraints on Register Reads ... 72
3.7.8 Constraints on Register Writes ... 72
3.7.9 Constraints on AMR Writes ... 73
3.7.10 Constraints on Multicycle NOPs ... 73
3.7.11 Constraints on Unitless Instructions .. 73

3.8 Addressing Modes ... 76
3.8.1 Linear Addressing Mode ... 76
3.8.2 Circular Addressing Mode ... 77
3.8.3 Syntax for Load/Store Address Generation ... 79

3.9 Compact Instructions on the C64x+ CPU .. 80
3.9.1 Compact Instruction Overview .. 80
3.9.2 Header Word Format ... 81
3.9.3 Processing of Fetch Packets .. 85
3.9.4 Execute Packet Restrictions .. 85
3.9.5 Available Compact Instructions ... 85

3.10 Instruction Compatibility .. 86
3.11 Instruction Descriptions ... 87

4 Pipeline .. 509
4.1 Pipeline Operation Overview ... 510

4.1.1 Fetch .. 511
4.1.2 Decode ... 512
4.1.3 Execute ... 513
4.1.4 Pipeline Operation Summary .. 514

4.2 Pipeline Execution of Instruction Types ... 518
4.2.1 Single-Cycle Instructions ... 519
4.2.2 Two-Cycle Instructions and .M Unit Nonmultiply Operations ... 520
4.2.3 Store Instructions ... 521
4.2.4 Extended Multiply Instructions ... 523
4.2.5 Load Instructions .. 524
4.2.6 Branch Instructions ... 525

4.3 Performance Considerations ... 527
4.3.1 Pipeline Operation With Multiple Execute Packets in a Fetch Packet 527

4 Contents SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com

4.3.2 Multicycle NOPs ... 529
4.3.3 Memory Considerations .. 530

4.4 C64x+ DSP Differences ... 531

5 Interrupts .. 533
5.1 Overview .. 534

5.1.1 Types of Interrupts and Signals Used .. 534
5.1.2 Interrupt Service Table (IST) .. 536
5.1.3 Summary of Interrupt Control Registers ... 540

5.2 Globally Enabling and Disabling Interrupts ... 540
5.3 Individual Interrupt Control .. 543

5.3.1 Enabling and Disabling Interrupts ... 543
5.3.2 Status of Interrupts .. 543
5.3.3 Setting and Clearing Interrupts .. 544
5.3.4 Returning From Interrupt Servicing ... 544

5.4 Interrupt Detection and Processing on the C64x CPU .. 545
5.4.1 Setting the Nonreset Interrupt Flag ... 545
5.4.2 Conditions for Processing a Nonreset Interrupt ... 546
5.4.3 Actions Taken During Nonreset Interrupt Processing .. 547
5.4.4 Setting the RESET Interrupt Flag ... 547
5.4.5 Actions Taken During RESET Interrupt Processing .. 548

5.5 Interrupt Detection and Processing on the C64x+ CPU .. 548
5.5.1 Setting the Nonreset Interrupt Flag ... 548
5.5.2 Conditions for Processing a Nonreset Interrupt ... 549
5.5.3 Saving TSR Context in Nonreset Interrupt Processing .. 551
5.5.4 Actions Taken During Nonreset Interrupt Processing .. 552
5.5.5 Conditions for Processing a Nonmaskable Interrupt ... 552
5.5.6 Saving of Context in Nonmaskable Interrupt Processing .. 555
5.5.7 Actions Taken During Nonmaskable Interrupt Processing .. 555
5.5.8 Setting the RESET Interrupt Flag ... 555
5.5.9 Actions Taken During RESET Interrupt Processing .. 556

5.6 Performance Considerations ... 557
5.6.1 General Performance ... 557
5.6.2 Pipeline Interaction ... 557

5.7 Programming Considerations .. 557
5.7.1 Single Assignment Programming ... 557
5.7.2 Nested Interrupts .. 558
5.7.3 Manual Interrupt Processing (polling) .. 560
5.7.4 Traps .. 561

5.8 Differences Between C64x and C64x+ CPU Interrupts ... 562

6 C64x+ CPU Exceptions ... 563
6.1 Overview .. 564

6.1.1 Types of Exceptions and Signals Used .. 564
6.1.2 Exception Service Vector .. 565
6.1.3 Summary of Exception Control Registers ... 565

6.2 Exception Control .. 567
6.2.1 Enabling and Disabling External Exceptions .. 567
6.2.2 Pending Exceptions ... 567
6.2.3 Exception Event Context Saving .. 567
6.2.4 Returning From Exception Servicing ... 568

6.3 Exception Detection and Processing .. 569
6.3.1 Setting the Exception Pending Flag .. 569
6.3.2 Conditions for Processing an External Exception .. 569
6.3.3 Actions Taken During External Exception (EXCEP) Processing ... 572

5SPRU732J–July 2010 Contents

Copyright © 2010, Texas Instruments Incorporated

www.ti.com

6.3.4 Nested Exceptions .. 572
6.4 Performance Considerations ... 572

6.4.1 General Performance ... 572
6.4.2 Pipeline Interaction ... 572

6.5 Programming Considerations .. 575
6.5.1 Internal Exceptions ... 575
6.5.2 Internal Exception Report Register (IERR) .. 575
6.5.3 Software Exception ... 576

7 Software Pipelined Loop (SPLOOP) Buffer .. 577
7.1 Software Pipelining .. 578
7.2 Software Pipelining .. 578
7.3 Terminology ... 579
7.4 SPLOOP Hardware Support .. 579

7.4.1 Loop Buffer .. 579
7.4.2 Loop Buffer Count Register (LBC) .. 579
7.4.3 Inner Loop Count Register (ILC) .. 579
7.4.4 Reload Inner Loop Count Register (RILC) ... 580
7.4.5 Task State Register (TSR), Interrupt Task State Register (ITSR), and

NMI/Exception Task State Register (NTSR) .. 580
7.5 SPLOOP-Related Instructions .. 580

7.5.1 SPLOOP, SPLOOPD, and SPLOOPW Instructions .. 580
7.5.2 SPKERNEL and SPKERNELR Instructions ... 581
7.5.3 SPMASK and SPMASKR Instructions ... 582

7.6 Basic SPLOOP Example .. 583
7.6.1 Some Points About the Basic SPLOOP Example .. 584
7.6.2 Same Example Using the SPLOOPW Instruction .. 585
7.6.3 Some Points About the SPLOOPW Example ... 586

7.7 Loop Buffer ... 586
7.7.1 Software Pipeline Execution From the Loop Buffer .. 587
7.7.2 Stage Boundary Terminology ... 587
7.7.3 Loop Buffer Operation .. 588

7.8 Execution Patterns ... 590
7.8.1 Prolog, Kernel, and Epilog Execution Patterns ... 590
7.8.2 Early-Exit Execution Pattern ... 591
7.8.3 Reload Execution Pattern .. 592

7.9 Loop Buffer Control Using the Unconditional SPLOOP(D) Instruction .. 594
7.9.1 Initial Termination Condition Test and ILC Decrement ... 594
7.9.2 Stage Boundary Termination Condition Test and ILC Decrement 594
7.9.3 Using SPLOOPD for Loops with Known Minimum Iteration Counts 595
7.9.4 Program Memory Fetch Enable Delay During Epilog .. 596
7.9.5 Stage Boundary and SPKERNEL(R) Position .. 596
7.9.6 Loop Buffer Reload ... 596
7.9.7 Restrictions on Accessing ILC and RILC .. 600

7.10 Loop Buffer Control Using the SPLOOPW Instruction .. 600
7.10.1 Initial Termination Condition Using the SPLOOPW Condition ... 601
7.10.2 Stage Boundary Termination Condition Using the SPLOOPW Condition 601
7.10.3 Interrupting the Loop Buffer When Using SPLOOPW .. 601
7.10.4 Under-Execution of Early Stages of SPLOOPW When Termination Condition Becomes True

While Interrupt Draining .. 602
7.11 Using the SPMASK Instruction ... 602

7.11.1 Using SPMASK to Merge Setup Code Example .. 603
7.11.2 Some Points About the SPMASK to Merge Setup Code Example 604
7.11.3 Using SPMASK to Merge Reset Code Example ... 605
7.11.4 Some Points About the SPMASK to Merge Reset Code Example 606

6 Contents SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com

7.11.5 Returning from an Interrupt ... 606
7.12 Program Memory Fetch Control ... 606

7.12.1 Program Memory Fetch Disable ... 607
7.12.2 Program Memory Fetch Enable .. 607

7.13 Interrupts .. 607
7.13.1 Interrupting the Loop Buffer .. 607
7.13.2 Returning to an SPLOOP(D/W) After an Interrupt ... 608
7.13.3 Exceptions .. 608
7.13.4 Branch to Interrupt, Pipe-Down Sequence ... 608
7.13.5 Return from Interrupt, Pipe-Up Sequence .. 608
7.13.6 Disabling Interrupts During Loop Buffer Operation .. 608

7.14 Branch Instructions .. 609
7.15 Instruction Resource Conflicts and SPMASK Operation ... 609

7.15.1 Program Memory and Loop Buffer Resource Conflicts ... 610
7.15.2 Restrictions on Stall Detection Within SPLOOP Operation .. 610

7.16 Restrictions on Cross Path Stalls .. 610
7.17 Restrictions on AMR-Related Stalls ... 610
7.18 Restrictions on Instructions Placed in the Loop Buffer .. 611

8 C64x+ CPU Privilege .. 613
8.1 Overview .. 614
8.2 Execution Modes ... 614

8.2.1 Privilege Mode After Reset .. 614
8.2.2 Execution Mode Transitions ... 614
8.2.3 Supervisor Mode .. 615
8.2.4 User Mode ... 615

8.3 Interrupts and Exception Handling ... 616
8.3.1 Inhibiting Interrupts in User Mode .. 616
8.3.2 Privilege and Interrupts ... 616
8.3.3 Privilege and Exceptions ... 616
8.3.4 Privilege and Memory Protection ... 616

8.4 Operating System Entry ... 617
8.4.1 Entering User Mode from Supervisor Mode ... 617
8.4.2 Entering Supervisor Mode from User Mode ... 617

9 C64x+ CPU Atomic Operations .. 619
9.1 Synchronization Primitives .. 620

9.1.1 Introduction to Atomic Operations .. 620
9.1.2 Other Memory Operations ... 620

9.2 Atomic Operations Instructions ... 621
9.2.1 LL Instruction .. 621
9.2.2 SL Instruction .. 621
9.2.3 CMTL Instruction .. 621
9.2.4 Valid Sequences of LL, SL, and CMTL Instructions .. 621

9.3 Examples of Use ... 622
9.3.1 Spin Lock Example ... 622
9.3.2 Shared Accumulator or Counter Example ... 622
9.3.3 Compare and Swap Example ... 623

A Instruction Compatibility .. 625

B Mapping Between Instruction and Functional Unit ... 631

C .D Unit Instructions and Opcode Maps ... 637
C.1 Instructions Executing in the .D Functional Unit ... 638
C.2 Opcode Map Symbols and Meanings ... 638
C.3 32-Bit Opcode Maps ... 639

7SPRU732J–July 2010 Contents

Copyright © 2010, Texas Instruments Incorporated

www.ti.com

C.4 16-Bit Opcode Maps ... 641

D .L Unit Instructions and Opcode Maps .. 649
D.1 Instructions Executing in the .L Functional Unit .. 650
D.2 Opcode Map Symbols and Meanings ... 651
D.3 32-Bit Opcode Maps ... 651
D.4 16-Bit Opcode Maps ... 652

E .M Unit Instructions and Opcode Maps ... 657
E.1 Instructions Executing in the .M Functional Unit ... 658
E.2 Opcode Map Symbols and Meanings ... 659
E.3 32-Bit Opcode Maps ... 659
E.4 16-Bit Opcode Maps ... 660

F .S Unit Instructions and Opcode Maps ... 661
F.1 Instructions Executing in the .S Functional Unit ... 662
F.2 Opcode Map Symbols and Meanings ... 663
F.3 32-Bit Opcode Maps ... 663
F.4 16-Bit Opcode Maps ... 666

G .D, .L, or .S Unit Opcode Maps ... 673
G.1 Opcode Map Symbols and Meanings ... 674
G.2 32-Bit Opcode Maps ... 674
G.3 16-Bit Opcode Maps ... 675

H No Unit Specified Instructions and Opcode Maps .. 679
H.1 Instructions Executing With No Unit Specified ... 680
H.2 Opcode Map Symbols and Meanings ... 680
H.3 32-Bit Opcode Maps ... 681
H.4 16-Bit Opcode Maps ... 681

I Revision History .. 685

8 Contents SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com

List of Figures

1-1. TMS320C64x DSP Block Diagram.. 21

1-2. TMS320C64x+ DSP Block Diagram .. 22

2-1. CPU Data Paths ... 27

2-2. Storage Scheme for 40-Bit Data in a Register Pair... 28

2-3. Addressing Mode Register (AMR) .. 36

2-4. Control Status Register (CSR)... 38

2-5. PWRD Field of Control Status Register (CSR) .. 38

2-6. Galois Field Polynomial Generator Function Register (GFPGFR) .. 40

2-7. Interrupt Clear Register (ICR).. 41

2-8. Interrupt Enable Register (IER).. 42

2-9. Interrupt Flag Register (IFR) ... 43

2-10. Interrupt Return Pointer Register (IRP)... 43

2-11. Interrupt Set Register (ISR) .. 44

2-12. Interrupt Service Table Pointer Register (ISTP)... 45

2-13. NMI Return Pointer Register (NRP)... 45

2-14. E1 Phase Program Counter (PCE1) .. 46

2-15. Debug Interrupt Enable Register (DIER) ... 47

2-16. DSP Core Number Register (DNUM)... 48

2-17. Exception Flag Register (EFR) .. 49

2-18. GMPY Polynomial A-Side Register (GPLYA).. 50

2-19. GMPY Polynomial B-Side (GPLYB) .. 50

2-20. Internal Exception Report Register (IERR) .. 51

2-21. Inner Loop Count Register (ILC) .. 52

2-22. Interrupt Task State Register (ITSR).. 52

2-23. NMI/Exception Task State Register (NTSR) ... 53

2-24. Reload Inner Loop Count Register (RILC) ... 54

2-25. Saturation Status Register (SSR) ... 54

2-26. Time Stamp Counter Register - Low Half (TSCL)... 55

2-27. Time Stamp Counter Register - High Half (TSCH) ... 55

2-28. Task State Register (TSR) ... 57

3-1. Basic Format of a Fetch Packet ... 65

3-2. Examples of the Detectability of Write Conflicts by the Assembler ... 72

3-3. Compact Instruction Header Format .. 81

3-4. Layout Field in Compact Header Word... 81

3-5. Expansion Field in Compact Header Word .. 82

3-6. P-bits Field in Compact Header Word .. 84

4-1. Pipeline Stages... 510

4-2. Fetch Phases of the Pipeline ... 511

4-3. Decode Phases of the Pipeline .. 512

4-4. Execute Phases of the Pipeline .. 513

4-5. Pipeline Phases .. 514

4-6. Pipeline Operation: One Execute Packet per Fetch Packet.. 514

4-7. Pipeline Phases Block Diagram.. 516

4-8. Single-Cycle Instruction Phases ... 519

4-9. Single-Cycle Instruction Execution Block Diagram .. 519

4-10. Two-Cycle Instruction Phases.. 520

4-11. Single 16 × 16 Multiply Instruction Execution Block Diagram.. 520

9SPRU732J–July 2010 List of Figures

Copyright © 2010, Texas Instruments Incorporated

www.ti.com

4-12. Store Instruction Phases .. 521

4-13. Store Instruction Execution Block Diagram... 521

4-14. Extended Multiply Instruction Phases ... 523

4-15. Extended Multiply Instruction Execution Block Diagram.. 523

4-16. Load Instruction Phases .. 524

4-17. Load Instruction Execution Block Diagram ... 524

4-18. Branch Instruction Phases .. 525

4-19. Branch Instruction Execution Block Diagram... 526

4-20. Pipeline Operation: Fetch Packets With Different Numbers of Execute Packets................................ 528

4-21. Multicycle NOP in an Execute Packet... 529

4-22. Branching and Multicycle NOPs ... 530

4-23. Pipeline Phases Used During Memory Accesses ... 530

4-24. Program and Data Memory Stalls ... 531

5-1. Interrupt Service Table .. 536

5-2. Interrupt Service Fetch Packet ... 537

5-3. Interrupt Service Table With Branch to Additional Interrupt Service Code Located Outside the IST......... 538

5-4. Nonreset Interrupt Detection and Processing: Pipeline Operation .. 546

5-5. RESET Interrupt Detection and Processing: Pipeline Operation .. 547

5-6. C64x+ Nonreset Interrupt Detection and Processing: Pipeline Operation 550

5-7. C64x+ Return from Interrupt Execution and Processing: Pipeline Operation.................................... 551

5-8. C64x+ CPU Nonmaskable Interrupt Detection and Processing: Pipeline Operation 553

5-9. C64x+ CPU Return from Nonmaskable Interrupt Execution and Processing: Pipeline Operation 554

5-10. RESET Interrupt Detection and Processing: Pipeline Operation .. 556

6-1. Interrupt Service Table With Branch to Additional Exception Service Code Located Outside the IST 566

6-2. External Exception (EXCEP) Detection and Processing: Pipeline Operation.................................... 570

6-3. Return from Exception Processing: Pipeline Operation... 571

6-4. NMI Exception Detection and Processing: Pipeline Operation .. 573

6-5. Double Exception Detection and Processing: Pipeline Operation... 574

7-1. Software Pipelined Execution Flow.. 578

7-2. General Prolog, Kernel, and Epilog Execution Pattern ... 591

7-3. Single Kernel Stage Execution Pattern ... 591

7-4. Early-Exit Execution Pattern.. 592

7-5. Single Loop Iteration Execution Pattern .. 592

7-6. Reload Execution Pattern... 593

7-7. Reload Early-Exit Execution Pattern .. 593

7-8. Instruction Flow Using Reload ... 599

7-9. Instruction Flow for strcpy() of Null String .. 602

C-1. 1 or 2 Sources Instruction Format ... 639

C-2. Extended .D Unit 1 or 2 Sources Instruction Format.. 639

C-3. ADDAB/ADDAH/ADDAW Long-Immediate Operations ... 640

C-4. Linked Word Operations .. 640

C-5. Load/Store Basic Operations ... 640

C-6. Load/Store Long-Immediate Operations .. 640

C-7. Load/Store Doubleword Instruction Format .. 640

C-8. Load/Store Nonaligned Doubleword Instruction Format .. 640

C-9. Doff4 Instruction Format .. 641

C-10. Doff4DW Instruction Format .. 641

C-11. Dind Instruction Format ... 642

C-12. DindDW Instruction Format... 643

10 List of Figures SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com

C-13. Dinc Instruction Format ... 643

C-14. DincDW Instruction Format ... 644

C-15. Ddec Instruction Format... 644

C-16. DdecDW Instruction Format .. 645

C-17. Dstk Instruction Format ... 645

C-18. Dx2op Instruction Format ... 645

C-19. Dx5 Instruction Format .. 646

C-20. Dx5p Instruction Format... 646

C-21. Dx1 Instruction Format .. 646

C-22. Dpp Instruction Format .. 647

D-1. 1 or 2 Sources Instruction Format ... 651

D-2. Unary Instruction Format.. 651

D-3. 1 or 2 Sources, Nonconditional Instruction Format.. 651

D-4. L3 Instruction Format .. 652

D-5. L3i Instruction Format ... 652

D-6. Ltbd Instruction Format.. 653

D-7. L2c Instruction Format .. 653

D-8. Lx5 Instruction Format .. 654

D-9. Lx3c Instruction Format ... 654

D-10. Lx1c Instruction Format ... 655

D-11. Lx1 Instruction Format .. 655

E-1. Extended M-Unit with Compound Operations.. 659

E-2. Extended .M-Unit Unary Instruction Format .. 659

E-3. Extended .M Unit 1 or 2 Sources, Nonconditional Instruction Format .. 659

E-4. MPY Instruction Format ... 659

E-5. M3 Instruction Format ... 660

F-1. 1 or 2 Sources Instruction Format ... 663

F-2. ADDK Instruction Format ... 663

F-3. ADDKPC Instruction Format.. 663

F-4. Extended .S Unit 1 or 2 Sources Instruction Format .. 664

F-5. Branch Using a Displacement Instruction Format ... 664

F-6. Branch Using a Register Instruction Format ... 664

F-7. Branch Using a Pointer Instruction Format ... 664

F-8. BDEC/BPOS Instruction Format ... 664

F-9. Branch Using a Displacement with NOP Instruction Format ... 664

F-10. Branch Using a Register with NOP Instruction Format ... 664

F-11. Call Nonconditional, Immediate with Implied NOP 5 Instruction Format ... 664

F-12. Move Constant Instruction Format... 665

F-13. Extended .S Unit 1 or 2 Sources, Nonconditional Instruction Format... 665

F-14. Unary Instruction Format.. 665

F-15. Field Operations.. 665

F-16. Sbs7 Instruction Format... 666

F-17. Sbu8 Instruction Format... 666

F-18. Scs10 Instruction Format ... 666

F-19. Sbs7c Instruction Format ... 667

F-20. Sbu8c Instruction Format ... 667

F-21. S3 Instruction Format.. 667

F-22. S3i Instruction Format ... 668

F-23. Smvk8 Instruction Format... 668

11SPRU732J–July 2010 List of Figures

Copyright © 2010, Texas Instruments Incorporated

www.ti.com

F-24. Ssh5 Instruction Format... 669

F-25. S2sh Instruction Format... 669

F-26. Sc5 Instruction Format .. 670

F-27. S2ext Instruction Format .. 670

F-28. Sx2op Instruction Format ... 671

F-29. Sx5 Instruction Format .. 671

F-30. Sx1 Instruction Format .. 672

F-31. Sx1b Instruction Format... 672

G-1. LSDmvto Instruction Format.. 675

G-2. LSDmvfr Instruction Format .. 675

G-3. LSDx1c Instruction Format ... 676

G-4. LSDx1 Instruction Format... 677

H-1. DINT and RINT, SWE and SWENR Instruction Format .. 681

H-2. IDLE and NOP Instruction Format ... 681

H-3. Loop Buffer, Nonconditional Instruction Format ... 681

H-4. Loop Buffer Instruction Format ... 681

H-5. Uspl Instruction Format ... 681

H-6. Uspldr Instruction Format ... 682

H-7. Uspk Instruction Format... 682

H-8. Uspm Instruction Format.. 682

H-9. Unop Instruction Format .. 683

12 List of Figures SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com

List of Tables

1-1. Typical Applications for the TMS320 DSPs .. 19

2-1. 40-Bit/64-Bit Register Pairs .. 28

2-2. Functional Units and Operations Performed ... 29

2-3. Modulo 2 Arithmetic ... 31

2-4. Modulo 5 Arithmetic ... 32

2-5. Modulo Arithmetic for Field GF(23) .. 33

2-6. Control Registers .. 34

2-7. Addressing Mode Register (AMR) Field Descriptions ... 36

2-8. Block Size Calculations... 37

2-9. Control Status Register (CSR) Field Descriptions .. 38

2-10. Galois Field Polynomial Generator Function Register (GFPGFR) Field Descriptions............................ 40

2-11. Interrupt Clear Register (ICR) Field Descriptions ... 41

2-12. Interrupt Enable Register (IER) Field Descriptions ... 42

2-13. Interrupt Flag Register (IFR) Field Descriptions... 43

2-14. Interrupt Set Register (ISR) Field Descriptions.. 44

2-15. Interrupt Service Table Pointer Register (ISTP) Field Descriptions .. 45

2-16. Control Register File Extensions (C64x+ DSP) ... 46

2-17. Debug Interrupt Enable Register (DIER) Field Descriptions .. 47

2-18. Exception Flag Register (EFR) Field Descriptions ... 49

2-19. Internal Exception Report Register (IERR) Field Descriptions ... 51

2-20. Interrupt Task State Register (ITSR) Field Descriptions ... 52

2-21. NMI/Exception Task State Register (NTSR) Field Descriptions... 53

2-22. Saturation Status Register Field Descriptions ... 54

2-23. Task State Register (TSR) Field Descriptions .. 57

3-1. Instruction Operation and Execution Notations.. 60

3-2. Instruction Syntax and Opcode Notations ... 62

3-3. Delay Slot and Functional Unit Latency .. 64

3-4. Registers That Can Be Tested by Conditional Operations .. 68

3-5. Indirect Address Generation for Load/Store ... 79

3-6. Address Generator Options for Load/Store .. 79

3-7. C64x+ CPU Fetch Packet Types .. 80

3-8. Layout Field Description in Compact Instruction Packet Header ... 81

3-9. Expansion Field Description in Compact Instruction Packet Header ... 82

3-10. LD/ST Data Size Selection ... 83

3-11. P-bits Field Description in Compact Instruction Packet Header... 84

3-12. Available Compact Instructions ... 85

3-13. Relationships Between Operands, Operand Size, Functional Units, and Opfields for Example Instruction
(ADD) ... 89

3-14. Program Counter Values for Branch Using a Displacement Example .. 133

3-15. Program Counter Values for Branch Using a Register Example .. 135

3-16. Program Counter Values for B IRP Instruction Example ... 137

3-17. Program Counter Values for B NRP Instruction Example .. 139

3-18. Data Types Supported by LDB(U) Instruction.. 240

3-19. Data Types Supported by LDB(U) Instruction (15-Bit Offset) .. 243

3-20. Data Types Supported by LDH(U) Instruction ... 249

3-21. Data Types Supported by LDH(U) Instruction (15-Bit Offset) .. 251

3-22. Register Addresses for Accessing the Control Registers .. 330

13SPRU732J–July 2010 List of Tables

Copyright © 2010, Texas Instruments Incorporated

www.ti.com

3-23. Field Allocation in stg/cyc Field .. 424

3-24. Bit Allocations to Stage and Cycle in stg/cyc Field .. 424

4-1. Operations Occurring During Pipeline Phases .. 515

4-2. Execution Stage Length Description for Each Instruction Type ... 518

4-3. Single-Cycle Instruction Execution .. 519

4-4. Multiply Instruction Execution .. 520

4-5. Store Instruction Execution ... 521

4-6. Extended Multiply Instruction Execution .. 523

4-7. Load Instruction Execution.. 524

4-8. Branch Instruction Execution ... 525

4-9. Program Memory Accesses Versus Data Load Accesses ... 531

5-1. Interrupt Priorities .. 535

5-2. Interrupt Control Registers.. 540

5-3. TSR Field Behavior When an Interrupt is Taken .. 552

5-4. TSR Field Behavior When an NMI Interrupt is Taken... 555

5-5. Differences Between C64x and C64x+ CPU Interrupts... 562

6-1. Exception-Related Control Registers.. 565

6-2. NTSR Field Behavior When an Exception is Taken... 568

6-3. TSR Field Behavior When an Exception is Taken (EXC = 0).. 571

7-1. SPLOOP Instruction Flow for and ... 584

7-2. SPLOOPW Instruction Flow for ... 585

7-3. Software Pipeline Instruction Flow Using the Loop Buffer.. 587

7-4. SPLOOPD Minimum Loop Iterations .. 595

7-5. SPLOOP Instruction Flow for First Three Cycles of .. 604

7-6. SPLOOP Instruction Flow for .. 606

A-1. Instruction Compatibility Between C62x, C64x, and C64x+ DSPs ... 625

B-1. Instruction to Functional Unit Mapping ... 631

C-1. Instructions Executing in the .D Functional Unit ... 638

C-2. .D Unit Opcode Map Symbol Definitions.. 638

C-3. Address Generator Options for Load/Store... 639

D-1. Instructions Executing in the .L Functional Unit.. 650

D-2. .L Unit Opcode Map Symbol Definitions .. 651

E-1. Instructions Executing in the .M Functional Unit ... 658

E-2. .M Unit Opcode Map Symbol Definitions ... 659

F-1. Instructions Executing in the .S Functional Unit ... 662

F-2. .S Unit Opcode Map Symbol Definitions.. 663

G-1. .D, .L, and .S Units Opcode Map Symbol Definitions ... 674

H-1. Instructions Executing With No Unit Specified ... 680

H-2. No Unit Specified Instructions Opcode Map Symbol Definitions .. 680

I-1. Document Revision History ... 685

14 List of Tables SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

Preface
SPRU732J–July 2010

Read This First

About This Manual

The TMS320C6000™ digital signal processor (DSP) platform is part of the TMS320™ DSP family. The
TMS320C62x™ DSP generation and the TMS320C64x™ DSP generation comprise fixed-point devices in
the C6000™ DSP platform, and the TMS320C67x™ DSP generation comprises floating-point devices in
the C6000 DSP platform. The C62x™ and C64x™ DSPs are code-compatible.

The TMS320C64x+™ DSP is an enhancement of the C64x DSP with added functionality and an
expanded instruction set. This document describes the CPU architecture, pipeline, instruction set, and
interrupts of the C64x and C64x+ DSPs.

Notational Conventions

This document uses the following conventions.

• Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP
and C64x+ CPU, respectively.

• Hexadecimal numbers are shown with the suffix h. For example, the following number is 40
hexadecimal (decimal 64): 40h.

Related Documentation From Texas Instruments

The following documents describe the C6000 devices and related support tools. Copies of these
documents are available on the Internet at www.ti.com. Tip: Enter the literature number in the search box
provided at www.ti.com.

The current documentation that describes the C6000 devices, related peripherals, and other technical
collateral, is available in the C6000 DSP product folder at: www.ti.com/c6000.

SPRU190 — TMS320C6000 DSP Peripherals Overview Reference Guide. Provides an overview and
briefly describes the peripherals available on the TMS320C6000 family of digital signal processors
(DSPs).

SPRU395 — TMS320C64x Technical Overview. Provides an introduction to the TMS320C64x digital
signal processors (DSPs) of the TMS320C6000 DSP family.

SPRU656 — TMS320C6000 DSP Cache User's Guide. Explains the fundamentals of memory caches
and describes how the two-level cache-based internal memory architecture in the
TMS320C621x/C671x/C64x digital signal processors (DSPs) of the TMS320C6000 DSP family can
be efficiently used in DSP applications. Shows how to maintain coherence with external memory,
how to use DMA to reduce memory latencies, and how to optimize your code to improve cache
efficiency. The internal memory architecture in the C621x/C671x/C64x DSPs is organized in a
two-level hierarchy consisting of a dedicated program cache (L1P) and a dedicated data cache
(L1D) on the first level. Accesses by the CPU to the these first level caches can complete without
CPU pipeline stalls. If the data requested by the CPU is not contained in cache, it is fetched from
the next lower memory level, L2 or external memory.

SPRU862 — TMS320C64x+ DSP Cache User's Guide. Explains the fundamentals of memory caches
and describes how the two-level cache-based internal memory architecture in the TMS320C64x+
digital signal processor (DSP) of the TMS320C6000 DSP family can be efficiently used in DSP
applications. Shows how to maintain coherence with external memory, how to use DMA to reduce
memory latencies, and how to optimize your code to improve cache efficiency. The internal memory

15SPRU732J–July 2010 Read This First

Copyright © 2010, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/c6000
http://www.ti.com/lit/pdf/spru190
http://www.ti.com/lit/pdf/spru395
http://www.ti.com/lit/pdf/spru656
http://www.ti.com/lit/pdf/spru862

Related Documentation From Texas Instruments www.ti.com

architecture in the C64x+ DSP is organized in a two-level hierarchy consisting of a dedicated
program cache (L1P) and a dedicated data cache (L1D) on the first level. Accesses by the CPU to
the these first level caches can complete without CPU pipeline stalls. If the data requested by the
CPU is not contained in cache, it is fetched from the next lower memory level, L2 or external
memory.

SPRU871 — TMS320C64x+ DSP Megamodule Reference Guide. Describes the TMS320C64x+ digital
signal processor (DSP) megamodule. Included is a discussion on the internal direct memory access
(IDMA) controller, the interrupt controller, the power-down controller, memory protection, bandwidth
management, and the memory and cache.

SPRAA84 — TMS320C64x to TMS320C64x+ CPU Migration Guide. Describes migrating from the
Texas Instruments TMS320C64x digital signal processor (DSP) to the TMS320C64x+ DSP. The
objective of this document is to indicate differences between the two cores. Functionality in the
devices that is identical is not included.

SPRU186 — TMS320C6000 Assembly Language Tools User's Guide. Describes the assembly
language tools (assembler, linker, and other tools used to develop assembly language code),
assembler directives, macros, common object file format, and symbolic debugging directives for the
TMS320C6000 platform of devices (including the C64x+ and C67x+ generations).

SPRU187 — TMS320C6000 Optimizing Compiler User's Guide. Describes the TMS320C6000 C
compiler and the assembly optimizer. This C compiler accepts ANSI standard C source code and
produces assembly language source code for the TMS320C6000 platform of devices (including the
C64x+ and C67x+ generations). The assembly optimizer helps you optimize your assembly code.

SPRU198 — TMS320C6000 Programmer's Guide. Reference for programming the TMS320C6000
digital signal processors (DSPs). Before you use this manual, you should install your code
generation and debugging tools. Includes a brief description of the C6000 DSP architecture and
code development flow, includes C code examples and discusses optimization methods for the C
code, describes the structure of assembly code and includes examples and discusses optimizations
for the assembly code, and describes programming considerations for the C64x DSP.

TMS320C6000, TMS320, TMS320C62x, TMS320C64x, C6000, TMS320C67x, C62x, C64x, VelociTI, XDS510, XDS560, TMS320C2000,
TMS320C5000 are trademarks of Texas Instruments.
Windows is a registered trademark of Microsoft Corporation.

16 Read This First SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spru871
http://www.ti.com/lit/pdf/spraa84
http://www.ti.com/lit/pdf/spru186
http://www.ti.com/lit/pdf/spru187
http://www.ti.com/lit/pdf/spru198

Chapter 1
SPRU732J–July 2010

Introduction

The TMS320C6000™ digital signal processor (DSP) platform is part of the TMS320™ DSP family. The
TMS320C62x™ DSP generation and the TMS320C64x™ DSP generation comprise fixed-point devices in
the C6000™ DSP platform, and the TMS320C67x™ DSP generation comprises floating-point devices in
the C6000 DSP platform. The C62x™ and C64x™ DSPs are code-compatible. All three DSP generations
use the VelociTI™ architecture, a high-performance, advanced very long instruction word (VLIW)
architecture, making these DSPs excellent choices for multichannel and multifunction applications.

The TMS320C64x+™ DSP is an enhancement of the C64x DSP with added functionality and an
expanded instruction set.

Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and
C64x+ CPU, respectively.

Topic ... Page

1.1 TMS320 DSP Family Overview .. 18
1.2 TMS320C6000 DSP Family Overview ... 18
1.3 TMS320C64x DSP Features and Options .. 20
1.4 TMS320C64x/C64x+ DSP Architecture ... 21

17SPRU732J–July 2010 Introduction

Copyright © 2010, Texas Instruments Incorporated

TMS320 DSP Family Overview www.ti.com

1.1 TMS320 DSP Family Overview

The TMS320™ DSP family consists of fixed-point, floating-point, and multiprocessor digital signal
processors (DSPs). TMS320™ DSPs have an architecture designed specifically for real-time signal
processing.

Table 1-1 lists some typical applications for the TMS320™ family of DSPs. The TMS320™ DSPs offer
adaptable approaches to traditional signal-processing problems. They also support complex applications
that often require multiple operations to be performed simultaneously.

1.2 TMS320C6000 DSP Family Overview

With a performance of up to 8000 million instructions per second (MIPS) and an efficient C compiler, the
TMS320C6000 DSPs give system architects unlimited possibilities to differentiate their products. High
performance, ease of use, and affordable pricing make the C6000 generation the ideal solution for
multichannel, multifunction applications, such as:

• Pooled modems
• Wireless local loop base stations
• Remote access servers (RAS)
• Digital subscriber loop (DSL) systems
• Cable modems
• Multichannel telephony systems

The C6000 generation is also an ideal solution for exciting new applications; for example:

• Personalized home security with face and hand/fingerprint recognition
• Advanced cruise control with global positioning systems (GPS) navigation and accident avoidance
• Remote medical diagnostics
• Beam-forming base stations
• Virtual reality 3-D graphics
• Speech recognition
• Audio
• Radar
• Atmospheric modeling
• Finite element analysis
• Imaging (examples: fingerprint recognition, ultrasound, and MRI)

18 Introduction SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com TMS320C6000 DSP Family Overview

Table 1-1. Typical Applications for the TMS320 DSPs

Automotive Consumer Control

Adaptive ride control Digital radios/TVs Disk drive control

Antiskid brakes Educational toys Engine control

Cellular telephones Music synthesizers Laser printer control

Digital radios Pagers Motor control

Engine control Power tools Robotics control

Global positioning Radar detectors Servo control

Navigation Solid-state answering machines

Vibration analysis

Voice commands

General-Purpose Graphics/Imaging Industrial

Adaptive filtering 3-D transformations Numeric control

Convolution Animation/digital maps Power-line monitoring

Correlation Homomorphic processing Robotics

Digital filtering Image compression/transmission Security access

Fast Fourier transforms Image enhancement

Hilbert transforms Pattern recognition

Waveform generation Robot vision

Windowing Workstations

Instrumentation Medical Military

Digital filtering Diagnostic equipment Image processing

Function generation Fetal monitoring Missile guidance

Pattern matching Hearing aids Navigation

Phase-locked loops Patient monitoring Radar processing

Seismic processing Prosthetics Radio frequency modems

Spectrum analysis Ultrasound equipment Secure communications

Transient analysis Sonar processing

Telecommunications Voice/Speech

1200- to 56 600-bps modems Faxing Speaker verification

Adaptive equalizers Future terminals Speech enhancement

ADPCM transcoders Line repeaters Speech recognition

Base stations Personal communications systems (PCS) Speech synthesis

Cellular telephones Personal digital assistants (PDA) Speech vocoding

Channel multiplexing Speaker phones Text-to-speech

Data encryption Spread spectrum communications Voice mail

Digital PBXs Digital subscriber loop (xDSL)

Digital speech interpolation (DSI) Video conferencing

DTMF encoding/decoding X.25 packet switching

Echo cancellation

19SPRU732J–July 2010 Introduction

Copyright © 2010, Texas Instruments Incorporated

TMS320C64x DSP Features and Options www.ti.com

1.3 TMS320C64x DSP Features and Options

The C6000 devices execute up to eight 32-bit instructions per cycle. The C64x CPU consists of 64
general-purpose 32-bit registers and eight functional units. These eight functional units contain:

• Two multipliers
• Six ALUs

The C6000 generation has a complete set of optimized development tools, including an efficient
C compiler, an assembly optimizer for simplified assembly-language programming and scheduling, and a
Windows® operating system-based debugger interface for visibility into source code execution
characteristics. A hardware emulation board, compatible with the TI XDS510™ and XDS560™ emulator
interface, is also available. This tool complies with IEEE Standard 1149.1-1990, IEEE Standard Test
Access Port and Boundary-Scan Architecture.

Features of the C6000 devices include:

• Advanced VLIW CPU with eight functional units, including two multipliers and six arithmetic units

– Executes up to eight instructions per cycle for up to ten times the performance of typical DSPs
– Allows designers to develop highly effective RISC-like code for fast development time

• Instruction packing

– Gives code size equivalence for eight instructions executed serially or in parallel
– Reduces code size, program fetches, and power consumption

• Conditional execution of most instructions

– Reduces costly branching
– Increases parallelism for higher sustained performance

• Efficient code execution on independent functional units

– Industry's most efficient C compiler on DSP benchmark suite
– Industry's first assembly optimizer for fast development and improved parallelization

• 8/16/32-bit data support, providing efficient memory support for a variety of applications
• 40-bit arithmetic options add extra precision for vocoders and other computationally intensive

applications
• Saturation and normalization provide support for key arithmetic operations
• Field manipulation and instruction extract, set, clear, and bit counting support common operation found

in control and data manipulation applications.

The C64x and C64x+ devices include these additional features:

• Each multiplier can perform two 16 × 16-bit or four 8 × 8 bit multiplies every clock cycle.
• Quad 8-bit and dual 16-bit instruction set extensions with data flow support
• Support for non-aligned 32-bit (word) and 64-bit (double word) memory accesses
• Special communication-specific instructions have been added to address common operations in

error-correcting codes.
• Bit count and rotate hardware extends support for bit-level algorithms.

In addition to the features of the C64x device, the C64x+ devices include these additional features:

• Compact instructions: Common instructions (AND, ADD, LD, MPY) have 16-bit versions to reduce
code size.

• Protected mode operation: A two-level system of privileged program execution to support higher
capability operating systems and system features such as memory protection.

• Exceptions support for error detection and program redirection to provide robust code execution
• Hardware support for modulo loop operation to reduce code size
• Each multiplier can perform 32 × 32 bit multiplies
• Additional instructions to support complex multiplies allowing up to eight 16-bit multiply/add/subtracts

per clock cycle

20 Introduction SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

256-bit data

32-bit address

Program cache/program memory

8-, 16-, 32-, 64-bit data

32-bit address

Data cache/data memory

etc.

serial ports,

Timers,

Additional
peripherals:

down

Power

C6000 CPU

Interrupts

Emulation

Test

Control

logic

registers

Control

.D1.M1.S1.L1

Register file BRegister file A

EDMA,
EMIF

.D2 .M2 .S2 .L2

Data path A Data path B

Program fetch

Instruction decode

Instruction dispatch (See Note)

www.ti.com TMS320C64x/C64x+ DSP Architecture

The VelociTI architecture of the C6000 platform of devices make them the first off-the-shelf DSPs to use
advanced VLIW to achieve high performance through increased instruction-level parallelism. A traditional
VLIW architecture consists of multiple execution units running in parallel, performing multiple instructions
during a single clock cycle. Parallelism is the key to extremely high performance, taking these DSPs well
beyond the performance capabilities of traditional superscalar designs. VelociTI is a highly deterministic
architecture, having few restrictions on how or when instructions are fetched, executed, or stored. It is this
architectural flexibility that is key to the breakthrough efficiency levels of the TMS320C6000 Optimizing
compiler. VelociTI's advanced features include:

• Instruction packing: reduced code size
• All instructions can operate conditionally: flexibility of code
• Variable-width instructions: flexibility of data types
• Fully pipelined branches: zero-overhead branching.

1.4 TMS320C64x/C64x+ DSP Architecture

Figure 1-1 is the block diagram for the C64x DSP. Figure 1-2 is the block diagram for the C64x+ DSP.
The C6000 devices come with program memory, which, on some devices, can be used as a program
cache. The devices also have varying sizes of data memory. Peripherals such as a direct memory access
(DMA) controller, power-down logic, and external memory interface (EMIF) usually come with the CPU,
while peripherals such as serial ports and host ports are on only certain devices. Check the data sheet for
your device to determine the specific peripheral configurations you have.

Figure 1-1. TMS320C64x DSP Block Diagram

Note: The instruction dispatch unit has advanced instruction packing.

21SPRU732J–July 2010 Introduction

Copyright © 2010, Texas Instruments Incorporated

.L1 .S1 .M1 .D1

Register File A

Data Path A

.D2 .M2 .S2 .L2

Register File B

Data Path B

Instruction Decode

16/32-Bit Instruction Dispatch

SPLOOP Buffer

Instruction FetchIDMA

Program Memory Controller (PMC)

Data Memory
Controller

(DMC)

Interrupt
& Exception
Controller

Power
Control

Unified
Memory

Controller
(UMC)

External
Memory

Controller
(EMC)

L2
Cache/
SRAM

L1P Cache/SRAM

L1D Cache/SRAM

TMS320C64x/C64x+ DSP Architecture www.ti.com

Figure 1-2. TMS320C64x+ DSP Block Diagram

22 Introduction SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com TMS320C64x/C64x+ DSP Architecture

1.4.1 Central Processing Unit (CPU)

The C64x CPU, in Figure 1-1, contains:

• Program fetch unit
• Instruction dispatch unit, advanced instruction packing
• Instruction decode unit
• Two data paths, each with four functional units
• 64 32-bit registers
• Control registers
• Control logic
• Test, emulation, and interrupt logic

The program fetch, instruction dispatch, and instruction decode units can deliver up to eight 32-bit
instructions to the functional units every CPU clock cycle. The processing of instructions occurs in each of
the two data paths (A and B), each of which contains four functional units (.L, .S, .M, and .D) and 32 32-bit
general-purpose registers. The data paths are described in more detail in Chapter 2. A control register file
provides the means to configure and control various processor operations. To understand how instructions
are fetched, dispatched, decoded, and executed in the data path, see Chapter 4.

The 64x+ CPU, in Figure 1-2 , contains:

• Program fetch unit
• 16/32 bit instruction dispatch unit, advanced instruction packing
• Instruction decode unit
• Two data paths, each with four functional units
• 64 32-bit registers
• Control registers
• Control logic
• Test, emulation, and interrupt logic
• Internal DMA (IDMA) for transfers between internal memories

The program fetch, instruction dispatch, and instruction decode units can deliver up to eight 32-bit
instructions to the functional units every CPU clock cycle. The processing of instructions occurs in each of
the two data paths (A and B), each of which contains four functional units (.L, .S, .M, and .D) and 32 32-bit
general-purpose registers. The data paths are described in more detail in Chapter 2. A control register file
provides the means to configure and control various processor operations. To understand how instructions
are fetched, dispatched, decoded, and executed in the data path, see Chapter 4.

1.4.2 Internal Memory

The C64x and C64x+ DSP have a 32-bit, byte-addressable address space. Internal (on-chip) memory is
organized in separate data and program spaces. When off-chip memory is used, these spaces are unified
on most devices to a single memory space via the external memory interface (EMIF).

The C64x DSP has two 64-bit internal ports to access internal data memory. The C64x DSP has a single
internal port to access internal program memory, with an instruction-fetch width of 256 bits.

The 64x+ DSP has a 256-bit read-only port to access internal program memory and two 256-bit ports
(read and write) to access internal data memory.

1.4.3 Memory and Peripheral Options

A variety of memory and peripheral options are available for the C6000 platform:

• Large on-chip RAM, up to 7M bits
• Program cache
• 2-level caches

23SPRU732J–July 2010 Introduction

Copyright © 2010, Texas Instruments Incorporated

TMS320C64x/C64x+ DSP Architecture www.ti.com

• 32-bit external memory interface (EMIF) supports SDRAM, SBSRAM, SRAM, and other asynchronous
memories for a broad range of external memory requirements and maximum system performance.

• The enhanced direct memory access (EDMA) controller transfers data between address ranges in the
memory map without intervention by the CPU. The EDMA has 16 programmable channels, as well as
a RAM space to hold multiple configurations for future transfers.

• The Ethernet Media Access Controller (EMAC) and Physical layer (PHY) device Management Data
Input/Output (MDIO) module interfaces to the DSP through a custom interface that allows efficient data
transmission and reception.

• The host port interface (HPI) is a parallel port through which a host processor can directly access the
CPU memory space. The host device functions as a master to the interface, which increases ease of
access. The host and CPU can exchange information via internal or external memory. The host also
has direct access to memory-mapped peripherals. Connectivity to the CPU memory space is provided
through the EDMA controller.

• The inter-integrated circuit (I2C) module provides an interface between a C64x/C64x+ DSP and I2C
compatible devices connected by way of the I2C serial bus.

• The multichannel audio serial port (McASP) functions as a general-purpose audio serial port optimized
for the needs of multichannel audio applications. The McASP is intended to be flexible so that it may
connect gluelessly to audio analog-to-digital converters (ADC), digital-to-analog converters (DAC),
codec, digital audio interface receiver (DIR) and S/PDIF transmit physical layer components.

• The multichannel buffered serial port (McBSP) is based on the standard serial port interface found on
the TMS320C2000™ and TMS320C5000™ devices. In addition, the port can buffer serial samples in
memory automatically with the aid of the EDMA controller. It also has multichannel capability
compatible with the T1, E1, SCSA, and MVIP networking standards.

• The peripheral component interconnect (PCI) port supports connection fo the C64x/C64x+ DSP to a
PCI host via the integrated PCI master/slave bus interface.

• Timers in the C6000 devices are two 32-bit general-purpose timers used for these functions:

– Time events
– Count events
– Generate pulses
– Interrupt the CPU
– Send synchronization events to the DMA/EDMA controller.

• Power-down logic allows reduced clocking to reduce power consumption. Most of the operating power
of CMOS logic dissipates during circuit switching from one logic state to another. By preventing some
or all of the chip's logic from switching, you can realize significant power savings without losing any
data or operational context.

• Channel decoding of high bit-rate data channels found in third generation (3G) cellular standards
requires decoding of turbo-encoded data. The turbo-decoder coprocessor (TCP) in the C6000 DSP is
designed to perform this operation for IS2000 and 3GPP wireless standards.

• Channel decoding of voice and low bit-rate data channels found in third generation (3G) cellular
standards requires decoding of convolutional encoded data. The Viterbi-decoder coprocessor (VCP) in
the C6000 DSP is designed to perform this operation for IS2000 and 3GPP wireless standards.

• The universal test and operations PHY interface for asynchronous transfer mode [ATM] (UTOPIA) is
an ATM controller (ATMC) slave device that interfaces to a master ATM controller. The UTOPIA port
conforms to the ATM Forum standard specification af-phy-0039.000. Specifically, this interface
supports the UTOPIA Level 2 interface that allows 8-bit slave operation up to 50 MHz for both transmit
and receive operations.

For an overview of the peripherals available on the C6000 DSP, refer to the TM320C6000 DSP
Peripherals Overview Reference Guide (SPRU190) or to your device-specific data manual.

24 Introduction SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spru190

Chapter 2
SPRU732J–July 2010

CPU Data Paths and Control

This chapter focuses on the CPU, providing information about the data paths and control registers. The
two register files and the data cross paths are described.

Topic ... Page

2.1 Introduction .. 26
2.2 General-Purpose Register Files ... 26
2.3 Functional Units .. 29
2.4 Register File Cross Paths ... 30
2.5 Memory, Load, and Store Paths .. 31
2.6 Data Address Paths ... 31
2.7 Galois Field .. 31
2.8 Control Register File .. 34
2.9 Control Register File Extensions ... 46

25SPRU732J–July 2010 CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

Introduction www.ti.com

2.1 Introduction

The components of the data path for the CPU are shown in Figure 2-1. These components consist of:

• Two general-purpose register files (A and B)
• Eight functional units (.L1, .L2, .S1, .S2, .M1, .M2, .D1, and .D2)
• Two load-from-memory data paths (LD1 and LD2)
• Two store-to-memory data paths (ST1 and ST2)
• Two data address paths (DA1 and DA2)
• Two register file data cross paths (1X and 2X)

2.2 General-Purpose Register Files

There are two general-purpose register files (A and B) in the CPU data paths. Each of these files contains
32 32-bit registers (A0–A31 for file A and B0–B31 for file B), as shown in Table 2-1. The general-purpose
registers can be used for data, data address pointers, or condition registers.

The DSP general-purpose register files support data ranging in size from packed 8-bit through 64-bit
fixed-point data. Values larger than 32 bits, such as 40-bit and 64-bit quantities, are stored in register
pairs. The 32 LSBs of data are placed in an even-numbered register and the remaining 8 or 32 MSBs in
the next upper register (that is always an odd-numbered register). Packed data types store either four 8-bit
values or two 16-bit values in a single 32-bit register, or four 16-bit values in a 64-bit register pair.

There are 32 valid register pairs for 40-bit and 64-bit data in the DSP cores. In assembly language syntax,
a colon between the register names denotes the register pair, and the odd-numbered register is specified
first.

Figure 2-2 shows the register storage scheme for 40-bit long data. Operations requiring a long input
ignore the 24 MSBs of the odd-numbered register. Operations producing a long result zero-fill the 24
MSBs of the odd-numbered register. The even-numbered register is encoded in the opcode.

26 CPU Data Paths and Control SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

src2

src2

.D1

.M1

.S1

.L1

long src

odd dst

src2

src1

src1

src1

src1

even dst

even dst

odd dst

dst1

dst

src2

src2

src2

long src

DA1

ST1b

LD1b

LD1a

ST1a

Data path A

Odd

register

file A

(A1, A3,

A5...A31)

Odd

register

file B

(B1, B3,

B5...B31)

.D2
src1

dst

src2DA2

LD2a

LD2b

src2

.M2 src1

dst2

.S2

src1

even dst

long src

odd dst

ST2a

ST2b

long src

.L2

even dst

odd dst

src1

Data path B

Control
Register

32 MSB

32 LSB

dst2

32 MSB

32 LSB

2x

1x

32 LSB

32 MSB

32 LSB

32 MSB

dst1

8

8

8

8

32

32

32

32

Even

register

file A

(A0, A2,

A4...A30)

Even

register

file B

(B0, B2,

B4...B30)

See note 4

1. On .M unit, dst2 is 32 MSB.

2.

3. On C64x CPU .M unit, src2 is 32 bits; on C64x+ CPU .M unit, src2 is 64 bits.

4. On .L and .S units, odd dst connects to odd register files and even dst connects to even register files.

On .M unit, dst1 is 32 MSB.

See note 4

See note 1

See note 2

See note 3

See note 3

See note 2

See note 1

See note 4

See note 4

www.ti.com General-Purpose Register Files

Figure 2-1. CPU Data Paths

27SPRU732J–July 2010 CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

31 0 318 7Odd register Even register 0

Ignoreed

32 3139

Read from registers

0

40-bit data

32 3139Odd register Even register 0

Zero filled 40-bit data

Write to registers

General-Purpose Register Files www.ti.com

Table 2-1. 40-Bit/64-Bit Register Pairs

Register Files

A B

A1:A0 B1:B0

A3:A2 B3:B2

A5:A4 B5:B4

A7:A6 B7:B6

A9:A8 B9:B8

A11:A10 B11:B10

A13:A12 B13:B12

A15:A14 B15:B14

A17:A16 B17:B16

A19:A18 B19:B18

A21:A20 B21:B20

A23:A22 B23:B22

A25:A24 B25:B24

A27:A26 B27:B26

A29:A28 B29:B28

A31:A30 B31:B30

Figure 2-2. Storage Scheme for 40-Bit Data in a Register Pair

28 CPU Data Paths and Control SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Functional Units

2.3 Functional Units

The eight functional units in the C6000 data paths can be divided into two groups of four; each functional
unit in one data path is almost identical to the corresponding unit in the other data path. The functional
units are described in Table 2-2.

In addition to performing all of the TMS320C62x DSP instructions, the C64x and C64x+ DSP also
contains many 8-bit to 16-bit extensions to the instruction set. For example, the MPYU4 instruction
performs four 8 × 8 unsigned multiplies with a single instruction on an .M unit. The ADD4 instruction
performs four 8-bit additions with a single instruction on an .L unit.

Most data lines in the CPU support 32-bit operands, and some support long (40-bit) and doubleword
(64-bit) operands. Each functional unit has its own 32-bit write port, so all eight units can be used in
parallel every cycle, into a general-purpose register file (refer to Figure 2-1). All units ending in 1 (for
example, .L1) write to register file A, and all units ending in 2 write to register file B. Each functional unit
has two 32-bit read ports for source operands src1 and src2. Four units (.L1, .L2, .S1, and .S2) have an
extra 8-bit-wide port for 40-bit long writes, as well as an 8-bit input for 40-bit long reads. Since each DSP
multiplier can return up to a 64-bit result, an extra write port has been added from the multipliers to the
register file.

See Appendix B for a list of the instructions that execute on each functional unit.

Table 2-2. Functional Units and Operations Performed

Functional Unit Fixed-Point Operations

.L unit (.L1, .L2) 32/40-bit arithmetic and compare operations

32-bit logical operations

Leftmost 1 or 0 counting for 32 bits

Normalization count for 32 and 40 bits

Byte shifts

Data packing/unpacking

5-bit constant generation

Dual 16-bit arithmetic operations

Quad 8-bit arithmetic operations

Dual 16-bit minimum/maximum operations

Quad 8-bit minimum/maximum operations

.S unit (.S1, .S2) 32-bit arithmetic operations

32/40-bit shifts and 32-bit bit-field operations

32-bit logical operations

Branches

Constant generation

Register transfers to/from control register file (.S2 only)

Byte shifts

Data packing/unpacking

Dual 16-bit compare operations

Quad 8-bit compare operations

Dual 16-bit shift operations

Dual 16-bit saturated arithmetic operations

Quad 8-bit saturated arithmetic operations

29SPRU732J–July 2010 CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

Register File Cross Paths www.ti.com

Table 2-2. Functional Units and Operations Performed (continued)

Functional Unit Fixed-Point Operations

.M unit (.M1, .M2) 32 × 32-bit multiply operations

16 × 16-bit multiply operations

16 × 32-bit multiply operations

Quad 8 × 8-bit multiply operations

Dual 16 × 16-bit multiply operations

Dual 16 × 16-bit multiply with add/subtract operations

Quad 8 × 8-bit multiply with add operation

Bit expansion

Bit interleaving/de-interleaving

Variable shift operations

Rotation

Galois Field Multiply

.D unit (.D1, .D2) 32-bit add, subtract, linear and circular address calculation

Loads and stores with 5-bit constant offset

Loads and stores with 15-bit constant offset (.D2 only)

Load and store doublewords with 5-bit constant

Load and store nonaligned words and doublewords

5-bit constant generation

32-bit logical operations

2.4 Register File Cross Paths

Each functional unit reads directly from and writes directly to the register file within its own data path. That
is, the .L1, .S1, .D1, and .M1 units write to register file A and the .L2, .S2, .D2, and .M2 units write to
register file B. The register files are connected to the opposite-side register file's functional units via the 1X
and 2X cross paths. These cross paths allow functional units from one data path to access a 32-bit
operand from the opposite side register file. The 1X cross path allows the functional units of data path A to
read their source from register file B, and the 2X cross path allows the functional units of data path B to
read their source from register file A.

On the DSP, all eight of the functional units have access to the register file on the opposite side, via a
cross path. The src2 inputs of .M1, .M2, .S1, .S2, .D1, and .D2 units are selectable between the cross
path and the same-side register file. In the case of .L1 and .L2, both src1 and src2 inputs are selectable
between the cross path and the same-side register file.

Only two cross paths, 1X and 2X, exist in the C6000 architecture. Thus, the limit is one source read from
each data path’s opposite register file per cycle, or a total of two cross path source reads per cycle. In the
DSP, two units on a side may read the same cross path source simultaneously.

On the DSP, a delay clock cycle is introduced whenever an instruction attempts to read a register via a
cross path that was updated in the previous cycle. This is known as a cross path stall. This stall is inserted
automatically by the hardware, no NOP instruction is needed. It should be noted that no stall is introduced
if the register being read is the destination for data placed by an LDx instruction. For more information see
Section 3.7.4. Techniques for avoiding this stall are discussed in the TMS320C6000 Programmers Guide
(SPRU198).

30 CPU Data Paths and Control SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spru198

www.ti.com Memory, Load, and Store Paths

2.5 Memory, Load, and Store Paths

The DSP supports doubleword loads and stores. There are four 32-bit paths for loading data from memory
to the register file. For side A, LD1a is the load path for the 32 LSBs and LD1b is the load path for the 32
MSBs. For side B, LD2a is the load path for the 32 LSBs and LD2b is the load path for the 32 MSBs.
There are also four 32-bit paths for storing register values to memory from each register file. For side A,
ST1a is the write path for the 32 LSBs and ST1b is the write path for the 32 MSBs. For side B, ST2a is
the write path for the 32 LSBs and ST2b is the write path for the 32 MSBs.

On the C6000 architecture, some of the ports for long and doubleword operands are shared between
functional units. This places a constraint on which long or doubleword operations can be scheduled on a
data path in the same execute packet. See Section 3.7.6.

2.6 Data Address Paths

The data address paths (DA1 and DA2) are each connected to the .D units in both data paths. This allows
data addresses generated by any one path to access data to or from any register.

The DA1 and DA2 resources and their associated data paths are specified as T1 and T2, respectively. T1
consists of the DA1 address path and the LD1 and ST1 data paths. For the DSP, LD1 is comprised of
LD1a and LD1b to support 64-bit loads; ST1 is comprised of ST1a and ST1b to support 64-bit stores.
Similarly, T2 consists of the DA2 address path and the LD2 and ST2 data paths. For the DSP, LD2 is
comprised of LD2a and LD2b to support 64-bit loads; ST2 is comprised of ST2a and ST2b to support
64-bit stores.

The T1 and T2 designations appear in the functional unit fields for load and store instructions. For
example, the following load instruction uses the .D1 unit to generate the address but is using the LD2 path
resource from DA2 to place the data in the B register file. The use of the DA2 resource is indicated with
the T2 designation.
LDW .D1T2 *A0[3],B1

2.7 Galois Field

Modern digital communication systems typically make use of error correction coding schemes to improve
system performance under imperfect channel conditions. The scheme most commonly used is the
Reed-Solomon code, due to its robustness against burst errors and its relative ease of implementation.

The DSP contains Galois field multiply hardware that is used for Reed-Solomon encode and decode
functions. To understand the relevance of the Galois field multiply hardware, it is necessary to first define
some mathematical terms.

Two kinds of number systems that are common in algorithm development are integers and real numbers.
For integers, addition, subtraction, and multiplication operations can be performed. Division can also be
performed, if a nonzero remainder is allowed. For real numbers, all four of these operations can be
performed, even if there is a nonzero remainder for division operations.

Real numbers can belong to a mathematical structure called a field. A field consists of a set of data
elements along with addition, subtraction, multiplication, and division. A field of integers can also be
created if modulo arithmetic is performed.

An example is doing arithmetic using integers modulo 2. Perform the operations using normal integer
arithmetic and then take the result modulo 2. Table 2-3 illustrates addition, subtraction, and multiplication
modulo 2.

Table 2-3. Modulo 2 Arithmetic

Addition Subtraction Multiplication

+ 0 1 - 0 1 × 0 1

0 0 1 0 0 1 0 0 0

1 1 0 1 1 0 1 0 1

31SPRU732J–July 2010 CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

Galois Field www.ti.com

Note that addition and subtraction results are the same, and in fact are equivalent to the XOR
(exclusive-OR) operation in binary. Also, the multiplication result is equal to the AND operation in binary.
These properties are unique to modulo 2 arithmetic, but modulo 2 arithmetic is used extensively in error
correction coding. Another more general property is that division by any nonzero element is now defined.
Division can always be performed, if every element other than zero has a multiplicative inverse:

x × x-1 = 1

Another example, arithmetic modulo 5, illustrates this concept more clearly. The addition, subtraction, and
multiplication tables are given in Table 2-4.

Table 2-4. Modulo 5 Arithmetic

Addition Subtraction Multiplication

+ 0 1 2 3 4 - 0 1 2 3 4 × 0 1 2 3 4

0 0 1 2 3 4 0 0 4 3 2 1 0 0 0 0 0 0

1 1 2 3 4 0 1 1 0 4 3 2 1 0 1 2 3 4

2 2 3 4 0 1 2 2 1 0 4 3 2 0 2 4 1 3

3 3 4 0 1 2 3 3 2 1 0 4 3 0 3 1 4 2

4 4 0 1 2 3 4 4 3 2 1 0 4 0 4 3 2 1

In the rows of the multiplication table, element 1 appears in every nonzero row and column. Every nonzero
element can be multiplied by at least one other element for a result equal to 1. Therefore, division always
works and arithmetic over integers modulo 5 forms a field. Fields generated in this manner are called finite
fields or Galois fields and are written as GF(X), such as GF(2) or GF(5). They only work when the
arithmetic performed is modulo a prime number.

Galois fields can also be formed where the elements are vectors instead of integers if polynomials are
used. Finite fields, therefore, can be found with a number of elements equal to any power of a prime
number. Typically, we are interested in implementing error correction coding systems using binary
arithmetic. All of the fields that are dealt with in Reed Solomon coding systems are of the form GF(2m).
This allows performing addition using XORs on the coefficients of the vectors, and multiplication using a
combination of ANDs and XORs.

A final example considers the field GF(23), which has 8 elements. This can be generated by arithmetic
modulo the (irreducible) polynomial P(x) = x3 + x + 1. Elements of this field look like vectors of three bits.
Table 2-5 shows the addition and multiplication tables for field GF(23).

Note that the value 1 (001) appears in every nonzero row of the multiplication table, which indicates that
this is a valid field.

The channel error can now be modeled as a vector of bits, with a one in every bit position that an error
has occurred, and a zero where no error has occurred. Once the error vector has been determined, it can
be subtracted from the received message to determine the correct code word.

The Galois field multiply hardware on the DSP is named GMPY4. The GMPY4 instruction performs four
parallel operations on 8-bit packed data on the .M unit. The Galois field multiplier can be programmed to
perform all Galois multiplies for fields of the form GF(2m), where m can range between 1 and 8 using any
generator polynomial. The field size and the polynomial generator are controlled by the Galois field
polynomial generator function register (GFPGFR).

In addition to the GMPY4 instruction available on the C64x DSP, the C64x+ DSP has the GMPY
instruction that uses either the GPLYA or GPLYB control register as a source for the polynomial
(depending on whether the A or B side functional unit is used) and produces a 32-bit result.

The GFPGFR, shown in Figure 2-6 and described in Table 2-10, contains the Galois field polynomial
generator and the field size control bits. These bits control the operation of the GMPY4 instruction.
GFPGFR can only be set via the MVC instruction. The default function after reset for the GMPY4
instruction is field size = 7h and polynomial = 1Dh.

32 CPU Data Paths and Control SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Galois Field

2.7.1 Special Timing Considerations

If the next execute packet after an MVC instruction that changes the GFPGFR value contains a GMPY4
instruction, then the GMPY4 is controlled by the newly loaded GFPGFR value.

Table 2-5. Modulo Arithmetic for Field GF(23)

Addition

+ 000 001 010 011 100 101 110 111

000 000 001 010 011 100 101 110 111

001 001 000 011 010 101 100 111 110

010 010 011 000 001 110 111 100 101

011 011 010 001 000 111 110 101 100

100 100 101 110 111 000 001 010 011

101 101 100 111 110 001 000 011 010

110 110 111 100 101 010 011 000 001

111 111 110 101 100 011 010 001 000

Multiplication

× 000 001 010 011 100 101 110 111

000 000 000 000 000 000 000 000 000

001 000 001 010 011 100 101 110 111

010 000 010 100 110 011 001 111 101

011 000 011 110 101 111 100 001 010

100 000 100 011 111 110 010 101 001

101 000 101 001 100 010 111 011 110

110 000 110 111 001 101 011 010 100

111 000 111 101 010 001 110 100 011

33SPRU732J–July 2010 CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

Control Register File www.ti.com

2.8 Control Register File

Table 2-6 lists the control registers contained in the control register file.

Table 2-6. Control Registers

Acronym Register Name Section

AMR Addressing mode register Section 2.8.3

CSR Control status register Section 2.8.4

GFPGFR Galois field multiply control register Section 2.8.5

ICR Interrupt clear register Section 2.8.6

IER Interrupt enable register Section 2.8.7

IFR Interrupt flag register Section 2.8.8

IRP Interrupt return pointer register Section 2.8.9

ISR Interrupt set register Section 2.8.10

ISTP Interrupt service table pointer register Section 2.8.11

NRP Nonmaskable interrupt return pointer register Section 2.8.12

PCE1 Program counter, E1 phase Section 2.8.13

Control Register File Extensions (C64x+ DSP)

DIER Debug interrupt enable register Section 2.9.1

DNUM DSP core number register Section 2.9.2

ECR Exception clear register Section 2.9.3

EFR Exception flag register Section 2.9.4

GPLYA GMPY A-side polynomial register Section 2.9.5

GPLYB GMPY B-side polynomial register Section 2.9.6

IERR Internal exception report register Section 2.9.7

ILC Inner loop count register Section 2.9.8

ITSR Interrupt task state register Section 2.9.9

NTSR NMI/Exception task state register Section 2.9.10

REP Restricted entry point address register Section 2.9.11

RILC Reload inner loop count register Section 2.9.12

SSR Saturation status register Section 2.9.13

TSCH Time-stamp counter (high 32) register Section 2.9.14

TSCL Time-stamp counter (low 32) register Section 2.9.14

TSR Task state register Section 2.9.15

34 CPU Data Paths and Control SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Control Register File

2.8.1 Register Addresses for Accessing the Control Registers

Table 3-22 lists the register addresses for accessing the control register file. One unit (.S2) can read from
and write to the control register file. Each control register is accessed by the MVC instruction. See the
MVC instruction description (see MVC) for information on how to use this instruction.

Additionally, some of the control register bits are specially accessed in other ways. For example, arrival of
a maskable interrupt on an external interrupt pin, INTm, triggers the setting of flag bit IFRm. Subsequently,
when that interrupt is processed, this triggers the clearing of IFRm and the clearing of the global interrupt
enable bit, GIE. Finally, when that interrupt processing is complete, the B IRP instruction in the interrupt
service routine restores the pre-interrupt value of the GIE. Similarly, saturating instructions like SADD set
the SAT (saturation) bit in the control status register (CSR).

On the C64x+ CPU, access to some of the registers is restricted when in User mode. See Chapter 8 for
more information.

2.8.2 Pipeline/Timing of Control Register Accesses

All MVC instructions are single-cycle instructions that complete their access of the explicitly named
registers in the E1 pipeline phase. This is true whether MVC is moving a general register to a control
register, or conversely. In all cases, the source register content is read, moved through the .S2 unit, and
written to the destination register in the E1 pipeline phase.

Pipeline Stage E1

Read src2

Written dst

Unit in use .S2

Even though MVC modifies the particular target control register in a single cycle, it can take extra clocks
to complete modification of the non-explicitly named register. For example, the MVC cannot modify bits in
the IFR directly. Instead, MVC can only write 1's into the ISR or the ICR to specify setting or clearing,
respectively, of the IFR bits. MVC completes this ISR/ICR write in a single (E1) cycle but the modification
of the IFR bits occurs one clock later. For more information on the manipulation of ISR, ICR, and IFR, see
Section 2.8.10, Section 2.8.6, and Section 2.8.8 .

Saturating instructions, such as SADD, set the saturation flag bit (SAT) in CSR indirectly. As a result,
several of these instructions update the SAT bit one full clock cycle after their primary results are written to
the register file. For example, the SMPY instruction writes its result at the end of pipeline stage E2; its
primary result is available after one delay slot. In contrast, the SAT bit in CSR is updated one cycle later
than the result is written; this update occurs after two delay slots. (For the specific behavior of an
instruction, refer to the description of that individual instruction).

The B IRP and B NRP instructions directly update the GIE and NMIE bits, respectively. Because these
branches directly modify CSR and IER, respectively, there are no delay slots between when the branch is
issued and when the control register updates take effect.

35SPRU732J–July 2010 CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

Control Register File www.ti.com

2.8.3 Addressing Mode Register (AMR)

For each of the eight registers (A4-A7, B4-B7) that can perform linear or circular addressing, the
addressing mode register (AMR) specifies the addressing mode. A 2-bit field for each register selects the
address modification mode: linear (the default) or circular mode. With circular addressing, the field also
specifies which BK (block size) field to use for a circular buffer. In addition, the buffer must be aligned on a
byte boundary equal to the block size. The mode select fields and block size fields are shown in
Figure 2-3 and described in Table 2-7.

Figure 2-3. Addressing Mode Register (AMR)
31 26 25 21 20 16

Reserved BK1 BK0

R-0 R/W-0 R/W-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B7 MODE B6 MODE B5 MODE B4 MODE A7 MODE A6 MODE A5 MODE A4 MODE

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2-7. Addressing Mode Register (AMR) Field Descriptions

Bit Field Value Description

31-26 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.

25-21 BK1 0-1Fh Block size field 1. A 5-bit value used in calculating block sizes for circular addressing. Table 2-8 shows
block size calculations for all 32 possibilities.

Block size (in bytes) = 2(N+1) , where N is the 5-bit value in BK1

20-16 BK0 0-1Fh Block size field 0. A 5-bit value used in calculating block sizes for circular addressing. Table 2-8 shows
block size calculations for all 32 possibilities.

Block size (in bytes) = 2(N+1) , where N is the 5-bit value in BK0

15-14 B7 MODE 0-3h Address mode selection for register file B7.

0 Linear modification (default at reset)

1h Circular addressing using the BK0 field

2h Circular addressing using the BK1 field

3h Reserved

13-12 B6 MODE 0-3h Address mode selection for register file B6.

0 Linear modification (default at reset)

1h Circular addressing using the BK0 field

2h Circular addressing using the BK1 field

3h Reserved

11-10 B5 MODE 0-3h Address mode selection for register file B5.

0 Linear modification (default at reset)

1h Circular addressing using the BK0 field

2h Circular addressing using the BK1 field

3h Reserved

9-8 B4 MODE 0-3h Address mode selection for register file B4.

0 Linear modification (default at reset)

1h Circular addressing using the BK0 field

2h Circular addressing using the BK1 field

3h Reserved

7-6 A7 MODE 0-3h Address mode selection for register file A7.

0 Linear modification (default at reset)

1h Circular addressing using the BK0 field

2h Circular addressing using the BK1 field

3h Reserved

36 CPU Data Paths and Control SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Control Register File

Table 2-7. Addressing Mode Register (AMR) Field Descriptions (continued)

Bit Field Value Description

5-4 A6 MODE 0-3h Address mode selection for register file A6.

0 Linear modification (default at reset)

1h Circular addressing using the BK0 field

2h Circular addressing using the BK1 field

3h Reserved

3-2 A5 MODE 0-3h Address mode selection for register file a5.

0 Linear modification (default at reset)

1h Circular addressing using the BK0 field

2h Circular addressing using the BK1 field

3h Reserved

1-0 A4 MODE 0-3h Address mode selection for register file A4.

0 Linear modification (default at reset)

1h Circular addressing using the BK0 field

2h Circular addressing using the BK1 field

3h Reserved

Table 2-8. Block Size Calculations

BKn Value Block Size BKn Value Block Size

00000 2 10000 131 072

00001 4 10001 262 144

00010 8 10010 524 288

00011 16 10011 1 048 576

00100 32 10100 2 097 152

00101 64 10101 4 194 304

00110 128 10110 8 388 608

00111 256 10111 16 777 216

01000 512 11000 33 554 432

01001 1 024 11001 67 108 864

01010 2 048 11010 134 217 728

01011 4 096 11011 268 435 456

01100 8 192 11100 536 870 912

01101 16 384 11101 1 073 741 824

01110 32 768 11110 2 147 483 648

01111 65 536 11111 4 294 967 296

37SPRU732J–July 2010 CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

Control Register File www.ti.com

2.8.4 Control Status Register (CSR)

The control status register (CSR) contains control and status bits. The CSR is shown in Figure 2-4 and
described in Table 2-9. For the PWRD, EN, PCC, and DCC fields, see the device-specific datasheet to
see if it supports the options that these fields control. The PCC and DCC fields are ignored on the
C64x+ CPU.

The power-down modes and their wake-up methods are programmed by the PWRD field (bits 15-10) of
CSR. The PWRD field of CSR is shown in Figure 2-5. When writing to CSR, all bits of the PWRD field
should be configured at the same time. A logic 0 should be used when writing to the reserved bit (bit 15)
of the PWRD field.

The PWRD, PCC, DCC, and PGIE fields cannot be written in User mode. The PCC and DCC fields can
only be modified in Supervisor mode. See Chapter 8 for more information.

Figure 2-4. Control Status Register (CSR)
31 24 23 16

CPU ID REVISION ID

R-x (1) R-x (1)

15 10 9 8 7 5 4 2 1 0

PWRD SAT EN PCC DCC PGIE GIE

R/SW-0 R/WC-0 R-x R/SW-0 R/SW-0 R/SW-0 R/W-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; SW = Writeable by the MVC instruction only in
supervisor mode; WC = Bit is cleared on write; -n = value after reset; -x = value is indeterminate after reset

(1) See the device-specific datasheet for the default value of this field.

Figure 2-5. PWRD Field of Control Status Register (CSR)
15 14 13 12 11 10

Reserved Enabled or nonenabled interrupt wake Enabled interrupt wake PD3 PD2 PD1

R/SW-0 R/SW-0 R/SW-0 R/SW-0 R/SW-0 R/SW-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset; SW = Writeable by the MVC
instruction only in supervisor mode; -n = value after reset

Table 2-9. Control Status Register (CSR) Field Descriptions

Bit Field Value Description

31-24 CPU ID 0-FFh Identifies the CPU of the device. Not writable by the MVC instruction.

0-Bh Reserved

Ch C64x CPU

Dh-Fh Reserved

10h C64x+ CPU

11h-FFh Reserved

23-16 REVISION ID 0-FFh Identifies silicon revision of the CPU. For the most current silicon revision information, see the
device-specific datasheet. Not writable by the MVC instruction.

38 CPU Data Paths and Control SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Control Register File

Table 2-9. Control Status Register (CSR) Field Descriptions (continued)

Bit Field Value Description

15-10 PWRD 0-3Fh Power-down mode field. See Figure 2-5. Writable by the MVC instruction only in Supervisor
mode.

0 No power-down.

1h-8h Reserved

9h Power-down mode PD1; wake by an enabled interrupt.

Ah-10h Reserved

11h Power-down mode PD1; wake by an enabled or nonenabled interrupt.

12h-19h Reserved

1Ah Power-down mode PD2; wake by a device reset.

1Bh Reserved

1Ch Power-down mode PD3; wake by a device reset.

1D-3Fh Reserved

9 SAT Saturate bit. Can be cleared only by the MVC instruction and can be set only by a functional
unit. The set by a functional unit has priority over a clear (by the MVC instruction), if they occur
on the same cycle. The SAT bit is set one full cycle (one delay slot) after a saturate occurs. The
SAT bit will not be modified by a conditional instruction whose condition is false.

0 No functional units generated saturated results.

1 One or more functional units performed an arithmetic operation which resulted in saturation.

8 EN Endian mode. Not writable by the MVC instruction.

0 Big endian

1 Little endian

7-5 PCC 0-7h Program cache control mode. This field is ignored on the C64x+ CPU. Writable by the MVC
instruction only in Supervisor mode; not writable in User mode. See the TMS320C64x DSP
Two-Level Internal Memory Reference Guide (SPRU610).

0 Direct-mapped cache enabled

1h Reserved

2h Direct-mapped cache enabled

3h-7h Reserved

4-2 DCC 0-7h Data cache control mode. This field is ignored on the C64x+ CPU. Writable by the MVC
instruction only in Supervisor mode; not writable in User mode. See the TMS320C64x DSP
Two-Level Internal Memory Reference Guide (SPRU610).

0 2-way cache enabled

1h Reserved

2h 2-way cache enabled

3h-7h Reserved

1 PGIE Previous GIE (global interrupt enable). This bit contains a copy of the GIE bit at the point when
interrupt is taken. It is physically the same bit as GIE bit in the interrupt task state register
(ITSR). Writeable by the MVC instruction only in Supervisor mode; not writable in User mode.

0 Interrupts will be disabled after return from interrupt.

1 Interrupts will be enabled after return from interrupt.

0 GIE Global interrupt enable. Physically the same bit as GIE bit in the task state register (TSR).
Writable by the MVC instruction in Supervisor and User mode. See Section 5.2 for details on
how the GIE bit affects interruptibility.

0 Disables all interrupts, except the reset interrupt and NMI (nonmaskable interrupt).

1 Enables all interrupts.

39SPRU732J–July 2010 CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spru610
http://www.ti.com/lit/pdf/spru610

Control Register File www.ti.com

2.8.5 Galois Field Polynomial Generator Function Register (GFPGFR)

The Galois field polynomial generator function register (GFPGFR) controls the field size and the Galois
field polynomial generator of the Galois field multiply hardware. The GFPGFR is shown in Figure 2-6 and
described in Table 2-10. The Galois field is described in Section 2.7.

Figure 2-6. Galois Field Polynomial Generator Function Register (GFPGFR)
31 27 26 24 23 16

Reserved SIZE Reserved

R-0 R/W-7h R-0

15 8 7 0

Reserved POLY

R-0 R/W-1Dh

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2-10. Galois Field Polynomial Generator Function Register (GFPGFR) Field Descriptions

Bit Field Value Description

31-27 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.

26-24 SIZE 0-7h Field size.

23-8 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.

7-0 POLY 0-FFh Polynomial generator.

40 CPU Data Paths and Control SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Control Register File

2.8.6 Interrupt Clear Register (ICR)

The interrupt clear register (ICR) allows you to manually clear the maskable interrupts (INT15-INT4) in the
interrupt flag register (IFR). Writing a 1 to any of the bits in ICR causes the corresponding interrupt flag
(IFn) to be cleared in IFR. Writing a 0 to any bit in ICR has no effect. Incoming interrupts have priority and
override any write to ICR. You cannot set any bit in ICR to affect NMI or reset. The ISR is shown in
Figure 2-7 and described in Table 2-11. See Chapter 5 for more information on interrupts.

NOTE: Any write to ICR (by the MVC instruction) effectively has one delay slot because the results
cannot be read (by the MVC instruction) in IFR until two cycles after the write to ICR.

Any write to ICR is ignored by a simultaneous write to the same bit in the interrupt set
register (ISR).

Figure 2-7. Interrupt Clear Register (ICR)
31 16

Reserved

R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 0

IC15 IC14 IC13 IC12 IC11 IC10 IC9 IC8 IC7 IC6 IC5 IC4 Reserved

W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 R-0

LEGEND: R = Read only; W = Writeable by the MVC instruction; -n = value after reset

Table 2-11. Interrupt Clear Register (ICR) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.

15-4 ICn Interrupt clear.

0 Corresponding interrupt flag (IFn) in IFR is not cleared.

1 Corresponding interrupt flag (IFn) in IFR is cleared.

3-0 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.

41SPRU732J–July 2010 CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

Control Register File www.ti.com

2.8.7 Interrupt Enable Register (IER)

The interrupt enable register (IER) enables and disables individual interrupts. The IER is shown in
Figure 2-8 and described in Table 2-12.

The IER is not accessible in User mode. See Section 8.2.4.1 for more information. See Chapter 5 for
more information on interrupts.

Figure 2-8. Interrupt Enable Register (IER)
31 16

Reserved

R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IE15 IE14 IE13 IE12 IE11 IE10 IE9 IE8 IE7 IE6 IE5 IE4 Reserved NMIE 1

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0 R-1

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2-12. Interrupt Enable Register (IER) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.

15-4 IEn Interrupt enable. An interrupt triggers interrupt processing only if the corresponding bit is set to 1.

0 Interrupt is disabled.

1 Interrupt is enabled.

3-2 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.

1 NMIE Nonmaskable interrupt enable. An interrupt triggers interrupt processing only if the bit is set to 1.

The NMIE bit is cleared at reset. After reset, you must set the NMIE bit to enable the NMI and to allow
INT15-INT4 to be enabled by the GIE bit in CSR and the corresponding IER bit. You cannot manually
clear the NMIE bit; a write of 0 has no effect. The NMIE bit is also cleared by the occurrence of an NMI.

0 All nonreset interrupts are disabled.

1 All nonreset interrupts are enabled. The NMIE bit is set only by completing a B NRP instruction or by a
write of 1 to the NMIE bit.

0 1 1 Reset interrupt enable. You cannot disable the reset interrupt.

42 CPU Data Paths and Control SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Control Register File

2.8.8 Interrupt Flag Register (IFR)

The interrupt flag register (IFR) contains the status of INT4-INT15 and NMI interrupt. Each corresponding
bit in the IFR is set to 1 when that interrupt occurs; otherwise, the bits are cleared to 0. If you want to
check the status of interrupts, use the MVC instruction to read the IFR. (See the MVC instruction
description (see MVC) for information on how to use this instruction.) The IFR is shown in Figure 2-9 and
described in Table 2-13. See Chapter 5 for more information on interrupts.

Figure 2-9. Interrupt Flag Register (IFR)
31 16

Reserved

R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IF15 IF14 IF13 IF12 IF11 IF10 IF9 IF8 IF7 IF6 IF5 IF4 Reserved NMIF 0

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R = Readable by the MVC instruction; -n = value after reset

Table 2-13. Interrupt Flag Register (IFR) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.

15-4 IFn Interrupt flag. Indicates the status of the corresponding maskable interrupt. An interrupt flag may be
manually set by setting the corresponding bit (ISn) in the interrupt set register (ISR) or manually cleared
by setting the corresponding bit (ICn) in the interrupt clear register (ICR).

0 Interrupt has not occurred.

1 Interrupt has occurred.

3-2 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.

1 NMIF Nonmaskable interrupt flag.

0 Interrupt has not occurred.

1 Interrupt has occurred.

0 0 0 Reset interrupt flag.

2.8.9 Interrupt Return Pointer Register (IRP)

The interrupt return pointer register (IRP) contains the return pointer that directs the CPU to the proper
location to continue program execution after processing a maskable interrupt. A branch using the address
in IRP (B IRP) in your interrupt service routine returns to the program flow when interrupt servicing is
complete. The IRP is shown in Figure 2-10.

The IRP contains the 32-bit address of the first execute packet in the program flow that was not executed
because of a maskable interrupt. Although you can write a value to IRP, any subsequent interrupt
processing may overwrite that value.

See Chapter 5 for more information on interrupts.

Figure 2-10. Interrupt Return Pointer Register (IRP)
31 0

IRP

R/W-x

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -x = value is indeterminate after reset

43SPRU732J–July 2010 CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

Control Register File www.ti.com

2.8.10 Interrupt Set Register (ISR)

The interrupt set register (ISR) allows you to manually set the maskable interrupts (INT15-INT4) in the
interrupt flag register (IFR). Writing a 1 to any of the bits in ISR causes the corresponding interrupt flag
(IFn) to be set in IFR. Writing a 0 to any bit in ISR has no effect. You cannot set any bit in ISR to affect
NMI or reset. The ISR is shown in Figure 2-11 and described in Table 2-14. See Chapter 5 for more
information on interrupts.

NOTE: Any write to ISR (by the MVC instruction) effectively has one delay slot because the results
cannot be read (by the MVC instruction) in IFR until two cycles after the write to ISR.

Any write to the interrupt clear register (ICR) is ignored by a simultaneous write to the same
bit in ISR.

Figure 2-11. Interrupt Set Register (ISR)
31 16

Reserved

R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 0

IS15 IS14 IS13 IS12 IS11 IS10 IS9 IS8 IS7 IS6 IS5 IS4 Reserved

W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 R-0

LEGEND: R = Read only; W = Writeable by the MVC instruction; -n = value after reset

Table 2-14. Interrupt Set Register (ISR) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.

15-4 ISn Interrupt set.

0 Corresponding interrupt flag (IFn) in IFR is not set.

1 Corresponding interrupt flag (IFn) in IFR is set.

3-0 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.

44 CPU Data Paths and Control SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Control Register File

2.8.11 Interrupt Service Table Pointer Register (ISTP)

The interrupt service table pointer register (ISTP) is used to locate the interrupt service routine (ISR). The
ISTB field identifies the base portion of the address of the interrupt service table (IST) and the HPEINT
field identifies the specific interrupt and locates the specific fetch packet within the IST. The ISTP is shown
in Figure 2-12 and described in Table 2-15. See Section 5.1.2.2 for a discussion of the use of the ISTP.

The ISTP is not accessible in User mode. See Section 8.2.4.1 for more information. See Chapter 5 for
more information on interrupts.

Figure 2-12. Interrupt Service Table Pointer Register (ISTP)
31 16

ISTB

R/W-S

15 10 9 5 4 3 2 1 0

ISTB HPEINT 0 0 0 0 0

R/W-S R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset; S = See the device-specific
data manual for the default value of this field after reset

Table 2-15. Interrupt Service Table Pointer Register (ISTP) Field Descriptions

Bit Field Value Description

31-10 ISTB 0-3F FFFFh Interrupt service table base portion of the IST address. This field is cleared to a device-specific
default value on reset; therefore, upon startup the IST must reside at this specific address. See
the device-specific data manual for more information. After reset, you can relocate the IST by
writing a new value to ISTB. If relocated, the first ISFP (corresponding to RESET) is never
executed via interrupt processing, because reset clears the ISTB to its default value. See
Example 5-1.

9-5 HPEINT 0-1Fh Highest priority enabled interrupt that is currently pending. This field indicates the number
(related bit position in the IFR) of the highest priority interrupt (as defined in Table 5-1) that is
enabled by its bit in the IER. Thus, the ISTP can be used for manual branches to the highest
priority enabled interrupt. If no interrupt is pending and enabled, HPEINT contains the value 0.
The corresponding interrupt need not be enabled by NMIE (unless it is NMI) or by GIE.

4-0 0 0 Cleared to 0 (fetch packets must be aligned on 8-word (32-byte) boundaries).

2.8.12 Nonmaskable Interrupt (NMI) Return Pointer Register (NRP)

The NMI return pointer register (NRP) contains the return pointer that directs the CPU to the proper
location to continue program execution after NMI processing. A branch using the address in NRP (B NRP)
in your interrupt service routine returns to the program flow when NMI servicing is complete. The NRP is
shown in Figure 2-13.

The NRP contains the 32-bit address of the first execute packet in the program flow that was not executed
because of a nonmaskable interrupt. Although you can write a value to NRP, any subsequent interrupt
processing may overwrite that value.

See Chapter 5 for more information on interrupts. See Chapter 6 for more information on exceptions.

Figure 2-13. NMI Return Pointer Register (NRP)
31 0

NRP

R/W-x

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -x = value is indeterminate after reset

45SPRU732J–July 2010 CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

Control Register File Extensions www.ti.com

2.8.13 E1 Phase Program Counter (PCE1)

The E1 phase program counter (PCE1), shown in Figure 2-14, contains the 32-bit address of the fetch
packet in the E1 pipeline phase.

Figure 2-14. E1 Phase Program Counter (PCE1)
31 0

PCE1

R-x

LEGEND: R = Readable by the MVC instruction; -x = value is indeterminate after reset

2.9 Control Register File Extensions

Table 2-16 lists the additional control registers in the C64x+ DSP.

Table 2-16. Control Register File Extensions (C64x+ DSP)

Acronym Register Name Section

DIER Debug interrupt enable register Section 2.9.1

DNUM DSP core number register Section 2.9.2

ECR Exception clear register Section 2.9.3

EFR Exception flag register Section 2.9.4

GPLYA GMPY polynomial for A side register Section 2.9.5

GPLYB GMPY polynomial for B side register Section 2.9.6

IERR Internal exception report register Section 2.9.7

ILC Inner loop count register Section 2.9.8

ITSR Interrupt task state register Section 2.9.9

NTSR NMI/Exception task state register Section 2.9.10

REP Restricted entry point register Section 2.9.11

RILC Reload inner loop count register Section 2.9.12

SSR Saturation status register Section 2.9.13

TSCH Time stamp counter register—high half of 64 bit Section 2.9.14

TSCL Time stamp counter register—low half of 64 bit Section 2.9.14

TSR Task state register Section 2.9.15

46 CPU Data Paths and Control SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Control Register File Extensions

2.9.1 Debug Interrupt Enable Register (DIER)

The debug interrupt enable register (DIER) is used to designate which interrupts and exceptions are
treated as high-priority interrupts when operating in real-time emulation mode. The DIER is shown in
Figure 2-15 and described in Table 2-17.

Figure 2-15. Debug Interrupt Enable Register (DIER)
31 30 29 16

NMI EXCEP Reserved

R/W-0 R/W-0 R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INT15 INT14 INT13 INT12 INT11 INT10 INT9 INT8 INT7 INT6 INT5 INT4 Reserved WSEL Rsvd

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2-17. Debug Interrupt Enable Register (DIER) Field Descriptions

Bit Field Value Description

31 NMI Nonmaskable interrupt (NMI).

1 Designate NMI as high-priority interrupt.

30 EXCEP Maskable external exception (EXCEP).

1 Designate EXCEP as high-priority interrupt.

29-16 Reserved 0 Reserved

15 INT15 Maskable interrupt 15 (INT15).

1 Designate INT15 as high-priority interrupt.

14 INT14 Maskable interrupt 14 (INT14).

1 Designate INT14 as high-priority interrupt.

13 INT13 Maskable interrupt 13 (INT13).

1 Designate INT13 as high-priority interrupt.

12 INT12 Maskable interrupt 12 (INT12).

1 Designate INT12 as high-priority interrupt.

11 INT11 Maskable interrupt 11 (INT11).

1 Designate INT11 as high-priority interrupt.

10 INT10 Maskable interrupt 10 (INT10).

1 Designate INT10 as high-priority interrupt.

9 INT9 Maskable interrupt 9 (INT9).

1 Designate INT9 as high-priority interrupt.

8 INT8 Maskable interrupt 8 (INT8).

1 Designate INT8 as high-priority interrupt.

7 INT7 Maskable interrupt 7 (INT7).

1 Designate INT7 as high-priority interrupt.

6 INT6 Maskable interrupt 6 (INT6).

1 Designate INT6 as high-priority interrupt.

5 INT5 Maskable interrupt 5 (INT5).

1 Designate INT5 as high-priority interrupt.

4 INT4 Maskable interrupt 4 (INT4).

1 Designate INT4 as high-priority interrupt.

3-2 Reserved 0 Reserved

1 WSEL Write control select. This bit must be cleared to 0 to modify bits 31-2.

0 Bits 31-2 can be modified.

0 Reserved 0 Reserved

47SPRU732J–July 2010 CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

Control Register File Extensions www.ti.com

2.9.2 DSP Core Number Register (DNUM)

Multiple C64x+ CPUs may be used in a system. The DSP core number register (DNUM), provides an
identifier to shared resources in the system which identifies which C64x+ CPU is accessing those
resources. The contents of this register are set to a specific value (depending on the device) at reset. See
your device-specific data manual for the reset value of this register. The DNUM is shown in Figure 2-16.

Figure 2-16. DSP Core Number Register (DNUM)
31 16

Reserved

R-0

15 8 7 0

Reserved DSP number

R-0 R-S

LEGEND: R = Readable by the MVC instruction; -n = value after reset; S = See the device-specific data manual for the default value of this
field after reset

2.9.3 Exception Clear Register (ECR)

The exception clear register (ECR) is used to clear individual bits in the exception flag register (EFR).
Writing a 1 to any bit in ECR clears the corresponding bit in EFR.

The ECR is not accessible in User mode. See Section 8.2.4.1 for more information. See Chapter 6 for
more information on exceptions.

48 CPU Data Paths and Control SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Control Register File Extensions

2.9.4 Exception Flag Register (EFR)

The exception flag register (EFR) contains bits that indicate which exceptions have been detected.
Clearing the EFR bits is done by writing a 1 to the corresponding bit position in the exception clear register
(ECR). Writing a 0 to the bits in this register has no effect. The EFR is shown in Figure 2-17 and
described in Table 2-18.

The EFR is not accessible in User mode. See Section 8.2.4.1 for more information. See Chapter 6 for
more information on exceptions.

Figure 2-17. Exception Flag Register (EFR)
31 30 29 16

NXF EXF Reserved

R/W-0 R/W-0 R-0

15 2 1 0

Reserved IXF SXF

R-0 R/W-0 R/W-0

LEGEND: R = Readable by the MVC EFR instruction only in Supervisor mode; W = Clearable by the MVC ECR instruction only in
Supervisor mode; -n = value after reset

Table 2-18. Exception Flag Register (EFR) Field Descriptions

Bit Field Value Description

31 NXF NMI exception flag.

0 NMI exception has not been detected.

1 NMI exception has been detected.

30 EXF EXCEP flag.

0 Exception has not been detected.

1 Exception has been detected.

29-2 Reserved 0 Reserved. Read as 0.

1 IXF Internal exception flag.

0 Internal exception has not been detected.

1 Internal exception has been detected.

0 SXF Software exception flag (set by SWE or SWENR instructions).

0 Software exception has not been detected.

1 Software exception has been detected.

49SPRU732J–July 2010 CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

Control Register File Extensions www.ti.com

2.9.5 GMPY Polynomial—A Side Register (GPLYA)

The GMPY instruction (see GMPY) uses the 32-bit polynomial in the GMPY polynomial—A side register
(GPLYA), Figure 2-18, when the instruction is executed on the M1 unit.

Figure 2-18. GMPY Polynomial A-Side Register (GPLYA)
31 0

32-bit polynomial

R/W-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

2.9.6 GMPY Polynomial—B Side Register (GPLYB)

The GMPY instruction (see GMPY) uses the 32-bit polynomial in the GMPY polynomial—B side register
(GPLYB), Figure 2-19, when the instruction is executed on the M2 unit.

Figure 2-19. GMPY Polynomial B-Side (GPLYB)
31 0

32-bit polynomial

R/W-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

50 CPU Data Paths and Control SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Control Register File Extensions

2.9.7 Internal Exception Report Register (IERR)

The internal exception report register (IERR) contains flags that indicate the cause of the internal
exception. In the case of simultaneous internal exceptions, the same flag may be set by different
exception sources. In this case, it may not be possible to determine the exact causes of the individual
exceptions. The IERR is shown in Figure 2-20 and described in Table 2-19.

The IERR is not accessible in User mode. See Section 8.2.4.1 for more information. See Chapter 6 for
more information on exceptions.

Figure 2-20. Internal Exception Report Register (IERR)
31 16

Reserved

R-0

15 9 8 7 6 5 4 3 2 1 0

Reserved MSX LBX PRX RAX RCX OPX EPX FPX IFX

R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R = Readable by the MVC instruction only in Supervisor mode; W = Writeable by the MVC instruction only in Supervisor mode;
-n = value after reset

Table 2-19. Internal Exception Report Register (IERR) Field Descriptions

Bit Field Value Description

31-9 Reserved 0 Reserved. Read as 0.

8 MSX Missed stall exception

0 Missed stall exception is not the cause.

1 Missed stall exception is the cause.

7 LBX SPLOOP buffer exception

0 SPLOOP buffer exception is not the cause.

1 SPLOOP buffer exception is the cause.

6 PRX Privilege exception

0 Privilege exception is not the cause.

1 Privilege exception is the cause.

5 RAX Resource access exception

0 Resource access exception is not the cause.

1 Resource access exception is the cause.

4 RCX Resource conflict exception

0 Resource conflict exception is not the cause.

1 Resource conflict exception is the cause.

3 OPX Opcode exception

0 Opcode exception is not the cause.

1 Opcode exception is the cause.

2 EPX Execute packet exception

0 Execute packet exception is not the cause.

1 Execute packet exception is the cause.

1 FPX Fetch packet exception

0 Fetch packet exception is not the cause.

1 Fetch packer exception is the cause.

0 IFX Instruction fetch exception

0 Instruction fetch exception is not the cause.

1 Instruction fetch exception is the cause.

51SPRU732J–July 2010 CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

Control Register File Extensions www.ti.com

2.9.8 SPLOOP Inner Loop Count Register (ILC)

The SPLOOP or SPLOOPD instructions use the SPLOOP inner loop count register (ILC), Figure 2-21, as
the count of the number of iterations left to perform. The ILC content is decremented at each stage
boundary until the ILC content reaches 0.

Figure 2-21. Inner Loop Count Register (ILC)
31 0

32-bit inner loop count

R/W-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

2.9.9 Interrupt Task State Register (ITSR)

The interrupt task state register (ITSR) is used to store the contents of the task state register (TSR) in the
event of an interrupt. The ITSR is shown in Figure 2-22 and described in Table 2-20. For detailed bit
descriptions, see Section 2.9.15.

The GIE bit in ITSR is physically the same bit as the PGIE bit in CSR.

The ITSR is not accessible in User mode. See Section 8.2.4.1 for more information.

Figure 2-22. Interrupt Task State Register (ITSR)
31 16

Reserved

R-0

15 14 13 11 10 9 8 7 6 5 4 3 2 1 0

IB SPLX Reserved EXC INT Rsvd CXM Rsvd DBGM XEN GEE SGIE GIE

R/W-0 R/W-0 R-0 R/W-0 R/W-0 R-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R = Readable by the MVC instruction only in Supervisor mode; W = Writeable by the MVC instruction only in Supervisor mode;
-n = value after reset

Table 2-20. Interrupt Task State Register (ITSR) Field Descriptions

Bit Field Description

31-16 Reserved Reserved. Read as 0.

15 IB Interrupt occurred while interrupts were blocked.

14 SPLX Interrupt occurred during an SPLOOP.

13-11 Reserved Reserved. Read as 0.

10 EXC Contains EXC bit value in TSR at point of interrupt.

9 INT Contains INT bit value in TSR at point of interrupt.

8 Reserved Reserved. Read as 0.

7-6 CXM Contains CXM bit value in TSR at point of interrupt.

5 Reserved Reserved. Read as 0.

4 DBGM Contains DBGM bit value in TSR at point of interrupt.

3 XEN Contains XEN bit value in TSR at point of interrupt.

2 GEE Contains GEE bit value in TSR at point of interrupt.

1 SGIE Contains SGIE bit value in TSR at point of interrupt.

0 GIE Contains GIE bit value in TSR at point of interrupt.

52 CPU Data Paths and Control SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Control Register File Extensions

2.9.10 NMI/Exception Task State Register (NTSR)

The NMI/exception task state register (NTSR) is used to store the contents of the task state register (TSR)
and the conditions under which an exception occurred in the event of a nonmaskable interrupt (NMI) or an
exception. The NTSR is shown in Figure 2-23 and described in Table 2-21. For detailed bit descriptions
(except for the HWE bit), see Section 2.9.15. The HWE bit is set by taking a hardware exception (NMI,
EXCEP, or internal) and is cleared by either SWE or SWENR instructions.

The NTSR is not accessible in User mode. See Section 8.2.4.1 for more information.

Figure 2-23. NMI/Exception Task State Register (NTSR)
31 17 16

Reserved HWE

R-0 R/W-0

15 14 13 11 10 9 8 7 6 5 4 3 2 1 0

IB SPLX Reserved EXC INT Rsvd CXM Rsvd DBGM XEN GEE SGIE GIE

R/W-0 R/W-0 R-0 R/W-0 R/W-0 R-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R = Readable by the MVC instruction only in Supervisor mode; W = Writeable by the MVC instruction only in Supervisor mode;
-n = value after reset

Table 2-21. NMI/Exception Task State Register (NTSR) Field Descriptions

Bit Field Description

31-17 Reserved Reserved. Read as 0.

16 HWE Hardware exception taken (NMI, EXCEP, or internal).

15 IB Exception occurred while interrupts were blocked.

14 SPLX Exception occurred during an SPLOOP.

13-11 Reserved Reserved. Read as 0.

10 EXC Contains EXC bit value in TSR at point exception taken.

9 INT Contains INT bit value in TSR at point exception taken.

8 Reserved Reserved. Read as 0.

7-6 CXM Contains CXM bit value in TSR at point exception taken.

5 Reserved Reserved. Read as 0.

4 DBGM Contains DBGM bit value in TSR at point exception taken.

3 XEN Contains XEN bit value in TSR at point exception taken.

2 GEE Contains GEE bit value in TSR at point exception taken.

1 SGIE Contains SGIE bit value in TSR at point exception taken.

0 GIE Contains GIE bit value in TSR at point exception taken.

2.9.11 Restricted Entry Point Register (REP)

The restricted entry point register (REP) is used by the SWENR instruction as the target of the change of
control when an SWENR instruction is issued. The contents of REP should be preinitialized by the
processor in Supervisor mode before any SWENR instruction is issued. See Section 8.2.4.1 for more
information. REP cannot be modified in User mode.

53SPRU732J–July 2010 CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

Control Register File Extensions www.ti.com

2.9.12 SPLOOP Reload Inner Loop Count Register (RILC)

Predicated SPLOOP or SPLOOPD instructions used in conjunction with a SPMASKR or SPKERNELR
instruction use the SPLOOP reload inner loop count register (RILC), Figure 2-24, as the iteration count
value to be written to the SPLOOP inner loop count register (ILC) in the cycle before the reload operation
begins. See Chapter 7 for more information.

Figure 2-24. Reload Inner Loop Count Register (RILC)
31 0

32-bit inner loop count reload

R/W-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

2.9.13 Saturation Status Register (SSR)

The saturation status register (SSR) provides saturation flags for each functional unit, making it possible
for the program to distinguish between saturations caused by different instructions in the same execute
packet. There is no direct connection to the SAT bit in the control status register (CSR); writes to the SAT
bit have no effect on SSR and writes to SSR have no effect on the SAT bit. Care must be taken when
restoring SSR and the SAT bit when returning from a context switch. Since the SAT bit cannot be written
to a value of 1 using the MVC instruction, restoring the SAT bit to a 1 must be done by executing an
instruction that results in saturation. The saturating instruction would affect SSR; therefore, SSR must be
restored after the SAT bit has been restored. The SSR is shown in Figure 2-25 and described in
Table 2-22.

Instructions resulting in saturation set the appropriate unit flag in SSR in the cycle following the writing of
the result to the register file. The setting of the flag from a functional unit takes precedence over a write to
the bit from an MVC instruction. If no functional unit saturation has occurred, the flags may be set to 0 or 1
by the MVC instruction, unlike the SAT bit in CSR.

The bits in SSR can be set by the MVC instruction or by a saturation in the associated functional unit. The
bits are cleared only by a reset or by the MVC instruction. The bits are not cleared by the occurrence of a
nonsaturating instruction.

Figure 2-25. Saturation Status Register (SSR)
31 16

Reserved

R-0

15 5 4 3 2 1 0

Reserved M2 M1 S2 S1 L2 L1

R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2-22. Saturation Status Register Field Descriptions

Bit Field Value Description

31-6 Reserved 0 Reserved. Read as 0.

5 M2 M2 unit.

0 Saturation did not occur on M2 unit.

1 Saturation occurred on M2 unit.

4 M1 M1 unit.

0 Saturation did not occur on M1 unit.

1 Saturation occurred on M1 unit.

54 CPU Data Paths and Control SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Control Register File Extensions

Table 2-22. Saturation Status Register Field Descriptions (continued)

Bit Field Value Description

3 S2 S2 unit.

0 Saturation did not occur on S2 unit.

1 Saturation occurred on S2 unit.

2 S1 S1 unit.

0 Saturation did not occur on S1 unit.

1 Saturation occurred on S1 unit.

1 L2 L2 unit.

0 Saturation did not occur on L2 unit.

1 Saturation occurred on L2 unit.

0 L1 L1 unit.

0 Saturation did not occur on L1 unit.

1 Saturation occurred on L1 unit.

2.9.14 Time Stamp Counter Registers (TSCL and TSCH)

The C64x+ CPU contains a free running 64-bit counter that advances each CPU clock under normal
operation. The counter is accessed as two 32-bit read-only control registers, TSCL (Figure 2-26) and
TSCH (Figure 2-27).

Figure 2-26. Time Stamp Counter Register - Low Half (TSCL)
31 0

CPU clock count (32 LSBs of 64-bit value)

R-0

LEGEND: R = Readable by the MVC instruction; -n = value after reset

Figure 2-27. Time Stamp Counter Register - High Half (TSCH)
31 0

CPU clock count (32 MSBs of 64-bit value)

R-0

LEGEND: R = Readable by the MVC instruction; -n = value after reset

55SPRU732J–July 2010 CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

Control Register File Extensions www.ti.com

2.9.14.1 Initialization

The counter is cleared to 0 after reset, and counting is disabled.

2.9.14.2 Enabling Counting

The counter is enabled by writing to TSCL. The value written is ignored. Counting begins in the cycle after
the MVC instruction executes. If executed with the count disabled, the following code sequence shows the
timing of the count starting (assuming no stalls occur in the three cycles shown).
MVC B0,TSCL ; Start TSC
MVC TSCL,B0 ; B0 = 0
MVC TSCL,B1 ; B1 = 1

2.9.14.3 Disabling Counting

Once enabled, counting cannot be disabled under program control. Counting is disabled in the following
cases:

• After exiting the reset state.
• When the CPU is fully powered down.

2.9.14.4 Reading the Counter

Reading the full 64-bit count takes two sequential MVC instructions. A read from TSCL causes the upper
32 bits of the count to be copied into TSCH. In normal operation, only this snapshot of the upper half of
the 64-bit count is available to the programmer. The value read will always be the value copied at the
cycle of the last MVC TSCL, reg instruction. If it is read with no TSCL reads having taken place since
reset, then the reset value of 0 is read.

CAUTION

Reading TSCL in the cycle before a cross path stall may give an inaccurate
value in TSCH.

When reading the full 64-bit value, it must be ensured that no interrupts are serviced between the two
MVC instructions if an ISR is allowed to make use of the time stamp counter. There is no way for an ISR
to restore the previous value of TSCH (snapshot) if it reads TSCL, since a new snapshot is performed.

Two methods for reading the 64-bit count value in an uninterruptible manner are shown in Example 2-1
and Example 2-2. Example 2-1 uses the fact that interrupts are automatically disabled in the delay slots of
a branch to prevent an interrupt from happening between the TSCL read and the TSCH read.
Example 2-2 accomplishes the same task by explicitly disabling interrupts.

Example 2-1. Code to Read the 64-Bit TSC Value in Branch Delay Slot

BNOP TSC_Read_Done, 3
MVC TSCL,B0 ; Read the low half first; high half copied to TSCH
MVC TSCH,B1 ; Read the snapshot of the high half

TSC_Read_Done:

Example 2-2. Code to Read the 64-Bit TSC Value Using DINT/RINT

DINT
|| MVC TSCL,B0 ; Read the low half first; high half copied to TSCH

RINT
|| MVC TSCH,B1 ; Read the snapshot of the high half
TSC_Read_Done:

56 CPU Data Paths and Control SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Control Register File Extensions

2.9.15 Task State Register (TSR)

The task state register (TSR) contains all of the status bits that determine or indicate the current execution
environment. TSR is saved in the event of an interrupt or exception to the ITSR or NTSR, respectively. All
bits are readable by the MVC instruction. The TSR is shown in Figure 2-28 and described in Table 2-23.
The SGIE bit in TSR is used by the DINT and RINT instructions to globally disable and reenable
interrupts.

The GIE and SGIE bits may be written in both User mode and Supervisor mode. The remaining bits all
have restrictions on how they are written. See Section 8.2.4.2 for more information.

The GIE bit in TSR is physically the same bit as the GIE bit in CSR. It is retained in CSR for compatibility
reasons, but placed in TSR so that it will be copied in the event of either an exception or an interrupt.

Figure 2-28. Task State Register (TSR)
31 16

Reserved

R-0

15 14 13 11 10 9 8 7 6 5 4 3 2 1 0

IB SPLX Reserved EXC INT Rsvd CXM Rsvd DBGM XEN GEE SGIE GIE

R-0 R-0 R-0 R/C-0 R-0 R-0 R/W-0 R-0 R/W-0 R/W-0 R/S-0 R/W-0 R/W-0

LEGEND: R = Readable by the MVC instruction; W = Writeable in Supervisor mode; C = Clearable in Supervisor mode; S = Can be set in
Supervisor mode; -n = value after reset

Table 2-23. Task State Register (TSR) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 Reserved. Read as 0.

15 IB Interrupts blocked. Not writable by the MVC instruction; set only by hardware.

0 Interrupts not blocked in previous cycle (interruptible point).

1 Interrupts were blocked in previous cycle.

14 SPLX SPLOOP executing. Not writable by the MVC instruction; set only by hardware.

0 Not currently executing SPLOOP

1 Currently executing SPLOOP

13-11 Reserved 0 Reserved. Read as 0.

10 EXC Exception processing. Clearable by the MVC instruction in Supervisor mode. Not clearable by the MVC
instruction in User mode.

0 Not currently processing an exception.

1 Currently processing an exception.

9 INT Interrupt processing. Not writable by the MVC instruction.

0 Not currently processing an interrupt.

1 Currently processing an interrupt.

8 Reserved 0 Reserved. Read as 0.

7-6 CXM 0-3h Current execution mode. Not writable by the MVC instruction; these bits reflect the current execution
mode of the execute pipeline. CXM is set to 1 when you begin executing the first instruction in User
mode. See Chapter 8 for more information.

0 Supervisor mode

1h User mode

2h-3h Reserved (an attempt to set these values is ignored)

5 Reserved 0 Reserved. Read as 0.

4 DBGM Emulator debug mask. Writable in Supervisor and User mode. Writable by emulator.

0 Enables emulator capabilities.

1 Disables emulator capabilities.

57SPRU732J–July 2010 CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

Control Register File Extensions www.ti.com

Table 2-23. Task State Register (TSR) Field Descriptions (continued)

Bit Field Value Description

3 XEN Maskable exception enable. Writable only in Supervisor mode.

0 Disables all maskable exceptions.

1 Enables all maskable exceptions.

2 GEE Global exception enable. Can be set to 1 only in Supervisor mode. Once set, cannot be cleared except
by reset.

0 Disables all exceptions except the reset interrupt.

1 Enables all exceptions.

1 SGIE Saved global interrupt enable. Contains previous state of GIE bit after execution of a DINT instruction.
Writable in Supervisor and User mode.

0 Global interrupts remain disabled by the RINT instruction.

1 Global interrupts are enabled by the RINT instruction.

0 GIE Global interrupt enable. Same physical bit as the GIE bit in the control status register (CSR). Writable in
Supervisor and User mode. See Section 5.2 for details on how the GIE bit affects interruptibility.

0 Disables all interrupts except the reset interrupt and NMI (nonmaskable interrupt).

1 Enables all interrupts.

58 CPU Data Paths and Control SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

Chapter 3
SPRU732J–July 2010

Instruction Set

This chapter describes the assembly language instructions of the TMS320C64x DSP and TMS320C64x+
DSP . Also described are parallel operations, conditional operations, resource constraints, and addressing
modes.

The C64x and C64x+ DSP uses all of the instructions available to the TMS320C62x DSP, but it also uses
other instructions that are specific to the C64x and C64x+ DSP. These specific instructions include 8-bit
and 16-bit extensions, nonaligned word loads and stores, data packing/unpacking operations.

Topic ... Page

3.1 Instruction Operation and Execution Notations ... 60
3.2 Instruction Syntax and Opcode Notations .. 62
3.3 Delay Slots ... 64
3.4 Parallel Operations .. 65
3.5 Conditional Operations .. 68
3.6 SPMASKed Operations .. 68
3.7 Resource Constraints .. 69
3.8 Addressing Modes .. 76
3.9 Compact Instructions on the C64x+ CPU ... 80
3.10 Instruction Compatibility .. 86
3.11 Instruction Descriptions ... 87

59SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

Instruction Operation and Execution Notations www.ti.com

3.1 Instruction Operation and Execution Notations

Table 3-1 explains the symbols used in the instruction descriptions.

Table 3-1. Instruction Operation and Execution Notations

Symbol Meaning

abs(x) Absolute value of x

and Bitwise AND

-a Perform 2s-complement subtraction using the addressing mode defined by the AMR

+a Perform 2s-complement addition using the addressing mode defined by the AMR

bi Select bit i of source/destination b

bit_count Count the number of bits that are 1 in a specified byte

bit_reverse Reverse the order of bits in a 32-bit register

byte0 8-bit value in the least-significant byte position in 32-bit register (bits 0-7)

byte1 8-bit value in the next to least-significant byte position in 32-bit register (bits 8-15)

byte2 8-bit value in the next to most-significant byte position in 32-bit register (bits 16-23)

byte3 8-bit value in the most-significant byte position in 32-bit register (bits 24-31)

bv2 Bit vector of two flags for s2 or u2 data type

bv4 Bit vector of four flags for s4 or u4 data type

by..z Selection of bits y through z of bit string b

cond Check for either creg equal to 0 or creg not equal to 0

creg 3-bit field specifying a conditional register, see Section 3.5

cstn n-bit constant field (for example, cst5)

dint 64-bit integer value (two registers)

dst_e lsb32 of 64-bit dst (placed in even-numbered register of a 64-bit register pair)

dst_h msb8 of 40-bit dst (placed in odd-numbered register of 64-bit register pair)

dst_l lsb32 of 40-bit dst (placed in even-numbered register of a 64-bit register pair)

dst_o msb32 of 64-bit dst (placed in odd-numbered register of 64-bit register pair)

dws4 Four packed signed 16-bit integers in a 64-bit register pair

dwu4 Four packed unsigned 16-bit integers in a 64-bit register pair

gmpy Galois Field Multiply

i2 Two packed 16-bit integers in a single 32-bit register

i4 Four packed 8-bit integers in a single 32-bit register

int 32-bit integer value

lmb0(x) Leftmost 0 bit search of x

lmb1(x) Leftmost 1 bit search of x

long 40-bit integer value

lsbn or LSBn n least-significant bits (for example, lsb16)

msbn or MSBn n most-significant bits (for example, msb16)

nop No operation

norm(x) Leftmost nonredundant sign bit of x

not Bitwise logical complement

op Opfields

or Bitwise OR

R Any general-purpose register

ROTL Rotate left

sat Saturate

sbyte0 Signed 8-bit value in the least-significant byte position in 32-bit register (bits 0-7)

sbyte1 Signed 8-bit value in the next to least-significant byte position in 32-bit register (bits 8-15)

sbyte2 Signed 8-bit value in the next to most-significant byte position in 32-bit register (bits 16-23)

sbyte3 Signed 8-bit value in the most-significant byte position in 32-bit register (bits 24-31)

60 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Instruction Operation and Execution Notations

Table 3-1. Instruction Operation and Execution Notations (continued)

Symbol Meaning

scstn n-bit signed constant field

se Sign-extend

sint Signed 32-bit integer value

slong Signed 40-bit integer value

sllong Signed 64-bit integer value

slsb16 Signed 16-bit integer value in lower half of 32-bit register

smsb16 Signed 16-bit integer value in upper half of 32-bit register

src1_e or src2_e lsb32 of 64-bit src (placed in even-numbered register of a 64-bit register pair)

src1_h or src2_h msb8 of 40-bit src (placed in odd-numbered register of 64-bit register pair)

src1_l or src2_l lsb32 of 40-bit src (placed in even-numbered register of a 64-bit register pair)

src1_o or src2_o msb32 of 64-bit src (placed in odd-numbered register of 64-bit register pair)

s2 Two packed signed 16-bit integers in a single 32-bit register

s4 Four packed signed 8-bit integers in a single 32-bit register

-s Perform 2s-complement subtraction and saturate the result to the result size, if an overflow occurs

+s Perform 2s-complement addition and saturate the result to the result size, if an overflow occurs

ubyte0 Unsigned 8-bit value in the least-significant byte position in 32-bit register (bits 0-7)

ubyte1 Unsigned 8-bit value in the next to least-significant byte position in 32-bit register (bits 8-15)

ubyte2 Unsigned 8-bit value in the next to most-significant byte position in 32-bit register (bits 16-23)

ubyte3 Unsigned 8-bit value in the most-significant byte position in 32-bit register (bits 24-31)

ucstn n-bit unsigned constant field (for example, ucst5)

uint Unsigned 32-bit integer value

ulong Unsigned 40-bit integer value

ullong Unsigned 64-bit integer value

ulsb16 Unsigned 16-bit integer value in lower half of 32-bit register

umsb16 Unsigned 16-bit integer value in upper half of 32-bit register

u2 Two packed unsigned 16-bit integers in a single 32-bit register

u4 Four packed unsigned 8-bit integers in a single 32-bit register

x clear b,e Clear a field in x, specified by b (beginning bit) and e (ending bit)

x ext l,r Extract and sign-extend a field in x, specified by l (shift left value) and r (shift right value)

x extu l,r Extract an unsigned field in x, specified by l (shift left value) and r (shift right value)

x set b,e Set field in x to all 1s, specified by b (beginning bit) and e (ending bit)

xint 32-bit integer value that can optionally use cross path

xor Bitwise exclusive-ORs

xsint Signed 32-bit integer value that can optionally use cross path

xslsb16 Signed 16 LSB of register that can optionally use cross path

xsmsb16 Signed 16 MSB of register that can optionally use cross path

xs2 Two packed signed 16-bit integers in a single 32-bit register that can optionally use cross path

xs4 Four packed signed 8-bit integers in a single 32-bit register that can optionally use cross path

xuint Unsigned 32-bit integer value that can optionally use cross path

xulsb16 Unsigned 16 LSB of register that can optionally use cross path

xumsb16 Unsigned 16 MSB of register that can optionally use cross path

xu2 Two packed unsigned 16-bit integers in a single 32-bit register that can optionally use cross path

xu4 Four packed unsigned 8-bit integers in a single 32-bit register that can optionally use cross path

→ Assignment

+ Addition

++ Increment by 1

× Multiplication

61SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

Instruction Syntax and Opcode Notations www.ti.com

Table 3-1. Instruction Operation and Execution Notations (continued)

Symbol Meaning

- Subtraction

== Equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

<< Shift left

>> Shift right

>>s Shift right with sign extension

>>z Shift right with a zero fill

~ Logical inverse

& Logical AND

3.2 Instruction Syntax and Opcode Notations

Table 3-2 explains the syntaxes and opcode fields used in the instruction descriptions.

Table 3-2. Instruction Syntax and Opcode Notations

Symbol Meaning

baseR base address register

creg 3-bit field specifying a conditional register, see Section 3.5

cst constant

csta constant a

cstb constant b

cstn n-bit constant field

dst destination

dw doubleword; 0 = word, 1 = doubleword

fcyc SPLOOP fetch cycle

fstg SPLOOP fetch stage

h MVK or MVKH instruction

iin bit n of the constant ii

ld/st load or store; 0 = store, 1 = load

mode addressing mode, see Section 3.8

na nonaligned; 0 = aligned, 1 = nonaligned

N3 3-bit field

offsetR register offset

op opfield; field within opcode that specifies a unique instruction

opn bit n of the opfield

p parallel execution; 0 = next instruction is not executed in parallel, 1 = next instruction is executed in
parallel

ptr offset from either A4-A7 or B4-B7 depending on the value of the s bit. The ptr field is the 2
least-significant bits of the src2 (baseR) field—bit 2 of register address is forced to 1.

r LDDW/LDNDW/LDNW instruction

rsv reserved

s side A or B for destination; 0 = side A, 1 = side B.

sc scaling mode; 0 = nonscaled, offsetR/ucst5 is not shifted; 1 = scaled, offsetR/ucst5 is shifted

scstn n-bit signed constant field

62 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Instruction Syntax and Opcode Notations

Table 3-2. Instruction Syntax and Opcode Notations (continued)

Symbol Meaning

scstn bit n of the signed constant field

sn sign

src source

src1 source 1

src2 source 2

stgn bit n of the constant stg

sz data size select; 0 = primary size, 1 = secondary size (see Section 3.9.2.2)

t side of source/destination (src/dst) register; 0 = side A, 1 = side B

ucstn n-bit unsigned constant field

ucstn bit n of the unsigned constant field

unit unit decode

x cross path for src2; 0 = do not use cross path, 1 = use cross path

y .D1 or .D2 unit; 0 = .D1 unit, 1 = .D2 unit

z test for equality with zero or nonzero

3.2.1 32-Bit Opcode Maps

The C64x CPU and C64x+ CPU 32-bit opcodes are mapped in Appendix C through Appendix H.

3.2.2 16-Bit Opcode Maps

The C64x+ CPU 16-bit opcodes used for compact instructions are mapped in Appendix C through
Appendix H. See Section 3.9 for more information about compact instructions.

63SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

Delay Slots www.ti.com

3.3 Delay Slots

The execution of the additional instructions can be defined in terms of delay slots. The number of delay
slots is equivalent to the number of additional cycles required after the source operands are read for the
result to be available for reading. For a single-cycle type instruction (such as CMPGT2), source operands
read in cycle i produce a result that can be read in cycle i + 1. For a 2-cycle instruction (such as AVGU4),
source operands read in cycle i produce a result that can be read in cycle i + 2. For a four-cycle instruction
(such as DOTP2), source operands read in cycle i produce a result that can be read in cycle i + 4.
Table 3-3 shows the number of delay slots associated with each type of instruction.

Delay slots are equivalent to an execution or result latency. All of the instructions in the C64x and C64x+
DSP have a functional unit latency of 1. This means that a new instruction can be started on the functional
unit each cycle. Single-cycle throughput is another term for single-cycle functional unit latency.

Table 3-3. Delay Slot and Functional Unit Latency

Functional Unit Read Write Branch
Instruction Type Delay Slots Latency Cycles (1) Cycles (1) Taken (1)

NOP (no operation) 0 1

Store 0 1 i i

Single cycle 0 1 i i

Two cycle 1 1 i i + 1

Multiply (16 × 16) 1 1 i i + 1

Four cycle 3 1 i i + 3

Load 4 1 i i, i + 4 (2)

Branch 5 1 i (3) i + 5
(1) Cycle i is in the E1 pipeline phase.
(2) For loads, any address modification happens in cycle i. The loaded data is written into the register file in cycle i + 4.
(3) The branch to label, branch to IRP, and branch to NRP instructions do not read any general-purpose registers.

64 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

31 0

p

Instruction
A

00000b

31 0

p

Instruction
B

00100b

31 0

p

Instruction
C

01000b

31 0

p

Instruction
D

01100b

31 0

p

Instruction
E

10000b

31 0

p

Instruction
F

10100b

31 0

p

Instruction
G

11000b

31 0

p

Instruction
H

11100b
LSBs of
the byte
address

www.ti.com Parallel Operations

3.4 Parallel Operations

Instructions are always fetched eight words at a time. This constitutes a fetch packet. On the C64x CPU
this will always be eight instructions. On the C64x+ CPU, this may be as many as 14 instructions due to
the existence of compact instructions in a header based fetch packet. The basic format of a fetch packet is
shown in Figure 3-1. Fetch packets are aligned on 256-bit (8-word) boundaries.

Figure 3-1. Basic Format of a Fetch Packet

The C64x+ CPU supports compact 16-bit instructions. Unlike the normal 32-bit instructions, the p-bit
information for compact instructions is not contained within the instruction opcode. Instead, the p-bit is
contained within the p-bits field within the fetch packet header. See Section 3.9 for more information.

The execution of the individual noncompact instructions is partially controlled by a bit in each instruction,
the p-bit. The p-bit (bit 0) determines whether the instruction executes in parallel with another instruction.
The p-bits are scanned from left to right (lower to higher address). If the p-bit of instruction I is 1, then
instruction I + 1 is to be executed in parallel with (in the same cycle as) instruction I. If the p-bit of
instruction I is 0, then instruction I + 1 is executed in the cycle after instruction I. All instructions executing
in parallel constitute an execute packet. An execute packet can contain up to eight instructions. Each
instruction in an execute packet must use a different functional unit.

On the CPU, the execute packet can cross fetch packet boundaries, but will be limited to no more than
eight instructions in a fetch packet. The last instruction in an execute packet will be marked with its p-bit
cleared to zero. There are three types of p-bit patterns for fetch packets. These three p-bit patterns result
in the following execution sequences for the eight instructions:

• Fully serial
• Fully parallel
• Partially serial

Example 3-1 through Example 3-3 show the conversion of a p-bit sequence into a cycle-by-cycle
execution stream of instructions.

65SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

31 0

0

Instruction

A

31 0

0

Instruction

B

31 0

0

Instruction

C

31 0

0

Instruction

D

31 0

0

Instruction

E

31 0

0

Instruction

F

31 0

0

Instruction

G

31 0

0

Instruction

H

31 0

1

Instruction

A

31 0

1

Instruction

B

31 0

1

Instruction

C

31 0

1

Instruction

D

31 0

1

Instruction

E

31 0

1

Instruction

F

31 0

1

Instruction

G

31 0

1

Instruction

H

Parallel Operations www.ti.com

Example 3-1. Fully Serial p-Bit Pattern in a Fetch Packet

The eight instructions are executed sequentially.

This p-bit pattern:

results in this execution sequence:

Cycle/Execute Packet Instructions

1 A

2 B

3 C

4 D

5 E

6 F

7 G

8 H

Example 3-2. Fully Parallel p-Bit Pattern in a Fetch Packet

All eight instructions are executed in parallel.

This p-bit pattern:

results in this execution sequence:

Cycle/Execute
Packet Instructions

1 A B C D E F G H

66 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

31 0

0

Instruction

A

31 0

0

Instruction

B

31 0

1

Instruction

C

31 0

1

Instruction

D

31 0

0

Instruction

E

31 0

1

Instruction

F

31 0

1

Instruction

G

31 0

0

Instruction

H

www.ti.com Parallel Operations

Example 3-3. Partially Serial p-Bit Pattern in a Fetch Packet

This p-bit pattern:

results in this execution sequence:

Cycle/Execute Packet Instructions

1 A

2 B

3 C D E

4 F G H

3.4.1 Example Parallel Code

The vertical bars || signify that an instruction is to execute in parallel with the previous instruction. The
code for the fetch packet in Example 3-3 would be represented as this:

instruction A

instruction B

instruction C
|| instruction D
|| instruction E

instruction F
|| instruction G
|| instruction H

3.4.2 Branching Into the Middle of an Execute Packet

If a branch into the middle of an execute packet occurs, all instructions at lower addresses are ignored. In
Example 3-3, if a branch to the address containing instruction D occurs, then only D and E execute. Even
though instruction C is in the same execute packet, it is ignored. Instructions A and B are also ignored
because they are in earlier execute packets. If your result depends on executing A, B, or C, the branch to
the middle of the execute packet will produce an erroneous result.

67SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

Conditional Operations www.ti.com

3.5 Conditional Operations

Most instructions can be conditional. The condition is controlled by a 3-bit opcode field (creg) that
specifies the condition register tested, and a 1-bit field (z) that specifies a test for zero or nonzero. The
four MSBs of every opcode are creg and z. The specified condition register is tested at the beginning of
the E1 pipeline stage for all instructions. For more information on the pipeline, see Chapter 4. If z = 1, the
test is for equality with zero; if z = 0, the test is for nonzero. The case of creg = 0 and z = 0 is treated as
always true to allow instructions to be executed unconditionally. The creg field is encoded in the
instruction opcode as shown in Table 3-4.

Compact (16-bit) instructions on the C64x+ DSP do not contain a creg field and always execute
unconditionally. See Section 3.9 for more information.

Table 3-4. Registers That Can Be Tested by Conditional Operations

Specified creg z
Conditional
Register Bit: 31 30 29 28

Unconditional 0 0 0 0

Reserved 0 0 0 1

B0 0 0 1 z

B1 0 1 0 z

B2 0 1 1 z

A1 1 0 0 z

A2 1 0 1 z

A0 1 1 0 z

Reserved 1 1 1 x (1)

(1) x can be any value.

Conditional instructions are represented in code by using square brackets, [], surrounding the condition
register name. The following execute packet contains two ADD instructions in parallel. The first ADD is
conditional on B0 being nonzero. The second ADD is conditional on B0 being zero. The character !
indicates the inverse of the condition.

[B0] ADD .L1 A1,A2,A3
|| [!B0] ADD .L2 B1,B2,B3

The above instructions are mutually exclusive, only one will execute. If they are scheduled in parallel,
mutually exclusive instructions are constrained as described in Section 3.7. If mutually exclusive
instructions share any resources as described in Section 3.7, they cannot be scheduled in parallel (put in
the same execute packet), even though only one will execute.

The act of making an instruction conditional is often called predication and the conditional register is often
called the predication register.

3.6 SPMASKed Operations

On the C64x+ CPU, the SPMASK and SPMASKR instructions can be used to inhibit the execution of
instructions from the SPLOOP buffer. The selection of which instruction to inhibit can be specified by the
SPMASK or SPMASKR instruction argument or can be marked by the addition of a caret (^) next to the
parallel code marker as shown below:

SPMASK
||^ LDW .D1 *A0,A1 ;This instruction is SPMASKed
||^ LDW .D2 *B0,B1 ;This instruction is SPMASKed
|| MPY .M1 A3,A4,A5 ;This instruction is Not SPMASKed

See Chapter 7 for more information.

68 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Resource Constraints

3.7 Resource Constraints

No two instructions within the same execute packet can use the same resources. Also, no two instructions
can write to the same register during the same cycle. The following sections describe how an instruction
can use each of the resources.

3.7.1 Constraints on Instructions Using the Same Functional Unit

Two instructions using the same functional unit cannot be issued in the same execute packet.

The following execute packet is invalid:
ADD .S1 A0, A1, A2 ;.S1 is used for

|| SHR .S1 A3, 15, A4 ;...both instructions

The following execute packet is valid:
ADD .L1 A0, A1, A2 ;Two different functional

|| SHR .S1 A3, 15, A4 ;...units are used

3.7.2 Constraints on the Same Functional Unit Writing in the Same Instruction Cycle

The .M unit has two 32-bit write ports; so the results of a 4-cycle 32-bit instruction and a 2-cycle 32-bit
instruction operating on the same .M unit can write their results on the same instruction cycle. Any other
combination of parallel writes on the .M unit will result in a conflict. On the C64x+ DSP this will result in an
exception.

On the C64x DSP and C64x+ DSP , this will result in erroneous values being written to the destination
registers.

For example, the following sequence is valid and results in both A2 and A5 being written by the .M1 unit
on the same cycle.
DOTP2 .M1 A0,A1,A2 ;This instruction has 3 delay slots
NOP
AVG2 .M1 A4,A5 ;This instruction has 1 delay slot
NOP ;Both A2 and A5 get written on this cycle

The following sequence is invalid. The attempt to write 96 bits of output through 64-bits of write port will
fail.
SMPY2 .M1 A5,A6,A9:A8 ;This instruction has 3 delay slots; but generates a 64 bit
result
NOP
MPY .M1 A1,A2,A3 ;This instruction has 1 delay slot
NOP

3.7.3 Constraints on Cross Paths (1X and 2X)

Up to two units (.S, .L, .D, or .M unit) per data path, per execute packet, can read a source operand from
its opposite register file via the cross paths (1X and 2X) provided that each unit is reading the same
operand.

For example, the .S1 unit can read both its operands from the A register file; or it can read an operand
from the B register file using the 1X cross path and the other from the A register file. The use of a cross
path is denoted by an X following the functional unit name in the instruction syntax (as in S1X).

The following execute packet is invalid because the 1X cross path is being used for two different B
register operands:

MV .S1X B0, A0 ; Invalid. Instructions are using the 1X cross path

|| MV .L1X B1, A1 ; with different B registers

69SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

Resource Constraints www.ti.com

The following execute packet is valid because all uses of the 1X cross path are for the same B register
operand, and all uses of the 2X cross path are for the same A register operand:

ADD .L1X A0,B1,A1 ; Instructions use the 1X with B1

|| SUB .S1X A2,B1,A2 ; 1X cross paths using B1

|| AND .D1 A4,A1,A3 ;

|| MPY .M1 A6,A1,A4 ;

|| ADD .L2 B0,B4,B2 ;

|| SUB .S2X B4,A4,B3 ; 2X cross paths using A4

|| AND .D2X B5,A4,B4 ; 2X cross paths using A4

|| MPY .M2 B6,B4,B5 ;

The following execute packet is invalid because more than two functional units use the same cross path
operand:

MV .L2X A0, B0 ; 1st cross path move

|| MV .S2X A0, B1 ; 2nd cross path move

|| MV .D2X A0, B2 ; 3rd cross path move

The operand comes from a register file opposite of the destination, if the x bit in the instruction field is set.

3.7.4 Cross Path Stalls

The DSP introduces a delay clock cycle whenever an instruction attempts to read a register via a cross
path that was updated in the previous cycle. This is known as a cross path stall. This stall is inserted
automatically by the hardware, no NOP instruction is needed. It should be noted that no stall is introduced
if the register being read has data placed by a load instruction, or if an instruction reads a result one cycle
after the result is generated.

Here are some examples:
ADD .S1 A0, A0, A1 ; / Stall is introduced; A1 is updated

; 1 cycle before it is used as a

ADD .S2X A1, B0, B1 ; \ cross path source

ADD .S1 A0, A0, A1 ; / No stall is introduced; A0 not updated

; 1 cycle before it is used as a cross

ADD .S2X A0, B0, B1 ; \ path source

LDW .D1 *++A0[1], A1 ; / No stall is introduced; A1 is the load
; destination

NOP 4 ; NOP 4 represents 4 instructions to

ADD .S2X A1, B0, B1 ; \ be executed between the load and add.

LDW .D1 *++A0[1], A1 ; / Stall is introduced; A0 is updated

ADD .S2X A0, B0, B1 ; 1 cycle before it is used as a

; \ cross path source

It is possible to avoid the cross path stall by scheduling an instruction that reads an operand via the cross
path at least one cycle after the operand is updated. With appropriate scheduling, the DSP can provide
one cross path operand per data path per cycle with no stalls. In many cases, the TMS320C6000
Optimizing Compiler and Assembly Optimizer automatically perform this scheduling.

70 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Resource Constraints

3.7.5 Constraints on Loads and Stores

The data address paths named DA1 and DA2 are each connected to the .D units in both data paths. Load
and store instructions can use an address pointer from one register file while loading to or storing from the
other register file. Two load and store instructions using a destination/source from the same register file
cannot be issued in the same execute packet. The address register must be on the same side as the .D
unit used.

The DA1 and DA2 resources and their associated data paths are specified as T1 and T2, respectively. T1
consists of the DA1 address path and the LD1 and ST1 data paths. LD1 is comprised of LD1a and LD1b
to support 64-bit loads; ST1 is comprised of ST1a and ST1b to support 64-bit stores. Similarly, T2 consists
of the DA2 address path and the LD2 and ST2 data paths. LD2 is comprised of LD2a and LD2b to support
64-bit loads; ST2 is comprised of ST2a and ST2b to support 64-bit stores. The T1 and T2 designations
appear in the functional unit fields for load and store instructions.

The DSP can access words and doublewords at any byte boundary using nonaligned loads and stores. As
a result, word and doubleword data does not need alignment to 32-bit or 64-bit boundaries. No other
memory access may be used in parallel with a nonaligned memory access. The other .D unit can be used
in parallel, as long as it is not performing a memory access.

The following execute packet is invalid:
LDNW .D2T2 *B2[B12],B13 ; \ Two memory operations,

|| LDB .D1T1 *A2,A14 ; / one non-aligned

The following execute packet is valid:
LDNW .D2T2 *B2[B12], A13 ; \ One non-aligned memory

; operation,

|| ADD .D1x A12, B13, A14 ; one non-memory .D unit

; / operation

3.7.6 Constraints on Long (40-Bit) Data

Both the C62x and C67x device families had constraints on the number of simultaneous reads and writes
of 40-bit data due to shared data paths.

The C64x and C64x+ CPU maintain separate datapaths to each functional unit, so these constraints are
removed.

The following, for example, is valid:
DDOTPL2 .M1 A1:A0,A2,A5:A4

|| DDOTPL2 .M2 B1:B0,B2,B5:B4
|| STDW .D1 A9:A8,*A6
|| STDW .D2 B9:B8,*B6
|| SUB .L1 A25:A24,A20,A31:A30
|| SUB .L2 B25:B24,B20,B31:B30
|| SHL .S1 A11:A10,5,A13:A12
|| SHL .S2 B11:B10,8,B13:B12

71SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

Resource Constraints www.ti.com

3.7.7 Constraints on Register Reads

More than four reads of the same register cannot occur on the same cycle. Conditional registers are not
included in this count.

The following execute packets are invalid:
MPY .M1 A1, A1, A4 ; five reads of register A1

|| ADD .L1 A1, A1, A5

|| SUB .D1 A1, A2, A3

MPY .M1 A1, A1, A4 ; five reads of register A1

|| ADD .L1 A1, A1, A5

|| SUB .D2x A1, B2, B3

The following execute packet is valid:
MPY .M1 A1, A1, A4 ; only four reads of A1

|| [A1] ADD .L1 A0, A1, A5

|| SUB .D1 A1, A2, A3

3.7.8 Constraints on Register Writes

Two instructions cannot write to the same register on the same cycle. Two instructions with the same
destination can be scheduled in parallel as long as they do not write to the destination register on the
same cycle. For example, an MPY issued on cycle I followed by an ADD on cycle I + 1 cannot write to the
same register because both instructions write a result on cycle I + 1. Therefore, the following code
sequence is invalid unless a branch occurs after the MPY, causing the ADD not to be issued.
MPY .M1 A0, A1, A2

ADD .L1 A4, A5, A2

However, this code sequence is valid:
MPY .M1 A0, A1, A2

|| ADD .L1 A4, A5, A2

Figure 3-2 shows different multiple-write conflicts. For example, ADD and SUB in execute packet L1 write
to the same register. This conflict is easily detectable.

MPY in packet L2 and ADD in packet L3 might both write to B2 simultaneously; however, if a branch
instruction causes the execute packet after L2 to be something other than L3, a conflict would not occur.
Thus, the potential conflict in L2 and L3 might not be detected by the assembler. The instructions in L4 do
not constitute a write conflict because they are mutually exclusive. In contrast, because the instructions in
L5 may or may not be mutually exclusive, the assembler cannot determine a conflict. If the pipeline does
receive commands to perform multiple writes to the same register, the result is undefined.

Figure 3-2. Examples of the Detectability of Write Conflicts by the Assembler

L1: ADD .L2 B5,B6,B7 ; \ detectable, conflict
|| SUB .S2 B8,B9,B7 ; /

L2: MPY .M2 B0,B1,B2 ; \ not detectable
L3: ADD .L2 B3,B4,B2 ; /
L4: [!B0] ADD .L2 B5,B6,B7 ; \ detectable, no conflict

|| [B0] SUB .S2 B8,B9,B7 ; /
L5: [!B1] ADD .L2 B5,B6,B7 ; \ not detectable

|| [B0] SUB .S2 B8,B9,B7 ; /

72 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Resource Constraints

3.7.9 Constraints on AMR Writes

A write to the addressing mode register (AMR) using the MVC instruction that is immediately followed by a
LD, ST, ADDA, or SUBA instruction causes a 1 cycle stall, if the LD, ST, ADDA, or SUBA instruction
uses the A4-A7 or B4-B7 registers for addressing.

3.7.10 Constraints on Multicycle NOPs

Two instructions that generate multicycle NOPs cannot share the same execute packet. Instructions that
generate a multicycle NOP are:

• NOP n (where n > 1)
• IDLE
• BNOP target, n (for all values of n, regardless of predication)
• ADDKPC label, reg, n (for all values of n, regardless of predication)

3.7.11 Constraints on Unitless Instructions

3.7.11.1 SPLOOP Restrictions

The NOP, NOP n, and BNOP instructions are the only unitless instructions allowed to be used in an
SPLOOP(D/W) body. The assembler disallows the use of any other unitless instruction in the loop body.

See Chapter 7 for more information.

3.7.11.2 BNOP <disp>,n

A BNOP instruction cannot be placed in parallel with the following instructions if the BNOP has a non-zero
NOP count:

• ADDKPC
• CALLP
• NOP n

3.7.11.3 DINT

A DINT instruction cannot be placed in parallel with the following instructions:

• MVC reg, TSR
• MVC reg, CSR
• B IRP
• B NRP
• IDLE
• NOP n (if n > 1)
• RINT
• SPKERNEL(R)
• SPLOOP(D/W)
• SPMASK(R)
• SWE
• SWENR

A DINT instruction can be placed in parallel with the NOP instruction.

73SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

Resource Constraints www.ti.com

3.7.11.4 IDLE

An IDLE instruction cannot be placed in parallel with the following instructions:

• DINT
• NOP n (if n > 1)
• RINT
• SPKERNEL(R)
• SPLOOP(D/W)
• SPMASK(R)
• SWE
• SWENR

An IDLE instruction can be placed in parallel with the NOP instruction.

3.7.11.5 NOP n

A NOP n (with n > 1) instruction cannot be placed in parallel with other multicycle NOP counts (ADDKPC,
BNOP, CALLP) with the exception of another NOP n where the NOP count is the same. A NOP n (with
n > 1) instruction cannot be placed in parallel with the following instructions:

• DINT
• IDLE
• RINT
• SPKERNEL(R)
• SPLOOP(D/W)
• SPMASK(R)
• SWE
• SWENR

3.7.11.6 RINT

A RINT instruction cannot be placed in parallel with the following instructions:

• MVC reg, TSR
• MVC reg, CSR
• B IRP
• B NRP
• DINT
• IDLE
• NOP n (if n > 1)
• SPKERNEL(R)
• SPLOOP(D/W)
• SPMASK(R)
• SWE
• SWENR

A RINT instruction can be placed in parallel with the NOP instruction.

3.7.11.7 SPKERNEL(R)

An SPKERNEL(R) instruction cannot be placed in parallel with the following instructions:

• DINT
• IDLE
• NOP n (if n > 1)
• RINT
• SPLOOP(D/W)

74 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Resource Constraints

• SPMASK(R)
• SWE
• SWENR

An SPKERNEL(R) instruction can be placed in parallel with the NOP instruction.

3.7.11.8 SPLOOP(D/W)

An SPLOOP(D/W) instruction cannot be placed in parallel with the following instructions:

• DINT
• IDLE
• NOP n (if n > 1)
• RINT
• SPKERNEL(R)
• SPMASK(R)
• SWE
• SWENR

An SPLOOP(D/W) instruction can be placed in parallel with the NOP instruction:

3.7.11.9 SPMASK(R)

An SPMASK(R) instruction cannot be placed in parallel with the following instructions:

• DINT
• IDLE
• NOP n (if n > 1)
• RINT
• SPLOOP(D/W)
• SPKERNEL(R)
• SWE
• SWENR

An SPMASK(R) instruction can be placed in parallel with the NOP instruction.

3.7.11.10 SWE

An SWE instruction cannot be placed in parallel with the following instructions:

• DINT
• IDLE
• NOP n (if n > 1)
• RINT
• SPLOOP(D/W)
• SPKERNEL(R)
• SWENR

An SWE instruction can be placed in parallel with the NOP instruction.

3.7.11.11 SWENR

An SWENR instruction cannot be placed in parallel with the following instructions:

• DINT
• IDLE
• NOP n (if n > 1)
• RINT
• SPLOOP(D/W)

75SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

Addressing Modes www.ti.com

• SPKERNEL(R)
• SWE

An SWENR instruction can be placed in parallel with the NOP instruction.

3.8 Addressing Modes

The addressing modes on the DSP are linear, circular using BK0, and circular using BK1. The addressing
mode is specified by the addressing mode register (AMR), described in Section 2.8.3.

All registers can perform linear addressing. Only eight registers can perform circular addressing: A4-A7
are used by the .D1 unit, and B4-B7 are used by the .D2 unit. No other units can perform circular
addressing. LDB(U)/LDH(U)/LDW, STB/STH/STW, LDNDW, LDNW, STNDW, STNW, LDDW, STDW,
ADDAB/ADDAH/ADDAW/ADDAD, and SUBAB/SUBAH/SUBAW instructions all use AMR to determine
what type of address calculations are performed for these registers. There is no SUBAD instruction.

3.8.1 Linear Addressing Mode

3.8.1.1 LD and ST Instructions

For load and store instructions, linear mode simply shifts the offsetR/cst operand to the left by 3, 2, 1, or 0
for doubleword, word, halfword, or byte access, respectively; and then performs an add or a subtract to
baseR (depending on the operation specified). The LDNDW and STNDW instructions also support
nonscaled offsets. In nonscaled mode, the offsetR/cst is not shifted before adding or subtracting from the
baseR.

For the preincrement, predecrement, positive offset, and negative offset address generation options, the
result of the calculation is the address to be accessed in memory. For postincrement or postdecrement
addressing, the value of baseR before the addition or subtraction is the address to be accessed from
memory.

3.8.1.2 ADDA and SUBA Instructions

For integer addition and subtraction instructions, linear mode simply shifts the src1/cst operand to the left
by 3, 2, 1, or 0 for doubleword, word, halfword, or byte data sizes, respectively, and then performs the add
or subtract specified.

76 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Addressing Modes

3.8.2 Circular Addressing Mode

The BK0 and BK1 fields in AMR specify the block sizes for circular addressing, see Section 2.8.3.

3.8.2.1 LD and ST Instructions

As with linear address arithmetic, offsetR/cst is shifted left by 3, 2, 1, or 0 according to the data size, and
is then added to or subtracted from baseR to produce the final address. Circular addressing modifies this
slightly by only allowing bits N through 0 of the result to be updated, leaving bits 31 through N + 1
unchanged after address arithmetic. The resulting address is bounded to 2(N + 1) range, regardless of the
size of the offsetR/cst.

The circular buffer size in AMR is not scaled; for example, a block-size of 8 is 8 bytes, not 8 times the data
size (byte, halfword, word). So, to perform circular addressing on an array of 8 words, a size of 32 should
be specified, or N = 4. Example 3-4 shows an LDW performed with register A4 in circular mode and
BK0 = 4, so the buffer size is 32 bytes, 16 halfwords, or 8 words. The value in AMR for this example is
0004 0001h.

Example 3-4. LDW Instruction in Circular Mode

LDW .D1 *++A4[9],A1

Before LDW 1 cycle after LDW (1) 5 cycles after LDW

A4 0000 0100h A4 0000 0104h A4 0000 0104h

A1 xxxx xxxxh A1 xxxx xxxxh A1 1234 5678h

mem 104h 1234 5678h mem 104h 1234 5678h mem 104h 1234 5678h

(1) Note: 9h words is 24h bytes. 24h bytes is 4 bytes beyond the 32-byte (20h) boundary 100h-11Fh; thus, it is wrapped around to
(124h - 20h = 104h).

3.8.2.2 ADDA and SUBA Instructions

As with linear address arithmetic, offsetR/cst is shifted left by 3, 2, 1, or 0 according to the data size, and
is then added to or subtracted from baseR to produce the final address. Circular addressing modifies this
slightly by only allowing bits N through 0 of the result to be updated, leaving bits 31 through N + 1
unchanged after address arithmetic. The resulting address is bounded to 2(N + 1) range, regardless of the
size of the offsetR/cst.

The circular buffer size in AMR is not scaled; for example, a block size of 8 is 8 bytes, not 8 times the data
size (byte, halfword, word). So, to perform circular addressing on an array of 8 words, a size of 32 should
be specified, or N = 4. Example 3-5 shows an ADDAH performed with register A4 in circular mode and
BK0 = 4, so the buffer size is 32 bytes, 16 halfwords, or 8 words. The value in AMR for this example is
0004 0001h.

Example 3-5. ADDAH Instruction in Circular Mode

ADDAH .D1 A4,A1,A4

Before ADDAH 1 cycle after ADDAH (1)

A4 0000 0100h A4 0000 0106h

A1 0000 0013h A1 0000 0013h

(1) Note: 13h halfwords is 26h bytes. 26h bytes is 6 bytes beyond the 32-byte (20h) boundary 100h-11Fh; thus, it is wrapped
around to (126h - 20h = 106h).

77SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

Addressing Modes www.ti.com

3.8.2.3 Circular Addressing Considerations with Nonaligned Memory

Circular addressing may be used with nonaligned accesses. When circular addressing is enabled, address
updates and memory accesses occur in the same manner as for the equivalent sequence of byte
accesses.

On the C64x CPU, the only restriction is that the circular buffer size be at least as large as the data size
being accessed. Nonaligned access to circular buffers that are smaller than the data being read will cause
undefined results.

On the C64x+ CPU, the circular buffer size must be at least 32 bytes. Nonaligned access to circular
buffers that are smaller than 32 bytes will cause undefined results.

Nonaligned accesses to a circular buffer apply the circular addressing calculation to logically adjacent
memory addresses. The result is that nonaligned accesses near the boundary of a circular buffer will
correctly read data from both ends of the circular buffer, thus seamlessly causing the circular buffer to
“wrap around” at the edges.

Consider, for example, a circular buffer size of 16 bytes. A circular buffer of this size at location 20h, would
look like this in physical memory:

1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3

7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8

x x x x x x x x x a b c d e f g h i j k l m n o p x x x x x x x x x

The effect of circular buffering is to make it so that memory accesses and address updates in the 20h-2Fh
range stay completely inside this range. Effectively, the memory map behaves in this manner:

2 2

7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8

h i j k l m n o p a b c d e f g h i j k l m n o p a b c d e f g h i

Example 3-6 shows an LDNW performed with register A4 in circular mode and BK0 = 4, so the buffer size
is 32 bytes, 16 halfwords, or 8 words. The value in AMR for this example is 0004 0001h. The buffer starts
at address 0020h and ends at 0040h. The register A4 is initialized to the address 003Ah.

Example 3-6. LDNW in Circular Mode

LDNW .D1 *++A4[2],A1

Before LDNW 1 cycle after LDNW (1) 5 cycles after LDNW

A4 0000 003Ah A4 0000 0022h A4 0000 0022h

A1 xxxx xxxxh A1 xxxx xxxxh A1 5678 9ABCh

mem 0022h 5678 9ABCh mem 0022h 5678 9ABCh mem 0022h 5678 9ABCh

(1) Note: 2h words is 8h bytes. 8h bytes is 2 bytes beyond the 32-byte (20h) boundary starting at address 003Ah; thus, it is
wrapped around to 0022h (003Ah + 8h = 0022h).

78 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Addressing Modes

3.8.3 Syntax for Load/Store Address Generation

The DSP has a load/store architecture, which means that the only way to access data in memory is with a
load or store instruction. Table 3-5 shows the syntax of an indirect address to a memory location.
Sometimes a large offset is required for a load/store. In this case, you can use the B14 or B15 register as
the base register, and use a 15-bit constant (ucst15) as the offset.

Table 3-6 describes the addressing generator options. The memory address is formed from a base
address register (baseR) and an optional offset that is either a register (offsetR) or a 5-bit unsigned
constant (ucst5).

Table 3-5. Indirect Address Generation for Load/Store

Preincrement or Postincrement or
No Modification of Predecrement of Postdecrement of

Addressing Type Address Register Address Register Address Register

Register indirect *R *++R *R++

*- -R *R- -

Register relative *+R[ucst5] *++R[ucst5] *R++[ucst5]

*-R[ucst5] *- -R[ucst5] *R- -[ucst5]

Register relative with *+B14/B15[ucst15] not supported not supported
15-bit constant offset

Base + index *+R[offsetR] *++R[offsetR] *R++[offsetR]

*-R[offsetR] *- -R[offsetR] *R- -[offsetR]

Table 3-6. Address Generator Options for Load/Store

Mode Field Syntax Modification Performed

0 0 0 0 *-R[ucst5] Negative offset

0 0 0 1 *+R[ucst5] Positive offset

0 1 0 0 *-R[offsetR] Negative offset

0 1 0 1 *+R[offsetR] Positive offset

1 0 0 0 *- -R[ucst5] Predecrement

1 0 0 1 *++R[ucst5] Preincrement

1 0 1 0 *R- -[ucst5] Postdecrement

1 0 1 1 *R++[ucst5] Postincrement

1 1 0 0 *--R[offsetR] Predecrement

1 1 0 1 *++R[offsetR] Preincrement

1 1 1 0 *R- -[offsetR] Postdecrement

1 1 1 1 *R++[offsetR] Postincrement

79SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

Compact Instructions on the C64x+ CPU www.ti.com

3.9 Compact Instructions on the C64x+ CPU

The C64x+ CPU supports a header based set of 16-bit-wide compact instructions in addition to the normal
32-bit wide instructions. The C64x CPU does not support compact instructions.

3.9.1 Compact Instruction Overview

The availability of compact instructions is enabled by the replacement of the eighth word of a fetch packet
with a 32-bit header word. The header word describes which of the other seven words of the fetch packet
contain compact instructions, which of the compact instructions in the fetch packet operate in parallel, and
also contains some decoding information which supplements the information contained in the 16-bit
compact opcode. Table 3-7 compares the standard fetch packet with a header-based fetch packet
containing compact instructions.

Table 3-7. C64x+ CPU Fetch Packet Types

Standard C6000 Fetch Packet Header-Based Fetch Packet

Word Word

0 32-bit opcode 0 16-bit opcode 16-bit opcode

1 32-bit opcode 1 32-bit opcode

2 32-bit opcode 2 16-bit opcode 16-bit opcode

3 32-bit opcode 3 32-bit opcode

4 32-bit opcode 4 16-bit opcode 16-bit opcode

5 32-bit opcode 5 32-bit opcode

6 32-bit opcode 6 16-bit opcode 16-bit opcode

7 32-bit opcode 7 Header

Within the other seven words of the fetch packet, each word may be composed of a single 32-bit opcode
or two 16-bit opcodes. The header word specifies which words contain compact opcodes and which
contain 32-bit opcodes.

The compiler will automatically code instructions as 16-bit compact instructions when possible.

There are a number of restrictions to the use of compact instructions:

• No dedicated predication field
• 3-bit register address field
• Very limited 3 operand instructions
• Subset of 32-bit instructions

80 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Compact Instructions on the C64x+ CPU

3.9.2 Header Word Format

Figure 3-3 describes the format of the compact instruction header word.

Figure 3-3. Compact Instruction Header Format
31 30 29 28 27 21 20 14 13 0

1 1 1 0 Layout Expansion p-bits

7 7 14

Bits 27-21 (Layout field) indicate which words in the fetch packet contain 32-bit opcodes and which words
contain two 16-bit opcodes.

Bits 20-14 (Expansion field) contain information that contributes to the decoding of all compact
instructions in the fetch packet.

Bits 13-0 (p-bits field) specify which compact instructions are run in parallel.

3.9.2.1 Layout Field in Compact Header Word

Bits 27-21 of the compact instruction header contains the layout field. This field specifies which of the
other seven words in the current fetch packet contain 32-bit full-sized instructions and which words contain
two 16-bit compact instructions.

Figure 3-4 shows the layout field in the compact header word and Table 3-8 describes the bits.

Figure 3-4. Layout Field in Compact Header Word
27 26 25 24 23 22 21

L7 L6 L5 L4 L3 L2 L1

Table 3-8. Layout Field Description in Compact Instruction Packet Header

Bit Field Value Description

27 L7 0 Seventh word of fetch packet contains a single 32-bit opcode.

1 Seventh word of fetch packet contains two 16-bit compact instructions.

26 L6 0 Sixth word of fetch packet contains a single 32-bit opcode.

1 Sixth word of fetch packet contains two 16-bit compact instructions.

25 L5 0 Fifth word of fetch packet contains a single 32-bit opcode.

1 Fifth word of fetch packet contains two 16-bit compact instructions.

24 L4 0 Fourth word of fetch packet contains a single 32-bit opcode.

1 Fourth word of fetch packet contains two 16-bit compact instructions.

23 L3 0 Third word of fetch packet contains a single 32-bit opcode.

1 Third word of fetch packet contains two 16-bit compact instructions.

22 L2 0 Second word of fetch packet contains a single 32-bit opcode.

1 Second word of fetch packet contains two 16-bit compact instructions.

21 L1 0 First word of fetch packet contains a single 32-bit opcode.

1 First word of fetch packet contains two 16-bit compact instructions.

81SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

Compact Instructions on the C64x+ CPU www.ti.com

3.9.2.2 Expansion Field in Compact Header Word

Bits 20-14 of the compact instruction header contains the opcode expansion field. This field specifies
properties that apply to all compact instructions contained in the current fetch packet.

Figure 3-5 shows the expansion field in the compact header word and Table 3-9 describes the bits.

Figure 3-5. Expansion Field in Compact Header Word
20 19 18 16 15 14

PROT RS DSZ BR SAT

Table 3-9. Expansion Field Description in Compact Instruction Packet Header

Bit Field Value Description

20 PROT 0 Loads are nonprotected (NOPs must be explicit).

1 Loads are protected (4 NOP cycles added after every LD instruction).

19 RS 0 Instructions use low register set for data source and destination.

1 Instructions use high register set for data source and destination.

18-16 DSZ 0-7h Defines primary and secondary data size (see Table 3-10)

15 BR 0 Compact instructions in the S unit are not decoded as branches

1 Compact Instructions in the S unit are decoded as branches.

14 SAT 0 Compact instructions do not saturate.

1 Compact instructions saturate.

Bit 20 (PROT) selects between protected and nonprotected mode for all LD instructions within the fetch
packet. When PROT is 1, four cycles of NOP are added after each LD instruction within the fetch packet
whether the LD is in 16-bit compact format or 32-bit format.

Bit 19 (RS) specifies which register set is used by compact instructions within the fetch packet. The
register set defines which subset of 8 registers on each side are data registers. The 3-bit register field in
the compact opcode indicates which one of eight registers is used. When RS is 1, the high register set
(A16-A23 and B16-B23) is used; when RS is 0, the low register set (A0-A7 and B0-B7) is used.

Bits 18-16 (DSZ) determine the two data sizes available to the compact versions of the LD and ST
instructions in a fetch packet. Bit 18 determines the primary data size that is either word (W) or
doubleword (DW). In the case of DW, an opcode bit selects between aligned (DW) and nonaligned (NDW)
accesses. Bits 17 and 16 determine the secondary data size: byte unsigned (BU), byte (B), halfword
unsigned (HU), halfword (H), word (W), or nonaligned word (NW). Table 3-10 describes how the bits map
to data size.

Bit 15 (BR). When BR is 1, instructions in the S unit are decoded as branches.

Bit 14 (SAT). When SAT is 1, the ADD, SUB, SHL, MPY, MPYH, MPYLH, and MPYHL instructions are
decoded as SADD, SUBS, SSHL, SMPY, SMPYH, SMPYLH, and SMPYHL, respectively.

82 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Compact Instructions on the C64x+ CPU

Table 3-10. LD/ST Data Size Selection

DSZ Bits Primary Secondary
18 17 16 Data Size (1) Data Size (2)

0 0 0 W BU

0 0 1 W B

0 1 0 W HU

0 1 1 W H

1 0 0 DW/NDW W

1 0 1 DW/NDW B

1 1 0 DW/NDW NW

1 1 1 DW/NDW H
(1) Primary data size is word W) or doubleword (DW). In the case of DW, aligned (DW) or nonaligned (NDW).
(2) Secondary data size is byte unsigned (BU), byte (B), halfword unsigned (HU), halfword (H), word (W), or nonaligned word (NW).

83SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

Compact Instructions on the C64x+ CPU www.ti.com

3.9.2.3 P-bit Field in Compact Header Word

Unlike normal 32-bit instructions in which the p-bit filed in each opcode determines whether the instruction
executes in parallel with other instructions; the parallel/nonparallel execution information for compact
instructions is contained in the compact instruction header word.

Bits 13-0 of the compact instruction header contain the p-bit field. This field specifies which of the compact
instructions within the current fetch packet are executed in parallel. If the corresponding bit in the layout
field is 0 (indicating that the word is a noncompact instruction), then the bit in the p-bit field must be zero;
that is, 32-bit instructions within compact fetch packets use their own p-bit field internal to the 32-bit
opcode; therefore, the associated p-bit field in the header should always be zero.

Figure 3-6 shows the p-bits field in the compact header word and Table 3-11 describes the bits.

Figure 3-6. P-bits Field in Compact Header Word
13 12 11 10 9 8 7 6 5 4 3 2 1 0

P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

Table 3-11. P-bits Field Description in Compact Instruction Packet Header

Bit Field Value Description

13 P13 0 Word 6 (16 most-significant bits) of fetch packet has parallel bit cleared.

1 Word 6 (16 most-significant bits) of fetch packet has parallel bit set.

12 P12 0 Word 6 (16 least-significant bits) of fetch packet has parallel bit cleared.

1 Word 6 (16 least-significant bits) of fetch packet has parallel bit set.

11 P11 0 Word 5 (16 most-significant bits) of fetch packet has parallel bit cleared.

1 Word 5 (16 most-significant bits) of fetch packet has parallel bit set.

10 P10 0 Word 5 (16 least-significant bits) of fetch packet has parallel bit cleared.

1 Word 5 (16 least-significant bits) of fetch packet has parallel bit set.

9 P9 0 Word 4 (16 most-significant bits) of fetch packet has parallel bit cleared.

1 Word 4 (16 most-significant bits) of fetch packet has parallel bit set.

8 P8 0 Word 4 (16 least-significant bits) of fetch packet has parallel bit cleared.

1 Word 4 (16 least-significant bits) of fetch packet has parallel bit set.

7 P7 0 Word 3 (16 most-significant bits) of fetch packet has parallel bit cleared.

1 Word 3 (16 most-significant bits) of fetch packet has parallel bit set.

6 P6 0 Word 3 (16 least-significant bits) of fetch packet has parallel bit cleared.

1 Word 3 (16 least-significant bits) of fetch packet has parallel bit set.

5 P5 0 Word 2 (16 most-significant bits) of fetch packet has parallel bit cleared.

1 Word 2 (16 most-significant bits) of fetch packet has parallel bit set.

4 P4 0 Word 2 (16 least-significant bits) of fetch packet has parallel bit cleared.

1 Word 2 (16 least-significant bits) of fetch packet has parallel bit set.

3 P3 0 Word 1 (16 most-significant bits) of fetch packet has parallel bit cleared.

1 Word 1 (16 most-significant bits) of fetch packet has parallel bit set.

2 P2 0 Word 1 (16 least-significant bits) of fetch packet has parallel bit cleared.

1 Word 1 (16 least-significant bits) of fetch packet has parallel bit set.

1 P1 0 Word 0 (16 most-significant bits) of fetch packet has parallel bit cleared.

1 Word 0 (16 most-significant bits) of fetch packet has parallel bit set.

0 P0 0 Word 0 (16 least-significant bits) of fetch packet has parallel bit cleared.

1 Word 0 (16 least-significant bits) of fetch packet has parallel bit set.

84 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Compact Instructions on the C64x+ CPU

3.9.3 Processing of Fetch Packets

The header information is used to fully define the 32-bit version of the 16-bit instructions. In the case
where an execute packet crosses fetch packet boundaries, there are two headers in use simultaneously.
Each instruction uses the header information from its fetch packet header.

3.9.4 Execute Packet Restrictions

Execute packets that span fetch packet boundaries may not be the target of branches in the case where
one of the two fetch packets involved are header-based. The only exception to this is where an interrupt is
taken in the cycle before a spanning execute packet reaches E1. The target of the return may be a
normally disallowed target.

If the execute packet contains eight instructions, then neither of the two fetch packets may be
header-based.

3.9.5 Available Compact Instructions

Table 3-12 lists the available compact instructions and their functional unit.

Table 3-12. Available Compact Instructions

Instruction L Unit M Unit S Unit D Unit

ADD ✓ ✓ ✓
ADDAW ✓
ADDK ✓
AND ✓
BNOP displacement ✓
CALLP ✓
CLR ✓
CMPEQ ✓
CMPGT ✓
CMPGTU ✓
CMPLT ✓
CMPLTU ✓
EXT ✓
EXTU ✓
LDB ✓
LDBU ✓
LDDW ✓
LDH ✓
LDHU ✓
LDNDW ✓
LDNW ✓
LDW ✓
LDW (15-bit offset) ✓
MPY ✓
MPYH ✓
MPYHL ✓
MPYLH ✓
MV ✓ ✓ ✓
MVC ✓
MVK ✓ ✓ ✓
NEG ✓

85SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

Instruction Compatibility www.ti.com

Table 3-12. Available Compact Instructions (continued)

Instruction L Unit M Unit S Unit D Unit

NOP No unit

OR ✓
SADD ✓ ✓
SET ✓
SHL ✓
SHR ✓
SHRU ✓
SMPY ✓
SMPYH ✓
SMPYHL ✓
SMPYLH ✓
SPKERNEL No unit

SPLOOP No unit

SPLOOPD No unit

SPMASK No unit

SPMASKR No unit

SSHL ✓
SSUB ✓
STB ✓
STDW ✓
STH ✓
STNDW ✓
STNW ✓
STW ✓
STW (15-bit offset) ✓
SUB ✓ ✓ ✓
SUBAW ✓
XOR ✓

3.10 Instruction Compatibility

The C62x, C64x, and C64x+ DSPs share an instruction set. All of the instructions valid for the C62x DSP
are also valid for the C64x and C64x+ DSPs. The C64x/C64x+ DSP adds functionality to the C62x DSP
with some unique instructions. See Appendix A for a list of the instructions that are common to the C62x,
C64x, and C64x+ DSPs.

86 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Instruction Descriptions

3.11 Instruction Descriptions

This section gives detailed information on the instruction set. Each instruction may present the following
information:

• Assembler syntax
• Functional units
• Compatibility
• Operands
• Opcode
• Description
• Execution
• Pipeline
• Instruction type
• Delay slots
• Functional Unit Latency
• Examples

The ADD instruction is used as an example to familiarize you with the way each instruction is described.
The example describes the kind of information you will find in each part of the individual instruction
description and where to obtain more information.

87SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

Example — The way each instruction is described. www.ti.com

Example The way each instruction is described.

Syntax EXAMPLE (.unit) src, dst

.unit = .L1, .L2, .S1, .S2, .D1, .D2

src and dst indicate source and destination, respectively. The (.unit) dictates which
functional unit the instruction is mapped to (.L1, .L2, .S1, .S2, .M1, .M2, .D1, or .D2).

A table is provided for each instruction that gives the opcode map fields, units the
instruction is mapped to, types of operands, and the opcode.

The opcode shows the various fields that make up each instruction. These fields are
described in Table 3-2.

There are instructions that can be executed on more than one functional unit. Table 3-13
shows how this is documented for the ADD instruction. This instruction has three opcode
map fields: src1, src2, and dst. In the fifth group, the operands have the types cst5,
long,and long for src1, src2, and dst, respectively. The ordering of these fields implies
cst5 + long → long, where + represents the operation being performed by the ADD. This
operation can be done on .L1 or .L2 (both are specified in the unit column). The s in front
of each operand signifies that src1 (scst5), src2 (slong), and dst (slong) are all signed
values.

In the ninth group, src1, src2, and dst are int, cst5, and int, respectively. The u in front of
the cst5 operand signifies that src1 (ucst5) is an unsigned value. Any operand that
begins with x can be read from a register file that is different from the destination register
file. The operand comes from the register file opposite the destination, if the x bit in the
instruction is set (shown in the opcode map).

Compatibility The C62x, C64x, and C64x+ DSPs share an instruction set. All of the instructions valid
for the C62x DSP are also valid for the C64x and C64x+ DSPs. This section identifies
which DSP family the instruction is valid.

Description Instruction execution and its effect on the rest of the processor or memory contents are
described. Any constraints on the operands imposed by the processor or the assembler
are discussed. The description parallels and supplements the information given by the
execution block.

Execution The execution describes the processing that takes place when the instruction is
executed. The symbols are defined in Table 3-1. For example:

Execution for .L1, .L2 and .S1, .S2 Opcodes

if (cond) src1 + src2 → dst
else nop

Execution for .D1, .D2 Opcodes

if (cond) src2 + src1 → dst
else nop

Pipeline This section contains a table that shows the sources read from, the destinations written
to, and the functional unit used during each execution cycle of the instruction.

Instruction Type This section gives the type of instruction. See Section 4.2 for information about the
pipeline execution of this type of instruction.

Delay Slots This section gives the number of delay slots the instruction takes to execute See
Section 3.3 for an explanation of delay slots.

88 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Example — The way each instruction is described.

Functional Unit Latency This section gives the number of cycles that the functional unit is in use during the
execution of the instruction.

Example Examples of instruction execution. If applicable, register and memory values are given
before and after instruction execution.

Table 3-13. Relationships Between Operands, Operand Size, Functional Units,
and Opfields for Example Instruction (ADD)

Opcode map field used... For operand type... Unit Opfield

src1 sint .L1, .L2 000 0011

src2 xsint

dst sint

src1 sint .L1, .L2 010 0011

src2 xsint

dst slong

src1 xsint .L1, .L2 010 0001

src2 slong

dst slong

src1 scst5 .L1, .L2 000 0010

src2 xsint

dst sint

src1 scst5 .L1, .L2 010 0000

src2 slong

dst slong

src1 sint .S1, .S2 00 0111

src2 xsint

dst sint

src1 scst5 .S1, .S2 00 0110

src2 xsint

dst sint

src2 sint .D1, .D2 01 0000

src1 sint

dst sint

src2 sint .D1, .D2 01 0010

src1 ucst5

dst sint

89SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

ABS — Absolute Value With Saturation www.ti.com

ABS Absolute Value With Saturation

Syntax ABS (.unit) src2, dst

or

ABS (.unit) src2_h:src2_l,dst_h:dst_l

unit = .L1 or .L2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 16 15 14 13 12 11 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x op 1 1 0 s p

3 1 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src2 xsint .L1, .L2 001 1010
dst sint

src2 slong .L1, L2 011 1000
dst slong

Description The absolute value of src2 is placed in dst.

The absolute value of src2 when src2 is an sint is determined as follows:

1. If src2 > 0, then src2 → dst
2. If src2 < 0 and src2≠ -231, then -src2 → dst
3. If src2 = -231, then 231 - 1 → dst

The absolute value of src2 when src2 is an slong is determined as follows:

1. If src2 > 0, then src2 → dst_h:dst_l
2. If src2 < 0 and src2≠ -239, then -src2 → dst_h:dst_l
3. If src2 = -239, then 239 - 1 → dst_h:dst_l

Execution

if (cond) abs(src2) → dst
else nop

Pipeline

Pipeline Stage E1

Read src2

Written dst

Unit in use .L

90 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com ABS — Absolute Value With Saturation

Instruction Type Single-cycle

Delay Slots 0

See Also ABS2

Examples Example 1
ABS .L1 A1,A5

Before instruction 1 cycle after instruction

A1 8000 4E3Dh -2,147,463,619 A1 8000 4E3Dh

A5 xxxx xxxxh A5 7FFF B1C3h 2,147,463,619

Example 2
ABS .L1 A1,A5

Before instruction 1 cycle after instruction

A1 3FF6 0010h 1,073,086,480 A1 3FF6 0010h

A5 xxxx xxxxh A5 3FF6 0010h 1,073,086,480

Example 3
ABS .L1 A1:A0,A5:A4

Before instruction 1 cycle after instruction

A0 FFFF FFFFh 1,073,086,480 A0 FFFF FFFFh 1,073,086,480

A1 0000 00FFh A1 0000 00FFh

A4 xxxx xxxxh A4 0000 0001h

A5 xxxx xxxxh A5 0000 0000h

91SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

ABS2 — Absolute Value With Saturation, Signed, Packed 16-Bit www.ti.com

ABS2 Absolute Value With Saturation, Signed, Packed 16-Bit

Syntax ABS2 (.unit) src2, dst

unit = .L1 or .L2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 0 0 1 0 0 x 0 0 1 1 0 1 0 1 1 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2 xs2 .L1, .L2
dst s2

Description The absolute values of the upper and lower halves of the src2 operand are placed in the
upper and lower halves of the dst.

31 16 15 0

a_hi a_lo ← src2

ABS2

↓ ↓

31 16 15 0

abs(a_hi) abs(a_lo) ← dst

Specifically, this instruction performs the following steps for each halfword of src2, then
writes its result to the appropriate halfword of dst:

1. If the value is between 0 and 215, then value → dst
2. If the value is less than 0 and not equal to -215, then -value → dst
3. If the value is equal to -215, then 215 -1 → dst

NOTE: This operation is performed on each 16-bit value separately. This
instruction does not affect the SAT bit in the CSR.

Execution

if (cond) {
abs(lsb16(src2)) → lsb16(dst)
abs(msb16(src2)) → msb16(dst)
}

else nop

92 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com ABS2 — Absolute Value With Saturation, Signed, Packed 16-Bit

Pipeline

Pipeline Stage E1

Read src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also ABS

Examples Example 1
ABS2 .L1 A0,A2

Before instruction 1 cycle after instruction

A0 FF68 4E3Dh -152 20029 A0 FF68 4E3Dh

A2 xxxx xxxxh A2 0098 4E3Dh 152 20029

Example 2
ABS2 .L1 A0,A2

Before instruction 1 cycle after instruction

A0 3FF6 F105h 16374 -3835 A0 3FF6 F105h

A2 xxxx xxxxh A2 3FF6 0EFBh 16374 3835

93SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

ADD — Add Two Signed Integers Without Saturation www.ti.com

ADD Add Two Signed Integers Without Saturation

Syntax ADD (.unit) src1, src2, dst

or

ADD (.L1 or .L2) src1, src2_h:src2_l, dst_h:dst_l

or

ADD (.D1 or .D2) src2, src1, dst (if the cross path form is not used)

or

ADD (.D1 or .D2) src1, src2, dst (if the cross path form is used)

or

ADD (.D1 or .D2) src2, src1, dst (if the cross path form is used with a constant)

unit = .D1, .D2, .L1, .L2, .S1, .S2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.L L3 Figure D-4

L3i Figure D-5

Lx1 Figure D-11

.S S3 Figure F-21

Sx2op Figure F-28

Sx1 Figure F-30

.D Dx2op Figure C-18

.L, .S, .D LSDx1 Figure G-4

94 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com ADD — Add Two Signed Integers Without Saturation

Opcode .L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1 sint .L1, .L2 000 0011
src2 xsint
dst sint

src1 sint .L1, .L2 010 0011
src2 xsint
dst slong

src1 xsint .L1, .L2 010 0001
src2 slong
dst slong

src1 scst5 .L1, .L2 000 0010
src2 xsint
dst sint

src1 scst5 .L1, .L2 010 0000
src2 slong
dst slong

Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x op 1 0 0 0 s p

3 1 5 5 5 1 6 1 1

Opcode map field used... For operand type... Unit Opfield

src1 sint .S1, .S2 00 0111
src2 xsint
dst sint

src1 scst5 .S1, .S2 00 0110
src2 xsint
dst sint

Description for .L1, .L2 and .S1, .S2 Opcodes src2 is added to src1. The result is placed in dst.

Execution for .L1, .L2 and .S1, .S2 Opcodes

if (cond) src1 + src2 → dst
else nop

95SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

ADD — Add Two Signed Integers Without Saturation www.ti.com

Opcode .D unit (if the cross path form is not used)

31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 src1 op 1 0 0 0 0 s p

3 1 5 5 5 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2 sint .D1, .D2 01 0000
src1 sint
dst sint

src2 sint .D1, .D2 01 0010
src1 ucst5
dst sint

Opcode .D unit (if the cross path form is used)

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 1 0 1 0 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 sint .D1, .D2
src2 xsint
dst sint

Opcode .D unit (if the cross path form is used with a constant)

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 1 0 1 1 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 scst5 .D1, .D2
src2 xsint
dst sint

Description for .D1, .D2 Opcodes src1 is added to src2. The result is placed in dst.

Execution for .D1, .D2 Opcodes

if (cond) src2 + src1 → dst
else nop

96 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com ADD — Add Two Signed Integers Without Saturation

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L, .S, or .D

Instruction Type Single-cycle

Delay Slots 0

See Also ADDU, ADD2, SADD

Examples Example 1
ADD .L2X A1,B1,B2

Before instruction 1 cycle after instruction

A1 0000 325Ah 12,890 A1 0000 325Ah

B1 FFFF FF12h -238 B1 FFFF FF12h

B2 xxxx xxxxh B2 0000 316Ch 12,652

Example 2
ADD .L1 A1,A3:A2,A5:A4

Before instruction 1 cycle after instruction

A1 0000 325Ah 12,890 A1 0000 325Ah

A3:A2 0000 00FFh FFFF FF12h -228 (1) A3:A2 0000 00FFh FFFF FF12h

A5:A4 0000 0000h 0000 0000h A5:A4 0000 0000h 0000 316Ch 12,652 (1)

(1) Signed 40-bit (long) integer

Example 3
ADD .L1 -13,A1,A6

Before instruction 1 cycle after instruction

A1 0000 325Ah 12,890 A1 0000 325Ah

A6 xxxx xxxxh A6 0000 324Dh 12,877

Example 4
ADD .D1 A1,26,A6

Before instruction 1 cycle after instruction

A1 0000 325Ah 12,890 A1 0000 325Ah

A6 xxxx xxxxh A6 0000 3274h 12,916

97SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

ADD — Add Two Signed Integers Without Saturation www.ti.com

Example 5
ADD .D1 B0,5,A2

Before instruction 1 cycle after instruction

B0 0000 0007h B0 0000 0007h

A2 xxxx xxxxh A2 0000 000Ch 12

98 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com ADDAB — Add Using Byte Addressing Mode

ADDAB Add Using Byte Addressing Mode

Syntax ADDAB (.unit) src2, src1, dst (C64x and C64x+ CPU)

or

ADDAB (.unit) B14/B15, ucst15, dst (C64x+ CPU)

unit = .D1 or .D2

Compatibility C62x, C64x, and C64x+ CPU

Opcode C64x and C64x+ CPU

31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 src1 op 1 0 0 0 0 s p

3 1 5 5 5 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2 sint .D1, .D2 11 0000
src1 sint
dst sint

src2 sint .D1, .D2 11 0010
src1 ucst5
dst sint

Description For the C64x and C64x+ CPU, src1 is added to src2 using the byte addressing mode
specified for src2. The addition defaults to linear mode. However, if src2 is one of A4-A7
or B4-B7, the mode can be changed to circular mode by writing the appropriate value to
the AMR (see Section 2.8.3).The result is placed in dst.

Execution

if (cond) src2 + src1 → dst
else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .D

99SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

ADDAB — Add Using Byte Addressing Mode www.ti.com

Opcode C64x+ CPU only

31 30 29 28 27 23 22 8 7 6 5 4 3 2 1 0

0 0 0 1 dst ucst15 y 0 1 1 1 1 s p

5 15 1 1 1

Description For the C64x+ CPU, this instruction reads a register (baseR), B14 (y = 0) or B15 (y = 1),
and adds a 15-bit unsigned constant (ucst15) to it, writing the result to a register (dst).
This instruction is executed unconditionally, it cannot be predicated.

The offset, ucst15, is added to baseR. The result of the calculation is written into dst.
The addressing arithmetic is always performed in linear mode.

The s bit determines the unit used (D1 or D2) and the file the destination is written to:
s = 0 indicates the unit is D1 and dst is in the A register file; and s = 1 indicates the unit
is D2 and dst is in the B register file.

Execution B14/B15 + ucst15 → dst

Pipeline

Pipeline Stage E1

Read B14/B15

Written dst

Unit in use .D

Instruction Type Single-cycle

Delay Slots 0

See Also ADDAD, ADDAH, ADDAW

Examples Example 1
ADDAB .D1 A4,A2,A4

Before instruction (1) 1 cycle after instruction

A2 0000 000Bh A2 0000 000Bh

A4 0000 0100h A4 0000 0103h

AMR 0002 0001h AMR 0002 0001h

(1) BK0 = 2: block size = 8
A4 in circular addressing mode using BK0

Example 2
ADDAB .D1X B14,42h,A4

Before instruction (1) 1 cycle after instruction

B14 0020 1000h A4 0020 1042h

(1) Using linear addressing.

100 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com ADDAB — Add Using Byte Addressing Mode

Example 3
ADDAB .D2 B14,7FFFh,B4

Before instruction (1) 1 cycle after instruction

B14 0010 0000h B4 0010 7FFFh

(1) Using linear addressing.

101SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

ADDAD — Add Using Doubleword Addressing Mode www.ti.com

ADDAD Add Using Doubleword Addressing Mode

Syntax ADDAD (.unit) src2, src1, dst

unit = . D1 or .D2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 src1 op 1 0 0 0 0 s p

3 1 5 5 5 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2 sint .D1, .D2 11 1100
src1 sint
dst sint

src2 sint .D1, .D2 11 1101
src1 ucst5
dst sint

Description src1 is added to src2 using the doubleword addressing mode specified for src2. The
addition defaults to linear mode. However, if src2 is one of A4-A7 or B4-B7, the mode
can be changed to circular mode by writing the appropriate value to the AMR (see
Section 2.8.3). src1 is left shifted by 3 due to doubleword data sizes. The result is placed
in dst.

NOTE: There is no SUBAD instruction.

Execution

if (cond) src2 + src1 <<3 → dst
else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .D

Instruction Type Single-cycle

Delay Slots 0

See Also ADDAB, ADDAH, ADDAW

102 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com ADDAD — Add Using Doubleword Addressing Mode

Example ADDAD .D1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 1234h 4660 A1 0000 1234h

A2 0000 0002h 2 A2 0000 0002h

A3 xxxx xxxxh A3 0000 1244h 4676

103SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

ADDAH — Add Using Halfword Addressing Mode www.ti.com

ADDAH Add Using Halfword Addressing Mode

Syntax ADDAH (.unit) src2, src1, dst (C64x and C64x+ CPU)

or

ADDAH (.unit) B14/B15, ucst15, dst (C64x+ CPU)

unit = .D1 or .D2

Compatibility C62x, C64x, and C64x+ CPU

Opcode C64x and C64x+ CPU

31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 src1 op 1 0 0 0 0 s p

3 1 5 5 5 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2 sint .D1, .D2 11 0100
src1 sint
dst sint

src2 sint .D1, .D2 11 0110
src1 ucst5
dst sint

Description For the C64x and C64x+ CPU, src1 is added to src2 using the halfword addressing
mode specified for src2. The addition defaults to linear mode. However, if src2 is one of
A4-A7 or B4-B7, the mode can be changed to circular mode by writing the appropriate
value to the AMR (see Section 2.8.3). src1 is left shifted by 1. The result is placed in dst.

Execution

if (cond) src2 + src1 <<1 → dst
else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .D

104 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com ADDAH — Add Using Halfword Addressing Mode

Opcode C64x+ CPU only

31 30 29 28 27 23 22 8 7 6 5 4 3 2 1 0

0 0 0 1 dst ucst15 y 1 0 1 1 1 s p

5 15 1 1 1

Description For the C64x+ CPU, this instruction reads a register (baseR), B14 (y = 0) or B15 (y = 1),
and adds a scaled 15-bit unsigned constant (ucst15) to it, writing the result to a register
(dst). This instruction is executed unconditionally, it cannot be predicated.

The offset, ucst15, is scaled by a left-shift of 1 and added to baseR. The result of the
calculation is written into dst. The addressing arithmetic is always performed in linear
mode.

The s bit determines the unit used (D1 or D2) and the file the destination is written to:
s = 0 indicates the unit is D1 and dst is in the A register file; and s = 1 indicates the unit
is D2 and dst is in the B register file.

Execution B14/B15 + (ucst15 << 1) → dst

Pipeline

Pipeline Stage E1

Read B14/B15

Written dst

Unit in use .D

Instruction Type Single-cycle

Delay Slots 0

See Also ADDAB, ADDAD, ADDAW

Examples Example 1
ADDAH .D1 A4,A2,A4

Before instruction (1) 1 cycle after instruction

A2 0000 000Bh A2 0000 000Bh

A4 0000 0100h A4 0000 0106h

AMR 0002 0001h AMR 0002 0001h

(1) BK0 = 2: block size = 8
A4 in circular addressing mode using BK0

Example 2
ADDAH .D1X B14,42h,A4

Before instruction (1) 1 cycle after instruction

B14 0020 1000h A4 0020 1084h

(1) Using linear addressing.

105SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

ADDAH — Add Using Halfword Addressing Mode www.ti.com

Example 3
ADDAH .D2 B14,7FFFh,B4

Before instruction (1) 1 cycle after instruction

B14 0010 0000h B4 0010 FFFEh

(1) Using linear addressing.

106 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com ADDAW — Add Using Word Addressing Mode

ADDAW Add Using Word Addressing Mode

Syntax ADDAW (.unit) src2, src1, dst (C64x and C64x+ CPU)

or

ADDAW (.unit) B14/B15, ucst15, dst (C64x+ CPU)

unit = .D1 or .D2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.D Dx5 Figure C-19

Dx5p Figure C-20

Opcode C64x and C64x+ CPU

31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 src1 op 1 0 0 0 0 s p

3 1 5 5 5 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2 sint .D1, .D2 11 1000
src1 sint
dst sint

src2 sint .D1, .D2 11 1010
src1 ucst5
dst sint

Description For the C64x and C64x+ CPU, src1 is added to src2 using the word addressing mode
specified for src2. The addition defaults to linear mode. However, if src2 is one of A4-A7
or B4-B7, the mode can be changed to circular mode by writing the appropriate value to
the AMR (see Section 2.8.3). src1 is left shifted by 2. The result is placed in dst.

Execution

if (cond) src2 + src1 <<2 → dst
else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .D

107SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

ADDAW — Add Using Word Addressing Mode www.ti.com

Opcode C64x+ CPU only

31 30 29 28 27 23 22 8 7 6 5 4 3 2 1 0

0 0 0 1 dst ucst15 y 1 1 1 1 1 s p

5 15 1 1 1

Description For the C64x+ CPU, this instruction reads a register (baseR), B14 (y = 0) or B15 (y = 1),
and adds a scaled 15-bit unsigned constant (ucst15) to it, writing the result to a register
(dst). This instruction is executed unconditionally, it cannot be predicated.

The offset, ucst15, is scaled by a left-shift of 2 and added to baseR. The result of the
calculation is written into dst. The addressing arithmetic is always performed in linear
mode.

The s bit determines the unit used (D1 or D2) and the file the destination is written to:
s = 0 indicates the unit is D1 and dst is in the A register file; and s = 1 indicates the unit
is D2 and dst is in the B register file.

Execution B14/B15 + (ucst15 << 2) → dst

Pipeline

Pipeline Stage E1

Read B14/B15

Written dst

Unit in use .D

Instruction Type Single-cycle

Delay Slots 0

See Also ADDAB, ADDAD, ADDAH

Examples Example 1
ADDAW .D1 A4,2,A4

Before instruction (1) 1 cycle after instruction

A4 0002 0000h A4 0002 0000h

AMR 0002 0001h AMR 0002 0001h

(1) BK0 = 2: block size = 8
A4 in circular addressing mode using BK0

Example 2
ADDAW .D1X B14,42h,A4

Before instruction (1) 1 cycle after instruction

B14 0020 1000h A4 0020 1108h

(1) Using linear addressing.

108 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com ADDAW — Add Using Word Addressing Mode

Example 3
ADDAW .D2 B14,7FFFh,B4

Before instruction (1) 1 cycle after instruction

B14 0010 0000h B4 0011 FFFCh

(1) Using linear addressing.

109SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

ADDK — Add Signed 16-Bit Constant to Register www.ti.com

ADDK Add Signed 16-Bit Constant to Register

Syntax ADDK (.unit) cst, dst

unit = .S1 or .S2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.S Sx5 Figure F-29

Opcode

31 29 28 27 23 22 7 6 5 4 3 2 1 0

creg z dst cst16 1 0 1 0 0 s p

3 1 5 16 1 1

Opcode map field used... For operand type... Unit

cst16 scst16 .S1, .S2
dst uint

Description A 16-bit signed constant, cst16, is added to the dst register specified. The result is
placed in dst.

Execution

if (cond) cst16 + dst → dst
else nop

Pipeline

Pipeline Stage E1

Read cst16

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Example ADDK .S1 15401,A1

Before instruction 1 cycle after instruction

A1 0021 37E1h 2,176,993 A1 0021 740Ah 2,192,394

110 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com ADDKPC — Add Signed 7-Bit Constant to Program Counter

ADDKPC Add Signed 7-Bit Constant to Program Counter

Syntax ADDKPC (.unit) src1, dst, src2

unit = .S2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 16 15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src1 src2 0 0 0 0 1 0 1 1 0 0 0 s p

3 1 5 7 3 1 1

Opcode map field used... For operand type... Unit

src1 scst7 .S2
src2 ucst3
dst uint

Description A 7-bit signed constant, src1, is shifted 2 bits to the left, then added to the address of the
first instruction of the fetch packet that contains the ADDKPC instruction (PCE1). The
result is placed in dst. The 3-bit unsigned constant, src2, specifies the number of NOP
cycles to insert after the current instruction. This instruction helps reduce the number of
instructions needed to set up the return address for a function call.

The following code:
B .S2 func
MVKL .S2 LABEL, B3
MVKH .S2 LABEL, B3
NOP 3

LABEL

could be replaced by:
B .S2 func
ADDKPC .S2 LABEL, B3, 4

LABEL

The 7-bit value coded as src1 is the difference between LABEL and PCE1 shifted right
by 2 bits. The address of LABEL must be within 9 bits of PCE1.

Only one ADDKPC instruction can be executed per cycle. An ADDKPC instruction
cannot be paired with any relative branch instruction in the same execute packet. If an
ADDKPC and a relative branch are in the same execute packet, and if the ADDKPC
instruction is executed when the branch is taken, behavior is undefined.

The ADDKPC instruction cannot be paired with any other multicycle NOP instruction in
the same execute packet. Instructions that generate a multicycle NOP are: IDLE, BNOP,
and the multicycle NOP.

Execution

if (cond) (scst7 << 2) + PCE1 → dst
else nop

111SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

ADDKPC — Add Signed 7-Bit Constant to Program Counter www.ti.com

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also B, BNOP

Example ADDKPC .S2 LABEL,B3,4
LABEL:

Before instruction (1) 1 cycle after instruction

PCE1 0040 13DCh

B3 xxxx xxxxh B3 0040 13E0h

(1) LABEL is equal to 0040 13DCh.

112 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com ADDSUB — Parallel ADD and SUB Operations On Common Inputs

ADDSUB Parallel ADD and SUB Operations On Common Inputs

Syntax ADDSUB (.unit) src1, src2, dst_o:dst_e

unit = .L1 or .L2

Compatibility C64x+ CPU only

Opcode

31 30 29 28 27 24 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 dst 0 src2 src1 x 0 0 0 1 1 0 0 1 1 0 s p

4 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 sint .L1, .L2
src2 xsint
dst dint

Description The following is performed in parallel:

1. src2 is added to src1. The result is placed in dst_o.
2. src2 is subtracted from src1. The result is placed in dst_e.

Execution

src1 + src2 → dst_o
src1 - src2 → dst_e

Instruction Type Single-cycle

Delay Slots 0

See Also ADDSUB2, SADDSUB

Examples Example 1
ADDSUB .L1 A0,A1,A3:A2

Before instruction 1 cycle after instruction

A0 0700 C005h A2 0700 C006h

A1 FFFF FFFFh A3 0700 C004h

Example 2
ADDSUB .L2X B0,A1,B3:B2

Before instruction 1 cycle after instruction

B0 7FFF FFFFh B2 7FFF FFFEh

A1 0000 0001h B3 8000 0000h

113SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

ADDSUB2 — Parallel ADD2 and SUB2 Operations On Common Inputs www.ti.com

ADDSUB2 Parallel ADD2 and SUB2 Operations On Common Inputs

Syntax ADDSUB2 (.unit) src1, src2, dst_o:dst_e

unit = .L1 or .L2

Compatibility C64x+ CPU only

Opcode

31 30 29 28 27 24 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 dst 0 src2 src1 x 0 0 0 1 1 0 1 1 1 0 s p

4 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 sint .L1, .L2
src2 xsint
dst dint

Description For the ADD2 operation, the upper and lower halves of the src2 operand are added to
the upper and lower halves of the src1 operand. The values in src1 and src2 are treated
as signed, packed 16-bit data and the results are written in signed, packed 16-bit format
into dst_o.

For the SUB2 operation, the upper and lower halves of the src2 operand are subtracted
from the upper and lower halves of the src1 operand. The values in src1 and src2 are
treated as signed, packed 16-bit data and the results are written in signed, packed 16-bit
format into dst_e.

Execution

lsb16(src1) + lsb16(src2) → lsb16(dst_o)
msb16(src1) + msb16(src2) → msb16(dst_o)
lsb16(src1) - lsb16(src2) → lsb16(dst_e)
msb16(src1) - msb16(src2) → msb16(dst_e)

Instruction Type Single-cycle

Delay Slots 0

See Also ADDSUB, SADDSUB2

Examples Example 1
ADDSUB2 .L1 A0,A1,A3:A2

Before instruction 1 cycle after instruction

A0 0700 C005h A2 0701 C004h

A1 FFFF 0001h A3 06FF C006h

114 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com ADDSUB2 — Parallel ADD2 and SUB2 Operations On Common Inputs

Example 2
ADDSUB2 .L2X B0,A1,B3:B2

Before instruction 1 cycle after instruction

B0 7FFF 8000h B2 8000 8001h

A1 FFFF FFFFh B3 7FFE 7FFFh

Example 3
ADDSUB2 .L1 A0,A1,A3:A2

Before instruction 1 cycle after instruction

A0 9000 9000h A2 1000 1000h

A1 8000 8000h A3 1000 1000h

Example 4
ADDSUB2 .L1 A0,A1,A3:A2

Before instruction 1 cycle after instruction

A0 9000 8000h A2 1000 F000h

A1 8000 9000h A3 1000 1000h

115SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

ADDU — Add Two Unsigned Integers Without Saturation www.ti.com

ADDU Add Two Unsigned Integers Without Saturation

Syntax ADDU (.unit) src1, src2, dst

unit = .L1 or .L2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1 uint .L1, .L2 010 1011
src2 xuint
dst ulong

src1 xuint .L1, .L2 010 1001
src2 ulong
dst ulong

Description src2 is added to src1. The result is placed in dst.

Execution

if (cond) src1 + src2 → dst
else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also ADD, SADD

116 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com ADDU — Add Two Unsigned Integers Without Saturation

Examples Example 1
ADDU .L1 A1,A2,A5:A4

Before instruction 1 cycle after instruction

A1 0000 325Ah 12,890 (1) A1 0000 325Ah

A2 FFFF FF12h 4,294,967,058 (1) A2 FFFF FF12h

A5:A4 xxxx xxxxh A5:A4 0000 0001h 0000 316Ch 4,294,979,948 (2)

(1) Unsigned 32-bit integer
(2) Unsigned 40-bit (long) integer

Example 2
ADDU .L1 A1,A3:A2,A5:A4

Before instruction 1 cycle after instruction

A1 0000 325Ah 12,890 (1) A1 0000 325Ah

A3:A2 0000 00FFh FFFF FF12h 1,099,511,627,538 (2) A3:A2 0000 00FFh FFFF FF12h

A5:A4 0000 0000h 0000 0000h 0 A5:A4 0000 0000h 0000 316Ch 12,652 (2)

(1) Unsigned 32-bit integer
(2) Unsigned 40-bit (long) integer

117SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

ADD2 — Add Two 16-Bit Integers on Upper and Lower Register Halves www.ti.com

ADD2 Add Two 16-Bit Integers on Upper and Lower Register Halves

Syntax ADD2 (.unit) src1, src2, dst

unit = .S1, .S2, .L1, .L2, .D1, .D2

Compatibility C62x, C64x, and C64x+ CPU

Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 0 0 0 1 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 i2 .S1, .S2
src2 xi2
dst i2

Opcode .L Unit

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 0 0 1 0 1 1 1 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 i2 .L1, .L2
src2 xi2
dst i2

Opcode .D unit

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 0 1 0 0 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 i2 .D1, .D2
src2 xi2
dst i2

118 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com ADD2 — Add Two 16-Bit Integers on Upper and Lower Register Halves

Description The upper and lower halves of the src1 operand are added to the upper and lower
halves of the src2 operand. The values in src1 and src2 are treated as signed, packed
16-bit data and the results are written in signed, packed 16-bit format into dst.

For each pair of signed packed 16-bit values found in the src1 and src2, the sum
between the 16-bit value from src1 and the 16-bit value from src2 is calculated to
produce a 16-bit result. The result is placed in the corresponding positions in the dst.
The carry from the lower half add does not affect the upper half add.

31 16 15 0

a_hi a_lo ← src1

+ +

ADD2

b_hi b_lo ← src2

= =

31 16 15 0

a_hi + b_hi a_lo + b_lo ← dst

Execution

if (cond) {
msb16(src1) + msb16(src2) → msb16(dst);
lsb16(src1) + lsb16(src2) → lsb16(dst)
}

else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .S, .L, .D

Instruction Type Single-cycle

Delay Slots 0

See Also ADD, ADD4, SADD2, SUB2

Examples Example 1
ADD2 .S1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 0021 37E1h 33 14305 A1 0021 37E1h

A2 xxxx xxxxh A2 03BB 1C99h 955 7321

B1 039A E4B8h 922 58552 B1 039A E4B8h

119SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

ADD2 — Add Two 16-Bit Integers on Upper and Lower Register Halves www.ti.com

Example 2
ADD2 .L1 A0,A1,A2

Before instruction 1 cycle after instruction

A0 0021 37E1h 33 14305 A0 0021 37E1h
signed

A1 039A E4B8h 922 -6984 A1 039A E4B8h
signed

A2 xxxx xxxxh A2 03BB 1C99h 955 7321
signed

120 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com ADD4 — Add Without Saturation, Four 8-Bit Pairs for Four 8-Bit Results

ADD4 Add Without Saturation, Four 8-Bit Pairs for Four 8-Bit Results

Syntax ADD4 (.unit) src1, src2, dst

unit = .L1 or .L2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 0 0 1 0 1 1 1 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 i4 .L1, .L2
src2 xi4
dst i4

Description Performs 2s-complement addition between packed 8-bit quantities. The values in src1
and src2 are treated as packed 8-bit data and the results are written into dst in a packed
8-bit format.

For each pair of packed 8-bit values in src1 and src2, the sum between the 8-bit value
from src1 and the 8-bit value from src2 is calculated to produce an 8-bit result. No
saturation is performed. The carry from one 8-bit add does not affect the add of any
other 8-bit add. The result is placed in the corresponding positions in dst:

• The sum of src1 byte0 and src2 byte0 is placed in byte0 of dst.
• The sum of src1 byte1 and src2 byte1 is placed in byte1 of dst.
• The sum of src1 byte2 and src2 byte2 is placed in byte2 of dst.
• The sum of src1 byte3 and src2 byte3 is placed in byte3 of dst.

31 24 23 16 15 8 7 0

a_3 a_2 a_1 a_0 ← src1

+ + + +

ADD4

b_3 b_2 b_1 b_0 ← src2

= = = =

31 24 23 16 15 8 7 0

a_3 + b_3 a_2 + b_2 a_1 + b_1 a_0 + b_0 ← dst

121SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

ADD4 — Add Without Saturation, Four 8-Bit Pairs for Four 8-Bit Results www.ti.com

Execution

if (cond) {
byte0(src1) + byte0(src2) → byte0(dst);
byte1(src1) + byte1(src2) → byte1(dst);
byte2(src1) + byte2(src2) → byte2(dst);
byte3(src1) + byte3(src2) → byte3(dst)
}

else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also ADD, ADD2, SADDU4, SUB4

Examples Example 1
ADD4 .L1 A0,A1,A2

Before instruction 1 cycle after instruction

A0 FF 68 4E 3Dh -1 104 78 61 A0 FF 68 4E 3Dh

A1 3F F6 F1 05h 63 -10 -15 5 A1 3F F6 F1 05h

A2 xxxx xxxxh A2 3E 5E 3F 42h 62 94 63 66

Example 2
ADD4 .L1 A0,A1,A2

Before instruction 1 cycle after instruction

A0 4A E2 D3 1Fh 74 226 211 31 A0 4A E2 D3 1Fh

A1 32 1A C1 28h 50 26 -63 40 A1 32 1A C1 28h

A2 xxxx xxxxh A2 7C FC 94 47h 124 252 148 71

122 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com AND — Bitwise AND

AND Bitwise AND

Syntax AND (.unit) src1, src2, dst

unit = .L1, .L2, .S1, .S2, .D1, .D2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.L L2c Figure D-7

Opcode .L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1 uint .L1, .L2 111 1011
src2 xuint
dst uint

src1 scst5 .L1, .L2 111 1010
src2 xuint
dst uint

Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x op 1 0 0 0 s p

3 1 5 5 5 1 6 1 1

Opcode map field used... For operand type... Unit Opfield

src1 uint .S1, .S2 01 1111
src2 xuint
dst uint

src1 scst5 .S1, .S2 01 1110
src2 xuint
dst uint

123SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

AND — Bitwise AND www.ti.com

Opcode .D unit

31 29 28 27 23 22 18 17 13 12 11 10 9 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 op 1 1 0 0 s p

3 1 5 5 5 1 4 1 1

Opcode map field used... For operand type... Unit Opfield

src1 uint .D1, .D2 0110
src2 xuint
dst uint

src1 scst5 .D1, .D2 0111
src2 xuint
dst uint

Description Performs a bitwise AND operation between src1 and src2. The result is placed in dst.
The scst5 operands are sign extended to 32 bits.

Execution

if (cond) src1 AND src2 → dst
else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L, .S, or .D

Instruction Type Single-cycle

Delay Slots 0

See Also ANDN, OR, XOR

Examples Example 1
AND .L1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 F7A1 302Ah A1 F7A1 302Ah

A2 xxxx xxxxh A2 02A0 2020h

B1 02B6 E724h B1 02B6 E724h

124 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com AND — Bitwise AND

Example 2
AND .L1 15,A1,A3

Before instruction 1 cycle after instruction

A1 32E4 6936h A1 32E4 6936h

A3 xxxx xxxxh A3 0000 0006h

125SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

ANDN — Bitwise AND Invert www.ti.com

ANDN Bitwise AND Invert

Syntax ANDN (.unit) src1, src2, dst

unit = .L1, .L2, S1, .S2, .D1, .D2

Compatibility C64x and C64x+ CPU

Opcode .L unit

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 1 1 1 0 0 1 1 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 uint .L1, .L2
src2 xuint
dst uint

Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 0 1 1 0 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 uint .S1, .S2
src2 xuint
dst uint

Opcode .D unit

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 0 0 0 0 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 uint .D1, .D2
src2 xuint
dst uint

Description Performs a bitwise logical AND operation between src1 and the bitwise logical inverse of
src2. The result is placed in dst.

126 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com ANDN — Bitwise AND Invert

Execution

if (cond) src1 AND ~src2 → dst
else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L, .S, or .D

Instruction Type Single-cycle

Delay Slots 0

See Also AND, OR, XOR

Example ANDN .L1 A0,A1,A2

Before instruction 1 cycle after instruction

A0 1957 21ABh A0 1957 21ABh

A1 081C 17E6h F7E3 E819h A1 081C 17E6h

A2 xxxx xxxxh A2 1143 2009h

127SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

AVG2 — Average, Signed, Packed 16-Bit www.ti.com

AVG2 Average, Signed, Packed 16-Bit

Syntax AVG2 (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 0 0 1 1 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 s2 .M1, .M2
src2 xs2
dst s2

Description Performs an averaging operation on packed 16-bit data. For each pair of signed 16-bit
values found in src1 and src2, AVG2 calculates the average of the two values and
returns a signed 16-bit quantity in the corresponding position in the dst.

The averaging operation is performed by adding 1 to the sum of the two 16-bit numbers
being averaged. The result is then right-shifted by 1 to produce a 16-bit result.

No overflow conditions exist.

31 16 15 0

sa_1 sa_0 ← src1

AVG2

sb_1 sb_0 ← src2

↓ ↓

31 16 15 0

(sa_1 + sb_1 + 1) >> 1 (sa_0 + sb_0 + 1) >> 1 ← dst

Execution

if (cond) {
((lsb16(src1) + lsb16(src2) + 1) >> 1) → lsb16(dst);
((msb16(src1) + msb16(src2) + 1) >> 1) → msb16(dst)
}

else nop

128 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com AVG2 — Average, Signed, Packed 16-Bit

Pipeline

Pipeline Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Two-cycle

Delay Slots 1

See Also AVGU4

Example AVG2 .M1 A0,A1,A2

Before instruction 2 cycles after instruction

A0 6198 4357h 24984 17239 A0 6198 4357h

A1 7582 AE15 30082 -20971 A1 7582 AE15h

A2 xxxx xxxxh A2 6B8D F8B6h 27533 -1866

129SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

AVGU4 — Average, Unsigned, Packed 8-Bit www.ti.com

AVGU4 Average, Unsigned, Packed 8-Bit

Syntax AVGU4 (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 0 0 1 0 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 u4 .M1, .M2
src2 xu4
dst u4

Description Performs an averaging operation on packed 8-bit data. The values in src1 and src2 are
treated as unsigned, packed 8-bit data and the results are written in unsigned, packed
8-bit format. For each unsigned, packed 8-bit value found in src1 and src2, AVGU4
calculates the average of the two values and returns an unsigned, 8-bit quantity in the
corresponding positions in the dst.

The averaging operation is performed by adding 1 to the sum of the two 8-bit numbers
being averaged. The result is then right-shifted by 1 to produce an 8-bit result.

No overflow conditions exist.

31 24 23 16 15 8 7 0

ua_3 ua_2 ua_1 ua_0 ← src1

AVGU4

ub_3 ub_2 ub_1 ub_0 ← src2

↓ ↓ ↓ ↓

31 24 23 16 15 8 7 0

(ua_3 + ub_3 + 1) >> 1 (ua_2 + ub_2 + 1) >> 1 (ua_1 + ub_1 + 1) >> 1 (ua_0 + ub_0 + 1) >> 1 ← dst

Execution

if (cond) {
((ubyte0(src1) + ubyte0(src2) + 1) >> 1) → ubyte0(dst);
((ubyte1(src1) + ubyte1(src2) + 1) >> 1) → ubyte1(dst);
((ubyte2(src1) + ubyte2(src2) + 1) >> 1) → ubyte2(dst);
((ubyte3(src1) + ubyte3(src2) + 1) >> 1) → ubyte3(dst)
}

else nop

130 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com AVGU4 — Average, Unsigned, Packed 8-Bit

Pipeline

Pipeline Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Two-cycle

Delay Slots 1

See Also AVG2

Example AVGU4 .M1 A0,A1,A2

Before instruction 2 cycles after instruction

A0 1A 2E 5F 4Eh 26 46 95 78 A0 1A 2E 5F 4Eh
unsigned

A1 9E F2 6E 3Fh 158 242 110 63 A1 9E F2 6E 3Fh
unsigned

A2 xxxx xxxxh A2 5C 90 67 47h 92 144 103 71
unsigned

131SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

B — Branch Using a Displacement www.ti.com

B Branch Using a Displacement

Syntax B (.unit) label

unit = .S1 or .S2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 7 6 5 4 3 2 1 0

creg z cst21 0 0 1 0 0 s p

3 1 21 1 1

Opcode map field used... For operand type... Unit

cst21 scst21 .S1, .S2

Description A 21-bit signed constant, cst21, is shifted left by 2 bits and is added to the address of the
first instruction of the fetch packet that contains the branch instruction. The result is
placed in the program fetch counter (PFC). The assembler/linker automatically computes
the correct value for cst21 by the following formula:

cst21 = (label - PCE1) >> 2

If two branches are in the same execute packet and both are taken, behavior is
undefined.

Two conditional branches can be in the same execute packet if one branch uses a
displacement and the other uses a register, IRP, or NRP. As long as only one branch
has a true condition, the code executes in a well-defined way.

NOTE:
1. PCE1 (program counter) represents the address of the first

instruction in the fetch packet in the E1 stage of the pipeline.
PFC is the program fetch counter.

2. The execute packets in the delay slots of a branch cannot be
interrupted. This is true regardless of whether the branch is taken.

3. See Section 3.4.2 for information on branching into the middle of an
execute packet.

4. On the C64x+ CPU, a branch to an execute packet that spans two
fetch packets will cause a stall while the second fetch packet is
fetched.

5. A relative branch instruction cannot be in the same execute packet
as an ADDKPC instruction.

Execution

if (cond) (cst21 << 2) + PCE1 → PFC
else nop

132 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com B — Branch Using a Displacement

Pipeline

Target Instruction

Pipeline Stage E1 PS PW PR DP DC E1

Read

Written

Branch taken ✓
Unit in use .S

Instruction Type Branch

Delay Slots 5

Example Table 3-14 gives the program counter values and actions for the following code example.
0000 0000 B .S1 LOOP
0000 0004 ADD .L1 A1, A2, A3
0000 0008 || ADD .L2 B1, B2, B3
0000 000C LOOP: MPY .M1X A3, B3, A4
0000 0010 || SUB .D1 A5, A6, A6
0000 0014 MPY .M1 A3, A6, A5
0000 0018 MPY .M1 A6, A7, A8
0000 001C SHR .S1 A4, 15, A4
0000 0020 ADD .D1 A4, A6, A4

Table 3-14. Program Counter Values for Branch Using a Displacement Example

Cycle Program Counter Value Action

Cycle 0 0000 0000h Branch command executes (target code fetched)

Cycle 1 0000 0004h

Cycle 2 0000 000Ch

Cycle 3 0000 0014h

Cycle 4 0000 0018h

Cycle 5 0000 001Ch

Cycle 6 0000 000Ch Branch target code executes

Cycle 7 0000 0014h

133SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

B — Branch Using a Register www.ti.com

B Branch Using a Register

Syntax B (.unit) src2

unit = .S2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 26 25 24 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z 0 0 0 0 0 src2 0 0 0 0 0 x 0 0 1 1 0 1 1 0 0 0 1 p

3 1 5 1 1

Opcode map field used... For operand type... Unit

src2 xuint .S2

Description src2 is placed in the program fetch counter (PFC).

If two branches are in the same execute packet and are both taken, behavior is
undefined.

Two conditional branches can be in the same execute packet if one branch uses a
displacement and the other uses a register, IRP, or NRP. As long as only one branch
has a true condition, the code executes in a well-defined way.

NOTE:
1. This instruction executes on .S2 only. PFC is program fetch counter.
2. The execute packets in the delay slots of a branch cannot be

interrupted. This is true regardless of whether the branch is taken.
3. See Section 3.4.2 for information on branching into the middle of an

execute packet.
4. On the C64x+ CPU, a branch to an execute packet that spans two

fetch packets will cause a stall while the second fetch packet is
fetched.

Execution

if (cond) src2 → PFC
else nop

Pipeline

Target Instruction

Pipeline Stage E1 PS PW PR DP DC E1

Read src2

Written

Branch taken ✓
Unit in use .S2

134 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com B — Branch Using a Register

Instruction Type Branch

Delay Slots 5

Example Table 3-15 gives the program counter values and actions for the following code example.
In this example, the B10 register holds the value 1000 000Ch.
1000 0000 B .S2 B10
1000 0004 ADD .L1 A1, A2, A3
1000 0008 || ADD .L2 B1, B2, B3
1000 000C MPY .M1X A3, B3, A4
1000 0010 || SUB .D1 A5, A6, A6
1000 0014 MPY .M1 A3, A6, A5
1000 0018 MPY .M1 A6, A7, A8
1000 001C SHR .S1 A4, 15, A4
1000 0020 ADD .D1 A4, A6, A4

Table 3-15. Program Counter Values for Branch Using a Register Example

Cycle Program Counter Value Action

Cycle 0 1000 0000h Branch command executes (target code fetched)

Cycle 1 1000 0004h

Cycle 2 1000 000Ch

Cycle 3 1000 0014h

Cycle 4 1000 0018h

Cycle 5 1000 001Ch

Cycle 6 1000 000Ch Branch target code executes

Cycle 7 1000 0014h

135SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

B IRP — Branch Using an Interrupt Return Pointer www.ti.com

B IRP Branch Using an Interrupt Return Pointer

Syntax B (.unit) IRP

unit = .S2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 p

3 1 1

Description IRP is placed in the program fetch counter (PFC). This instruction also moves the PGIE
bit value to the GIE bit. The PGIE bit is unchanged.

If two branches are in the same execute packet and are both taken, behavior is
undefined.

Two conditional branches can be in the same execute packet if one branch uses a
displacement and the other uses a register, IRP, or NRP. As long as only one branch
has a true condition, the code executes in a well-defined way.

NOTE:
1. This instruction executes on .S2 only. PFC is the program fetch

counter.
2. Refer to Chapter 5 for more information on IRP, PGIE, and GIE.
3. The execute packets in the delay slots of a branch cannot be

interrupted. This is true regardless of whether the branch is taken.
4. See Section 3.4.2 for information on branching into the middle of an

execute packet.
5. On the C64x+ CPU, a branch to an execute packet that spans two

fetch packets will cause a stall while the second fetch packet is
fetched.

Execution

if (cond) IRP → PFC
else nop

Pipeline

Target Instruction

Pipeline Stage E1 PS PW PR DP DC E1

Read IRP

Written

Branch taken ✓
Unit in use .S2

136 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com B IRP — Branch Using an Interrupt Return Pointer

Instruction Type Branch

Delay Slots 5

Example Table 3-16 gives the program counter values and actions for the following code example.
Given that an interrupt occurred at
PC = 0000 1000 IRP = 0000 1000

0000 0020 B .S2 IRP
0000 0024 ADD .S1 A0, A2, A1
0000 0028 MPY .M1 A1, A0, A1
0000 002C NOP
0000 0030 SHR .S1 A1, 15, A1
0000 0034 ADD .L1 A1, A2, A1
0000 0038 ADD .L2 B1, B2, B3

Table 3-16. Program Counter Values for B IRP Instruction Example

Cycle Program Counter Value Action

Cycle 0 0000 0020 Branch command executes (target code fetched)

Cycle 1 0000 0024

Cycle 2 0000 0028

Cycle 3 0000 002C

Cycle 4 0000 0030

Cycle 5 0000 0034

Cycle 6 0000 1000 Branch target code executes

137SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

B NRP — Branch Using NMI Return Pointer www.ti.com

B NRP Branch Using NMI Return Pointer

Syntax B (.unit) NRP

unit = .S2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 p

3 1 1

Description NRP is placed in the program fetch counter (PFC). This instruction also sets the NMIE
bit. The PGIE bit is unchanged.

If two branches are in the same execute packet and are both taken, behavior is
undefined.

Two conditional branches can be in the same execute packet if one branch uses a
displacement and the other uses a register, IRP, or NRP. As long as only one branch
has a true condition, the code executes in a well-defined way.

NOTE:
1. This instruction executes on .S2 only. PFC is program fetch counter.
2. Refer to Chapter 5 for more information on NRP and NMIE.
3. The execute packets in the delay slots of a branch cannot be

interrupted. This is true regardless of whether the branch is taken.
4. See Section 3.4.2 for information on branching into the middle of an

execute packet.
5. On the C64x+ CPU, a branch to an execute packet that spans two

fetch packets will cause a stall while the second fetch packet is
fetched.

Execution

if (cond) NRP → PFC
else nop

Pipeline

Target Instruction

Pipeline Stage E1 PS PW PR DP DC E1

Read NRP

Written

Branch taken ✓
Unit in use .S2

138 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com B NRP — Branch Using NMI Return Pointer

Instruction Type Branch

Delay Slots 5

Example Table 3-17 gives the program counter values and actions for the following code example.
Given that an interrupt occurred at
PC = 0000 1000 IRP = 0000 1000

0000 0020 B .S2 NRP
0000 0024 ADD .S1 A0, A2, A1
0000 0028 MPY .M1 A1, A0, A1
0000 002C NOP
0000 0030 SHR .S1 A1, 15, A1
0000 0034 ADD .L1 A1, A2, A1
0000 0038 ADD .L2 B1, B2, B3

Table 3-17. Program Counter Values for B NRP Instruction Example

Cycle Program Counter Value Action

Cycle 0 0000 0020 Branch command executes (target code fetched)

Cycle 1 0000 0024

Cycle 2 0000 0028

Cycle 3 0000 002C

Cycle 4 0000 0030

Cycle 5 0000 0034

Cycle 6 0000 1000 Branch target code executes

139SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

BDEC — Branch and Decrement www.ti.com

BDEC Branch and Decrement

Syntax BDEC (.unit) src, dst

unit = .S1 or .S2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src 1 0 0 0 0 0 0 1 0 0 0 s p

3 1 5 10 1 1

Opcode map field used... For operand type... Unit

src scst10 .S1, .S2
dst int

Description If the predication and decrement register (dst) is positive (greater than or equal to 0), the
BDEC instruction performs a relative branch and decrements dst by 1. The instruction
performs the relative branch using a 10-bit signed constant, scst10, in src. The constant
is shifted 2 bits to the left, then added to the address of the first instruction of the fetch
packet that contains the BDEC instruction (PCE1). The result is placed in the program
fetch counter (PFC).

This instruction helps reduce the number of instructions needed to decrement a register
and conditionally branch based upon the value of the register. Note also that any register
can be used that can free the predicate registers (A0-A2 and B0-B2) for other uses.

The following code:
CMPLT .L1 A10,0,A1

[!A1] SUB .L1 A10,1,A10
||[!A1] B .S1 func

NOP 5

could be replaced by:
BDEC .S1 func, A10
NOP 5

NOTE:
1. Only one BDEC instruction can be executed per cycle. The BDEC

instruction can be predicated by using any conventional condition
register. The conditions are effectively ANDed together. If two
branches are in the same execute packet, and if both are taken,
behavior is undefined.

2. See Section 3.4.2 for information on branching into the middle of an
execute packet.

3. On the C64x+ CPU, a branch to an execute packet that spans two
fetch packets will cause a stall while the second fetch packet is
fetched.

4. The BDEC instruction cannot be in the same execute packet as an
ADDKPC instruction.

140 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com BDEC — Branch and Decrement

Execution

if (cond) {
if (dst >= 0), PFC = ((PCE1 + se(scst10)) << 2);
if (dst >= 0), dst = dst - 1;
else nop
}

else nop

Pipeline

Target Instruction

Pipeline Stage E1 PS PW PR DP DC E1

Read dst

Written dst, PC

Branch taken ✓
Unit in use .S

Instruction Type Branch

Delay Slots 5

Examples Example 1
BDEC .S1 100h,A10

Before instruction After branch has been taken

PCE1 0100 0000h

PC xxxx xxxxh PC 0100 0400h

A10 0000 000Ah A10 0000 0009h

Example 2
BDEC .S1 300h,A10 ; 300h is sign extended

Before instruction After branch has been taken

PCE1 0100 0000h

PC xxxx xxxxh PC 00FF FC00h

A10 0000 0010h A10 0000 000Fh

141SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

BITC4 — Bit Count, Packed 8-Bit www.ti.com

BITC4 Bit Count, Packed 8-Bit

Syntax BITC4 (.unit) src2, dst

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 1 1 1 1 0 x 0 0 0 0 1 1 1 1 0 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2 xu4 .M1, .M2
dst u4

Description Performs a bit-count operation on 8-bit quantities. The value in src2 is treated as packed
8-bit data, and the result is written in packed 8-bit format. For each of the 8-bit quantities
in src2, the count of the number of 1 bits in that value is written to the corresponding
position in dst.

31 24 23 16 15 8 7 0

ub_3 ub_2 ub_1 ub_0 ← src2

BITC4

↓ ↓ ↓ ↓

31 24 23 16 15 8 7 0

bit_count(ub_3) bit_count(ub_2) bit_count(ub_1) bit_count(ub_0) ← dst

Execution

if (cond) {
bit_count(src2(ubyte0)) → ubyte0(dst);
bit_count(src2(ubyte1)) → ubyte1(dst);
bit_count(src2(ubyte2)) → ubyte2(dst);
bit_count(src2(ubyte3)) → ubyte3(dst)
}

else nop

Pipeline

Pipeline Stage E1 E2

Read src2

Written dst

Unit in use .M

142 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com BITC4 — Bit Count, Packed 8-Bit

Instruction Type Two-cycle

Delay Slots 1

Example BITC4 .M1 A1,A2

Before instruction 2 cycles after instruction

A1 9E 52 6E 30h A1 9E 52 6E 30h

A2 xxxx xxxxh A2 05 03 05 02h

143SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

BITR — Bit Reverse www.ti.com

BITR Bit Reverse

Syntax BITR (.unit) src2, dst

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 1 1 1 1 1 x 0 0 0 0 1 1 1 1 0 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2 xuint .M1, .M2
dst uint

Description Implements a bit-reversal function that reverses the order of bits in a 32-bit word. This
means that bit 0 of the source becomes bit 31 of the result, bit 1 of the source becomes
bit 30 of the result, bit 2 becomes bit 29, and so on.

31 0

abcd efgh ijkl mnop qrst uvwx yzAB CDEF ← src2

BITR

↓

31 0

FEDC BAzy xwvu tsrq ponm lkji hgfe dcba ← dst

Execution

if (cond) bit_reverse(src2) → dst
else nop

Pipeline

Pipeline Stage E1 E2

Read src2

Written dst

Unit in use .M

Instruction Type Two-cycle

Delay Slots 1

144 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com BITR — Bit Reverse

Example BITR .M2 B4,B5

Before instruction 2 cycles after instruction

B4 A6E2 C179h B4 A6E2 C179h

B5 xxxx xxxxh B5 9E83 4765h

145SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

BNOP — Branch Using a Displacement With NOP www.ti.com

BNOP Branch Using a Displacement With NOP

Syntax BNOP (.unit) src2, src1

unit = .S1 or .S2 (C64x and C64x+ CPU)

unit = .S1, .S2, or none (C64x+ CPU only)

Compatibility C64x and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.S Sbs7 Figure F-16

Sbu8 Figure F-17

Sbs7c Figure F-19

Sbu8c Figure F-20

Sx1b Figure F-31

Opcode

31 29 28 27 16 15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z src2 src1 0 0 0 0 1 0 0 1 0 0 0 s p

3 1 12 3 1 1

Opcode map field used... For operand type... Unit

src2 scst12 .S1, .S2
src1 ucst3

Description The constant displacement form of the BNOP instruction performs a relative branch with
NOP instructions. The instruction performs the relative branch using the 12-bit signed
constant specified by src2. The constant is shifted 2 bits to the left, then added to the
address of the first instruction of the fetch packet that contains the BNOP instruction
(PCE1). The result is placed in the program fetch counter (PFC).

The 3-bit unsigned constant specified in src1 gives the number of delay slot NOP
instructions to be inserted, from 0 to 7. With src1 = 0, no NOP cycles are inserted.

This instruction helps reduce the number of instructions to perform a branch when NOP
instructions are required to fill the delay slots of a branch.

The following code:
B .S1 LABEL
NOP N

LABEL: ADD

could be replaced by:
BNOP .S1 LABEL, N

LABEL: ADD

146 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com BNOP — Branch Using a Displacement With NOP

NOTE:
1. BNOP instructions may be predicated. The predication condition

controls whether or not the branch is taken, but does not affect the
insertion of NOPs. BNOP always inserts the number of NOPs
specified by N, regardless of the predication condition.

2. The execute packets in the delay slots of a branch cannot be
interrupted. This is true regardless of whether the branch is taken.

3. See Section 3.4.2 for information on branching into the middle of an
execute packet.

4. On the C64x+ CPU, a branch to an execute packet that spans two
fetch packets will cause a stall while the second fetch packet is
fetched.

Only one branch instruction can be executed per cycle. If two branches are in the same
execute packet, and if both are taken, the behavior is undefined. It should also be noted
that when a predicated BNOP instruction is used with a NOP count greater than 5, the
C64x CPU inserts the full delay slots requested when the predicated condition is false.

For example, the following set of instructions will insert 7 cycles of NOPs:
ZERO .L1 A0

[A0] BNOP .S1 LABEL,7 ; branch is not taken and
; 7 cycles of NOPs are inserted

Conversely, when a predicated BNOP instruction is used with a NOP count greater than
5 and the predication condition is true, the branch will be taken and the multi-cycle NOP
is terminated when the branch is taken.

For example in the following set of instructions, only 5 cycles of NOP are inserted:
MVK .D1 1,A0

[A0] BNOP .S1 LABEL,7 ; branch is taken and
; 5 cycles of NOPs are inserted

The BNOP instruction cannot be paired with any other multicycle NOP instruction in the
same execute packet. Instructions that generate a multicycle NOP are: IDLE, ADDKPC,
CALLP, and the multicycle NOP.

For the C64x+ CPU: The BNOP instruction does not require the use of the .S unit. If no
unit is specified, then it may be scheduled in parallel with instructions executing on both
the .S1 and .S2 units. If either the .S1 or .S2 unit is specified for BNOP, then the .S unit
specified is not available for another instruction in the same execute packet. This is
enforced by the assembler.

For the C64x+ CPU: It is possible to branch into the middle of a 32-bit instruction. The
only case that will be detected and result in an exception is when the 32-bit instruction is
contained in a compact header-based fetch packet. The header cannot be the target of a
branch instruction. In the event that the header is the target of a branch, an exception
will be raised.

147SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

BNOP — Branch Using a Displacement With NOP www.ti.com

Execution (if instruction is within compact instruction fetch packet, C64x+ CPU only)

if (cond) {
PFC = (PCE1 + (se(scst12) << 1));
nop (src1)
}

else nop (src1 + 1)

Execution (if instruction is not within compact instruction fetch packet)

if (cond) {
PFC = (PCE1 + (se(scst12) << 2));
nop (src1)
}

else nop (src1 + 1)

Pipeline

Target Instruction

Pipeline Stage E1 PS PW PR DP DC E1

Read src2

Written PC

Branch taken ✓
Unit in use .S

Instruction Type Branch

Delay Slots 5

See Also ADDKPC, B, NOP

Example BNOP .S1 30h,2

Before instruction After branch has been taken

PCE1 0100 0500h

PC xxxx xxxxh PC 0100 1100h

148 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com BNOP — Branch Using a Register With NOP

BNOP Branch Using a Register With NOP

Syntax BNOP (.unit) src2, src1

unit = .S2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 26 25 24 23 22 18 17 16 15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z 0 0 0 0 1 src2 0 0 src1 x 0 0 1 1 0 1 1 0 0 0 1 p

3 1 5 3 1 1

Opcode map field used... For operand type... Unit

src2 xuint .S2
src1 ucst3

Description The register form of the BNOP instruction performs an absolute branch with NOP
instructions. The register specified in src2 is placed in the program fetch counter (PFC).

For branch targets residing in compact header-based fetch packets(C64x+ CPU only,
see Section 3.9 for more information), the 31 most-significant bits of the register are
used to determine the branch target. For branch targets not residing in compact
header-based fetch packets, the 30 most-significant bits of the register are used to
determine the branch target.

The 3-bit unsigned constant specified in src1 gives the number of delay slots NOP
instructions to be inserted, from 0 to 7. With src1 = 0, no NOP cycles are inserted.

This instruction helps reduce the number of instructions to perform a branch when NOP
instructions are required to fill the delay slots of a branch.

The following code:
B .S2 B3
NOP N

could be replaced by:
BNOP .S2 B3,N

NOTE:
1. BNOP instructions may be predicated. The predication condition

controls whether or not the branch is taken, but does not affect the
insertion of NOPs. BNOP always inserts the number of NOPs
specified by N, regardless of the predication condition.

2. The execute packets in the delay slots of a branch cannot be
interrupted. This is true regardless of whether the branch is taken.

3. See Section 3.4.2 for information on branching into the middle of an
execute packet.

4. On the C64x+ CPU, a branch to an execute packet that spans two
fetch packets will cause a stall while the second fetch packet is
fetched.

149SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

BNOP — Branch Using a Register With NOP www.ti.com

Only one branch instruction can be executed per cycle. If two branches are in the same
execute packet, and if both are taken, the behavior is undefined. It should also be noted
that when a predicated BNOP instruction is used with a NOP count greater than 5, the
CPU inserts the full delay slots requested when the predicated condition is false.

For example, the following set of instructions will insert 7 cycles of NOPs:
ZERO .L1 A0

[A0] BNOP .S2 B3,7 ; branch is not taken and 7 cycles of NOPs are inserted

Conversely, when a predicated BNOP instruction is used with a NOP count greater than
5 and the predication condition is true, the branch will be taken and multi-cycle NOP is
terminated when the branch is taken.

For example, in the following set of instructions only 5 cycles of NOP are inserted:
MVK .D1 1,A0

[A0] BNOP .S2 B3,7 ; branch is taken and 5 cycles of NOPs are inserted

The BNOP instruction cannot be paired with any other multicycle NOP instruction in the
same execute packet. Instructions that generate a multicycle NOP are: IDLE, ADDKPC,
CALLP, and the multicycle NOP.

Execution

if (cond) {
src2 → PFC;
nop (src1)
}

else nop (src1 + 1)

Pipeline

Target Instruction

Pipeline Stage E1 PS PW PR DP DC E1

Read src2

Written PC

Branch taken ✓
Unit in use .S2

Instruction Type Branch

Delay Slots 5

See Also ADDKPC, B, NOP

Example BNOP .S2 A5,2

Before instruction After branch has been taken

PCE1 0010 0000h

PC xxxx xxxxh PC 0100 F000h

A5 0100 F000h A5 0100 F000h

150 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com BPOS — Branch Positive

BPOS Branch Positive

Syntax BPOS (.unit) src, dst

unit = .S1 or .S2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src 0 0 0 0 0 0 0 1 0 0 0 s p

3 1 5 10 1 1

Opcode map field used... For operand type... Unit

src scst10 .S1, .S2
dst int

Description If the predication register (dst) is positive (greater than or equal to 0), the BPOS
instruction performs a relative branch. If dst is negative, the BPOS instruction takes no
other action.

The instruction performs the relative branch using a 10-bit signed constant, scst10, in
src. The constant is shifted 2 bits to the left, then added to the address of the first
instruction of the fetch packet that contains the BPOS instruction (PCE1). The result is
placed in the program fetch counter (PFC).

Any register can be used that can free the predicate registers (A0-A2 and B0-B2) for
other uses.

NOTE:
1. Only one BPOS instruction can be executed per cycle. The BPOS

instruction can be predicated by using any conventional condition
register. The conditions are effectively ANDed together. If two
branches are in the same execute packet, and if both are taken,
behavior is undefined.

2. The execute packets in the delay slots of a branch cannot be
interrupted. This is true regardless of whether the branch is taken.

3. See Section 3.4.2 for information on branching into the middle of an
execute packet.

4. On the C64x+ CPU, a branch to an execute packet that spans two
fetch packets will cause a stall while the second fetch packet is
fetched.

5. The BPOS instruction cannot be in the same execute packet as an
ADDKPC instruction.

Execution

if (cond) {
if (dst >= 0), PFC = (PCE1 + (se(scst10) << 2));
else nop
}

else nop

151SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

BPOS — Branch Positive www.ti.com

Pipeline

Target Instruction

Pipeline Stage E1 PS PW PR DP DC E1

Read dst

Written PC

Branch taken ✓
Unit in use .S

Instruction Type Branch

Delay Slots 5

Example BPOS .S1 200h,A10

Before instruction After branch has been taken

PCE1 0010 0000h

PC xxxx xxxxh PC 0100 0800h

A10 0000 000Ah A10 0000 000Ah

152 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com CALLP — Call Using a Displacement

CALLP Call Using a Displacement

Syntax CALLP (.unit) label, A3/B3

unit = .S1 or .S2

Compatibility C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.S Scs10 Figure F-18

Opcode

31 30 29 28 27 7 6 5 4 3 2 1 0

0 0 0 1 cst21 0 0 1 0 0 s p

21 1 1

Opcode map field used... For operand type... Unit

cst21 scst21 .S1, .S2

Description A 21-bit signed constant, cst21, is shifted left by 2 bits and is added to the address of the
first instruction of the fetch packet that contains the branch instruction. The result is
placed in the program fetch counter (PFC). The assembler/linker automatically computes
the correct value for cst21 by the following formula:

cst21 = (label - PCE1) >> 2

The address of the execute packet immediately following the execute packet containing
the CALLP instruction is placed in A3, if the S1 unit is used; or in B3, if the S2 unit is
used. This write occurs in E1. An implied NOP 5 is inserted into the instruction pipeline
occupying E2-E6.

Since this branch is taken unconditionally, it cannot be placed in the same execute
packet as another branch. Additionally, no other branches should be pending when the
CALLP instruction is executed.

CALLP, like other relative branch instructions, cannot have an ADDKPC instruction in
the same execute packet with it.

NOTE:
1. PCE1 (program counter) represents the address of the first

instruction in the fetch packet in the E1 stage of the pipeline. PFC is
the program fetch counter. retPC represents the address of the first
instruction of the execute packet in the DC stage of the pipeline.

2. The execute packets in the delay slots of a branch cannot be
interrupted. This is true regardless of whether the branch is taken.

153SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

CALLP — Call Using a Displacement www.ti.com

Execution

(cst21 << 2) + PCE1 → PFC
if (unit = S2), retPC → B3
else if (unit = S1), retPC → A3
nop 5

Pipeline

Target Instruction

Pipeline Stage E1 PS PW PR DP DC E1

Read

Written A3/B3

Branch taken ✓
Unit in use .S

Instruction Type Branch

Delay Slots 5

154 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com CLR — Clear a Bit Field

CLR Clear a Bit Field

Syntax CLR (.unit) src2, csta, cstb, dst

or

CLR (.unit) src2, src1, dst

unit = .S1 or .S2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.S Sc5 Figure F-26

Opcode Constant form

31 29 28 27 23 22 18 17 13 12 8 7 6 5 4 3 2 1 0

creg z dst src2 csta cstb 1 1 0 0 1 0 s p

3 1 5 5 5 5 1 1

Opcode map field used... For operand type... Unit

src2 uint .S1, .S2
csta ucst5
cstb ucst5
dst uint

Opcode Register form

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 1 1 1 1 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2 xuint .S1, .S2
src1 uint
dst uint

Description For cstb ≥ csta, the field in src2 as specified by csta to cstb is cleared to all 0s in dst.
The csta and cstb operands may be specified as constants or in the 10 LSBs of the src1
register, with cstb being bits 0−4 (src1 4..0) and csta being bits 5−9 (src1 9..5). csta is the
LSB of the field and cstb is the MSB of the field. In other words, csta and cstb represent
the beginning and ending bits, respectively, of the field to be cleared to all 0s in dst. The
LSB location of src2 is bit 0 and the MSB location of src2 is bit 31.

155SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

X

31

X

30

X

29

X

28

X

27

X

26

X

25

X

24

1

23

0

22

1

21

0

20

0

19

1

18

1

17

0

16

1

15

X

14

X

13

X

12

X

11

X

10

X

9

X

8

X

7

X

6

X

5

X

4

X

3

X

2

X

1

X

0

X

31

X

30

X

29

X

28

X

27

X

26

X

25

X

24

0

23

0

22

0

21

0

20

0

19

0

18

0

17

0

16

0

15

X

14

X

13

X

12

X

11

X

10

X

9

X

8

X

7

X

6

X

5

X

4

X

3

X

2

X

1

X

0

src2

dst

csta

cstb

CLR — Clear a Bit Field www.ti.com

In the following example, csta is 15 and cstb is 23. For the register version of the
instruction, only the 10 LSBs of the src1 register are valid. If any of the 22 MSBs are
non-zero, the result is invalid.

For cstb < csta, the src2 register is copied to dst. The csta and cstb operands may be
specified as constants or in the 10 LSBs of the src1 register, with cstb being bits 0−4
(src1 4..0) and csta being bits 5−9 (src1 9..5).

Execution If the constant form is used when cstb ≥ csta:

if (cond) src2 clear csta, cstb → dst
else nop

If the register form is used when cstb ≥ csta:

if (cond) src2 clear src1 9..5, src1 4..0 → dst
else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also SET

Examples Example 1
CLR .S1 A1,4,19,A2

Before instruction 1 cycle after instruction

A1 07A4 3F2Ah A1 07A4 3F2Ah

A2 xxxx xxxxh A2 07A0 000Ah

156 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com CLR — Clear a Bit Field

Example 2
CLR .S2 B1,B3,B2

Before instruction 1 cycle after instruction

B1 03B6 E7D5h B1 03B6 E7D5h

B2 xxxx xxxxh B2 03B0 0001h

B3 0000 0052h B3 0000 0052h

157SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

CMPEQ — Compare for Equality, Signed Integer www.ti.com

CMPEQ Compare for Equality, Signed Integer

Syntax CMPEQ (.unit) src1, src2, dst

unit = .L1 or .L2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.L L2c Figure D-7

Lx3c Figure D-9

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1 sint .L1, .L2 101 0011
src2 xsint
dst uint

src1 scst5 .L1, .L2 101 0010
src2 xsint
dst uint

src1 xsint .L1, .L2 101 0001
src2 slong
dst uint

src1 scst5 .L1, .L2 101 0000
src2 slong
dst uint

Description Compares src1 to src2. If src1 equals src2, then 1 is written to dst; otherwise, 0 is written
to dst.

Execution

if (cond) {
if (src1 == src2), 1 → dst
else 0 → dst
}

else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L

158 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com CMPEQ — Compare for Equality, Signed Integer

Instruction Type Single-cycle

Delay Slots 0

See Also CMPEQ2, CMPEQ4

Examples Example 1
CMPEQ .L1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 0000 04B8h 1208 A1 0000 04B8h

A2 xxxx xxxxh A2 0000 0000h false

B1 0000 04B7h 1207 B1 0000 04B7h

Example 2
CMPEQ .L1 Ch,A1,A2

Before instruction 1 cycle after instruction

A1 0000 000Ch 12 A1 0000 000Ch

A2 xxxx xxxxh A2 0000 0001h true

Example 3
CMPEQ .L2X A1,B3:B2,B1

Before instruction 1 cycle after instruction

A1 F23A 3789h A1 F23A 3789h

B1 xxxx xxxxh B1 0000 0001h true

B3:B2 0000 00FFh F23A 3789h B3:B2 0000 00FFh F23A 3789h

159SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

0

31

0 0

2

=

1

=

0

dst

a_hi = = b_hi

a_lo = = b_lo

CMPEQ2 — Compare for Equality, Packed 16-Bit www.ti.com

CMPEQ2 Compare for Equality, Packed 16-Bit

Syntax CMPEQ2 (.unit) src1, src2, dst

unit = .S1 or .S2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 1 1 0 1 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 s2 .S1, .S2
src2 xs2
dst bv2

Description Performs equality comparisons on packed 16-bit data. Each 16-bit value in src1 is
compared against the corresponding 16-bit value in src2, returning either a 1 if equal or
a 0 if not equal. The equality results are packed into the two least-significant bits of dst.
The result for the lower pair of values is placed in bit 0, and the results for the upper pair
of values are placed in bit 1. The remaining bits of dst are cleared to 0.

31 16 15 0

a_hi a_lo ← src1

CMPEQ2

↓↑ ↓↑

31 16 15 0

b_hi b_lo ← src2

Execution

if (cond) {
if (lsb16(src1) == lsb16(src2)), 1 → dst 0

else 0 → dst 0;
if (msb16(src1) == msb16(src2)), 1 → dst 1

else 0 → dst 1

}
else nop

160 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com CMPEQ2 — Compare for Equality, Packed 16-Bit

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also CMPEQ, CMPEQ4, CMPGT2, XPND2

Examples Example 1
CMPEQ2 .S1 A3,A4,A5

Before instruction 1 cycle after instruction

A3 1105 6E30h A3 1105 6E30h

A4 1105 6980h A4 1105 6980h

A5 xxxx xxxxh A5 0000 0002h true, false

Example 2
CMPEQ2 .S2 B2,B8,B15

Before instruction 1 cycle after instruction

B2 F23A 3789h B2 F23A 3789h

B8 04B8 3789h B8 04B8 3789h

B15 xxxx xxxxh B15 0000 0001h false, true

Example 3
CMPEQ2 .S2 B2,B8,B15

Before instruction 1 cycle after instruction

B2 01B6 2451h B2 01B6 2451h

B8 01B6 2451h B8 01B6 2451h

B15 xxxx xxxxh B15 0000 0003h true, true

161SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

0

31

0 0

2

=

1

=

0

dst

sa_1 = = sb_1

sa_0 = = sb_0

4 3

= =

sa_3 = = sb_3

sa_2 = = sb_2

CMPEQ4 — Compare for Equality, Packed 8-Bit www.ti.com

CMPEQ4 Compare for Equality, Packed 8-Bit

Syntax CMPEQ4 (.unit) src1, src2, dst

unit = .S1 or .S2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 1 1 0 0 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 s4 .S1, .S2
src2 xs4
dst bv4

Description Performs equality comparisons on packed 8-bit data. Each 8-bit value in src1 is
compared against the corresponding 8-bit value in src2, returning either a 1 if equal or a
0 if not equal. The equality comparison results are packed into the four least-significant
bits of dst.

The 8-bit values in each input are numbered from 0 to 3, starting with the
least-significant byte, then working towards the most-significant byte. The comparison
results for byte 0 are written to bit 0 of the result. Likewise the results for byte 1 to 3 are
written to bits 1 to 3 of the result, respectively, as shown in the diagram below. The
remaining bits of dst are cleared to 0.

31 24 23 16 15 8 7 0

sa_3 sa_2 sa_1 sa_0 ← src1

CMPEQ4

↓↑ ↓↑ ↓↑ ↓↑

31 24 23 16 15 8 7 0

sb_3 sb_2 sb_1 sb_0 ← src2

162 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com CMPEQ4 — Compare for Equality, Packed 8-Bit

Execution

if (cond) {
if (sbyte0(src1) == sbyte0(src2)), 1 → dst 0

else 0 → dst 0;
if (sbyte1(src1) == sbyte1(src2)), 1 → dst 1

else 0 → dst 1;
if (sbyte2(src1) == sbyte2(src2)), 1 → dst 2

else 0 → dst 2;
if (sbyte3(src1) == sbyte3(src2)), 1 → dst 3

else 0 → dst 3

}
else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also CMPEQ, CMPEQ2, CMPGTU4, XPND4

Examples Example 1
CMPEQ4 .S1 A3,A4,A5

Before instruction 1 cycle after instruction

A3 02 3A 4E 1Ch A3 02 3A 4E 1Ch

A4 02 B8 4E 76h A4 02 B8 4E 76h

A5 xxxx xxxxh A5 0000 000Ah true, false, false, false

Example 2
CMPEQ4 .S2 B2,B8,B13

Before instruction 1 cycle after instruction

B2 F2 3A 37 89h B2 F2 3A 37 89h

B8 04 B8 37 89h B8 04 B8 37 89h

B13 xxxx xxxxh B13 0000 0003h false, false, true, true

163SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

CMPEQ4 — Compare for Equality, Packed 8-Bit www.ti.com

Example 3
CMPEQ4 .S2 B2,B8,B13

Before instruction 1 cycle after instruction

B2 01 B6 24 51h B2 01 B6 24 51h

B8 05 B6 24 51h B8 05 B6 24 51h

B13 xxxx xxxxh B13 0000 0007h false, true, true, true

164 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com CMPGT — Compare for Greater Than, Signed Integers

CMPGT Compare for Greater Than, Signed Integers

Syntax CMPGT (.unit) src1, src2, dst

unit = .L1 or .L2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.L L2c Figure D-7

Lx1c Figure D-10

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1 sint .L1, .L2 100 0111
src2 xsint
dst uint

src1 scst5 .L1, .L2 100 0110
src2 xsint
dst uint

src1 xsint .L1, .L2 100 0101
src2 slong
dst uint

src1 scst5 .L1, .L2 100 0100
src2 slong
dst uint

Description Performs a signed comparison of src1 to src2. If src1 is greater than src2, then a 1 is
written to dst; otherwise, a 0 is written to dst.

165SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

CMPGT — Compare for Greater Than, Signed Integers www.ti.com

NOTE: The CMPGT instruction allows using a 5-bit constant as src1. If src2 is a
5-bit constant, as in
CMPGT .L1 A4, 5, A0

Then to implement this operation, the assembler converts this instruction
to
CMPLT .L1 5, A4, A0

These two instructions are equivalent, with the second instruction using
the conventional operand types for src1 and src2.

Similarly, the CMPGT instruction allows a cross path operand to be used
as src2. If src1 is a cross path operand as in
CMPGT .L1x B4, A5, A0

Then to implement this operation the assembler converts this instruction
to
CMPLT .L1x A5, B4, A0

In both of these operations the listing file (.lst) will have the first
implementation, and the second implementation will appear in the
debugger.

Execution

if (cond) {
if (src1 > src2), 1 → dst
else 0 → dst
}

else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also CMPGT2, CMPGTU, CMPGTU4

Examples Example 1
CMPGT .L1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 0000 01B6h 438 A1 0000 01B6h

A2 xxxx xxxxh A2 0000 0000h false

B1 0000 08BDh 2237 B1 0000 08BDh

166 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com CMPGT — Compare for Greater Than, Signed Integers

Example 2
CMPGT .L1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 FFFF FE91h -367 A1 FFFF FE91h

A2 xxxx xxxxh A2 0000 0001h true

B1 FFFF FDC4h -572 B1 FFFF FDC4h

Example 3
CMPGT .L1 8,A1,A2

Before instruction 1 cycle after instruction

A1 0000 0023h 35 A1 0000 0023h

A2 xxxx xxxxh A2 0000 0000h false

Example 4
CMPGT .L1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 0000 00EBh 235 A1 0000 00EBh

A2 xxxx xxxxh A2 0000 0000h false

B1 0000 00EBh 235 B1 0000 00EBh

167SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

0

31

0 0

2

>

1

>

0

dst0 0

a_hi > b_hi

a_lo > b_lo

CMPGT2 — Compare for Greater Than, Packed 16-Bit www.ti.com

CMPGT2 Compare for Greater Than, Packed 16-Bit

Syntax CMPGT2 (.unit) src1, src2, dst

unit = .S1 or .S2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 0 1 0 0 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 s2 .S1, .S2
src2 xs2
dst bv2

Description Performs comparisons for greater than values on signed, packed 16-bit data. Each
signed 16-bit value in src1 is compared against the corresponding signed 16-bit value in
src2, returning a 1 if src1 is greater than src2 or returning a 0 if it is not greater. The
comparison results are packed into the two least-significant bits of dst. The result for the
lower pair of values is placed in bit 0, and the results for the upper pair of values are
placed in bit 1. The remaining bits of dst are cleared to 0.

31 16 15 0

a_hi a_lo ← src1

CMPGT2

↓↑ ↓↑

31 16 15 0

b_hi b_lo ← src2

Execution

if (cond) {
if (lsb16(src1) > lsb16(src2)), 1 → dst 0

else 0 → dst 0;
if (msb16(src1) > msb16(src2)), 1 → dst 1

else 0 → dst 1

}
else nop

168 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com CMPGT2 — Compare for Greater Than, Packed 16-Bit

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also CMPEQ2, CMPGT, CMPGTU, CMPGTU4, CMPLT2, XPND2

Examples Example 1
CMPGT2 .S1 A3,A4,A5

Before instruction 1 cycle after instruction

A3 1105 6E30h 4357 28208 A3 1105 6E30h

A4 1105 6980h 4357 27008 A4 1105 6980h

A5 xxxx xxxxh A5 0000 0001h false, true

Example 2
CMPGT2 .S2 B2,B8,B15

Before instruction 1 cycle after instruction

B2 F348 3789h -3526 14217 B2 F348 3789h

B8 04B8 4975h 1208 18805 B8 04B8 4975h

B15 xxxx xxxxh B15 0000 0000h false, false

Example 3
CMPGT2 .S2 B2, B8, B15

Before instruction 1 cycle after instruction

B2 01A6 2451h 422 9297 B2 01A6 2451h

B8 0124 A051h 292 -24495 B8 0124 A051h

B15 xxxx xxxxh B15 0000 0003h true, true

169SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

CMPGTU — Compare for Greater Than, Unsigned Integers www.ti.com

CMPGTU Compare for Greater Than, Unsigned Integers

Syntax CMPGTU (.unit) src1, src2, dst

unit = .L1 or .L2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.L L2c Figure D-7

Lx1c Figure D-10

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1 uint .L1, .L2 100 1111
src2 xuint
dst uint

src1 ucst4 .L1, .L2 100 1110
src2 xuint
dst uint

src1 xuint .L1, .L2 100 1101
src2 ulong
dst uint

src1 ucst4 or ucst5 (1) .L1, .L2 100 1100
src2 ulong
dst uint

(1) On the C62x CPU, only the four LSBs (ucst4) are valid in the 5-bit src1 field. On the C64x and C64x+ CPU, all five bits (ucst5)
are valid in the 5-bit src1 field.

Description Performs an unsigned comparison of src1 to src2. If src1 is greater than src2, then a 1 is
written to dst; otherwise, a 0 is written to dst.

On the C62x CPU: When the ucst4 operand is used, only the four LSBs are valid in the
5-bit src1 field; if the MSB of the src1 field is nonzero, the result is invalid.

On the C64x and C64x+ CPU: When the ucst5 operand is used, all five bits are valid in
the 5-bit src1 field.

Execution

if (cond) {
if (src1 > src2), 1 → dst
else 0 → dst
}

else nop

170 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com CMPGTU — Compare for Greater Than, Unsigned Integers

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also CMPGT, CMPGT2, CMPGTU4

Examples Example 1
CMPGTU .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 0128h 296 (1) A1 0000 0128h

A2 FFFF FFDEh 4,294,967,262 (1) A2 FFFF FFDEh

A3 xxxx xxxxh A3 0000 0000h false

(1) Unsigned 32-bit integer

Example 2
CMPGTU .L1 0Ah,A1,A2

Before instruction 1 cycle after instruction

A1 0000 0005h 5 (1) A1 0000 0005h

A2 xxxx xxxxh A2 0000 0001h true

(1) Unsigned 32-bit integer

Example 3
CMPGTU .L1 0Eh,A3:A2,A4

Before instruction 1 cycle after instruction

A3:A2 0000 0000h 0000 000Ah 10 (1) A3:A2 0000 0000h 0000 000Ah

A4 xxxx xxxxh A4 0000 0001h true

(1) Unsigned 40-bit (long) integer

171SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

0

31

0 0

2

>

1

>

0

dst

ua_1 > ub_1

ua_0 > ub_0

ua_3 > ub_3

ua_2 > ub_2

> >

4 3

CMPGTU4 — Compare for Greater Than, Unsigned, Packed 8-Bit www.ti.com

CMPGTU4 Compare for Greater Than, Unsigned, Packed 8-Bit

Syntax CMPGTU4 (.unit) src1, src2, dst

unit = .S1 or .S2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 0 1 0 1 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 u4 .S1, .S2
src2 xu4
dst bv4

Description Performs comparisons for greater than values on packed 8-bit data. Each unsigned 8-bit
value in src1 is compared against the corresponding unsigned 8-bit value in src2,
returning a 1 if the byte in src1 is greater than the corresponding byte in src2 or a 0 if is
not greater. The comparison results are packed into the four least-significant bits of dst.

The 8-bit values in each input are numbered from 0 to 3, starting with the
least-significant byte, then working towards the most-significant byte. The comparison
results for byte 0 are written to bit 0 of the result. Likewise, the results for byte 1 to 3 are
written to bits 1 to 3 of the result, respectively, as shown in the diagram below. The
remaining bits of dst are cleared to 0.

31 24 23 16 15 8 7 0

ua_3 ua_2 ua_1 ua_0 ← src1

CMPGTU4

↓↑ ↓↑ ↓↑ ↓↑

31 24 23 16 15 8 7 0

ub_3 ub_2 ub_1 ub_0 ← src2

172 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com CMPGTU4 — Compare for Greater Than, Unsigned, Packed 8-Bit

Execution

if (cond) {
if (ubyte0(src1) > ubyte0(src2)), 1 → dst 0

else 0 → dst 0;
if (ubyte1(src1) > ubyte1(src2)), 1 → dst 1

else 0 → dst 1;
if (ubyte2(src1) > ubyte2(src2)), 1 → dst 2

else 0 → dst 2;
if (ubyte3(src1) > ubyte3(src2)), 1 → dst 3

else 0 → dst 3

}
else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also CMPEQ4, CMPGT, CMPGT2, CMPGTU, CMPLT, XPND4

Examples Example 1
CMPGTU4 .S1 A3,A4,A5

Before instruction 1 cycle after instruction

A3 25 3A 1C E4h 37 58 28 228 A3 25 3A 1C E4h

A4 02 B8 4E 76h 2 184 78 118 A4 02 B8 4E 76h

A5 xxxx xxxxh A5 0000 0009h true, false, false, true

Example 2
CMPGTU4 .S2 B2,B8,B13

Before instruction 1 cycle after instruction

B2 89 F2 3A 37h 137 242 58 55 B2 89 F2 3A 37h

B8 04 8F 17 89h 4 143 23 137 B8 04 8F 17 89h

B13 xxxx xxxxh B13 0000 000Eh true, true, true, false

173SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

CMPGTU4 — Compare for Greater Than, Unsigned, Packed 8-Bit www.ti.com

Example 3
CMPGTU4 .S2 B2,B8,B13

Before instruction 1 cycle after instruction

B2 12 33 9D 51h 18 51 157 81 B2 12 33 9D 51h

B8 75 67 24 C5h 117 103 36 197 B8 75 67 24 C5h

B13 xxxx xxxxh B13 0000 0002h false, false, true, false

174 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com CMPLT — Compare for Less Than, Signed Integers

CMPLT Compare for Less Than, Signed Integers

Syntax CMPLT (.unit) src1, src2, dst

unit = .L1 or .L2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.L L2c Figure D-7

Lx1c Figure D-10

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1 sint .L1, .L2 101 0111
src2 xsint
dst uint

src1 scst5 .L1, .L2 101 0110
src2 xsint
dst uint

src1 xsint .L1, .L2 101 0101
src2 slong
dst uint

src1 scst5 .L1, .L2 101 0100
src2 slong
dst uint

Description Performs a signed comparison of src1 to src2. If src1 is less than src2, then 1 is written
to dst; otherwise, 0 is written to dst.

175SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

CMPLT — Compare for Less Than, Signed Integers www.ti.com

NOTE: The CMPLT instruction allows using a 5-bit constant as src1. If src2 is a
5-bit constant, as in
CMPLT .L1 A4, 5, A0

Then to implement this operation, the assembler converts this instruction
to
CMPGT .L1 5, A4, A0

These two instructions are equivalent, with the second instruction using
the conventional operand types for src1 and src2.

Similarly, the CMPLT instruction allows a cross path operand to be used
as src2. If src1 is a cross path operand as in
CMPLT .L1x B4, A5, A0

Then to implement this operation, the assembler converts this instruction
to
CMPGT .L1x A5, B4, A0

In both of these operations the listing file (.lst) will have the first
implementation, and the second implementation will appear in the
debugger.

Execution

if (cond) {
if (src1 < src2), 1 → dst
else 0 → dst
}

else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also CMPLT2, CMPLTU, CMPLTU4

Examples Example 1
CMPLT .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 07E2h 2018 A1 0000 07E2h

A2 0000 0F6Bh 3947 A2 0000 0F6Bh

A3 xxxx xxxxh A3 0000 0001h true

176 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com CMPLT — Compare for Less Than, Signed Integers

Example 2
CMPLT .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 FFFF FED6h -298 A1 FFFF FED6h

A2 0000 000Ch 12 A2 0000 000Ch

A3 xxxx xxxxh A3 0000 0001h true

Example 3
CMPLT .L1 9,A1,A2

Before instruction 1 cycle after instruction

A1 0000 0005h 5 A1 0000 0005h

A2 xxxx xxxxh A2 0000 0000h false

177SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

CMPLT2 — Compare for Less Than, Packed 16-Bit www.ti.com

CMPLT2 Compare for Less Than, Packed 16-Bit

Syntax CMPLT2 (.unit) src2, src1, dst

unit = .S1 or .S2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 0 1 0 0 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 s2 .S1, .S2
src2 xs2
dst bv2

Description The CMPLT2 instruction is a pseudo-operation used to perform less-than comparisons
on signed, packed 16-bit data. Each signed 16-bit value in src2 is compared against the
corresponding signed 16-bit value in src1, returning a 1 if src2 is less than src1 or
returning a 0 if it is not less than. The comparison results are packed into the two
least-significant bits of dst. The result for the lower pair of values is placed in bit 0, and
the results for the upper pair of values are placed in bit 1. The remaining bits of dst are
cleared to 0.

The assembler uses the operation CMPGT2 (.unit) src1, src2, dst to perform this task
(see CMPGT2).

Execution

if (cond) {
if (lsb16(src2) < lsb16(src1)), 1 → dst 0

else 0 → dst 0;
if (msb16(src2) < msb16(src1)), 1 → dst 1

else 0 → dst 1

}
else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also CMPEQ2, CMPGT2, CMPLT, CMPLTU, CMPLTU4, XPND2

178 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com CMPLT2 — Compare for Less Than, Packed 16-Bit

Examples Example 1
CMPLT2 .S1 A4,A3,A5; assembler treats as CMPGT2 A3,A4,A5

Before instruction 1 cycle after instruction

A3 1105 6E30h 4357 28208 A3 1105 6E30h

A4 1105 6980h 4357 27008 A4 1105 6980h

A5 xxxx xxxxh A5 0000 0001h false, true

Example 2
CMPLT2 .S2 B8,B2,B15; assembler treats as CMPGT2 B2,B8,B15

Before instruction 1 cycle after instruction

B2 F23A 3789h -3526 14217 B2 F23A 3789h

B8 04B8 4975h 1208 18805 B8 04B8 4975h

B15 xxxx xxxxh B15 0000 0000h false, false

Example 3
CMPLT2 .S2 B8,B2,B12; assembler treats as CMPGT2 B2,B8,B15

Before instruction 1 cycle after instruction

B2 01A6 2451h 422 9297 B2 01A6 2451h

B8 0124 A051h 292 -24495 B8 0124 A051h

B12 xxxx xxxxh B12 0000 0003h true, true

179SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

CMPLTU — Compare for Less Than, Unsigned Integers www.ti.com

CMPLTU Compare for Less Than, Unsigned Integers

Syntax CMPLTU (.unit) src1, src2, dst

unit = .L1 or .L2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.L L2c Figure D-7

Lx1c Figure D-10

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1 uint .L1, .L2 101 1111
src2 xuint
dst uint

src1 ucst4 .L1, .L2 101 1110
src2 xuint
dst uint

src1 xuint .L1, .L2 101 1101
src2 ulong
dst uint

src1 ucst4 or ucst5 (1) .L1, .L2 101 1100
src2 ulong
dst uint

(1) On the C62x CPU, only the four LSBs (ucst4) are valid in the 5-bit src1 field. On the C64x and C64x+ CPU, all five bits (ucst5)
are valid in the 5-bit src1 field.

Description Performs an unsigned comparison of src1 to src2. If src1 is less than src2, then 1 is
written to dst; otherwise, 0 is written to dst.

On the C62x CPU: When the ucst4 operand is used, only the four LSBs are valid in the
5-bit src1 field; if the MSB of the src1 field is nonzero, the result is invalid.

On the C64x and C64x+ CPU: When the ucst5 operand is used, all five bits are valid in
the 5-bit src1 field.

Execution

if (cond) {
if (src1 < src2), 1 → dst
else 0 → dst
}

else nop

180 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com CMPLTU — Compare for Less Than, Unsigned Integers

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also CMPLT, CMPLT2, CMPLTU4

Examples Example 1
CMPLTU .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 289Ah 10,394 (1) A1 0000 289Ah

A2 FFFF F35Eh 4,294,964,062 (1) A2 FFFF F35Eh

A3 xxxx xxxxh A3 0000 0001h true

(1) Unsigned 32-bit integer

Example 2
CMPLTU .L1 14,A1,A2

Before instruction 1 cycle after instruction

A1 0000 000Fh 15 (1) A1 0000 000Fh

A2 xxxx xxxxh A2 0000 0001h true

(1) Unsigned 32-bit integer

Example 3
CMPLTU .L1 A1,A5:A4,A2

Before instruction 1 cycle after instruction

A1 003B 8260h 3,900,000 (1) A1 003B 8260h

A2 xxxx xxxxh A2 0000 0000h false

A5:A4 0000 0000h 003A 0002h 3,801,090 (2) A5:A4 0000 0000h 003A 0002h

(1) Unsigned 32-bit integer
(2) Unsigned 40-bit (long) integer

181SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

CMPLTU4 — Compare for Less Than, Unsigned, Packed 8-Bit www.ti.com

CMPLTU4 Compare for Less Than, Unsigned, Packed 8-Bit

Syntax CMPLTU4 (.unit) src2, src1, dst

unit = .S1 or .S2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 0 1 0 1 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 u4 .S1, .S2
src2 xu4
dst bv4

Description The CMPLTU4 instruction is a pseudo-operation that performs less-than comparisons on
packed 8-bit data. Each unsigned 8-bit value in src2 is compared against the
corresponding unsigned 8-bit value in src1, returning a 1 if the byte in src2 is less than
the corresponding byte in src1 or a 0 it if is not less than. The comparison results are
packed into the four least-significant bits of dst.

The 8-bit values in each input are numbered from 0 to 3, starting with the
least-significant byte, and moving towards the most-significant byte. The comparison
results for byte 0 are written to bit 0 of the result. Similarly, the results for byte 1 to 3 are
written to bits 1 to 3 of the result, respectively, as shown in the diagram below. The
remaining bits of dst are cleared to 0.

The assembler uses the operation CMPGTU4 (.unit) src1, src2, dst to perform this task
(see CMPGTU4).

Execution

if (cond) {
if (ubyte0(src2) < ubyte0(src1)), 1 → dst 0

else 0 → dst 0;
if (ubyte1(src2) < ubyte1(src1)), 1 → dst 1

else 0 → dst 1;
if (ubyte2(src2) < ubyte2(src2)), 1 → dst 2

else 0 → dst 2;
if (ubyte3(src2) < ubyte3(src1)), 1 → dst 3

else 0 → dst 3

}
else nop

182 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com CMPLTU4 — Compare for Less Than, Unsigned, Packed 8-Bit

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also CMPEQ4, CMPGT, CMPLT, CMPLT2, CMPLTU, XPND4

Examples Example 1
CMPLTU4 .S1 A4,A3,A5; assembler treats as CMPGTU4 A3,A4,A5

Before instruction 1 cycle after instruction

A3 25 3A 1C E4h 37 58 28 228 A3 25 3A 1C E4h

A4 02 B8 4E 76h 2 184 78 118 A4 02 B8 4E 76h

A5 xxxx xxxxh A5 0000 0009h true, false, false, true

Example 2
CMPLTU4 .S2 B8,B2,B13; assembler treats as CMPGTU4 B2,B8,B13

Before instruction 1 cycle after instruction

B2 89 F2 3A 37h 137 242 58 55 B2 89 F2 3A 37h

B8 04 8F 17 89h 4 143 23 137 B8 04 8F 17 89h

B13 xx xx xx xxh B13 0000 000Eh true, true, true, false

Example 3
CMPLTU4 .S2 B8,B2,B13; assembler treats as CMPGTU4 B2,B8,B13

Before instruction 1 cycle after instruction

B2 12 33 9D 51h 18 51 157 81 B2 12 33 9D 51h

B8 75 67 24 C5h 117 103 36 197 B8 75 67 24 C5h

B13 xx xx xx xxh B13 0000 0002h false, false, true, false

183SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

CMPY — Complex Multiply Two Pairs, Signed, Packed 16-Bit www.ti.com

CMPY Complex Multiply Two Pairs, Signed, Packed 16-Bit

Syntax CMPY (.unit) src1, src2, dst_o:dst_e

unit = .M1 or .M2

Compatibility C64x+ CPU

Opcode

31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 dst src2 src1 x 0 0 1 0 1 0 1 1 0 0 s p

5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 s2 .M1, .M2
src2 xs2
dst dint

Description Returns two dot-products between two pairs of signed, packed 16-bit values. The values
in src1 and src2 are treated as signed, packed 16-bit quantities. The signed results are
written to a 64-bit register pair.

The product of the lower halfwords of src1 and src2 is subtracted from the product of the
upper halfwords of src1 and src2. The result is written to dst_o.

The product of the upper halfword of src1 and the lower halfword of src2 is added to the
product of the lower halfword of src1 and the upper halfword of src2. The result is written
to dst_e.

If the result saturates, the M1 or M2 bit in SSR and the SAT bit in CSR are written one
cycle after the result is written to dst_e.

This instruction executes unconditionally.

NOTE: In the overflow case, where all four halfwords in src1 and src2 are
8000h, the saturation value 7FFF FFFFh is written into the 32-bit dst_e
register.

Execution

sat((lsb16(src1) × msb16(src2)) + (msb16(src1) × lsb16(src2))) → dst_e
(msb16(src1) × msb16(src2)) - (lsb16(src1) × lsb16(src2)) → dst_o

Instruction Type Four-cycle

Delay Slots 3

See Also CMPYR, CMPYR1, DOTP2, DOTPN2

184 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com CMPY — Complex Multiply Two Pairs, Signed, Packed 16-Bit

Examples Example 1
CMPY .M1 A0,A1,A3:A2

Before instruction 4 cycles after instruction (1)

A0 0008 0004h A2 0000 0034h

A1 0009 0002h A3 0000 0040h

(1) CSR.SAT and SSR.M1 unchanged by operation

Example 2
CMPY .M2X B0,A1,B3:B2

Before instruction 4 cycles after instruction (1)

B0 7FFF 7FFFh B2 FFFF 8001h

A1 7FFF 8000h B3 7FFE 8001h

(1) CSR.SAT and SSR.M2 unchanged by operation

Example 3
CMPY .M1 A0,A1,A3:A2

Before instruction 4 cycles after instruction (1)

A0 8000 8000h A2 7FFF FFFFh

A1 8000 8000h A3 0000 0000h

(1) CSR.SAT and SSR.M1 unchanged by operation

185SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

CMPYR — Complex Multiply Two Pairs, Signed, Packed 16-Bit With Rounding www.ti.com

CMPYR Complex Multiply Two Pairs, Signed, Packed 16-Bit With Rounding

Syntax CMPYR (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C64x+ CPU

Opcode

31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 dst src2 src1 x 0 0 1 0 1 1 1 1 0 0 s p

5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 s2 .M1, .M2
src2 xs2
dst s2

Description Performs two dot-products between two pairs of signed, packed 16-bit values. The
values in src1 and src2 are treated as signed, packed 16-bit quantities. The signed
results are rounded with saturation, shifted, packed and written to a 32-bit register.

The product of the lower halfwords of src1 and src2 is subtracted from the product of the
upper halfwords of src1 and src2. The result is rounded by adding 215 to it. The 16
most-significant bits of the rounded value are written to the upper half of dst.

The product of the upper halfword of src1 and the lower halfword of src2 is added to the
product of the lower halfword of src1 and the upper halfword of src2. The result is
rounded by adding 215 to it. The 16 most-significant bits of the rounded value are written
to the lower half of dst.

If either result saturates, the M1 or M2 bit in SSR and the SAT bit in CSR are written one
cycle after the result is written to dst.

This instruction executes unconditionally.

Execution

sat((lsb16(src1) × msb16(src2)) + (msb16(src1) × lsb16(src2))) → tmp_e
msb16(sat(tmp_e + 0000 8000h)) → lsb16(dst)
sat((msb16(src1) × msb16(src2)) - (lsb16(src1) × lsb16(src2))) → tmp_o
msb16(sat(tmp_o + 0000 8000h)) → msb16(dst)

Instruction Type Four-cycle

Delay Slots 3

See Also CMPY, CMPYR1, DOTP2, DOTPN2

186 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com CMPYR — Complex Multiply Two Pairs, Signed, Packed 16-Bit With Rounding

Examples Example 1
CMPYR .M1 A0,A1,A2

Before instruction 4 cycles after instruction (1)

A0 0800 0400h A2 0040 0034h

A1 0900 0200h

(1) CSR.SAT and SSR.M1 unchanged by operation

Example 2
CMPYR .M2X B0,A1,B2

Before instruction 4 cycles after instruction (1)

B0 7FFF 7FFFh B2 7FFF 0000h

A1 7FFF 8000h

(1) CSR.SAT and SSR.M2 unchanged by operation

Example 3
CMPYR .M1 A0,A1,A2

Before instruction 4 cycles after instruction

A0 8000 8000h A2 0000 7FFFh

A1 8000 8000h

CSR 0001 0100h CSR (1) 0001 0300h

SSR 0000 0000h SSR (1) 0000 0010h

(1) CSR.SAT and SSR.M1 set to 1, 5 cycles after instruction

Example 4
CMPYR .M2 B0,B1,B2

Before instruction 4 cycles after instruction

B0 8000 8000h B2 0001 7FFFh

B1 8000 8001h

CSR 0001 0100h CSR (1) 0001 0300h

SSR 0000 0000h SSR (1) 0000 0020h

(1) CSR.SAT and SSR.M2 set to 1, 5 cycles after instruction

187SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

CMPYR1 — Complex Multiply Two Pairs, Signed, Packed 16-Bit With Rounding www.ti.com

CMPYR1 Complex Multiply Two Pairs, Signed, Packed 16-Bit With Rounding

Syntax CMPYR1 (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C64x+ CPU

Opcode

31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 dst src2 src1 x 0 0 1 1 0 0 1 1 0 0 s p

5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 s2 .M1, .M2
src2 xs2
dst s2

Description Performs two dot-products between two pairs of signed, packed 16-bit values. The
values in src1 and src2 are treated as signed, packed 16-bit quantities. The signed
results are rounded with saturation to 31 bits, shifted, packed and written to a 32-bit
register.

The product of the lower halfwords of src1 and src2 is subtracted from the product of the
upper halfwords of src1 and src2. The intermediate result is rounded by adding 214 to it.
This value is shifted left by 1 with saturation. The 16 most-significant bits of the shifted
value are written to the upper half of dst.

The product of the upper halfword of src1 and the lower halfword of src2 is added to the
product of the lower halfword of src1 and the upper halfword of src2. The intermediate
result is rounded by adding 214 to it. This value is shifted left by 1 with saturation. The 16
most-significant bits of the shifted value are written to the lower half of dst.

If either result saturates in the rounding or shifting process, the M1 or M2 bit in SSR and
the SAT bit in CSR are written one cycle after the results are written to dst.

This instruction executes unconditionally.

Execution

sat((lsb16(src1) × msb16(src2)) + (msb16(src1) × lsb16(src2))) → tmp_e
msb16(sat((tmp_e + 0000 4000h) << 1)) → lsb16(dst)
sat((msb16(src1) × msb16(src2)) - (lsb16(src1) × lsb16(src2))) → tmp_o
msb16(sat((tmp_e + 0000 4000h) << 1)) → msb16(dst)

Instruction Type Four-cycle

Delay Slots 3

See Also CMPY, CMPYR, DOTP2, DOTPN2

188 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com CMPYR1 — Complex Multiply Two Pairs, Signed, Packed 16-Bit With Rounding

Examples Example 1
CMPYR1 .M1 A0,A1,A2

Before instruction 4 cycles after instruction (1)

A0 0800 0400h A2 0080 0068h

A1 0900 0200h

(1) CSR.SAT and SSR.M1 unchanged by operation

Example 2
CMPYR1 .M2X B0,A1,B2

Before instruction 4 cycles after instruction

B0 7FFF 7FFFh B2 7FFF FFFFh

A1 7FFF 8000h

CSR 0001 0100h CSR (1) 0001 0300h

SSR 0000 0000h SSR (1) 0000 0020h

(1) CSR.SAT and SSR.M2 set to 1, 5 cycles after instruction

Example 3
CMPYR1 .M1 A0,A1,A2

Before instruction 4 cycles after instruction

A0 8000 8000h A2 0000 7FFFh

A1 8000 8000h

CSR 0001 0100h CSR (1) 0001 0300h

SSR 0000 0000h SSR (1) 0000 0010h

(1) CSR.SAT and SSR.M1 set to 1, 5 cycles after instruction

Example 4
CMPYR1 .M2 B0,B1,B2

Before instruction 4 cycles after instruction

B0 C000 C000h B2 0001 7FFFh

B1 8000 8001h

CSR 0001 0100h CSR (1) 0001 0300h

SSR 0000 0000h SSR (1) 0000 0020h

(1) CSR.SAT and SSR.M2 set to 1, 5 cycles after instruction

189SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

CMTL — Commit Store Linked Word to Memory Conditionally www.ti.com

CMTL Commit Store Linked Word to Memory Conditionally

Syntax CMTL (.unit) *baseR, dst

unit = .D2

Compatibility C64x+ CPU

NOTE: The atomic operations are not supported on all C64x+ devices, see your
device-specific data manual for more information.

Opcode

31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst baseR 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 p

3 1 5 5 1

Opcode map field used... For operand type... Unit

baseR address .D2
dst int

Description The CMTL instruction performs a read of the 32-bit word in memory at the address
specified by baseR. For linked-operation aware systems, the read request is interpreted
as a request to write the corresponding linked-stored 32-bit word (previously buffered by
an SL operation) to memory conditionally. The decision to perform the write to memory is
based on whether the link valid flag is set and whether the previously buffered address is
equal to the address specified by baseR. If the result is written, a value of 1 is returned
as the 32-bit data for the read operation; otherwise a value of 0 is returned. The return
value is written to dst.

When initiating the memory read operation, the CPU signals that this is a commit-linked
read operation. Other than this signaling, the operation of the CMTL instruction from the
CPU perspective is identical to that of LDW *baseR, dst.

See Chapter 9 for more details.

Execution

if (cond) mem → dst
signal commit-linked operation

else nop

Instruction Type Load

Delay Slots 4

See Also LL, SL

190 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

MSB16

d1

LSB16

d0

src1

MSB8a

c3

MSB8b

c2

src2

LSB8a

c1

LSB8b

c0

dst_o
d1 x c3 + d0 x c2

dst_e
d1 x c1 + d0 x c0

www.ti.com DDOTP4 — Double Dot Product, Signed, Packed 16-Bit and Signed, Packed 8-Bit

DDOTP4 Double Dot Product, Signed, Packed 16-Bit and Signed, Packed 8-Bit

Syntax DDOTP4 (.unit) src1, src2, dst_o:dst_e

unit = .M1 or .M2

Compatibility C64x+ CPU

Opcode

31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 dst src2 src1 x 0 1 1 0 0 0 1 1 0 0 s p

5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 ds2 .M1, .M2
src2 xs4
dst dint

Description Performs two DOTP2 operations simultaneously.

The lower byte of the lower halfword of src2 is sign-extended to 16 bits and multiplied by
the lower halfword of src1. The upper byte of the lower halfword of src2 is sign-extended
to 16 bits and multiplied by the upper halfword of src1. The two products are added
together and the result is then written to dst_e.

The lower byte of the upper halfword of src2 is sign-extended to 16 bits and multiplied by
the lower halfword of src1. The upper byte of the upper halfword of src2 is sign-extended
to 16 bits and multiplied by the upper halfword of src1. The two products are added
together and the result is then written to dst_o.

There are no saturation cases possible.

This instruction executes unconditionally.

191SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

DDOTP4 — Double Dot Product, Signed, Packed 16-Bit and Signed, Packed 8-Bit www.ti.com

Execution

(msb16(src1) × msb8(lsb16(src2))) + (lsb16(src1) × lsb8(lsb16(src2))) → dst_e
(msb16(src1) × msb8(msb16(src2))) + (lsb16(src1) × lsb8(msb16(src2))) → dst_o

Instruction Type Four-cycle

Delay Slots 3

Examples Example 1
DDOTP4 .M1 A4,A5,A9:A8

Before instruction 4 cycles after instruction

A4 0005 0003h 5, 3 A8 0000 001Bh (5 × 3) + (3 × 4) = 27

A5 0102 0304h 1, 2, 3, 4 A9 0000 000Bh (5 × 1) + (3 × 2) = 11

Example 2
DDOTP4 .M1X A4,B5,A9:A8

Before instruction 4 cycles after instruction

A4 8000 8000h A8 FF81 0000h

B5 8080 7F7Fh A9 0080 0000h

192 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

MSB16

d3

LSB16

d2

src1_o

dst_o
d3 x c1 + d2 x c0

dst_e
d2 x c1 + d1 x c0

MSB16

d1

LSB16

d0

src1_e

MSB16

c1

LSB16

c0

src2

32 32

www.ti.com DDOTPH2 — Double Dot Product, Two Pairs, Signed, Packed 16-Bit

DDOTPH2 Double Dot Product, Two Pairs, Signed, Packed 16-Bit

Syntax DDOTPH2 (.unit) src1_o:src1_e, src2, dst_o:dst_e

unit = .M1 or .M2

Compatibility C64x+ CPU

Opcode

31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 dst src2 src1 x 0 1 0 1 1 1 1 1 0 0 s p

5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 ds2 .M1, .M2
src2 xs2
dst dint

Description Returns two dot-products between two pairs of signed, packed 16-bit values. The values
in src1_e, src1_o, and src2 are treated as signed, packed 16-bit quantities. The signed
results are written to a 64-bit register pair.

The product of the lower halfwords of src1_o and src2 is added to the product of the
upper halfwords of src1_o and src2. The result is then written to dst_o.

The product of the upper halfword of src2 and the lower halfword of src1_o is added to
the product of the lower halfword of src2 and the upper halfword of src1_e. The result is
then written to dst_e.

If either result saturates, the M1 or M2 bit in SSR and the SAT bit in CSR are written one
cycle after the results are written to dst_o:dst_e.

This instruction executes unconditionally.

193SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

DDOTPH2 — Double Dot Product, Two Pairs, Signed, Packed 16-Bit www.ti.com

Execution

sat((msb16(src1_o) × msb16(src2)) + (lsb16(src1_o) × lsb16(src2))) → dst_o
sat((lsb16(src1_o) × msb16(src2)) + (msb16(src1_e) × lsb16(src2))) → dst_e

Instruction Type Four-cycle

Delay Slots 3

See Also DDOTPL2, DDOTPH2R, DDOTPL2R

Examples Example 1
DDOTPH2 .M1 A5:A4,A6,A9:A8

Before instruction 4 cycles after instruction (1)

A4 0005 0003h 5 , 3 A8 0000 0021h (4 × 7) + (5 × 1) = 33

A5 0002 0004h 2 , 4 A9 0000 0012h (2 × 7) + (4 × 1) = 18

A6 0007 0001h 7 , 1

(1) CSR.SAT and SSR.M1 unchanged by operation

Example 2
DDOTPH2 .M1 A5:A4,A6,A9:A8

Before instruction 4 cycles after instruction

A4 8000 5678h A8 7FFF FFFFh

A5 1234 8000h A9 36E6 0000h

A6 8000 8000h

CSR 0001 0100h CSR (1) 0001 0300h

SSR 0000 0000h SSR (1) 0000 0010h

(1) CSR.SAT and SSR.M1 set to 1, 5 cycles after instruction

Example 3
DDOTPH2 .M2X B5:B4,A6,B9:B8

Before instruction 4 cycles after instruction (1)

B4 46B4 16BAh B8 F41B 4AFFh

B5 BBAE D169h B9 F3B4 FAADh

A6 340B F73Bh

(1) CSR.SAT and SSR.M2 unchanged by operation

194 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com DDOTPH2R — Double Dot Product With Rounding, Two Pairs, Signed, Packed 16-Bit

DDOTPH2R Double Dot Product With Rounding, Two Pairs, Signed, Packed 16-Bit

Syntax DDOTPH2R (.unit) src1_o:src1_e, src2, dst

unit = .M1 or .M2

Compatibility C64x+ CPU

Opcode

31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 dst src2 src1 x 0 1 0 1 0 1 1 1 0 0 s p

5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 ds2 .M1, .M2
src2 xs2
dst s2

Description Returns two dot-products between two pairs of signed, packed 16-bit values. The values
in src1_e, src1_o, and src2 are treated as signed, packed 16-bit quantities. The signed
results are rounded, shifted right by 16 and packed into a 32-bit register.

The product of the lower halfwords of src1_o and src2 is added to the product of the
upper halfwords of src1_o and src2. The result is rounded by adding 215 to it and
saturated if appropriate. The 16 most-significant bits of the result are written to the 16
most-significant bits of dst.

The product of the upper halfword of src2 and the lower halfword of src1_o is added to
the product of the lower halfword of src2 and the upper halfword of src1_e. The result is
rounded by adding 215 to it and saturated if appropriate. The 16 most-significant bits of
the result are written to the 16 least-significant bits of dst.

If either result saturates, the M1 or M2 bit in SSR and the SAT bit in CSR are written one
cycle after the results are written to dst.

This instruction executes unconditionally.

Execution

msb16(sat((msb16(src1_o) × msb16(src2)) +
(lsb16(src1_o) × lsb16(src2)) + 0000 8000h)) → msb16(dst)
msb16(sat((lsb16(src1_o) × msb16(src2)) +
(msb16(src1_e) × lsb16(src2)) + 0000 8000h)) → lsb16(dst)

Instruction Type Four-cycle

Delay Slots 3

See Also DDOTPH2, DDOTPL2, DDOTPL2R

195SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

DDOTPH2R — Double Dot Product With Rounding, Two Pairs, Signed, Packed 16-Bit www.ti.com

Examples Example 1
DDOTPH2R .M1 A5:A4,A6,A8

Before instruction 4 cycles after instruction (1)

A4 46B4 16BAh A8 F3B5 F41Bh

A5 BBAE D169h

A6 340B F73Bh

(1) CSR.SAT and SSR.M1 unchanged by operation

Example 2
DDOTPH2R .M1 A5:A4,A6,A8

Before instruction 4 cycles after instruction

A4 8000 5678h A8 36E6 7FFFh

A5 1234 8000h

A6 8000 8001h

CSR 0001 0100h CSR (1) 0001 0300h

SSR 0000 0000h SSR (1) 0000 0010h

(1) CSR.SAT and SSR.M1 set to 1, 5 cycles after instruction

Example 3
DDOTPH2R .M2 B5:B4,B6,B8

Before instruction 4 cycles after instruction

B4 8000 8000h B8 7FFF 7FFFh

B5 8000 8000h

B6 8000 8001h

CSR 0001 0100h CSR (1) 0001 0300h

SSR 0000 0000h SSR (1) 0000 0020h

(1) CSR.SAT and SSR.M2 set to 1, 5 cycles after instruction

196 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

MSB16

d3

LSB16

d2

src1_o

dst_o
d2 x c1 + d1 x c0

dst_e
d1 x c1 + d0 x c0

MSB16

d1

LSB16

d0

src1_e

MSB16

c1

LSB16

c0

src2

32 32

www.ti.com DDOTPL2 — Double Dot Product, Two Pairs, Signed, Packed 16-Bit

DDOTPL2 Double Dot Product, Two Pairs, Signed, Packed 16-Bit

Syntax DDOTPL2 (.unit) src1_o:src1_e, src2, dst_o:dst_e

unit = .M1 or .M2

Compatibility C64x+ CPU

Opcode

31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 dst src2 src1 x 0 1 0 1 1 0 1 1 0 0 s p

5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 ds2 .M1, .M2
src2 xs2
dst dint

Description Returns two dot-products between two pairs of signed, packed 16-bit values. The values
in src1_e, src1_o, and src2 are treated as signed, packed 16-bit quantities. The signed
results are written to a 64-bit register pair.

The product of the lower halfwords of src1_e and src2 is added to the product of the
upper halfwords of src1_e and src2. The result is then written to dst_e.

The product of the upper halfword of src2 and the lower halfword of src1_o is added to
the product of the lower halfword of src2 and the upper halfword of src1_e. The result is
then written to dst_o.

If either result saturates, the M1 or M2 bit in SSR and the SAT bit in CSR are written one
cycle after the results are written to dst_o:dst_e.

197SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

DDOTPL2 — Double Dot Product, Two Pairs, Signed, Packed 16-Bit www.ti.com

Execution

sat((msb16(src1_e) × msb16(src2)) + (lsb16(src1_e) × lsb16(src2))) → dst_e
sat((lsb16(src1_o) × msb16(src2)) + (msb16(src1_e) × lsb16(src2))) → dst_o

Instruction Type Four-cycle

Delay Slots 3

See Also DDOTPH2, DDOTPL2R, DDOTPH2R

Examples Example 1
DDOTPL2 .M1 A5:A4,A6,A9:A8

Before instruction 4 cycles after instruction (1)

A4 0005 0003h 5 , 3 A8 0000 0026h (4 × 7) + (5 × 1) = 33

A5 0002 0004h 2 , 4 A9 0000 0021h (2 × 7) + (4 × 1) = 18

A6 0007 0001h 7 , 1

(1) CSR.SAT and SSR.M1 unchanged by operation

Example 2
DDOTPL2 .M1 A5:A4,A6,A9:A8

Before instruction 4 cycles after instruction (1)

A4 46B4 16BAh A8 0D98 4C9Ah

A5 BBAE D169h A9 F41B 4AFFh

A6 340B F73Bh

(1) CSR.SAT and SSR.M1 unchanged by operation

Example 3
DDOTPL2 .M1 A5:A4,A6,A9:A8

Before instruction 4 cycles after instruction

A4 8000 5678h A8 14C4 0000h

A5 1234 8000h A9 7FFF FFFFh

A6 8000 8000h

CSR 0001 0100h CSR (1) 0001 0300h

SSR 0000 0000h SSR (1) 0000 0010h

(1) CSR.SAT and SSR.M1 set to 1, 5 cycles after instruction

198 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com DDOTPL2R — Double Dot Product With Rounding, Two Pairs, Signed Packed 16-Bit

DDOTPL2R Double Dot Product With Rounding, Two Pairs, Signed Packed 16-Bit

Syntax DDOTPL2R (.unit) src1_o:src1_e, src2, dst

unit = .M1 or .M2

Compatibility C64x+ CPU

Opcode

31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 dst src2 src1 x 0 1 0 1 0 0 1 1 0 0 s p

5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 ds2 .M1, .M2
src2 xs2
dst s2

Description Returns two dot-products between two pairs of signed, packed 16-bit values. The values
in src1_e, src1_o, and src2 are treated as signed, packed 16-bit quantities. The signed
results are rounded, shifted right by 16 and packed into a 32-bit register.

The product of the lower halfwords of src1_e and src2 is added to the product of the
upper halfwords of src1_e and src2. The result is rounded by adding 215 to it and
saturated if appropriate. The 16 most-significant bits of the result are written to the 16
least-significant bits of dst.

The product of the upper halfword of src2 and the lower halfword of src1_o is added to
the product of the lower halfword of src2 and the upper halfword of src1_e. The result is
rounded by adding 215 to it and saturated if appropriate. The 16 most-significant bits of
the result are written to the 16 most-significant bits of dst.

If either result saturates, the M1 or M2 bit in SSR and the SAT bit in CSR are written one
cycle after the results are written to dst.

Execution

msb16(sat((msb16(src1_e) × msb16(src2)) +
(lsb16(src1_e) × lsb16(src2)) + 0000 8000h)) → lsb16(dst)
msb16(sat((lsb16(src1_o) × msb16(src2)) +
(msb16(src1_e) × lsb16(src2)) + 0000 8000h)) → msb16(dst)

Instruction Type Four-cycle

Delay Slots 3

See Also DDOTPH2R, DDOTPL2, DDOTPH2

199SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

DDOTPL2R — Double Dot Product With Rounding, Two Pairs, Signed Packed 16-Bit www.ti.com

Examples Example 1
DDOTPL2R .M1 A5:A4,A6,A8

Before instruction 4 cycles after instruction (1)

A4 46B4 16BAh A8 F41B 0D98h

A5 BBAE D169h

A6 340B F73Bh

(1) CSR.SAT and SSR.M1 unchanged by operation

Example 2
DDOTPL2R .M1 A5:A4,A6,A8

Before instruction 4 cycles after instruction

A4 8000 5678h A8 7FFF 14C4h

A5 1234 8000h

A6 8000 8001h

CSR 0001 0100h CSR (1) 0001 0300h

SSR 0000 0000h SSR (1) 0000 0010h

(1) CSR.SAT and SSR.M1 set to 1, 5 cycles after instruction

Example 3
DDOTPL2R .M2 B5:B4,B6,B8

Before instruction 4 cycles after instruction

B4 8000 8000h B8 7FFF 7FFFh

B5 8000 8000h

B6 8000 8001h

CSR 0001 0100h CSR (1) 0001 0300h

SSR 0000 0000h SSR (1) 0000 0020h

(1) CSR.SAT and SSR.M2 set to 1, 5 cycles after instruction

200 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com DEAL — Deinterleave and Pack

DEAL Deinterleave and Pack

Syntax DEAL (.unit) src2, dst

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 1 1 1 0 1 x 0 0 0 0 1 1 1 1 0 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2 xuint .M1, .M2
dst uint

Description Performs a deinterleave and pack operation on the bits in src2. The odd and even bits of
src2 are extracted into two separate, 16-bit quantities. These 16-bit quantities are then
packed such that the even bits are placed in the lower halfword, and the odd bits are
placed in the upper halfword.

As a result, bits 0, 2, 4, ... , 28, 30 of src2 are placed in bits 0, 1, 2, ... , 14, 15 of dst.
Likewise, bits 1, 3, 5, ... , 29, 31 of src2 are placed in bits 16, 17, 18, ... , 30, 31 of dst.

31 0

aAbB cCdD eEfF gGhH iIjJ kKlL mMnN oOpP ← src2

DEAL

↓ ↓

31 0

abcd efgh ijkl mnop ABCD EFGH IJKL MNOP ← dst

NOTE: The DEAL instruction is the exact inverse of the SHFL instruction
(see SHFL).

Execution

if (cond) {
src2 31,29,27...1 → dst 31,30,29...16

src2 30,28,26...0 → dst 15,14,13...0

}
else nop

201SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

DEAL — Deinterleave and Pack www.ti.com

Pipeline

Pipeline Stage E1 E2

Read src2

Written dst

Unit in use .M

Instruction Type Two-cycle

Delay Slots 1

See Also SHFL

Example DEAL .M1 A1,A2

Before instruction 2 cycles after instruction

A1 9E52 6E30h A1 9E52 6E30h

A2 xxxx xxxxh A2 B174 6CA4h

202 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com DINT — Disable Interrupts and Save Previous Enable State

DINT Disable Interrupts and Save Previous Enable State

Syntax DINT

unit = none

Compatibility C64x+ CPU

Opcode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 p

1

Description Disables interrupts in the current cycle, copies the contents of the GIE bit in TSR into the
SGIE bit in TSR, and clears the GIE bit in both TSR and CSR. The PGIE bit in CSR is
unchanged.

The CPU will not service a maskable interrupt in the cycle immediately following the
DINT instruction. This behavior differs from writes to GIE using the MVC instruction. See
section 5.2 for details.

The DINT instruction cannot be placed in parallel with the following instructions: MVC
reg, TSR; MVC reg, CSR; B IRP; B NRP; NOP n; RINT; SPKERNEL; SPKERNELR;

SPLOOP; SPLOOPD; SPLOOPW; SPMASK; or SPMASKR.

This instruction executes unconditionally.

NOTE: The use of the DINT and RINT instructions in a nested manner, like the
following code:
DINT
DINT
RINT
RINT

leaves interrupts disabled. The first DINT leaves TSR.GIE cleared to 0,
so the second DINT leaves TSR,.SGIE cleared to 0. The RINT
instructions, therefore, copy zero to TSR.GIE (leaving interrupts
disabled).

Execution Disable interrupts in current cycle

GIE bit in TSR → SGIE bit in TSR
0 → GIE bit in TSR
0 → GIE bit in CSR

Instruction Type Single-cycle

Delay Slots 0

See Also RINT

203SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

DMV — Move Two Independent Registers to Register Pair www.ti.com

DMV Move Two Independent Registers to Register Pair

Syntax DMV (.unit) src1, src2, dst_o:dst_e

unit = .S1 or .S2

Compatibility C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 1 0 1 1 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 sint .S1, .S2
src2 xsint
dst dint

Description The src1 operand is written to the odd register of the register pair specified by dst and
the src2 operand is written to the even register of the register pair specified by dst.

Execution

if (cond) {
src2 → dst_e
src1 → dst_o
}

else nop

Instruction Type Single-cycle

Delay Slots 0

Examples Example 1
DMV .S1 A0,A1,A3:A2

Before instruction 1 cycle after instruction

A0 8765 4321h A2 1234 5678h

A1 1234 5678h A3 8765 4321h

Example 2
DMV .S2X B0,A1,B3:B2

Before instruction 1 cycle after instruction

B0 0007 0009h B2 1234 5678h

A1 1234 5678h B3 0007 0009h

204 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com DOTP2 — Dot Product, Signed, Packed 16-Bit

DOTP2 Dot Product, Signed, Packed 16-Bit

Syntax DOTP2 (.unit) src1, src2, dst

or

DOTP2 (.unit) src1, src2, dst_o:dst_e

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 op 1 1 0 0 s p

3 1 5 5 5 1 5 1 1

Opcode map field used... For operand type... Unit Opfield

src1 s2 .M1, .M2 01100
src2 xs2
dst int

src1 s2 .M1, .M2 01011
src2 xs2
dst sllong

Description Returns the dot-product between two pairs of signed, packed 16-bit values. The values
in src1 and src2 are treated as signed, packed 16-bit quantities. The signed result is
written either to a single 32-bit register, or sign-extended into a 64-bit register pair.

The product of the lower halfwords of src1 and src2 is added to the product of the upper
halfwords of src1 and src2. The result is then written to the dst.

If the result is sign-extended into a 64-bit register pair, the upper word of the register pair
always contains either all 0s or all 1s, depending on whether the result is positive or
negative, respectively.

31 16 15 0

a_hi a_lo ← src1

DOTP2

b_hi b_lo ← src2

=

63 32 31 0

0 or F a_hi × b_hi + a_lo × b_lo ← dst_o:dst_e

205SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

DOTP2 — Dot Product, Signed, Packed 16-Bit www.ti.com

The 32-bit result version returns the same results that the 64-bit result version does in
the lower 32 bits. The upper 32-bits are discarded.

31 16 15 0

a_hi a_lo ← src1

DOTP2

b_hi b_lo ← src2

=

31 0

a_hi × b_hi + a_lo × b_lo ← dst

NOTE: In the overflow case, where all four halfwords in src1 and src2 are
8000h, the value 8000 0000h is written into the 32-bit dst and
0000 0000 8000 0000h is written into the 64-bit dst.

Execution

if (cond) (lsb16(src1) × lsb16(src2)) + (msb16(src1) × msb16(src2)) → dst
else nop

Pipeline

Pipeline Stage E1 E2 E3 E4

Read src1, src2

Written dst

Unit in use .M

Instruction Type Four-cycle

Delay Slots 3

See Also DOTPN2

Examples Example 1
DOTP2 .M1 A5,A6,A8

Before instruction 4 cycles after instruction

A5 6A32 1193h 27186 4499 A5 6A32 1193h

A6 B174 6CA4h -20108 27812 A6 B174 6CA4h

A8 xxxx xxxxh A8 E6DF F6D4h -421,529,900

206 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com DOTP2 — Dot Product, Signed, Packed 16-Bit

Example 2
DOTP2 .M1 A5,A6,A9:A8

Before instruction 4 cycles after instruction

A5 6A32 1193h 27186 4499 A5 6A32 1193h

A6 B174 6CA4h -20108 27812 A6 B174 6CA4h

A9:A8 xxxx xxxxh xxxx xxxxh A9:A8 FFFF FFFFh E6DF F6D4h

-421,529,900

Example 3
DOTP2 .M2 B2,B5,B8

Before instruction 4 cycles after instruction

B2 1234 3497h 4660 13463 B2 1234 3497h

B5 21FF 50A7h 8703 20647 B5 21FF 50A7h

B8 xxxx xxxxh B8 12FC 544Dh 318,526,541

Example 4
DOTP2 .M2 B2,B5,B9:B8

Before instruction 4 cycles after instruction

B2 1234 3497h 4660 13463 B2 1234 3497h

B5 21FF 50A7h 8703 20647 B5 21FF 50A7h

B9:B8 xxxx xxxxh xxxx xxxxh B9:B8 0000 0000h 12FC 544Dh

318,526,541

207SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

DOTPN2 — Dot Product With Negate, Signed, Packed 16-Bit www.ti.com

DOTPN2 Dot Product With Negate, Signed, Packed 16-Bit

Syntax DOTPN2 (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 1 0 0 1 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 s2 .M1, .M2
src2 xs2
dst int

Description Returns the dot-product between two pairs of signed, packed 16-bit values where the
second product is negated. The values in src1 and src2 are treated as signed, packed
16-bit quantities. The signed result is written to a single 32-bit register.

The product of the lower halfwords of src1 and src2 is subtracted from the product of the
upper halfwords of src1 and src2. The result is then written to dst.

31 16 15 0

a_hi a_lo ← src1

DOTPN2

b_hi b_lo ← src2

=

31 0

a_hi × b_hi - a_lo × b_lo ← dst

Execution Note that unlike DOTP2, no overflow case exists for this instruction.

if (cond) (msb16(src1) × msb16(src2)) - (lsb16(src1) × lsb16(src2)) → dst
else nop

Pipeline

Pipeline Stage E1 E2 E3 E4

Read src1, src2

Written dst

Unit in use .M

208 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com DOTPN2 — Dot Product With Negate, Signed, Packed 16-Bit

Instruction Type Four-cycle

Delay Slots 3

See Also DOTP2

Examples Example 1
DOTPN2 .M1 A5,A6,A8

Before instruction 4 cycles after instruction

A5 3629 274Ah 13865 10058 A5 3629 274Ah

A6 325C 8036h 12892 -32714 A6 325C 8036h

A8 xxxx xxxxh A8 1E44 2F20h 507,784,992

Example 2
DOTPN2 .M2 B2,B5,B8

Before instruction 4 cycles after instruction

B2 3FF6 5010h 16374 20496 B2 3FF6 5010h

B5 B1C3 0244h -20029 580 B5 B1C3 0244h

B8 xxxx xxxxh B8 EBBE 6A22h -339,842,526

209SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

DOTPNRSU2 — Dot Product With Negate, Shift and Round, Signed by Unsigned, Packed 16-Bit www.ti.com

DOTPNRSU2 Dot Product With Negate, Shift and Round, Signed by Unsigned, Packed 16-Bit

Syntax DOTPNRSU2 (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 0 1 1 1 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 s2 .M1, .M2
src2 xu2
dst int

Description Returns the dot-product between two pairs of packed 16-bit values, where the second
product is negated. This instruction takes the result of the dot-product and performs an
additional round and shift step. The values in src1 are treated as signed, packed 16-bit
quantities; whereas, the values in src2 are treated as unsigned, packed 16-bit quantities.
The results are written to dst.

The product of the lower halfwords of src1 and src2 is subtracted from the product of the
upper halfwords of src1 and src2. The value 215 is then added to this sum, producing an
intermediate 32 or 33-bit result. The intermediate result is signed shifted right by 16,
producing a rounded, shifted result that is sign extended and placed in dst.

On the C64x CPU: The intermediate results of the DOTPNRSU2 instruction are only
maintained to a 32-bit precision. Overflow may occur during the rounding step. Overflow
can be avoided if the difference of the two products plus the rounding term is less than
or equal to 231 - 1 for a positive sum and greater than or equal to -231 for a negative sum.

On the C64x+ CPU: The intermediate results of the DOTPNRSU2 instruction are
maintained to a 33-bit precision, ensuring that no overflow may occur during the
subtracting and rounding steps.

31 16 15 0

sa_hi sa_lo ← src1

DOTPNRSU2

ub_hi ub_lo ← src2

=

31 0

(((sa_hi × ub_hi) - (sa_lo × ub_lo)) + 8000h) >> 16 ← dst

210 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com DOTPNRSU2 — Dot Product With Negate, Shift and Round, Signed by Unsigned, Packed 16-Bit

Execution For C64x CPU:

if (cond) {
int32 = (smsb16(src1) × umsb16(src2)) -
(slsb16(src1) × ulsb16(src2)) + 8000h;
int32 >> 16 → dst
}

else nop

For C64x+ CPU:

if (cond) {
int33 = (smsb16(src1) × umsb16(src2)) -
(slsb16(src1) × ulsb16(src2)) + 8000h;
int33 >> 16 → dst
}

else nop

Pipeline

Pipeline Stage E1 E2 E3 E4

Read src1, src2

Written dst

Unit in use .M

Instruction Type Four-cycle

Delay Slots 3

See Also DOTP2, DOTPN2, DOTPRSU2

Examples Example 1
DOTPNRSU2 .M1 A5, A6, A8

Before instruction 4 cycles after instruction

A5 3629 274Ah 13865 10058 A5 3629 274Ah
signed

A6 325C 8036h 12892 32822 A6 325C 8036h
unsigned

A8 xxxx xxxxh A8 FFFF F6FAh -2310 (signed)

211SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

DOTPNRSU2 — Dot Product With Negate, Shift and Round, Signed by Unsigned, Packed 16-Bit www.ti.com

Example 2
DOTPNRSU2 .M2 B2, B5, B8

Before instruction 4 cycles after instruction

B2 3FF6 5010h 16374 20496 B2 3FF6 5010h
signed

B5 B1C3 0244h 45507 580 B5 B1C3 0244h
unsigned

B8 xxxx xxxxh B8 0000 2BB4h 11188 (signed)

Example 3
DOTPNRSU2 .M2 B12, B23, B11

Before instruction 4 cycles after instruction

B12 7FFF 8000h 32767 -32768 B12 7FFF 8000h
signed

B23 FFFF FFFFh 65535 65535 B23 FFFF FFFFh
unsigned

B11 xxxx xxxxh B11 xxxx xxxxh Overflow occurs;
result undefined

212 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com DOTPNRUS2 — Dot Product With Negate, Shift and Round, Unsigned by Signed, Packed 16-Bit

DOTPNRUS2 Dot Product With Negate, Shift and Round, Unsigned by Signed, Packed 16-Bit

Syntax DOTPNRUS2 (.unit) src2, src1, dst

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 0 1 1 1 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 s2 .M1, .M2
src2 xu2
dst int

Description The DOTPNRUS2 pseudo-operation performs the dot-product between two pairs of
packed 16-bit values, where the second product is negated. This instruction takes the
result of the dot-product and performs an additional round and shift step. The values in
src1 are treated as signed, packed 16-bit quantities; whereas, the values in src2 are
treated as unsigned, packed 16-bit quantities. The results are written to dst. The
assembler uses the DOTPNRSU2 src1, src2, dst instruction to perform this task (see
DOTPNRSU2).

The product of the lower halfwords of src1 and src2 is subtracted from the product of the
upper halfwords of src1 and src2. The value 215 is then added to this sum, producing an
intermediate 32 or 33-bit result. The intermediate result is signed shifted right by 16,
producing a rounded, shifted result that is sign extended and placed in dst.

On the C64x CPU: The intermediate results of the DOTPNRUS2 pseudo-operation are
only maintained to a 32-bit precision. Overflow may occur during the rounding step.
Overflow can be avoided if the difference of the two products plus the rounding term is
less than or equal to 231 - 1 for a positive sum and greater than or equal to -231 for a
negative sum.

On the C64x+ CPU: The intermediate results of the DOTPNRUS2 pseudo-operation are
maintained to a 33-bit precision, ensuring that no overflow may occur during the
subtracting and rounding steps.

Execution For C64x CPU:

if (cond) {
int32 = (smsb16(src1) × umsb16(src2)) -
(slsb16(src1) × ulsb16(src2)) + 8000h;
int32 >> 16 → dst
}

else nop

213SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

DOTPNRUS2 — Dot Product With Negate, Shift and Round, Unsigned by Signed, Packed 16-Bit www.ti.com

For C64x+ CPU:

if (cond) {
int33 = (smsb16(src1) × umsb16(src2)) -
(slsb16(src1) × ulsb16(src2)) + 8000h;
int33 >> 16 → dst
}

else nop

Pipeline

Pipeline Stage E1 E2 E3 E4

Read src1, src2

Written dst

Unit in use .M

Instruction Type Four-cycle

Delay Slots 3

See Also DOTP2, DOTPN2, DOTPNRSU2, DOTPRUS2

214 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com DOTPRSU2 — Dot Product With Shift and Round, Signed by Unsigned, Packed 16-Bit

DOTPRSU2 Dot Product With Shift and Round, Signed by Unsigned, Packed 16-Bit

Syntax DOTPRSU2 (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 1 1 0 1 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 s2 .M1, .M2
src2 xu2
dst int

Description Returns the dot-product between two pairs of packed 16-bit values. This instruction
takes the result of the dot-product and performs an additional round and shift step. The
values in src1 are treated as signed packed 16-bit quantities; whereas, the values in
src2 are treated as unsigned packed 16-bit quantities. The results are written to dst.

The product of the lower halfwords of src1 and src2 is added to the product of the upper
halfwords of src1 and src2. The value 215is then added to this sum, producing an
intermediate 32 or 33-bit result. The intermediate result is signed shifted right by 16,
producing a rounded, shifted result that is sign extended and placed in dst.

On the C64x CPU: The intermediate results of the DOTPRSU2 instruction are only
maintained to a 32-bit precision. Overflow may occur during the rounding step. Overflow
can be avoided if the difference of the two products plus the rounding term is less than
or equal to 231 - 1 for a positive sum and greater than or equal to -231 for a negative sum.

On the C64x+ CPU: The intermediate results of the DOTPRSU2 instruction are
maintained to a 33-bit precision, ensuring that no overflow may occur during the
subtracting and rounding steps.

31 16 15 0

sa_hi sa_lo ← src1

DOTPRSU2

ub_hi ub_lo ← src2

=

31 0

(((sa_hi × ub_hi) + (sa_lo × ub_lo)) + 8000h) >> 16 ← dst

215SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

DOTPRSU2 — Dot Product With Shift and Round, Signed by Unsigned, Packed 16-Bit www.ti.com

NOTE: Certain combinations of operands for the DOTPRSU2 instruction results
in an overflow condition. If an overflow does occur, the result is
undefined. Overflow can be avoided if the sum of the two products plus
the rounding term is less than or equal to 231 − 1 for a positive sum and
greater than or equal to –231 for a negative sum.

The intermediate results of the DOTPRSU2 instruction are maintained to
33-bit precision, ensuring that no overflow may occur during the adding
and rounding steps.

Execution For C64x CPU:

if (cond) {
int32 = (smsb16(src1) × umsb16(src2)) +
(slsb16(src1) × ulsb16(src2)) + 8000h;
int32 >> 16 → dst
}

else nop

For C64x+ CPU:

if (cond) {
int33 = (smsb16(src1) × umsb16(src2)) +
(slsb16(src1) × ulsb16(src2)) + 8000h;
int33 >> 16 → dst
}

else nop

Pipeline

Pipeline Stage E1 E2 E3 E4

Read src1, src2

Written dst

Unit in use .M

Instruction Type Four-cycle

Delay Slots 3

See Also DOTP2, DOTPN2, DOTPNRSU2

216 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com DOTPRSU2 — Dot Product With Shift and Round, Signed by Unsigned, Packed 16-Bit

Examples Example 1
DOTPRSU2 .M1 A5, A6, A8

Before instruction 4 cycles after instruction

A5 3629 274Ah 13865 10058 A5 3629 274Ah
signed

A6 325C 8036h 12892 32822 A6 325C 8036h
unsigned

A8 xxxx xxxxh A8 0000 1E55h 7765 (signed)

Example 2
DOTPRSU2 .M2 B2, B5, B8

Before instruction 4 cycles after instruction

B2 B1C3 0244h -20029 580 B2 B1C3 0244h 20029 580
signed signed

B5 3FF6 5010h 16374 20496 B5 3FF6 5010h 16374 20496
unsigned unsigned

B8 xxxx xxxxh B8 FFFF ED29h -4823 (signed)

Example 3
DOTPRSU2 .M2 B12, B23, B11

Before instruction 4 cycles after instruction

B12 7FFF 7FFFh 32767 32767 B12 7FFF 7FFFh
signed

B23 FFFF FFFFh 65535 65535 B23 FFFF FFFFh
unsigned

B11 xxxx xxxxh B11 xxxx xxxxh Overflow occurs;
result undefined

217SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

DOTPRUS2 — Dot Product With Shift and Round, Unsigned by Signed, Packed 16-Bit www.ti.com

DOTPRUS2 Dot Product With Shift and Round, Unsigned by Signed, Packed 16-Bit

Syntax DOTPRUS2 (.unit) src2, src1, dst

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 1 1 0 1 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 s2 .M1, .M2
src2 xu2
dst int

Description The DOTPRUS2 pseudo-operation returns the dot-product between two pairs of packed
16-bit values. This instruction takes the result of the dot-product, and performs an
additional round and shift step. The values in src1 are treated as signed packed 16-bit
quantities; whereas, the values in src2 are treated as unsigned packed 16-bit quantities.
The results are written to dst. The assembler uses the DOTPRSU2 (.unit) src1, src2, dst
instruction to perform this task (see DOTPRSU2).

The product of the lower halfwords of src1 and src2 is added to the product of the upper
halfwords of src1 and src2. The value 215is then added to this sum, producing an
intermediate 32-bit result. The intermediate result is signed shifted right by 16, producing
a rounded, shifted result that is sign extended and placed in dst.

On the C64x CPU: The intermediate results of the DOTPRUS2 pseudo-operation are
only maintained to a 32-bit precision. Overflow may occur during the rounding step.
Overflow can be avoided if the difference of the two products plus the rounding term is
less than or equal to 231 - 1 for a positive sum and greater than or equal to -231 for a
negative sum.

On the C64x+ CPU: The intermediate results of the DOTPRUS2 pseudo-operation are
maintained to a 33-bit precision, ensuring that no overflow may occur during the
subtracting and rounding steps.

Execution For C64x CPU:

if (cond) {
int32 = (umsb16(src2) × smsb16(src1)) +
(ulsb16(src2) × slsb16(src1)) + 8000h;
int32 >> 16 → dst
}

else nop

218 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com DOTPRUS2 — Dot Product With Shift and Round, Unsigned by Signed, Packed 16-Bit

For C64x+ CPU:

if (cond) {
int33 = (umsb16(src2) × smsb16(src1)) +
(ulsb16(src2) × slsb16(src1)) + 8000h;
int33 >> 16 → dst
}

else nop

Pipeline

Pipeline Stage E1 E2 E3 E4

Read src1, src2

Written dst

Unit in use .M

Instruction Type Four-cycle

Delay Slots 3

See Also DOTP2, DOTPN2, DOTPNRUS2, DOTPRSU2

219SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

DOTPSU4 — Dot Product, Signed by Unsigned, Packed 8-Bit www.ti.com

DOTPSU4 Dot Product, Signed by Unsigned, Packed 8-Bit

Syntax DOTPSU4 (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 0 0 1 0 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 s4 .M1, .M2
src2 xu4
dst int

Description Returns the dot-product between four sets of packed 8-bit values. The values in src1 are
treated as signed packed 8-bit quantities; whereas, the values in src2 are treated as
unsigned 8-bit packed data. The signed result is written into dst.

For each pair of 8-bit quantities in src1 and src2, the signed 8-bit value from src1 is
multiplied with the unsigned 8-bit value from src2. The four products are summed
together, and the resulting dot product is written as a signed 32-bit result to dst.

31 24 23 16 15 8 7 0

sa_3 sa_2 sa_1 sa_0 ← src1

DOTPSU4

ub_3 ub_2 ub_1 ub_0 ← src2

=

31 0

(sa_3 × ub_3) + (sa_2 × ub_2) + (sa_1 × ub_1) + (sa_0 × ub_0) ← dst

Execution

if (cond) {
(sbyte0(src1) × ubyte0(src2)) +
(sbyte1(src1) × ubyte1(src2)) +
(sbyte2(src1) × ubyte2(src2)) +
(sbyte3(src1) × ubyte3(src2)) → dst
}

else nop

220 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com DOTPSU4 — Dot Product, Signed by Unsigned, Packed 8-Bit

Pipeline

Pipeline Stage E1 E2 E3 E4

Read src1, src2

Written dst

Unit in use .M

Instruction Type Four-cycle

Delay Slots 3

See Also DOTPU4

Examples Example 1
DOTPSU4 .M1 A5, A6, A8

Before instruction 4 cycles after instruction

A5 6A 32 11 93h 106 50 17 -109 A5 6A 32 11 93h
signed

A6 B1 74 6C A4h 177 116 108 164 A6 B1 74 6C A4h
unsigned

A8 xxxx xxxxh A8 0000 214Ah 8522 (signed)

Example 2
DOTPSU4 .M2 B2, B5, B8

Before instruction 4 cycles after instruction

B2 3F F6 50 10h 63 -10 80 16 B2 3F F6 50 10h
signed

B5 C3 56 02 44h 195 86 2 68 B5 C3 56 02 44h
unsigned

B8 xxxx xxxxh B8 0000 3181h 12,673 (signed)

221SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

DOTPUS4 — Dot Product, Unsigned by Signed, Packed 8-Bit www.ti.com

DOTPUS4 Dot Product, Unsigned by Signed, Packed 8-Bit

Syntax DOTPUS4 (.unit) src2, src1, dst

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 0 0 1 0 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 s4 .M1, .M2
src2 xu4
dst int

Description The DOTPUS4 pseudo-operation returns the dot-product between four sets of packed
8-bit values. The values in src1 are treated as signed packed 8-bit quantities; whereas,
the values in src2 are treated as unsigned 8-bit packed data. The signed result is written
into dst. The assembler uses the DOTPSU4 (.unit) src1, src2, dst instruction to perform
this task (see DOTPSU4).

For each pair of 8-bit quantities in src1 and src2, the signed 8-bit value from src1 is
multiplied with the unsigned 8-bit value from src2. The four products are summed
together, and the resulting dot-product is written as a signed 32-bit result to dst.

Execution

if (cond) {
(ubyte0(src2) × sbyte0(src1)) +
(ubyte1(src2) × sbyte1(src1)) +
(ubyte2(src2) × sbyte2(src1)) +
(ubyte3(src2) × sbyte3(src1)) → dst
}

else nop

Pipeline

Pipeline Stage E1 E2 E3 E4

Read src1, src2

Written dst

Unit in use .M

Instruction Type Four-cycle

Delay Slots 3

See Also DOTPU4, DOTPSU4

222 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com DOTPU4 — Dot Product, Unsigned, Packed 8-Bit

DOTPU4 Dot Product, Unsigned, Packed 8-Bit

Syntax DOTPU4 (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 0 1 1 0 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 u4 .M1, .M2
src2 xu4
dst uint

Description Returns the dot-product between four sets of packed 8-bit values. The values in both
src1 and src2 are treated as unsigned, 8-bit packed data. The unsigned result is written
into dst.

For each pair of 8-bit quantities in src1 and src2, the unsigned 8-bit value from src1 is
multiplied with the unsigned 8-bit value from src2. The four products are summed
together, and the resulting dot-product is written as a 32-bit result to dst.

31 24 23 16 15 8 7 0

ua_3 ua_2 ua_1 ua_0 ← src1

DOTPU4

ub_3 ub_2 ub_1 ub_0 ← src2

=

31 0

(ua_3 × ub_3) + (ua_2 × ub_2) + (ua_1 × ub_1) + (ua_0 × ub_0) ← dst

Execution

if (cond) {
(ubyte0(src1) × ubyte0(src2)) +
(ubyte1(src1) × ubyte1(src2)) +
(ubyte2(src1) × ubyte2(src2)) +
(ubyte3(src1) × ubyte3(src2)) → dst
}

else nop

223SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

DOTPU4 — Dot Product, Unsigned, Packed 8-Bit www.ti.com

Pipeline

Pipeline Stage E1 E2 E3 E4

Read src1, src2

Written dst

Unit in use .M

Instruction Type Four-cycle

Delay Slots 3

See Also DOTPSU4

Example DOTPU4 .M1 A5, A6, A8

Before instruction 4 cycles after instruction

A5 6A 32 11 93h 106 50 17 147 A5 6A 32 11 93h
unsigned

A6 B1 74 6C A4h 177 116 108 164 A6 B1 74 6C A4h
unsigned

A8 xxxx xxxxh A8 0000 C54Ah 50,506 (unsigned)

224 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

MSB16 LSB16

src1

MSB16 LSB16

dst_o

MSB16 LSB16

dst_e

MSB16 LSB16

src2

www.ti.com DPACK2 — Parallel PACK2 and PACKH2 Operations

DPACK2 Parallel PACK2 and PACKH2 Operations

Syntax DPACK2 (.unit) src1, src2, dst_o:dst_e

unit = .L1 or .L2

Compatibility C64x+ CPU

Opcode

31 30 29 28 27 24 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 dst 0 src2 src1 x 0 1 1 0 1 0 0 1 1 0 s p

4 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 sint .L1, .L2
src2 xsint
dst dint

Description Executes a PACK2 instruction in parallel with a PACKH2 instruction.

The PACK2 function of the DPACK2 instruction takes the lower halfword from src1 and
the lower halfword from src2, and packs them both into dst_e. The lower halfword of
src1 is placed in the upper halfword of dst_e. The lower halfword of src2 is placed in the
lower halfword of dst_e.

The PACKH2 function of the DPACK2 instruction takes the upper halfword from src1
and the upper halfword from src2, and packs them both into dst_o. The upper halfword
of src1 is placed in the upper halfword of dst_o. The upper halfword of src2 is placed in
the lower halfword of dst_o.

This instruction executes unconditionally.

Execution

lsb16(src1) → msb16(dst_e)
lsb16(src2) → lsb16(dst_e)
msb16(src1) → msb16(dst_o)
msb16(src2) → lsb16(dst_o)

225SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

DPACK2 — Parallel PACK2 and PACKH2 Operations www.ti.com

Instruction Type Single-cycle

Delay Slots 0

Example DPACK2 .L1 A0,A1,A3:A2

Before instruction 1 cycle after instruction

A0 8765 4321h A2 4321 5678h

A1 1234 5678h A3 8765 1234h

226 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

MSB16 LSB16

src1

MSB16 LSB16

dst_o

MSB16 LSB16

dst_e

MSB16 LSB16

src2

www.ti.com DPACKX2 — Parallel PACKLH2 Operations

DPACKX2 Parallel PACKLH2 Operations

Syntax DPACKX2 (.unit) src1, src2, dst_o:dst_e

unit = .L1 or .L2

Compatibility C64x+ CPU

Opcode

31 30 29 28 27 24 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 dst 0 src2 src1 x 0 1 1 0 0 1 1 1 1 0 s p

4 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 sint .L1, .L2
src2 xsint
dst dint

Description Executes two PACKLH2 instructions in parallel.

One PACKLH2 function of the DPACKX2 instruction takes the lower halfword from src1
and the upper halfword from src2, and packs them both into dst_e. The lower halfword of
src1 is placed in the upper halfword of dst_e. The upper halfword of src2 is placed in the
lower halfword of dst_e.

The other PACKLH2 function of the DPACKX2 instruction takes the upper halfword from
src1 and the lower halfword from src2, and packs them both into dst_o. The upper
halfword of src1 is placed in the lower halfword of dst_o. The lower halfword of src2 is
placed in the upper halfword of dst_o.

This instruction executes unconditionally.

Execution

lsb16(src1) → msb16(dst_e)
msb16(src2) → lsb16(dst_e)
msb16(src1) → lsb16(dst_o)
lsb16(src2) → msb16(dst_o)

227SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

DPACKX2 — Parallel PACKLH2 Operations www.ti.com

Instruction Type Single-cycle

Delay Slots 0

Examples Example 1
DPACKX2 .L1 A0,A1,A3:A2

Before instruction 1 cycle after instruction

A0 8765 4321h A2 4321 1234h

A1 1234 5678h A3 5678 8765h

Example 2
DPACKX2 .L1X A0,B0,A3:A2

Before instruction 1 cycle after instruction

A0 3FFF 8000h A2 8000 4000h

B0 4000 7777h A3 7777 3FFFh

228 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com EXT — Extract and Sign-Extend a Bit Field

EXT Extract and Sign-Extend a Bit Field

Syntax EXT (.unit) src2, csta, cstb, dst

or

EXT (.unit) src2, src1, dst

unit = .S1 or .S2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.S S2ext Figure F-27

Opcode Constant form

31 29 28 27 23 22 18 17 13 12 8 7 6 5 4 3 2 1 0

creg z dst src2 csta cstb 0 1 0 0 1 0 s p

3 1 5 5 5 5 1 1

Opcode map field used... For operand type... Unit

src2 sint .S1, .S2
csta ucst5
cstb ucst5
dst sint

Opcode Register form

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 1 1 1 1 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2 xsint .S1, .S2
src1 uint
dst sint

229SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

X

31

X

30

X

29

X

28

X

27

X

26

X

25

X

24

X

23

X

22

X

21

X

20

1

19

0

18

1

17

0

16 15 14 13 12

X

11

X

10

X

9

X

8

X

7

X

6

X

5

X

4

X

3

X

2

X

1 0

csta cstb - csta

1)

Shifts left by 12 to produce:

0 1 1 0 1

31 30 29 28 27 26 25 24 23

X

22

X

21

X

20

1

19

0

18

1

17

0

16 15 14 13 12

0

11 10 9 8 7 6 5 4 3 2 1 0

2) 0 1 1 0 1 X X X X X X X X 0 00 00 00 00 00

Then shifts right by 23 to produce:

31 30 29 28 27 26 25 24 23 22 21 20

1

19

1

18

1

17

1

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3) 1 1 1 1 1 1 0 1 0 0 1 1 0 11 1 1 1 1 1 1 1 1 1 1 1 1 1

src2

dst

EXT — Extract and Sign-Extend a Bit Field www.ti.com

Description The field in src2, specified by csta and cstb, is extracted and sign-extended to 32 bits.
The extract is performed by a shift left followed by a signed shift right. csta and cstb are
the shift left amount and shift right amount, respectively. This can be thought of in terms
of the LSB and MSB of the field to be extracted. Then csta = 31 - MSB of the field and
cstb = csta + LSB of the field. The shift left and shift right amounts may also be specified
as the ten LSBs of the src1 register with cstb being bits 0-4 and csta bits 5-9. In the
example below, csta is 12 and cstb is 11 + 12 = 23. Only the ten LSBs are valid for the
register version of the instruction. If any of the 22 MSBs are non-zero, the result is
invalid.

Execution If the constant form is used:

if (cond) src2 ext csta, cstb → dst
else nop

If the register form is used:

if (cond) src2 ext src1 9..5, src1 4..0 → dst
else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also EXTU

230 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com EXT — Extract and Sign-Extend a Bit Field

Examples Example 1
EXT .S1 A1,10,19,A2

Before instruction 1 cycle after instruction

A1 07A4 3F2Ah A1 07A4 3F2Ah

A2 xxxx xxxxh A2 FFFF F21Fh

Example 2
EXT .S1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 03B6 E7D5h A1 03B6 E7D5h

A2 0000 0073h A2 0000 0073h

A3 xxxx xxxxh A3 0000 03B6h

231SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

EXTU — Extract and Zero-Extend a Bit Field www.ti.com

EXTU Extract and Zero-Extend a Bit Field

Syntax EXTU (.unit) src2, csta, cstb, dst

or

EXTU (.unit) src2, src1, dst

unit = .S1 or .S2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.S Sc5 Figure F-26

S2ext Figure F-27

Opcode Constant form:

31 29 28 27 23 22 18 17 13 12 8 7 6 5 4 3 2 1 0

creg z dst src2 csta cstb 0 0 0 0 1 0 s p

3 1 5 5 5 5 1 1

Opcode map field used... For operand type... Unit

src2 uint .S1, .S2
csta ucst5
cstb ucst5
dst uint

Opcode Register form:

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 1 0 1 1 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2 xuint .S1, .S2
src1 uint
dst uint

232 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

X

31

X

30

X

29

X

28

X

27

X

26

X

25

X

24

X

23

X

22

X

21

X

20

1

19

0

18

1

17

0

16 15 14 13 12

X

11

X

10

X

9

X

8

X

7

X

6

X

5

X

4

X

3

X

2

X

1 0

csta cstb - csta

1)

Shifts left by 12 to produce:

0 1 1 0 1

31 30 29 28 27 26 25 24 23

X

22

X

21

X

20

1

19

0

18

1

17

0

16 15 14 13 12

0

11 10 9 8 7 6 5 4 3 2 1 0

2) 0 1 1 0 1 X X X X X X X X 0 00 00 00 00 00

Then shifts right by 23 to produce:

31 30 29 28 27 26 25 24 23 22 21 20

0

19

0

18

0

17

0

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3) 0 0 0 0 0 1 0 1 0 0 1 1 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0

src2

dst

www.ti.com EXTU — Extract and Zero-Extend a Bit Field

Description The field in src2, specified by csta and cstb, is extracted and zero extended to 32 bits.
The extract is performed by a shift left followed by an unsigned shift right. csta and cstb
are the amounts to shift left and shift right, respectively. This can be thought of in terms
of the LSB and MSB of the field to be extracted. Then csta = 31 - MSB of the field and
cstb = csta + LSB of the field. The shift left and shift right amounts may also be specified
as the ten LSBs of the src1 register with cstb being bits 0-4 and csta bits 5-9. In the
example below, csta is 12 and cstb is 11 + 12 = 23. Only the ten LSBs are valid for the
register version of the instruction. If any of the 22 MSBs are non-zero, the result is
invalid.

Execution If the constant form is used:

if (cond) src2 extu csta, cstb → dst
else nop

If the register form is used:

if (cond) src2 extu src1 9..5, src1 4..0 → dst
else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also EXT

233SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

EXTU — Extract and Zero-Extend a Bit Field www.ti.com

Examples Example 1
EXTU .S1 A1,10,19,A2

Before instruction 1 cycle after instruction

A1 07A4 3F2Ah A1 07A4 3F2Ah

A2 xxxx xxxxh A2 0000 121Fh

Example 2
EXTU .S1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 03B6 E7D5h A1 03B6 E7D5h

A2 0000 0156h A2 0000 0156h

A3 xxxx xxxxh A3 0000 036Eh

234 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com GMPY — Galois Field Multiply

GMPY Galois Field Multiply

Syntax GMPY (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C64x+ CPU

Opcode

31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 dst src2 src1 x 0 1 1 1 1 1 1 1 0 0 s p

5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 uint .M1, .M2
src2 uint
dst uint

Description Performs a Galois field multiply, where src1 is 32 bits and src2 is limited to 9 bits. This
utilizes the existing hardware and produces a 32-bit result. This multiply connects all
levels of the gmpy4 together and only extends out by 8 bits, the resulting data is XORed
down by the 32-bit polynomial.

The polynomial used comes from either the GPLYA or GPLYB control register
depending on which side (A or B) the instruction executes. If the A-side M1 unit is used,
the polynomial comes from GPLYA; if the B-side M2 unit, the polynomial comes from
GPLYB.

This instruction executes unconditionally.
uword gmpy(uword src1,uword src2,uword polynomial)
{

// the multiply is always between GF(2^9) and GF(2^32)
// so no size information is needed

uint pp;
uint mask, tpp;
uint I;

pp = 0;
mask = 0x00000100; // multiply by computing

// partial products.
for (I=0; i<8; I++){
if (src2 & mask) pp ^= src1;
mask >>= 1;
tpp = pp << 1;
if (pp & 0x80000000) pp = polynomial ^ tpp;
else pp = tpp;

}
if (src2 & 0x1) pp ^= src1;

return (pp) ; // leave it asserted left.
}

235SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

GMPY — Galois Field Multiply www.ti.com

Execution

if (unit = M1)
GMPY_poly = GPLYA
lsb9(src2) gmpy src1 → dst

else if (unit = M2)
GMPY_poly = GPLYB
lsb9(src2) gmpy src1 → dst

Instruction Type Four-cycle

Delay Slots 3

See Also GMPY4, XORMPY, XOR

Example GMPY .M1 A0,A1,A2 GPLYA = 87654321

Before instruction 4 cycles after instruction

A0 1234 5678h A2 C721 A0EFh

A1 0000 0126h

236 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com GMPY4 — Galois Field Multiply, Packed 8-Bit

GMPY4 Galois Field Multiply, Packed 8-Bit

Syntax GMPY4 (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg 1 dst src2 src1 x 0 1 0 0 0 1 1 1 0 0 s p

3 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 u4 .M1, .M2
src2 xu4
dst u4

Description Performs the Galois field multiply on four values in src1 with four parallel values in src2.
The four products are packed into dst. The values in both src1 and src2 are treated as
unsigned, 8-bit packed data.

For each pair of 8-bit quantities in src1 and src2, the unsigned, 8-bit value from src1 is
Galois field multiplied (gmpy) with the unsigned, 8-bit value from src2. The product of
src1 byte 0 and src2 byte 0 is written to byte0 of dst. The product of src1 byte 1 and src2
byte 1 is written to byte1 of dst. The product of src1 byte 2 and src2 byte 2 is written to
byte2 of dst. The product of src1 byte 3 and src2 byte 3 is written to the most-significant
byte in dst.

31 24 23 16 15 8 7 0

ua_3 ua_2 ua_1 ua_0 ← src1

GMPY4

ub_3 ub_2 ub_1 ub_0 ← src2

= = = =

31 0

ua_3 gmpy ub_3 ua_2 gmpy ub_2 ua_1 gmpy ub_1 ua_0 gmpy ub_0 ← dst

The size and polynomial are controlled by the Galois field polynomial generator function
register (GFPGFR). All registers in the control register file can be written using the MVC
instruction (see MVC).

The default field generator polynomial is 1Dh, and the default size is 7. This setting is
used for many communications standards.

Note that the GMPY4 instruction is commutative, so:
GMPY4 .M1 A10,A12,A13

is equivalent to:
GMPY4 .M1 A12,A10,A13

237SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

GMPY4 — Galois Field Multiply, Packed 8-Bit www.ti.com

Execution

if (cond) {
(ubyte0(src1) gmpy ubyte0(src2)) → ubyte0(dst);
(ubyte1(src1) gmpy ubyte1(src2)) → ubyte1(dst);
(ubyte2(src1) gmpy ubyte2(src2)) → ubyte2(dst);
(ubyte3(src1) gmpy ubyte3(src2)) → ubyte3(dst)
}

else nop

Pipeline

Pipeline Stage E1 E2 E3 E4

Read src1, src2

Written dst

Unit in use .M

Instruction Type Four-cycle

Delay Slots 3

See Also GMPY, MVC, XOR

Examples Example 1
GMPY4 .M1 A5,A6,A7; polynomial = 0x1d

Before instruction 4 cycles after instruction

A5 45 23 00 01h 69 35 0 1 A5 45 23 00 01h
unsigned

A6 57 34 00 01h 87 52 0 1 A6 57 34 00 01h
unsigned

A7 xxxx xxxxh A7 72 92 00 01h 114 146 0 1
unsigned

Example 2
GMPY4 .M1 A5,A6,A7; field size is 0x7

Before instruction 4 cycles after instruction

A5 FF FE 02 1Fh 255 254 2 31 A5 FF FE 02 1Fh
unsigned

A6 FF FE 02 01h 255 254 2 1 A6 FF FE 02 01h
unsigned

A7 xxxx xxxxh A7 E2 E3 04 1Fh 226 227 4 31
unsigned

238 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com IDLE — Multicycle NOP With No Termination Until Interrupt

IDLE Multicycle NOP With No Termination Until Interrupt

Syntax IDLE

unit = none

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 p

1

Description Performs an infinite multicycle NOP that terminates upon servicing an interrupt, or a
branch occurs due to an IDLE instruction being in the delay slots of a branch.

The IDLE instruction cannot be paired with any other multicycle NOP instruction in the
same execute packet. Instructions that generate a multicycle NOP are: ADDKPC,
BNOP, and the multicycle NOP.

Instruction Type NOP

Delay Slots 0

239SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

LDB(U) — Load Byte From Memory With a 5-Bit Unsigned Constant Offset or Register Offset www.ti.com

LDB(U) Load Byte From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

Syntax

Register Offset Unsigned Constant Offset
LDB (.unit) *+baseR[offsetR], dst LDB (.unit) *+baseR[ucst5], dst
or or
LDBU (.unit) *+baseR[offsetR], dst LDBU (.unit) *+baseR[ucst5], dst

unit = .D1 or .D2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.D Doff4 Figure C-9

Dind Figure C-11

Dinc Figure C-13

Ddec Figure C-15

Opcode

31 29 28 27 23 22 18 17 13 12 9 8 7 6 4 3 2 1 0

creg z dst baseR offsetR/ucst5 mode 0 y op 0 1 s p

3 1 5 5 5 4 1 3 1 1

Description Loads a byte from memory to a general-purpose register (dst). Table 3-18 summarizes
the data types supported by loads. Table 3-6 describes the addressing generator
options. The memory address is formed from a base address register (baseR) and an
optional offset that is either a register (offsetR) or a 5-bit unsigned constant (ucst5). If an
offset is not given, the assembler assigns an offset of zero.

Table 3-18. Data Types Supported by LDB(U) Instruction

Mnemonic op Field Load Data Type SIze Left Shift of Offset

LDB 0 1 0 Load byte 8 0 bits

LDBU 0 0 1 Load byte unsigned 8 0 bits

offsetR and baseR must be in the same register file and on the same side as the .D unit
used. The y bit in the opcode determines the .D unit and register file used: y = 0 selects
the .D1 unit and baseR and offsetR from the A register file, and y = 1 selects the .D2 unit
and baseR and offsetR from the B register file.

offsetR/ucst5 is scaled by a left-shift of 0 bits. After scaling, offsetR/ucst5 is added to or
subtracted from baseR. For the preincrement, predecrement, positive offset, and
negative offset address generator options, the result of the calculation is the address to
be accessed in memory. For postincrement or postdecrement addressing, the value of
baseR before the addition or subtraction is the address to be accessed in memory.

The addressing arithmetic that performs the additions and subtractions defaults to linear
mode. However, for A4-A7 and for B4-B7, the mode can be changed to circular mode by
writing the appropriate value to the AMR (see Section 2.8.3).

240 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com LDB(U) — Load Byte From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

For LDB(U), the values are loaded into the 8 LSBs of dst. For LDB, the upper 24 bits of
dst values are sign-extended; for LDBU, the upper 24 bits of dst are zero-filled. The s bit
determines which file dst will be loaded into: s = 0 indicates dst will be loaded in the A
register file and s = 1 indicates dst will be loaded in the B register file.

Increments and decrements default to 1 and offsets default to 0 when no bracketed
register or constant is specified. Loads that do no modification to the baseR can use the
syntax *R. Square brackets, [], indicate that the ucst5 offset is left-shifted by 0.
Parentheses, (), can be used to set a nonscaled, constant offset. You must type either
brackets or parentheses around the specified offset, if you use the optional offset
parameter.

Execution

if (cond) mem → dst
else nop

Pipeline
Pipeline Stage E1 E2 E3 E4 E5

Read baseR, offsetR

Written baseR dst

Unit in use .D

Instruction Type Load

Delay Slots 4 for loaded value

0 for address modification from pre/post increment/decrement

For more information on delay slots for a load, see Chapter 4.

See Also LDH, LDW

Examples Example 1
LDB .D1 *-A5[4],A7

Before instruction 1 cycle after 5 cycles after
instruction instruction

A5 0000 0204h A5 0000 0204h A5 0000 0204h

A7 1951 1970h A7 1951 1970h A7 FFFF FFE1h

AMR 0000 0000h AMR 0000 0000h AMR 0000 0000h

mem 200h E1h mem 200h E1h mem 200h E1h

241SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

LDB(U) — Load Byte From Memory With a 5-Bit Unsigned Constant Offset or Register Offset www.ti.com

Example 2
LDB .D1 *++A4[5],A8

Before instruction 1 cycle after 5 cycles after
instruction instruction

A4 0000 0400h A4 0000 4005h A4 0000 4005h

A8 0000 0000h A8 0000 0000h A8 0000 0067h

AMR 0000 0000h AMR 0000 0000h AMR 0000 0000h

mem 4000h 0112 2334h mem 4000h 0112 2334h mem 4000h 0112 2334h

mem 4004h 4556 6778h mem 4004h 4556 6778h mem 4004h 4556 6778h

Example 3
LDB .D1 *A4++[5],A8

Before instruction 1 cycle after 5 cycles after
instruction instruction

A4 0000 0400h A4 0000 4005h A4 0000 4005h

A8 0000 0000h A8 0000 0000h A8 0000 0034h

AMR 0000 0000h AMR 0000 0000h AMR 0000 0000h

mem 4000h 0112 2334h mem 4000h 0112 2334h mem 4000h 0112 2334h

mem 4004h 4556 6778h mem 4004h 4556 6778h mem 4004h 4556 6778h

Example 4
LDB .D1 *++A4[A12],A8

Before instruction 1 cycle after 5 cycles after
instruction instruction

A4 0000 0400h A4 0000 4006h A4 0000 4006h

A8 0000 0000h A8 0000 0000h A8 0000 0056h

A12 0000 0006h A12 0000 0006h A12 0000 0006h

AMR 0000 0000h AMR 0000 0000h AMR 0000 0000h

mem 4000h 0112 2334h mem 4000h 0112 2334h mem 4000h 0112 2334h

mem 4004h 4556 6778h mem 4004h 4556 6778h mem 4004h 4556 6778h

242 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com LDB(U) — Load Byte From Memory With a 15-Bit Unsigned Constant Offset

LDB(U) Load Byte From Memory With a 15-Bit Unsigned Constant Offset

Syntax LDB (.unit) *+B14/B15[ucst15], dst

or

LDBU (.unit) *+B14/B15[ucst15], dst

unit = .D2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 23 22 8 7 6 4 3 2 1 0

creg z dst ucst15 y op 1 1 s p

3 1 5 15 1 3 1 1

Description Loads a byte from memory to a general-purpose register (dst). Table 3-19 summarizes
the data types supported by loads. The memory address is formed from a base address
register B14 (y = 0) or B15 (y = 1) and an offset, which is a 15-bit unsigned constant
(ucst15). The assembler selects this format only when the constant is larger than five
bits in magnitude. This instruction operates only on the .D2 unit.

The offset, ucst15, is scaled by a left shift of 0 bits. After scaling, ucst15 is added to
baseR. Subtraction is not supported. The result of the calculation is the address sent to
memory. The addressing arithmetic is always performed in linear mode.

For LDB(U), the values are loaded into the 8 LSBs of dst. For LDB, the upper 24 bits of
dst values are sign-extended; for LDBU, the upper 24 bits of dst are zero-filled. The s bit
determines which file dst will be loaded into: s = 0 indicates dst will be loaded in the A
register file and s = 1 indicates dst will be loaded in the B register file.

Square brackets, [], indicate that the ucst15offset is left-shifted by 0. Parentheses, (),
can be used to set a nonscaled, constant offset. You must type either brackets or
parentheses around the specified offset, if you use the optional offset parameter.

Table 3-19. Data Types Supported by LDB(U) Instruction (15-Bit Offset)

Mnemonic op Field Load Data Type SIze Left Shift of Offset

LDB 0 1 0 Load byte 8 0 bits

LDBU 0 0 1 Load byte unsigned 8 0 bits

Execution

if (cond) mem → dst
else nop

NOTE: This instruction executes only on the B side (.D2).

243SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

LDB(U) — Load Byte From Memory With a 15-Bit Unsigned Constant Offset www.ti.com

Pipeline
Pipeline Stage E1 E2 E3 E4 E5

Read B14/B15

Written dst

Unit in use .D2

Instruction Type Load

Delay Slots 4

See Also LDH, LDW

Example LDB .D2 *+B14[36],B1

Before instruction 1 cycle after instruction

B1 xxxx xxxxh B1 xxxx xxxxh

B14 0000 0100h B14 0000 0100h

mem 124-127h 4E7A FF12h mem 124-127h 4E7A FF12h

mem 124h 12h mem 124h 12h

5 cycles after instruction

B1 0000 0012h

B14 0000 0100h

mem 124-127h 4E7A FF12h

mem 124h 12h

244 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com LDDW — Load Doubleword From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

LDDW Load Doubleword From Memory With a 5-Bit Unsigned Constant Offset or
Register Offset

Syntax

Register Offset Unsigned Constant Offset
LDDW (.unit) *+baseR[offsetR], dst LDDW (.unit) *+baseR[ucst5], dst

unit = .D1 or .D2

Compatibility C64x and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.D Doff4DW Figure C-10

DindDW Figure C-12

DincDW Figure C-14

DdecDW Figure C-16

Dpp Figure C-22

Opcode

31 29 28 27 23 22 18 17 13 12 9 8 7 6 5 4 3 2 1 0

creg z dst baseR offsetR/ucst5 mode 1 y 1 1 0 0 1 s p

3 1 5 5 5 4 1 1 1

Description Loads a 64-bit quantity from memory into a register pair dst_o:dst_e. Table 3-6
describes the addressing generator options. The memory address is formed from a base
address register (baseR) and an optional offset that is either a register (offsetR) or a
5-bit unsigned constant (ucst5).

Both offsetR and baseR must be in the same register file and on the same side as the .D
unit used. The y bit in the opcode determines the .D unit and the register file used: y = 0
selects the .D1 unit and the baseR and offsetR from the A register file, and y = 1 selects
the .D2 unit and baseR and offsetR from the B register file. The s bit determines the
register file into which the dst is loaded: s = 0 indicates that dst is in the A register file,
and s = 1 indicates that dst is in the B register file. The dst field must always be an even
value because the LDDW instruction loads register pairs. Therefore, bit 23 is always
zero.

The offsetR/ucst5 is scaled by a left-shift of 3 to correctly represent doublewords. After
scaling, offsetR/ucst5 is added to or subtracted from baseR. For the preincrement,
predecrement, positive offset, and negative offset address generator options, the result
of the calculation is the address to be accessed in memory. For postincrement or
postdecrement addressing, the shifted value of baseR before the addition or subtraction
is the address to be accessed in memory.

Increments and decrements default to 1 and offsets default to 0 when no bracketed
register, bracketed constant, or constant enclosed in parentheses is specified. Square
brackets, [], indicate that ucst5 is left shifted by 3. Parentheses, (), indicate that ucst5 is
not left shifted. In other words, parentheses indicate a byte offset rather than a
doubleword offset. You must type either brackets or parenthesis around the specified
offset if you use the optional offset parameter.

245SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

LDDW — Load Doubleword From Memory With a 5-Bit Unsigned Constant Offset or Register Offset www.ti.com

The addressing arithmetic that performs the additions and subtractions defaults to linear
mode. However, for A4-A7 and for B4-B7, the mode can be changed to circular mode by
writing the appropriate value to the AMR (see Section 2.8.3).

The destination register pair must consist of a consecutive even and odd register pair
from the same register file. The instruction can be used to load a double-precision
floating-point value (64 bits), a pair of single-precision floating-point words (32 bits), or a
pair of 32-bit integers. The 32 least-significant bits are loaded into the even-numbered
register and the 32 most-significant bits (containing the sign bit and exponent) are
loaded into the next register (which is always odd-numbered register). The register pair
syntax places the odd register first, followed by a colon, then the even register (that is,
A1:A0, B1:B0, A3:A2, B3:B2, etc.).

All 64 bits of the double-precision floating point value are stored in big- or little-endian
byte order, depending on the mode selected. When the LDDW instruction is used to load
two 32-bit single-precision floating-point values or two 32-bit integer values, the order is
dependent on the endian mode used. In little-endian mode, the first 32-bit word in
memory is loaded into the even register. In big-endian mode, the first 32-bit word in
memory is loaded into the odd register. Regardless of the endian mode, the doubleword
address must be on a doubleword boundary (the three LSBs are zero).

Execution

if (cond) mem → dst
else nop

Pipeline
Pipeline Stage E1 E2 E3 E4 E5

Read baseR, offsetR

Written baseR dst

Unit in use .D

Instruction Type Load

Delay Slots 4

Functional Unit Latency 1

Examples Example 1
LDDW .D2 *+B10[1],A1:A0

Before instruction 5 cycles after instruction

A1:A0 xxxx xxxxh xxxx xxxxh A1:A0 4021 3333h 3333 3333h

B10 0000 0010h 16 B10 0000 0010h

mem 18h 3333 3333h 4021 3333h 8.6 mem 18h 3333 3333h 4021 3333h

Little-endian mode

246 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com LDDW — Load Doubleword From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

Example 2
LDDW .D1 *++A10[1],A1:A0

Before instruction 1 cycle after instruction

A1:A0 xxxx xxxxh xxxx xxxxh A1:A0 xxxx xxxxh xxxx xxxxh

A10 0000 0010h 16 A10 0000 0018h 24

mem 18h 4021 3333h 3333 3333h 8.6 mem 18h 4021 3333h 3333 3333h

5 cycles after instruction

A1:A0 4021 3333h 3333 3333h

A10 0000 0018h 24

mem 18h 4021 3333h 3333 3333h

Big-endian mode

Example 3
LDDW .D1 *A4++[5],A9:A8

Before instruction 1 cycle after instruction

A9:A8 xxxx xxxxh xxxx xxxxh A9:A8 xxxx xxxxh xxxx xxxxh

A4 0000 40B0h A4 0000 40B0h

mem 40B0h 0112 2334h 4556 6778h mem 40B0h 0112 2334h 4556 6778h

5 cycles after instruction

A9:A8 4556 6778h 0112 2334h

A4 0000 40B0h

mem 40B0h 0112 2334h 4556 6778h

Little-endian mode

247SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

LDDW — Load Doubleword From Memory With a 5-Bit Unsigned Constant Offset or Register Offset www.ti.com

Example 4
LDDW .D1 *++A4[A12],A9:A8

Before instruction 1 cycle after instruction

A9:A8 xxxx xxxxh xxxx xxxxh A9:A8 xxxx xxxxh xxxx xxxxh

A4 0000 40B0h A4 0000 40E0h

A12 0000 0006h A12 0000 0006h

mem 40E0h 0112 2334h 4556 6778h 8 mem 40E0h 0112 2334h 4556 6778h

5 cycles after instruction

A9:A8 4556 6778h 0112 2334h

A4 0000 40E0h

A12 0000 0006h

mem 40E0h 0112 2334h 4556 6778h

Little-endian mode

Example 5
LDDW .D1 *++A4(16),A9:A8

Before instruction 1 cycle after instruction

A9:A8 xxxx xxxxh xxxx xxxxh A9:A8 xxxx xxxxh xxxx xxxxh

A4 0000 40B0h A4 0000 40C0h

mem 40C0h 4556 6778h 899A ABBCh mem 40C0h 4556 6778h 899A ABBCh

5 cycles after instruction

A9:A8 899A ABBCh 4556 6778h

A4 0000 40C0h

mem 40C0h 4556 6778h 899A ABBCh

Little-endian mode

248 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com LDH(U) — Load Halfword From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

LDH(U) Load Halfword From Memory With a 5-Bit Unsigned Constant Offset or
Register Offset

Syntax

Register Offset Unsigned Constant Offset
LDH (.unit) *+baseR[offsetR], dst LDH (.unit) *+baseR[ucst5], dst
or or
LDHU (.unit) *+baseR[offsetR], dst LDHU (.unit) *+baseR[ucst5], dst

unit = .D1 or .D2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.D Doff4 Figure C-9

Dind Figure C-11

Dinc Figure C-13

Ddec Figure C-15

Opcode

31 29 28 27 23 22 18 17 13 12 9 8 7 6 4 3 2 1 0

creg z dst baseR offsetR/ucst5 mode 0 y op 0 1 s p

3 1 5 5 5 4 1 3 1 1

Description Loads a halfword from memory to a general-purpose register (dst). Table 3-20
summarizes the data types supported by halfword loads. Table 3-6 describes the
addressing generator options. The memory address is formed from a base address
register (baseR) and an optional offset that is either a register (offsetR) or a 5-bit
unsigned constant (ucst5). If an offset is not given, the assembler assigns an offset of
zero.

Table 3-20. Data Types Supported by LDH(U) Instruction

Mnemonic op Field Load Data Type SIze Left Shift of Offset

LDH 1 0 0 Load halfword 16 1 bit

LDHU 0 0 0 Load halfword unsigned 16 1 bit

offsetR and baseR must be in the same register file and on the same side as the .D unit
used. The y bit in the opcode determines the .D unit and register file used: y = 0 selects
the .D1 unit and baseR and offsetR from the A register file, and y = 1 selects the .D2 unit
and baseR and offsetR from the B register file.

offsetR/ucst5 is scaled by a left-shift of 1 bit. After scaling, offsetR/ucst5 is added to or
subtracted from baseR. For the preincrement, predecrement, positive offset, and
negative offset address generator options, the result of the calculation is the address to
be accessed in memory. For postincrement or postdecrement addressing, the value of
baseR before the addition or subtraction is the address to be accessed in memory.

249SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

LDH(U) — Load Halfword From Memory With a 5-Bit Unsigned Constant Offset or Register Offset www.ti.com

The addressing arithmetic that performs the additions and subtractions defaults to linear
mode. However, for A4-A7 and for B4-B7, the mode can be changed to circular mode by
writing the appropriate value to the AMR (see Section 2.8.3).

For LDH(U), the values are loaded into the 16 LSBs of dst. For LDH, the upper 16 bits of
dst are sign-extended; for LDHU, the upper 16 bits of dst are zero-filled. The s bit
determines which file dst will be loaded into: s = 0 indicates dst will be loaded in the A
register file and s = 1 indicates dst will be loaded in the B register file.

Increments and decrements default to 1 and offsets default to 0 when no bracketed
register or constant is specified. Loads that do no modification to the baseR can use the
syntax *R. Square brackets, [], indicate that the ucst5 offset is left-shifted by 1.
Parentheses, (), can be used to set a nonscaled, constant offset. You must type either
brackets or parentheses around the specified offset, if you use the optional offset
parameter.

Halfword addresses must be aligned on halfword (LSB is 0) boundaries.

Execution

if (cond) mem → dst
else nop

Pipeline
Pipeline Stage E1 E2 E3 E4 E5

Read baseR, offsetR

Written baseR dst

Unit in use .D

Instruction Type Load

Delay Slots 4 for loaded value

0 for address modification from pre/post increment/decrement

For more information on delay slots for a load, see Chapter 4.

See Also LDB, LDW

Example LDH .D1 *++A4[A1],A8

Before 1 cycle after instruction 5 cycles after
instruction instruction

A1 0000 0002h A1 0000 0002h A1 0000 0002h

A4 0000 0020h A4 0000 0024h A4 0000 0024h

A8 1103 51FFh A8 1103 51FFh A8 FFFF A21Fh

AMR 0000 0000h AMR 0000 0000h AMR 0000 0000h

mem 24h A21Fh mem 24h A21Fh mem 24h A21Fh

250 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com LDH(U) — Load Halfword From Memory With a 15-Bit Unsigned Constant Offset

LDH(U) Load Halfword From Memory With a 15-Bit Unsigned Constant Offset

Syntax LDH (.unit) *+B14/B15[ucst15], dst

or

LDHU (.unit) *+B14/B15[ucst15], dst

unit = .D2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 23 22 8 7 6 4 3 2 1 0

creg z dst ucst15 y op 1 1 s p

3 1 5 15 1 3 1 1

Description Loads a halfword from memory to a general-purpose register (dst). Table 3-21
summarizes the data types supported by loads. The memory address is formed from a
base address register B14 (y = 0) or B15 (y = 1) and an offset, which is a 15-bit
unsigned constant (ucst15). The assembler selects this format only when the constant is
larger than five bits in magnitude. This instruction operates only on the .D2 unit.

The offset, ucst15, is scaled by a left shift of 1 bit. After scaling, ucst15 is added to
baseR. Subtraction is not supported. The result of the calculation is the address sent to
memory. The addressing arithmetic is always performed in linear mode.

For LDH(U), the values are loaded into the 16 LSBs of dst. For LDH, the upper 16 bits of
dst are sign-extended; for LDHU, the upper 16 bits of dst are zero-filled. The s bit
determines which file dst will be loaded into: s = 0 indicates dst will be loaded in the A
register file and s = 1 indicates dst will be loaded in the B register file.

Square brackets, [], indicate that the ucst15offset is left-shifted by 1. Parentheses, (),
can be used to set a nonscaled, constant offset. You must type either brackets or
parentheses around the specified offset, if you use the optional offset parameter.

Halfword addresses must be aligned on halfword (LSB is 0) boundaries.

Table 3-21. Data Types Supported by LDH(U) Instruction (15-Bit Offset)

Mnemonic op Field Load Data Type SIze Left Shift of Offset

LDH 1 0 0 Load halfword 16 1 bit

LDHU 0 0 0 Load halfword unsigned 16 1 bit

Execution

if (cond) mem → dst
else nop

NOTE: This instruction executes only on the B side (.D2).

251SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

LDH(U) — Load Halfword From Memory With a 15-Bit Unsigned Constant Offset www.ti.com

Pipeline
Pipeline Stage E1 E2 E3 E4 E5

Read B14/B15

Written dst

Unit in use .D2

Instruction Type Load

Delay Slots 4

See Also LDB, LDW

252 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com LDNDW — Load Nonaligned Doubleword From Memory With Constant or Register Offset

LDNDW Load Nonaligned Doubleword From Memory With Constant or Register Offset

Syntax

Register Offset Unsigned Constant Offset
LDNDW (.unit) *+baseR[offsetR], dst LDNDW (.unit) *+baseR[ucst5], dst

unit = .D1 or .D2

Compatibility C64x and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.D Doff4DW Figure C-10

DindDW Figure C-12

DincDW Figure C-14

DdecDW Figure C-16

Opcode

31 29 28 27 24 23 22 18 17 13 12 9 8 7 6 5 4 3 2 1 0

creg z dst sc baseR offsetR/ucst5 mode 1 y 0 1 0 0 1 s p

3 1 4 1 5 5 4 1 1 1

Opcode map field used... For operand type... Unit

baseR uint .D1, .D2
offsetR uint
dst ullong

baseR uint .D1, .D2
offsetR ucst5
dst ullong

Description Loads a 64-bit quantity from memory into a register pair, dst_o:dst_e. Table 3-6
describes the addressing generator options. The LDNDW instruction may read a 64-bit
value from any byte boundary. Thus alignment to a 64-bit boundary is not required. The
memory address is formed from a base address register (baseR) and an optional offset
that is either a register (offsetR) or a 5-bit unsigned constant (ucst5).

Both offsetR and baseR must be in the same register file, and on the same side, as the
.D unit used. The y bit in the opcode determines the .D unit and register file used: y = 0
selects the .D1 unit and baseR and offsetR from the A register file, and y = 1 selects the
.D2 unit and baseR and offsetR from the B register file.

The LDNDW instruction supports both scaled offsets and nonscaled offsets. The sc field
is used to indicate whether the offsetR/ucst5 is scaled or not. If sc is 1 (scaled), the
offsetR/ucst5 is shifted left 3 bits before adding or subtracting from the baseR. If sc is 0
(nonscaled), the offsetR/ucst5 is not shifted before adding or subtracting from the baseR.
For the preincrement, predecrement, positive offset, and negative offset address
generator options, the result of the calculation is the address to be accessed in memory.
For postincrement or postdecrement addressing, the value of baseR before the addition
or subtraction is the address to be accessed from memory.

253SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

LDNDW — Load Nonaligned Doubleword From Memory With Constant or Register Offset www.ti.com

The addressing arithmetic that performs the additions and subtractions defaults to linear
mode. However, for A4-A7 and for B4-B7, the mode can be changed to circular mode by
writing the appropriate value to the AMR (see Section 2.8.3).

The dst field of the instruction selects a register pair, a consecutive even-numbered and
odd-numbered register pair from the same register file. The instruction can be used to
load a pair of 32-bit integers. The 32 least-significant bits are loaded into the
even-numbered register and the 32 most-significant bits are loaded into the next register
(that is always an odd-numbered register).

The dst can be in either register file, regardless of the .D unit or baseR or offsetR used.
The s bit determines which file dst will be loaded into: s = 0 indicates dst will be in the A
register file and s = 1 indicates dst will be loaded in the B register file.

NOTE: No other memory access may be issued in parallel with a nonaligned
memory access. The other .D unit can be used in parallel as long as it is
not performing a memory access.

Assembler Notes When no bracketed register or constant is specified, the assembler defaults increments
and decrements to 1 and offsets to 0. Loads that do no modification to the baseR can
use the assembler syntax *R. Square brackets, [], indicate that the ucst5 offset is
left-shifted by 3 for doubleword loads.

Parentheses, (), can be used to tell the assembler that the offset is a non-scaled offset.

For example, LDNDW (.unit) *+baseR (14), dst represents an offset of 14 bytes, and the
assembler writes out the instruction with offsetC = 14 and sc = 0.

LDNDW (.unit) *+baseR [16], dst represents an offset of 16 doublewords, or 128 bytes,
and the assembler writes out the instruction with offsetC = 16 and sc = 1.

Either brackets or parentheses must be typed around the specified offset if the optional
offset parameter is used.

Execution

if (cond) mem → dst
else nop

Pipeline
Pipeline Stage E1 E2 E3 E4 E5

Read baseR, offsetR

Written baseR dst

Unit in use .D

Instruction Type Load

Delay Slots 4 for loaded value

0 for address modification from pre/post increment/decrement

See Also LDNW, STNDW, STNW

254 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com LDNDW — Load Nonaligned Doubleword From Memory With Constant or Register Offset

Examples Example 1
LDNDW .D1 *A0++, A3:A2

Before instruction 1 cycle after instruction

A0 0000 1001h A0 0000 1009h

A3:A2 xxxx xxxxh xxxx xxxxh A3:A2 xxxx xxxxh xxxx xxxxh

mem 1000h 12B6 C5D4h mem 1000h 12B6 C5D4h

mem 1004h 1C4F 29A8h mem 1004h 1C4F 29A8h

mem 1008h 0569 345Eh mem 1008h 0569 345Eh

5 cycles after instruction

A0 0000 1009h

A3:A2 5E1C 4F29h A812 B6C5h

Little-endian mode

mem 1000h 12B6 C5D4h

mem 1004h 1C4F 29A8h

mem 1008h 0569 345Eh

Byte Memory 100C 100B 100A 1009 1008 1007 1006 1005 1004 1003 1002 1001 1000
Address

Data Value 11 05 69 34 5E 1C 4F 29 A8 12 B6 C5 D4

255SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

LDNDW — Load Nonaligned Doubleword From Memory With Constant or Register Offset www.ti.com

Example 2
LDNDW .D1 *A0++, A3:A2

Before instruction 1 cycle after instruction

A0 0000 1003h A0 0000 100Bh

A3:A2 xxxx xxxxh xxxx xxxxh A3:A2 xxxx xxxxh xxxx xxxxh

mem 1000h 12B6 C5D4h mem 1000h 12B6 C5D4h

mem 1004h 1C4F 29A8h mem 1004h 1C4F 29A8h

mem 1008h 0569 345Eh mem 1008h 0569 345Eh

5 cycles after instruction

A0 0000 100Bh

A3:A2 6934 5E1Ch 4F29 A812h

Little-endian mode

mem 1000h 12B6 C5D4h

mem 1004h 1C4F 29A8h

mem 1008h 0569 345Eh

Byte Memory 100C 100B 100A 1009 1008 1007 1006 1005 1004 1003 1002 1001 1000
Address

Data Value 11 05 69 34 5E 1C 4F 29 A8 12 B6 C5 D4

256 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com LDNW — Load Nonaligned Word From Memory With Constant or Register Offset

LDNW Load Nonaligned Word From Memory With Constant or Register Offset

Syntax

Register Offset Unsigned Constant Offset
LDNW (.unit) *+baseR[offsetR], dst LDNW (.unit) *+baseR[ucst5], dst

unit = .D1 or .D2

Compatibility C64x and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.D Doff4 Figure C-9

Dind Figure C-11

Dinc Figure C-13

Ddec Figure C-15

Opcode

31 29 28 27 23 22 18 17 13 12 9 8 7 6 5 4 3 2 1 0

creg z dst baseR offsetR/ucst5 mode 1 y 0 1 1 0 1 s p

3 1 5 5 5 4 1 1 1

Opcode map field used... For operand type... Unit

baseR uint .D1, .D2
offset uint
dst int

baseR uint .D1, .D2
offset ucst5
dst int

Description Loads a 32-bit quantity from memory into a 32-bit register, dst. Table 3-6 describes the
addressing generator options. The LDNW instruction may read a 32-bit value from any
byte boundary. Thus alignment to a 32-bit boundary is not required. The memory
address is formed from a base address register (baseR), and an optional offset that is
either a register (offsetR) or a 5-bit unsigned constant (ucst5). If an offset is not given,
the assembler assigns an offset of zero.

Both offsetR and baseR must be in the same register file, and on the same side, as the
.D unit used. The y bit in the opcode determines the .D unit and register file used: y = 0
selects the .D1 unit and baseR and offsetR from the A register file, and y = 1 selects the
.D2 unit and baseR and offsetR from the B register file.

The offsetR/ucst5 is scaled by a left shift of 2 bits. After scaling, offsetR/ucst5 is added
to, or subtracted from, baseR. For the preincrement, predecrement, positive offset, and
negative offset address generator options, the result of the calculation is the address to
be accessed in memory. For postincrement or postdecrement addressing, the value of
baseR before the addition or subtraction is the address to be accessed from memory.

257SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

LDNW — Load Nonaligned Word From Memory With Constant or Register Offset www.ti.com

The addressing arithmetic that performs the additions and subtractions defaults to linear
mode. However, for A4-A7 and for B4-B7, the mode can be changed to circular mode by
writing the appropriate value to the AMR (see Section 2.8.3).

The dst can be in either register file, regardless of the .D unit or baseR or offsetR used.
The s bit determines which file dst will be loaded into: s = 0 indicates dst will be in the A
register file and s = 1 indicates dst will be loaded in the B register file.

NOTE: No other memory access may be issued in parallel with a nonaligned
memory access. The other .D unit can be used in parallel, as long as it is
not doing a memory access.

Assembler Notes When no bracketed register or constant is specified, the assembler defaults increments
and decrements to 1 and offsets to 0. Loads that do no modification to the baseR can
use the assembler syntax *R. Square brackets, [], indicate that the ucst5 offset is
left-shifted by 2 for word loads.

Parentheses, (), can be used to tell the assembler that the offset is a nonscaled,
constant offset. The assembler right shifts the constant by 2 bits for word loads before
using it for the ucst5 field. After scaling by the LDNW instruction, this results in the same
constant offset as the assembler source if the least-significant two bits are zeros.

For example, LDNW (.unit) *+baseR (12), dst represents an offset of 12 bytes (3 words),
and the assembler writes out the instruction with ucst5 = 3.

LDNW (.unit) *+baseR [12], dst represents an offset of 12 words, or 48 bytes, and the
assembler writes out the instruction with ucst5 = 12.

Either brackets or parentheses must be typed around the specified offset if the optional
offset parameter is used.

Execution

if (cond) mem → dst
else nop

Pipeline
Pipeline Stage E1 E2 E3 E4 E5

Read baseR, offsetR

Written baseR dst

Unit in use .D

Instruction Type Load

Delay Slots 4 for loaded value

0 for address modification from pre/post increment/decrement

See Also LDNDW, STNDW, STNW

258 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com LDNW — Load Nonaligned Word From Memory With Constant or Register Offset

Examples Example 1
LDNW .D1 *A0++, A2

Before instruction 1 cycle after 5 cycles after
instruction instruction

A0 0000 1001h A0 0000 1005h A0 0000 1005h

A2 xxxx xxxxh A2 xxxx xxxxh A2 A812 B6C5h

Little-endian mode

mem 1000h 12B6 C5D4h mem 1000h 12B6 C5D4h mem 1000h 12B6 C5D4h

mem 1004h 1C4F 29A8h mem 1004h 1C4F 29A8h mem 1004h 1C4F 29A8h

Byte Memory Address 1007 1006 1005 1004 1003 1002 1001 1000

Data Value 1C 4F 29 A8 12 B6 C5 D4

Example 2
LDNW .D1 *A0++, A2

Before instruction 1 cycle after 5 cycles after
instruction instruction

A0 0000 1003h A0 0000 1007h A0 0000 1007h

A2 xxxx xxxxh A2 xxxx xxxxh A2 4F29 A812h

Little-endian mode

mem 1000h 12B6 C5D4h mem 1000h 12B6 C5D4h mem 1000h 12B6 C5D4h

mem 1004h 1C4F 29A8h mem 1004h 1C4F 29A8h mem 1004h 1C4F 29A8h

Byte Memory Address 1007 1006 1005 1004 1003 1002 1001 1000

Data Value 1C 4F 29 A8 12 B6 C5 D4

259SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

LDW — Load Word From Memory With a 5-Bit Unsigned Constant Offset or Register Offset www.ti.com

LDW Load Word From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

Syntax

Register Offset Unsigned Constant Offset
LDW (.unit) *+baseR[offsetR], dst LDW (.unit) *+baseR[ucst5], dst

unit = .D1 or .D2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.D Doff4 Figure C-9

Dind Figure C-11

Dinc Figure C-13

Ddec Figure C-15

Opcode

31 29 28 27 23 22 18 17 13 12 9 8 7 6 5 4 3 2 1 0

creg z dst baseR offsetR/ucst5 mode 0 y 1 1 0 0 1 s p

3 1 5 5 5 4 1 1 1

Description Loads a word from memory to a general-purpose register (dst). Table 3-6 describes the
addressing generator options. The memory address is formed from a base address
register (baseR) and an optional offset that is either a register (offsetR) or a 5-bit
unsigned constant (ucst5). If an offset is not given, the assembler assigns an offset of
zero.

offsetR and baseR must be in the same register file and on the same side as the .D unit
used. The y bit in the opcode determines the .D unit and register file used: y = 0 selects
the .D1 unit and baseR and offsetR from the A register file, and y = 1 selects the .D2 unit
and baseR and offsetR from the B register file.

offsetR/ucst5 is scaled by a left-shift of 2 bits. After scaling, offsetR/ucst5 is added to or
subtracted from baseR. For the preincrement, predecrement, positive offset, and
negative offset address generator options, the result of the calculation is the address to
be accessed in memory. For postincrement or postdecrement addressing, the value of
baseR before the addition or subtraction is the address to be accessed in memory.

The addressing arithmetic that performs the additions and subtractions defaults to linear
mode. However, for A4-A7 and for B4-B7, the mode can be changed to circular mode by
writing the appropriate value to the AMR (see Section 2.8.3).

For LDW, the entire 32 bits fills dst. dst can be in either register file, regardless of the .D
unit or baseR or offsetR used. The s bit determines which file dst will be loaded into:
s = 0 indicates dst will be loaded in the A register file and s = 1 indicates dst will be
loaded in the B register file.

Increments and decrements default to 1 and offsets default to 0 when no bracketed
register or constant is specified. Loads that do no modification to the baseR can use the
syntax *R. Square brackets, [], indicate that the ucst5 offset is left-shifted by 2.
Parentheses, (), can be used to set a nonscaled, constant offset. For example,

260 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com LDW — Load Word From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

LDW (.unit) *+baseR (12), dst represents an offset of 12 bytes; whereas, LDW (.unit)
*+baseR [12], dst represents an offset of 12 words, or 48 bytes. You must type either
brackets or parentheses around the specified offset, if you use the optional offset
parameter.

Word addresses must be aligned on word (two LSBs are 0) boundaries.

Execution

if (cond) mem → dst
else nop

Pipeline
Pipeline Stage E1 E2 E3 E4 E5

Read baseR, offsetR

Written baseR dst

Unit in use .D

Instruction Type Load

Delay Slots 4 for loaded value

0 for address modification from pre/post increment/decrement

For more information on delay slots for a load, see Chapter 4.

See Also LDB, LDH

Examples Example 1
LDW .D1 *A10,B1

Before instruction 1 cycle after 5 cycles after
instruction instruction

B1 0000 0000h B1 0000 0000h B1 21F3 1996h

A10 0000 0100h A10 0000 0100h A10 0000 0100h

mem 100h 21F3 1996h mem 100h 21F3 1996h mem 100h 21F3 1996h

Example 2
LDW .D1 *A4++[1],A6

Before instruction 1 cycle after 5 cycles after
instruction instruction

A4 0000 0100h A4 0000 0104h A4 0000 0104h

A6 1234 4321h A6 1234 4321h A6 0798 F25Ah

AMR 0000 0000h AMR 0000 0000h AMR 0000 0000h

mem 100h 0798 F25Ah mem 100h 0798 F25Ah mem 100h 0798 F25Ah

mem 104h 1970 19F3h mem 104h 1970 19F3h mem 104h 1970 19F3h

261SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

LDW — Load Word From Memory With a 5-Bit Unsigned Constant Offset or Register Offset www.ti.com

Example 3
LDW .D1 *++A4[1],A6

Before instruction 1 cycle after 5 cycles after
instruction instruction

A4 0000 0100h A4 0000 0104h A4 0000 0104h

A6 1234 5678h A6 1234 5678h A6 0217 6991h

AMR 0000 0000h AMR 0000 0000h AMR 0000 0000h

mem 104h 0217 6991h mem 104h 0217 6991h mem 104h 0217 6991h

Example 4
LDW .D1 *++A4[A12],A8

Before instruction 1 cycle after 5 cycles after
instruction instruction

A4 0000 40B0h A4 0000 40C8h A4 0000 40C8h

A8 0000 0000h A8 0000 0000h A8 DCCB BAA8h

A12 0000 0006h A12 0000 0006h A12 0000 0006h

AMR 0000 0000h AMR 0000 0000h AMR 0000 0000h

mem 40C8h DCCB BAA8h mem 40C8h DCCB BAA8h mem 40C8h DCCB BAA8h

Example 5
LDW .D1 *++A4(8),A8

Before instruction 1 cycle after 5 cycles after
instruction instruction

A4 0000 40B0h A4 0000 40B8h A4 0000 40B8h

A8 0000 0000h A8 0000 0000h A8 9AAB BCCDh

AMR 0000 0000h AMR 0000 0000h AMR 0000 0000h

mem 40B8h 9AAB BCCDh mem 40B8h 9AAB BCCDh mem 40B8h 9AAB BCCDh

262 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com LDW — Load Word From Memory With a 15-Bit Unsigned Constant Offset

LDW Load Word From Memory With a 15-Bit Unsigned Constant Offset

Syntax LDW (.unit) *+B14/B15[ucst15], dst

unit = .D2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.D Dstk Figure C-17

Dpp Figure C-22

Opcode

31 29 28 27 23 22 8 7 6 5 4 3 2 1 0

creg z dst ucst15 y 1 1 0 1 1 s p

3 1 5 15 1 1 1

Description Load a word from memory to a general-purpose register (dst). The memory address is
formed from a base address register B14 (y = 0) or B15 (y = 1) and an offset, which is a
15-bit unsigned constant (ucst15). The assembler selects this format only when the
constant is larger than five bits in magnitude. This instruction operates only on the .D2
unit.

The offset, ucst15, is scaled by a left shift of 2 bits. After scaling, ucst15 is added to
baseR. Subtraction is not supported. The result of the calculation is the address sent to
memory. The addressing arithmetic is always performed in linear mode.

For LDW, the entire 32 bits fills dst. dst can be in either register file. The s bit determines
which file dst will be loaded into: s = 0 indicates dst will be loaded in the A register file
and s = 1 indicates dst will be loaded in the B register file.

Square brackets, [], indicate that the ucst15offset is left-shifted by 2. Parentheses, (),
can be used to set a nonscaled, constant offset. For example,
LDW (.unit) *+B14/B15(60), dst represents an offset of 60 bytes; whereas,
LDW (.unit) *+B14/B15[60], dst represents an offset of 60 words, or 240 bytes. You must
type either brackets or parentheses around the specified offset, if you use the optional
offset parameter.

Word addresses must be aligned on word (two LSBs are 0) boundaries.

Execution

if (cond) mem → dst
else nop

NOTE: This instruction executes only on the B side (.D2).

263SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

LDW — Load Word From Memory With a 15-Bit Unsigned Constant Offset www.ti.com

Pipeline
Pipeline Stage E1 E2 E3 E4 E5

Read B14/B15

Written dst

Unit in use .D2

Instruction Type Load

Delay Slots 4

See Also LDB, LDH

264 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com LL — Load Linked Word from Memory

LL Load Linked Word from Memory

Syntax LL (.unit) *baseR, dst

unit = .D2

Compatibility C64x+ CPU

NOTE: The atomic operations are not supported on all C64x+ devices, see your
device-specific data manual for more information.

Opcode

31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst baseR 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 p

3 1 5 5 1

Opcode map field used... For operand type... Unit

baseR address .D2
dst int

Description The LL instruction performs a read of the 32-bit word in memory at the address specified
by baseR. The result is placed in dst. For linked-operation aware systems, the read
request also results in a request to store the address specified by baseR in a linked
operation register and the CPU signals that this is a linked read operation by setting the
link valid flag. Other than this signaling, the operation of the LL instruction from the CPU
perspective is identical to that of LDW *baseR, dst.

See Chapter 9 for more details.

Execution

if (cond) mem → dst
signal load-linked operation

else nop

Instruction Type Load

Delay Slots 4

See Also CMTL, SL

265SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

LMBD — Leftmost Bit Detection www.ti.com

LMBD Leftmost Bit Detection

Syntax LMBD (.unit) src1, src2, dst

unit = .L1 or .L2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1/cst5 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1 uint .L1, .L2 110 1011
src2 xuint
dst uint

src1 cst5 .L1, .L2 110 1010
src2 xuint
dst uint

Description The LSB of the src1 operand determines whether to search for a leftmost 1 or 0 in src2.
The number of bits to the left of the first 1 or 0 when searching for a 1 or 0, respectively,
is placed in dst.

The following diagram illustrates the operation of LMBD for several cases.

When searching for 0 in src2, LMBD returns 0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 x

When searching for 1 in src2, LMBD returns 4:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 x

When searching for 0 in src2, LMBD returns 32:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1

266 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com LMBD — Leftmost Bit Detection

Execution

if (cond) {
if (src1 0 == 0), lmb0(src2) → dst
if (src1 0 == 1), lmb1(src2) → dst
}

else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

Example LMBD .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 0001h A1 0000 0001h

A2 009E 3A81h A2 009E 3A81h

A3 xxxx xxxxh A3 0000 0008h

267SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MAX2 — Maximum, Signed, Packed 16-Bit www.ti.com

MAX2 Maximum, Signed, Packed 16-Bit

Syntax MAX2 (.unit) src1, src2, dst

unit = .L1 or .L2 (C64x and C64x+ CPU)

unit = .S1 or .S2 (C64x+ CPU)

Compatibility C64x and C64x+ CPU

Opcode .L unit (C64x and C64x+ CPU)

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 0 0 0 1 0 1 1 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 s2 .L1, .L2
src2 xs2
dst s2

Opcode .S unit (C64x+ CPU)

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 1 1 0 1 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 s2 .S1, .S2
src2 xs2
dst s2

Description Performs a maximum operation on signed, packed 16-bit values. For each pair of signed
16-bit values in src1 and src2, MAX2 places the larger value in the corresponding
position in dst.

31 16 15 0

a_hi a_lo ← src1

MAX2

b_hi b_lo ← src2

↓ ↓

31 16 15 0

(a_hi > b_hi) ? a_hi:b_hi (a_lo > b_lo) ? a_lo:b_lo ← dst

268 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MAX2 — Maximum, Signed, Packed 16-Bit

Execution

if (cond) {
if (lsb16(src1) >= lsb16(src2)), lsb16(src1) → lsb16(dst)

else lsb16(src2) → lsb16(dst);
if (msb16(src1) >= msb16(src2)), msb16(src1) → msb16(dst)

else msb16(src2) → msb16(dst)
}

else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also MAXU4, MIN2, MINU4

Examples Example 1
MAX2 .L1 A2, A8, A9

Before instruction 1 cycle after instruction

A2 3789 F23Ah A2 3789 F23Ah 14217 -3526

A8 04B8 4975h A8 04B8 4975h 1208 18805

A9 xxxx xxxxh A9 3789 4975h 14217 18805

Example 2
MAX2 .L2X A2, B8, B12

Before instruction 1 cycle after instruction

A2 0124 2451h A2 0124 2451h 292 9297

B8 01A6 A051h B8 01A6 A051h 422 -24495

B12 xxxx xxxxh B12 01A6 2451h 422 9297

269SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MAX2 — Maximum, Signed, Packed 16-Bit www.ti.com

Example 3 (C64x+ CPU)
MAX2 .S1 A2, A8, A9

Before instruction 1 cycle after instruction

A2 3789 F23Ah A2 3789 F23Ah 14217 -3526

A8 04B8 4975h A8 04B8 4975h 1208 18805

A9 xxxx xxxxh A9 3789 4975h 14217 18805

Example 4 (C64x+ CPU)
MAX2 .S2X A2, B8, B12

Before instruction 1 cycle after instruction

A2 0124 2451h A2 0124 2451h 292 9297

B8 01A6 A051h B8 01A6 A051h 422 -24495

B12 xxxx xxxxh B12 01A6 2451h 422 9297

270 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MAXU4 — Maximum, Unsigned, Packed 8-Bit

MAXU4 Maximum, Unsigned, Packed 8-Bit

Syntax MAXU4 (.unit) src1, src2, dst

unit = .L1 or .L2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 0 0 0 1 1 1 1 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 u4 .L1, .L2
src2 xu4
dst u4

Description Performs a maximum operation on unsigned, packed 8-bit values. For each pair of
unsigned 8-bit values in src1 and src2, MAXU4 places the larger value in the
corresponding position in dst.

31 24 23 16 15 8 7 0

ua_3 ua_2 ua_1 ua_0 ← src1

MAXU4

ub_3 ub_2 ub_1 ub_0 ← src2

↓ ↓ ↓ ↓

31 24 23 16 15 8 7 0

ua_3 > ub_3 ? ua_3:ub_3 ua_2 > ub_2 ? ua_2:ub_2 ua_1 > ub_1 ? ua_1:ub_1 ua_0 > ub_0 ? ua_0:ub_0 ← dst

Execution

if (cond) {
if (ubyte0(src1) >= ubyte0(src2)), ubyte0(src1) → ubyte0(dst)

else ubyte0(src2) → ubyte0(dst);
if (ubyte1(src1) >= ubyte1(src2)), ubyte1(src1) → ubyte1(dst)

else ubyte1(src2) → ubyte1(dst);
if (ubyte2(src1) >= ubyte2(src2)), ubyte2(src1) → ubyte2(dst)

else ubyte2(src2) → ubyte2(dst);
if (ubyte3(src1) >= ubyte3(src2)), ubyte3(src1) → ubyte3(dst)

else ubyte3(src2) → ubyte3(dst)
}

else nop

271SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MAXU4 — Maximum, Unsigned, Packed 8-Bit www.ti.com

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also MAX2, MIN2, MINU4

Examples Example 1
MAXU4 .L1 A2, A8, A9

Before instruction 1 cycle after instruction

A2 37 89 F2 3Ah A2 37 89 F2 3Ah 55 137 242 58
unsigned

A8 04 B8 49 75h A8 04 B8 49 75h 4 184 73 117
unsigned

A9 xxxx xxxxh A9 37 B8 F2 75h 55 184 242 117
unsigned

Example 2
MAXU4 .L2X A2, B8, B12

Before instruction 1 cycle after instruction

A2 01 24 24 B9h A2 01 24 24 B9h 1 36 36 185
unsigned

B8 01 A6 A0 51h B8 01 A6 A0 51h 1 166 160 81
unsigned

B12 xxxx xxxxh B12 01 A6 A0 B9h 1 166 160 185
unsigned

272 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MIN2 — Minimum, Signed, Packed 16-Bit

MIN2 Minimum, Signed, Packed 16-Bit

Syntax MIN2 (.unit) src1, src2, dst

unit = .L1 or .L2 (C64x and C64x+ CPU)

unit = .S1 or .S2 (C64x+ CPU)

Compatibility C64x and C64x+ CPU

Opcode .L unit (C64x and C64x+ CPU)

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 0 0 0 0 1 1 1 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 s2 .L1, .L2
src2 xs2
dst s2

Opcode .S unit (C64x+ CPU)

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 1 1 0 0 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 s2 .S1, .S2
src2 xs2
dst s2

Description Performs a minimum operation on signed, packed 16-bit values. For each pair of signed
16-bit values in src1 and src2, MIN2 instruction places the smaller value in the
corresponding position in dst.

31 16 15 0

a_hi a_lo ← src1

MIN2

b_hi b_lo ← src2

↓ ↓

31 16 15 0

(a_hi < b_hi) ? a_hi:b_hi (a_lo < b_lo) ? a_lo:b_lo ← dst

273SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MIN2 — Minimum, Signed, Packed 16-Bit www.ti.com

Execution

if (cond) {
if (lsb16(src1) <= lsb16(src2)), lsb16(src1) → lsb16(dst)

else lsb16(src2) → lsb16(dst);
if (msb16(src1) <= msb16(src2)), msb16(src1) → msb16(dst)

else msb16(src2)→ msb16(dst)
}

else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also MAX2, MAXU4, MINU4

Examples Example 1
MIN2 .L1 A2, A8, A9

Before instruction 1 cycle after instruction

A2 3789 F23Ah A2 3789 F23Ah 14217 -3526

A8 04B8 4975h A8 04B8 4975h 1208 18805

A9 xxxx xxxxh A9 04B8 F23Ah 1208 -3526

Example 2
MIN2 .L2X A2, B8, B12

Before instruction 1 cycle after instruction

A2 0124 8003h A2 0124 8003h 292 -32765

B8 0A37 8001h B8 0A37 8001h 2615 -32767

B12 xxxx xxxxh B12 0124 8001h 292 -32767

274 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MIN2 — Minimum, Signed, Packed 16-Bit

Example 3 (C64x+ CPU)
MIN2 .S1 A2, A8, A9

Before instruction 1 cycle after instruction

A2 3789 F23Ah A2 3789 F23Ah 14217 -3526

A8 04B8 4975h A8 04B8 4975h 1208 18805

A9 xxxx xxxxh A9 04B8 F23Ah 1208 -3526

Example 4 (C64x+ CPU)
MIN2 .S2X A2, B8, B12

Before instruction 1 cycle after instruction

A2 0124 8003h A2 0124 8003h 292 -32765

B8 0A37 8001h B8 0A37 8001h 2615 -32767

B12 xxxx xxxxh B12 0124 8001h 292 -32767

275SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MINU4 — Minimum, Unsigned, Packed 8-Bit www.ti.com

MINU4 Minimum, Unsigned, Packed 8-Bit

Syntax MINU4 (.unit) src1, src2, dst

unit = .L1 or .L2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 0 1 0 0 0 1 1 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 u4 .L1, .L2
src2 xu4
dst u4

Description Performs a minimum operation on unsigned, packed 8-bit values. For each pair of
unsigned 8-bit values in src1 and src2, MINU4 places the smaller value in the
corresponding position in dst.

31 24 23 16 15 8 7 0

ua_3 ua_2 ua_1 ua_0 ← src1

MINU4

ub_3 ub_2 ub_1 ub_0 ← src2

↓ ↓ ↓ ↓

31 24 23 16 15 8 7 0

ua_3 < ub_3 ? ua_3:ub_3 ua_2 < ub_2 ? ua_2:ub_2 ua_1 < ub_1 ? ua_1:ub_1 ua_0 < ub_0 ? ua_0:ub_0 ← dst

Execution

if (cond) {
if (ubyte0(src1) <= ubyte0(src2)), ubyte0(src1) → ubyte0(dst)

else ubyte0(src2) → ubyte0(dst);
if (ubyte1(src1) <= ubyte1(src2)), ubyte1(src1) → ubyte1(dst)

else ubyte1(src2) → ubyte1(dst);
if (ubyte2(src1) <= ubyte2(src2)), ubyte2(src1) → ubyte2(dst)

else ubyte2(src2) → ubyte2(dst);
if (ubyte3(src1) <= ubyte3(src2)), ubyte3(src1) → ubyte3(dst)

else ubyte3(src2) → ubyte3(dst)
}

else nop

276 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MINU4 — Minimum, Unsigned, Packed 8-Bit

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also MAX2, MAXU4, MIN2

Examples Example 1
MINU4 .L1 A2, A8, A9

Before instruction 1 cycle after instruction

A2 37 89 F2 3Ah A2 37 89 F2 3Ah 55 137 242 58
unsigned

A8 04 B8 49 75h A8 04 B8 49 75h 4 184 73 117
unsigned

A9 xxxx xxxxh A9 04 89 49 3Ah 4 137 73 58
unsigned

Example 2
MINU4 .L2 B2, B8, B12

Before instruction 1 cycle after instruction

B2 01 24 24 B9h B2 01 24 24 B9h 1 36 36 185
unsigned

B8 01 A6 A0 51h B8 01 A6 A0 51h 1 166 160 81
unsigned

B12 xxxx xxxxh B12 01 24 24 51h 1 36 36 81
unsigned

277SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MPY — Multiply Signed 16 LSB × Signed 16 LSB www.ti.com

MPY Multiply Signed 16 LSB × Signed 16 LSB

Syntax MPY (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.M M3 Figure E-5

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x op 0 0 0 0 0 s p

3 1 5 5 5 1 5 1 1

Opcode map field used... For operand type... Unit Opfield

src1 slsb16 .M1, .M2 11001
src2 xslsb16
dst sint

src1 scst5 .M1, .M2 11000
src2 xslsb16
dst sint

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst. The
source operands are signed by default.

Execution

if (cond) lsb16(src1) × lsb16(src2) → dst
else nop

Pipeline

Pipeline Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYU, MPYSU, MPYUS, SMPY

278 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MPY — Multiply Signed 16 LSB × Signed 16 LSB

Examples Example 1
MPY .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0000 0123h 291 (1) A1 0000 0123h

A2 01E0 FA81h -1407 (1) A2 01E0 FA81h

A3 xxxx xxxxh A3 FFF9 C0A3h -409,437

(1) Signed 16-LSB integer

Example 2
MPY .M1 13,A1,A2

Before instruction 2 cycles after instruction

A1 3497 FFF3h -13 (1) A1 3497 FFF3h

A2 xxxx xxxxh A2 FFFF FF57h -169

(1) Signed 16-LSB integer

279SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MPYH — Multiply Signed 16 MSB × Signed 16 MSB www.ti.com

MPYH Multiply Signed 16 MSB × Signed 16 MSB

Syntax MPYH (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.M M3 Figure E-5

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 0 0 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 smsb16 .M1, .M2
src2 xsmsb16
dst sint

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst. The
source operands are signed by default.

Execution

if (cond) msb16(src1) × msb16(src2) → dst
else nop

Pipeline

Pipeline Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYHU, MPYHSU, MPYHUS, SMPYH

280 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MPYH — Multiply Signed 16 MSB × Signed 16 MSB

Example MPYH .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0023 0000h 35 (1) A1 0023 0000h

A2 FFA7 1234h -89 (1) A2 FFA7 1234h

A3 xxxx xxxxh A3 FFFF F3D5h -3115

(1) Signed 16-MSB integer

281SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MPYHI — Multiply 16 MSB × 32-Bit Into 64-Bit Result www.ti.com

MPYHI Multiply 16 MSB × 32-Bit Into 64-Bit Result

Syntax MPYHI (.unit) src1, src2, dst_o:dst_e

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 0 1 0 0 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 int .M1, .M2
src2 xint
dst sllong

Description Performs a 16-bit by 32-bit multiply. The upper half of src1 is used as a signed 16-bit
input. The value in src2 is treated as a signed 32-bit value. The result is written into the
lower 48 bits of a 64-bit register pair, dst_o:dst_e, and sign extended to 64 bits.

Execution

if (cond) msb16(src1) × src2 → dst_o:dst_e
else nop

Pipeline

Pipeline Stage E1 E2 E3 E4

Read src1, src2

Written dst

Unit in use .M

Instruction Type Four-cycle

Delay Slots 3

See Also MPYLI

282 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MPYHI — Multiply 16 MSB × 32-Bit Into 64-Bit Result

Examples Example 1
MPYHI .M1 A5,A6,A9:A8

Before instruction 4 cycles after instruction

A5 6A32 1193h 27,186 A5 6A32 1193h

A6 B174 6CA4h -1,317,770,076 A6 B174 6CA4h

A9:A8 xxxx xxxxh xxxx xxxxh A9:A8 FFFF DF6Ah DDB9 2008h

-35,824,897,286,136

Example 2
MPYHI .M2 B2,B5,B9:B8

Before instruction 4 cycles after instruction

B2 1234 3497h 4660 B2 1234 3497h

B5 21FF 50A7h 570,380,455 B5 21FF 50A7h

B9:B8 xxxx xxxxh xxxx xxxxh B9:B8 0000 026Ah DB88 1FECh

2,657,972,920,300

283SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MPYHIR — Multiply 16 MSB × 32-Bit, Shifted by 15 to Produce a Rounded 32-Bit Result www.ti.com

MPYHIR Multiply 16 MSB × 32-Bit, Shifted by 15 to Produce a Rounded 32-Bit Result

Syntax MPYHIR (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 0 0 0 0 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 int .M1, .M2
src2 xint
dst int

Description Performs a 16-bit by 32-bit multiply. The upper half of src1 is treated as a signed 16-bit
input. The value in src2 is treated as a signed 32-bit value. The product is then rounded
to a 32-bit result by adding the value 214 and then this sum is right shifted by 15. The
lower 32 bits of the result are written into dst.

31 16 15 0

a_hi a_lo ← src1

×

MPYHIR

b_hi b_lo ← src2

=

31 0

((a_hi × b_hi:b_lo) + 4000h) >> 15 ← dst

Execution

if (cond) lsb32(((msb16(src1) × (src2)) + 4000h) >> 15) → dst
else nop

Pipeline

Pipeline Stage E1 E2 E3 E4

Read src1, src2

Written dst

Unit in use .M

284 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MPYHIR — Multiply 16 MSB × 32-Bit, Shifted by 15 to Produce a Rounded 32-Bit Result

Instruction Type Four-cycle

Delay Slots 3

See Also MPYLIR

Example MPYHIR .M2 B2,B5,B9

Before instruction 4 cycles after instruction

B2 1234 3497h 4660 B2 1234 3497h

B5 21FF 50A7h 570,380,455 B5 21FF 50A7h

B9 xxxx xxxxh B9 04D5 B710h 81,114,896

285SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MPYHL — Multiply Signed 16 MSB × Signed 16 LSB www.ti.com

MPYHL Multiply Signed 16 MSB × Signed 16 LSB

Syntax MPYHL (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.M M3 Figure E-5

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 0 0 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 smsb16 .M1, .M2
src2 xslsb16
dst sint

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst. The
source operands are signed by default.

Execution

if (cond) msb16(src1) × lsb16(src2) → dst
else nop

Pipeline

Pipeline Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYHLU, MPYHSLU, MPYHULS, SMPYHL

286 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MPYHL — Multiply Signed 16 MSB × Signed 16 LSB

Example MPYHL .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 008A 003Eh 138 (1) A1 008A 003Eh

A2 21FF 00A7h 167 (2) A2 21FF 00A7h

A3 xxxx xxxxh A3 0000 5A06h 23,046

(1) Signed 16-MSB integer
(2) Signed 16-LSB integer

287SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MPYHLU — Multiply Unsigned 16 MSB × Unsigned 16 LSB www.ti.com

MPYHLU Multiply Unsigned 16 MSB × Unsigned 16 LSB

Syntax MPYHLU (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 1 1 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 umsb16 .M1, .M2
src2 xulsb16
dst uint

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst. The
source operands are unsigned by default.

Execution

if (cond) msb16(src1) × lsb16(src2) → dst
else nop

Pipeline

Pipeline Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYHL, MPYHSLU, MPYHULS

288 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MPYHSLU — Multiply Signed 16 MSB × Unsigned 16 LSB

MPYHSLU Multiply Signed 16 MSB × Unsigned 16 LSB

Syntax MPYHSLU (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 0 1 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 smsb16 .M1, .M2
src2 xulsb16
dst sint

Description The signed operand src1 is multiplied by the unsigned operand src2. The result is placed
in dst. The S is needed in the mnemonic to specify a signed operand when both signed
and unsigned operands are used.

Execution

if (cond) msb16(src1) × lsb16(src2) → dst
else nop

Pipeline

Pipeline Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYHL, MPYHLU, MPYHULS

289SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MPYHSU — Multiply Signed 16 MSB × Unsigned 16 MSB www.ti.com

MPYHSU Multiply Signed 16 MSB × Unsigned 16 MSB

Syntax MPYHSU (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 0 1 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 smsb16 .M1, .M2
src2 xumsb16
dst sint

Description The signed operand src1 is multiplied by the unsigned operand src2. The result is placed
in dst. The S is needed in the mnemonic to specify a signed operand when both signed
and unsigned operands are used.

Execution

if (cond) msb16(src1) × msb16(src2) → dst
else nop

Pipeline

Pipeline Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYH, MPYHU, MPYHUS

Example MPYHSU .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0023 0000h 35 (1) A1 0023 0000h

A2 FFA7 FFFFh 65,447 (2) A2 FFA7 FFFFh

A3 xxxx xxxxh A3 0022 F3D5h 2,290,645

(1) Signed 16-MSB integer
(2) Unsigned 16-MSB integer

290 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MPYHU — Multiply Unsigned 16 MSB × Unsigned 16 MSB

MPYHU Multiply Unsigned 16 MSB × Unsigned 16 MSB

Syntax MPYHU (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 1 1 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 umsb16 .M1, .M2
src2 xumsb16
dst uint

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst. The
source operands are unsigned by default.

Execution

if (cond) msb16(src1) × msb16(src2) → dst
else nop

Pipeline

Pipeline Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYH, MPYHSU, MPYHUS

Example MPYHU .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0023 0000h 35 (1) A1 0023 0000h

A2 FFA7 1234h 65,447 (1) A2 FFA7 1234h

A3 xxxx xxxxh A3 0022 F3D5h 2,290,645 (2)

(1) Unsigned 16-MSB integer
(2) Unsigned 32-bit integer

291SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MPYHULS — Multiply Unsigned 16 MSB × Signed 16 LSB www.ti.com

MPYHULS Multiply Unsigned 16 MSB × Signed 16 LSB

Syntax MPYHULS (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 1 0 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 umsb16 .M1, .M2
src2 xslsb16
dst sint

Description The unsigned operand src1 is multiplied by the signed operand src2. The result is placed
in dst. The S is needed in the mnemonic to specify a signed operand when both signed
and unsigned operands are used.

Execution

if (cond) msb16(src1) × lsb16(src2) → dst
else nop

Pipeline

Pipeline Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYHL, MPYHLU, MPYHSLU

292 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MPYHUS — Multiply Unsigned 16 MSB × Signed 16 MSB

MPYHUS Multiply Unsigned 16 MSB × Signed 16 MSB

Syntax MPYHUS (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 1 0 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 umsb16 .M1, .M2
src2 xsmsb16
dst sint

Description The unsigned operand src1 is multiplied by the signed operand src2. The result is placed
in dst. The S is needed in the mnemonic to specify a signed operand when both signed
and unsigned operands are used.

Execution

if (cond) msb16(src1) × msb16(src2) → dst
else nop

Pipeline

Pipeline Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYH, MPYHU, MPYHSU

293SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MPYIH — Multiply 32-Bit × 16-MSB Into 64-Bit Result www.ti.com

MPYIH Multiply 32-Bit × 16-MSB Into 64-Bit Result

Syntax MPYIH (.unit) src2, src1, dst

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 0 1 0 0 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 int .M1, .M2
src2 xint
dst sllong

Description The MPYIH pseudo-operation performs a 16-bit by 32-bit multiply. The upper half of src1
is used as a signed 16-bit input. The value in src2 is treated as a signed 32-bit value.
The result is written into the lower 48 bits of a 64-bit register pair, dst_o:dst_e, and sign
extended to 64 bits. The assembler uses the MPYHI (.unit) src1, src2, dst instruction to
perform this operation (see MPYHI).

Execution

if (cond) src2 × msb16(src1) → dst_o:dst_e
else nop

Pipeline

Pipeline Stage E1 E2 E3 E4

Read src1, src2

Written dst

Unit in use .M

Instruction Type Four-cycle

Delay Slots 3

See Also MPYHI, MPYIL

294 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MPYIHR — Multiply 32-Bit × 16 MSB, Shifted by 15 to Produce a Rounded 32-Bit Result

MPYIHR Multiply 32-Bit × 16 MSB, Shifted by 15 to Produce a Rounded 32-Bit Result

Syntax MPYIHR (.unit) src2, src1, dst

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 0 0 0 0 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 int .M1, .M2
src2 xint
dst int

Description The MPYIHR pseudo-operation performs a 16-bit by 32-bit multiply. The upper half of
src1 is treated as a signed 16-bit input. The value in src2 is treated as a signed 32-bit
value. The product is then rounded to a 32-bit result by adding the value 214 and then
this sum is right shifted by 15. The lower 32 bits of the result are written into dst. The
assembler uses the MPYHIR (.unit) src1, src2, dst instruction to perform this operation
(see MPYHIR).

Execution

if (cond) lsb32((((src2) × msb16(src1)) + 4000h) >> 15) → dst
else nop

Pipeline

Pipeline Stage E1 E2 E3 E4

Read src1, src2

Written dst

Unit in use .M

Instruction Type Four-cycle

Delay Slots 3

See Also MPYHIR, MPYILR

295SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MPYIL — Multiply 32-Bit × 16 LSB Into 64-Bit Result www.ti.com

MPYIL Multiply 32-Bit × 16 LSB Into 64-Bit Result

Syntax MPYIL (.unit) src2, src1, dst

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 0 1 0 1 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 int .M1, .M2
src2 xint
dst sllong

Description The MPYIL pseudo-operation performs a 16-bit by 32-bit multiply. The lower half of src1
is used as a signed 16-bit input. The value in src2 is treated as a signed 32-bit value.
The result is written into the lower 48 bits of a 64-bit register pair, dst_o:dst_e, and sign
extended to 64 bits. The assembler uses the MPYLI (.unit) src1, src2, dst instruction to
perform this operation (see MPYLI).

Execution

if (cond) src2 × lsb16(src1) → dst_o:dst_e
else nop

Pipeline

Pipeline Stage E1 E2 E3 E4

Read src1, src2

Written dst

Unit in use .M

Instruction Type Four-cycle

Delay Slots 3

See Also MPYIH, MPYLI

296 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MPYILR — Multiply 32-Bit × 16 LSB, Shifted by 15 to Produce a Rounded 32-Bit Result

MPYILR Multiply 32-Bit × 16 LSB, Shifted by 15 to Produce a Rounded 32-Bit Result

Syntax MPYILR (.unit) src2, src1, dst

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 1 1 1 0 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 int .M1, .M2
src2 xint
dst int

Description The MPYILR pseudo-operation performs a 16-bit by 32-bit multiply. The lower half of
src1 is used as a signed 16-bit input. The value in src2 is treated as a signed 32-bit
value. The product is then rounded to a 32-bit result by adding the value 214 and then
this sum is right shifted by 15. The lower 32 bits of the result are written into dst. The
assembler uses the MPYLIR (.unit) src1, src2, dst instruction to perform this operation
(see MPYLIR).

Execution

if (cond) lsb32((((src2) × lsb16(src1)) + 4000h) >> 15) → dst
else nop

Pipeline

Pipeline Stage E1 E2 E3 E4

Read src1, src2

Written dst

Unit in use .M

Instruction Type Four-cycle

Delay Slots 3

See Also MPYIHR, MPYLIR

297SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MPYLH — Multiply Signed 16 LSB × Signed 16 MSB www.ti.com

MPYLH Multiply Signed 16 LSB × Signed 16 MSB

Syntax MPYLH (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.M M3 Figure E-5

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 0 0 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 slsb16 .M1, .M2
src2 xsmsb16
dst sint

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst. The
source operands are signed by default.

Execution

if (cond) lsb16(src1) × msb16(src2) → dst
else nop

Pipeline

Pipeline Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYLHU, MPYLSHU, MPYLUHS, SMPYLH

298 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MPYLH — Multiply Signed 16 LSB × Signed 16 MSB

Example MPYLH .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0900 000Eh 14 (1) A1 0900 000Eh

A2 0029 00A7h 41 (2) A2 0029 00A7h

A3 xxxx xxxxh A3 0000 023Eh 574

(1) Signed 16-LSB integer
(2) Signed 16-MSB integer

299SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MPYLHU — Multiply Unsigned 16 LSB × Unsigned 16 MSB www.ti.com

MPYLHU Multiply Unsigned 16 LSB × Unsigned 16 MSB

Syntax MPYLHU (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 1 1 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 ulsb16 .M1, .M2
src2 xumsb16
dst uint

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst. The
source operands are unsigned by default.

Execution

if (cond) lsb16(src1) × msb16(src2) → dst
else nop

Pipeline

Pipeline Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYLH, MPYLSHU, MPYLUHS

300 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MPYLI — Multiply 16 LSB × 32-Bit Into 64-Bit Result

MPYLI Multiply 16 LSB × 32-Bit Into 64-Bit Result

Syntax MPYLI (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 0 1 0 1 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 int .M1, .M2
src2 xint
dst sllong

Description Performs a 16-bit by 32-bit multiply. The lower half of src1 is used as a signed 16-bit
input. The value in src2 is treated as a signed 32-bit value. The result is written into the
lower 48 bits of a 64-bit register pair, dst_o:dst_e, and sign extended to 64 bits.

Execution

if (cond) lsb16(src1) × src2 → dst_o:dst_e
else nop

Pipeline

Pipeline Stage E1 E2 E3 E4

Read src1, src2

Written dst

Unit in use .M

Instruction Type Four-cycle

Delay Slots 3

See Also MPYHI

301SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MPYLI — Multiply 16 LSB × 32-Bit Into 64-Bit Result www.ti.com

Examples Example 1
MPYLI .M1 A5,A6,A9:A8

Before instruction 4 cycles after instruction

A5 6A32 1193h 4499 A5 6A32 1193h

A6 B174 6CA4h -1,317,770,076 A6 B174 6CA4h

A9:A8 xxxx xxxxh xxxx xxxxh A9:A8 FFFF FA9Bh A111 462Ch

-5,928,647,571,924

Example 2
MPYLI .M2 B2,B5,B9:B8

Before instruction 4 cycles after instruction

B2 1234 3497h 13,463 B2 1234 3497h

B5 21FF 50A7h 570,380,455 B5 21FF 50A7h

B9:B8 xxxx xxxxh xxxx xxxxh B9:B8 0000 06FBh E9FA 7E81h

7,679,032,065,665

302 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MPYLIR — Multiply 16 LSB × 32-Bit, Shifted by 15 to Produce a Rounded 32-Bit Result

MPYLIR Multiply 16 LSB × 32-Bit, Shifted by 15 to Produce a Rounded 32-Bit Result

Syntax MPYLIR (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 1 1 1 0 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 int .M1, .M2
src2 xint
dst int

Description Performs a 16-bit by 32-bit multiply. The lower half of src1 is treated as a signed 16-bit
input. The value in src2 is treated as a signed 32-bit value. The product is then rounded
into a 32-bit result by adding the value 214 and then this sum is right shifted by 15. The
lower 32 bits of the result are written into dst.

31 16 15 0

a_hi a_lo ← src1

×

MPYLIR

b_hi b_lo ← src2

=

31 0

((a_lo × b_hi:b_lo) + 4000h) >> 15 ← dst

Execution

if (cond) lsb32(((lsb16(src1) × (src2)) + 4000h) >> 15) → dst
else nop

Pipeline

Pipeline Stage E1 E2 E3 E4

Read src1, src2

Written dst

Unit in use .M

303SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MPYLIR — Multiply 16 LSB × 32-Bit, Shifted by 15 to Produce a Rounded 32-Bit Result www.ti.com

Instruction Type Four-cycle

Delay Slots 3

See Also MPYHIR

Example MPYLIR .M2 B2,B5,B9

Before instruction 4 cycles after instruction

B2 1234 3497h 13,463 B2 1234 3497h

B5 21FF 50A7h 570,380,455 B5 21FF 50A7h

B9 xxxx xxxxh B9 0DF7 D3F5h 234,345,461

304 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MPYLSHU — Multiply Signed 16 LSB × Unsigned 16 MSB

MPYLSHU Multiply Signed 16 LSB × Unsigned 16 MSB

Syntax MPYLSHU (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 0 1 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 slsb16 .M1, .M2
src2 xumsb16
dst sint

Description The signed operand src1 is multiplied by the unsigned operand src2. The result is placed
in dst. The S is needed in the mnemonic to specify a signed operand when both signed
and unsigned operands are used.

Execution

if (cond) lsb16(src1) × msb16(src2) → dst
else nop

Pipeline

Pipeline Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYLH, MPYLHU, MPYLUHS

305SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MPYLUHS — Multiply Unsigned 16 LSB × Signed 16 MSB www.ti.com

MPYLUHS Multiply Unsigned 16 LSB × Signed 16 MSB

Syntax MPYLUHS (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 1 0 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 ulsb16 .M1, .M2
src2 xsmsb16
dst sint

Description The unsigned operand src1 is multiplied by the signed operand src2. The result is placed
in dst. The S is needed in the mnemonic to specify a signed operand when both signed
and unsigned operands are used.

Execution

if (cond) lsb16(src1) × msb16(src2) → dst
else nop

Pipeline

Pipeline Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYLH, MPYLHU, MPYLSHU

306 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MPYSU — Multiply Signed 16 LSB × Unsigned 16 LSB

MPYSU Multiply Signed 16 LSB × Unsigned 16 LSB

Syntax MPYSU (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x op 0 0 0 0 0 s p

3 1 5 5 5 1 5 1 1

Opcode map field used... For operand type... Unit Opfield

src1 slsb16 .M1, .M2 11011
src2 xulsb16
dst sint

src1 scst5 .M1, .M2 11110
src2 xulsb16
dst sint

Description The signed operand src1 is multiplied by the unsigned operand src2. The result is placed
in dst. The S is needed in the mnemonic to specify a signed operand when both signed
and unsigned operands are used.

Execution

if (cond) lsb16(src1) × lsb16(src2) → dst
else nop

Pipeline

Pipeline Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPY, MPYU, MPYUS

Example MPYSU .M1 13,A1,A2

Before instruction 2 cycles after instruction

A1 3497 FFF3h 65,523 (1) A1 3497 FFF3h

A2 xxxx xxxxh A2 000C FF57h 851,779

(1) Unsigned 16-LSB integer

307SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MPYSU4 — Multiply Signed × Unsigned, Four 8-Bit Pairs for Four 8-Bit Results www.ti.com

MPYSU4 Multiply Signed × Unsigned, Four 8-Bit Pairs for Four 8-Bit Results

Syntax MPYSU4 (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 0 1 0 1 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 s4 .M1, .M2
src2 xu4
dst dws4

Description Returns the product between four sets of packed 8-bit values producing four signed
16-bit results. The four signed 16-bit results are packed into a 64-bit register pair,
dst_o:dst_e. The values in src1 are treated as signed 8-bit packed quantities; whereas,
the values in src2 are treated as unsigned 8-bit packed data.

For each pair of 8-bit quantities in src1 and src2, the signed 8-bit value from src1 is
multiplied with the unsigned 8-bit value from src2:

• The product of src1 byte 0 and src2 byte 0 is written to the lower half of dst_e.
• The product of src1 byte 1 and src2 byte 1 is written to the upper half of dst_e.
• The product of src1 byte 2 and src2 byte 2 is written to the lower half of dst_o.
• The product of src1 byte 3 and src2 byte 3 is written to the upper half of dst_o.

31 24 23 16 15 8 7 0

sa_3 sa_2 sa_1 sa_0 ← src1

× × × ×

MPYSU4

ub_3 ub_2 ub_1 ub_0 ← src2

=

63 48 47 32 31 16 15 0

sa_3 × ub_3 sa_2 × ub_2 sa_1 × ub_1 sa_0 × ub_0 ← dst_o:dst_e

308 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MPYSU4 — Multiply Signed × Unsigned, Four 8-Bit Pairs for Four 8-Bit Results

Execution

if (cond) {
(sbyte0(src1) × ubyte0(src2)) → lsb16(dst_e);
(sbyte1(src1) × ubyte1(src2)) → msb16(dst_e);
(sbyte2(src1) × ubyte2(src2)) → lsb16(dst_o);
(sbyte3(src1) × ubyte3(src2)) → msb16(dst_o)
}

else nop

Pipeline

Pipeline Stage E1 E2 E3 E4

Read src1, src2

Written dst

Unit in use .M

Instruction Type Four-cycle

Delay Slots 3

See Also MPYU4

Examples Example 1
MPYSU4 .M1 A5,A6,A9:A8

Before instruction 4 cycles after instruction

A5 6A 32 11 93h 106 50 17 -109 A5 6A 32 11 93h
signed

A6 B1 74 6C A4h 177 116 108 164 A6 B1 74 6C A4h
unsigned

A9:A8 xxxx xxxxh xxxx xxxxh A9:A8 494A 16A8h 072C BA2Ch

18762 5800 1386 -17876
signed

Example 2
MPYSU4 .M2 B5,B6,B9:B8

Before instruction 4 cycles after instruction

B5 3F F6 50 10h 63 -10 80 16 B5 3F F6 50 10h
signed

B6 C3 56 02 44h 195 86 2 68 B6 C3 56 02 44h
unsigned

B9:B8 xxxx xxxxh xxxx xxxxh B9:B8 2FFD FCA4h 00A0 0440h

12285 -680 160 1088
signed

309SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MPYU — Multiply Unsigned 16 LSB × Unsigned 16 LSB www.ti.com

MPYU Multiply Unsigned 16 LSB × Unsigned 16 LSB

Syntax MPYU (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 1 1 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 ulsb16 .M1, .M2
src2 xulsb16
dst uint

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst. The
source operands are unsigned by default.

Execution

if (cond) lsb16(src1) × lsb16(src2) → dst
else nop

Pipeline

Pipeline Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPY, MPYSU, MPYUS

Example MPYU .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0000 0123h 291 (1) A1 0000 0123h

A2 0F12 FA81h 64,129 (1) A2 0F12 FA81h

A3 xxxx xxxxh A3 011C C0A3h 18,661,539 (2)

(1) Unsigned 16-LSB integer
(2) Unsigned 32-bit integer

310 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MPYU4 — Multiply Unsigned × Unsigned, Four 8-Bit Pairs for Four 8-Bit Results

MPYU4 Multiply Unsigned × Unsigned, Four 8-Bit Pairs for Four 8-Bit Results

Syntax MPYU4 (.unit) src1, src2, dst_o:dst_e

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 0 1 0 0 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 u4 .M1, .M2
src2 xu4
dst dwu4

Description Returns the product between four sets of packed 8-bit values producing four unsigned
16-bit results that are packed into a 64-bit register pair, dst_o:dst_e. The values in both
src1 and src2 are treated as unsigned 8-bit packed data.

For each pair of 8-bit quantities in src1 and src2, the unsigned 8-bit value from src1 is
multiplied with the unsigned 8-bit value from src2:

• The product of src1 byte 0 and src2 byte 0 is written to the lower half of dst_e.
• The product of src1 byte 1 and src2 byte 1 is written to the upper half of dst_e.
• The product of src1 byte 2 and src2 byte 2 is written to the lower half of dst_o.
• The product of src1 byte 3 and src2 byte 3 is written to the upper half of dst_o.

31 24 23 16 15 8 7 0

ua_3 ua_2 ua_1 ua_0 ← src1

× × × ×

MPYU4

ub_3 ub_2 ub_1 ub_0 ← src2

=

63 48 47 32 31 16 15 0

ua_3 × ub_3 ua_2 × ub_2 ua_1 × ub_1 ua_0 × ub_0 ← dst_o:dst_e

311SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MPYU4 — Multiply Unsigned × Unsigned, Four 8-Bit Pairs for Four 8-Bit Results www.ti.com

Execution

if (cond) {
(ubyte0(src1) × ubyte0(src2)) → lsb16(dst_e);
(ubyte1(src1) × ubyte1(src2)) → msb16(dst_e);
(ubyte2(src1) × ubyte2(src2)) → lsb16(dst_o);
(ubyte3(src1) × ubyte3(src2)) → msb16(dst_o)
}

else nop

Pipeline

Pipeline Stage E1 E2 E3 E4

Read src1, src2

Written dst

Unit in use .M

Instruction Type Four-cycle

Delay Slots 3

See Also MPYSU4

Examples Example 1
MPYU4 .M1 A5,A6,A9:A8

Before instruction 4 cycles after instruction

A5 68 32 C1 93h 104 50 193 147 A5 68 32 C1 93h
unsigned

A6 B1 74 2C ABh 177 116 44 171 A6 B1 74 2C ABh
unsigned

A9:A8 xxxx xxxxh xxxx xxxxh A9:A8 47E8 16A8h 212C 6231h

18408 5800 8492 25137
unsigned

Example 2
MPYU4 .M2 B2,B5,B9:B8

Before instruction 4 cycles after instruction

B2 3D E6 50 7Fh 61 230 80 127 B2 3D E6 50 7Fh
unsigned

B5 C3 56 02 44h 195 86 2 68 B5 C3 56 02 44h
unsigned

B9:B8 xxxx xxxxh xxxx xxxxh B9:B8 2E77 4D44h 00A0 21BCh

11895 19780 160 8636
unsigned

312 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MPYUS — Multiply Unsigned 16 LSB × Signed 16 LSB

MPYUS Multiply Unsigned 16 LSB × Signed 16 LSB

Syntax MPYUS (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 1 0 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 ulsb16 .M1, .M2
src2 xslsb16
dst sint

Description The unsigned operand src1 is multiplied by the signed operand src2. The result is placed
in dst. The S is needed in the mnemonic to specify a signed operand when both signed
and unsigned operands are used.

Execution

if (cond) lsb16(src1) × lsb16(src2) → dst
else nop

Pipeline

Pipeline Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPY, MPYU, MPYSU

Example MPYUS .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 1234 FFA1h 65,441 (1) A1 1234 FFA1h

A2 1234 FFA1h -95 (2) A2 1234 FFA1h

A3 xxxx xxxxh A3 FFA1 2341h -6,216,895

(1) Unsigned 16-LSB integer
(2) Signed 16-LSB integer

313SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MPYUS4 — Multiply Unsigned × Signed, Four 8-Bit Pairs for Four 8-Bit Results www.ti.com

MPYUS4 Multiply Unsigned × Signed, Four 8-Bit Pairs for Four 8-Bit Results

Syntax MPYUS4 (.unit) src2, src1, dst

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 0 1 0 1 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 s4 .M1, .M2
src2 xu4
dst dws4

Description The MPYUS4 pseudo-operation returns the product between four sets of packed 8-bit
values, producing four signed 16-bit results. The four signed 16-bit results are packed
into a 64-bit register pair, dst_o:dst_e. The values in src1 are treated as signed 8-bit
packed quantities; whereas, the values in src2 are treated as unsigned 8-bit packed
data. The assembler uses the MPYSU4 (.unit)src1, src2, dst instruction to perform this
operation (see MPYSU4).

For each pair of 8-bit quantities in src1 and src2, the signed 8-bit value from src1 is
multiplied with the unsigned 8-bit value from src2:

• The product of src1 byte 0 and src2 byte 0 is written to the lower half of dst_e.
• The product of src1 byte 1 and src2 byte 1 is written to the upper half of dst_e.
• The product of src1 byte 2 and src2 byte 2 is written to the lower half of dst_o.
• The product of src1 byte 3 and src2 byte 3 is written to the upper half of dst_o.

Execution

if (cond) {
(ubyte0(src2) × sbyte0(src1)) → lsb16(dst_e);
(ubyte1(src2) × sbyte1(src1)) → msb16(dst_e);
(ubyte2(src2) × sbyte2(src1)) → lsb16(dst_o);
(ubyte3(src2) × sbyte3(src1)) → msb16(dst_o)
}

else nop

314 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MPYUS4 — Multiply Unsigned × Signed, Four 8-Bit Pairs for Four 8-Bit Results

Pipeline

Pipeline Stage E1 E2 E3 E4

Read src1, src2

Written dst

Unit in use .M

Instruction Type Four-cycle

Delay Slots 3

See Also MPYSU4, MPYU4

315SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MPY2 — Multiply Signed by Signed, 16 LSB × 16 LSB and 16 MSB × 16 MSB www.ti.com

MPY2 Multiply Signed by Signed, 16 LSB × 16 LSB and 16 MSB × 16 MSB

Syntax MPY2 (.unit) src1, src2, dst_o:dst_e

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 0 0 0 0 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 s2 .M1, .M2
src2 xs2
dst ullong

Description Performs two 16-bit by 16-bit multiplications between two pairs of signed, packed 16-bit
values. The values in src1 and src2 are treated as signed, packed 16-bit quantities. The
two 32-bit results are written into a 64-bit register pair.

The product of the lower halfwords of src1 and src2 is written to the even destination
register, dst_e. The product of the upper halfwords of src1 and src2 is written to the odd
destination register, dst_o.

This instruction helps reduce the number of instructions required to perform two 16-bit by
16-bit multiplies on both the lower and upper halves of two registers.

31 16 15 0

a_hi a_lo ← src1

× ×

MPY2

b_hi b_lo ← src2

=

63 32 31 0

a_hi × b_hi a_lo × b_lo ← dst_o:dst_e

The following code:
MPY .M1 A0, A1, A2
MPYH .M1 A0, A1, A3

may be replaced by:
MPY2 .M1 A0, A1, A3:A2

316 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MPY2 — Multiply Signed by Signed, 16 LSB × 16 LSB and 16 MSB × 16 MSB

Execution

if (cond) {
lsb16(src1) × lsb16(src2) → dst_e;
msb16(src1) × msb16(src2) → dst_o
}

else nop

Pipeline

Pipeline Stage E1 E2 E3 E4

Read src1, src2

Written dst

Unit in use .M

Instruction Type Four-cycle

Delay Slots 3

See Also MPYSU4, MPY2IR, SMPY2

Examples Example 1
MPY2 .M1 A5,A6, A9:A8

Before instruction 4 cycles after instruction

A5 6A32 1193h 27186 4499 A5 6A32 1193h

A6 B174 6CA4h -20108 27812 A6 B174 6CA4h

A9:A8 xxxx xxxxh xxxx xxxxh A9:A8 DF6A B0A8h 0775 462Ch

-546,656,088 125,126,188

Example 2
MPY2 .M2 B2, B5, B9:B8

Before instruction 4 cycles after instruction

B2 1234 3497h 4660 13463 B2 1234 3497h

B5 21FF 50A7h 8703 20647 B5 21FF 50A7h

B9:B8 xxxx xxxxh xxxx xxxxh B9:B8 026A D5CCh 1091 7E81h

40,555,980 277,970,561

317SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MPY2IR — Multiply Two 16-Bit × 32-Bit, Shifted by 15 to Produce a Rounded 32-Bit Result www.ti.com

MPY2IR Multiply Two 16-Bit × 32-Bit, Shifted by 15 to Produce a Rounded 32-Bit Result

Syntax MPY2IR (.unit) src1, src2, dst_o:dst_e

unit = .M1 or .M2

Compatibility C64x+ CPU

Opcode

31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 dst src2 src1 x 0 0 1 1 1 1 1 1 0 0 s p

5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 int .M1, .M2
src2 xint
dst dint

Description Performs two 16-bit by 32-bit multiplies. The upper and lower halves of src1 are treated
as 16-bit signed inputs. The value in src2 is treated as a 32-bit signed value. The
products are then rounded to a 32-bit result by adding the value 214 and then these sums
are right shifted by 15. The lower 32 bits of the two results are written into dst_o:dst_e.

If either result saturates, the M1 or M2 bit in SSR and the SAT bit in CSR are written one
cycle after the results are written to dst_o:dst_e.

This instruction executes unconditionally and cannot be predicated.

NOTE: In the overflow case, where the 16-bit input to the MPYIR operation is
8000h and the 32-bit input is 8000 0000h, the saturation value
7FFF FFFFh is written into the corresponding 32-bit dst register.

Execution

if (msb16(src1) = 8000h && src2 = 8000 0000h), 7FFF FFFFh → dst_o
else lsb32(((msb16(src1) × (src2)) + 4000h) >> 15) → dst_o;

if (lsb16(src1) = 8000h && src2 = 8000 0000h), 7FFF FFFFh → dst_e
else lsb32(((lsb16(src1) × (src2)) + 4000h) >> 15) → dst_e

Instruction Type Four-cycle

Delay Slots 3

See Also MPYLIR, MPYHIR

318 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MPY2IR — Multiply Two 16-Bit × 32-Bit, Shifted by 15 to Produce a Rounded 32-Bit Result

Examples Example 1
MPY2IR .M2 B2,B5,B9:B8

Before instruction 4 cycles after instruction

B2 8000 8001h B8 7FFF 0000h

B5 8000 0000h B9 7FFF FFFFh

CSR 0001 0100h CSR (1) 0001 0300h

SSR 0000 0000h SSR (1) 0000 0020h

(1) CSR.SAT and SSR.M2 set to 1, 5 cycles after instruction

Example 2
MPY2IR .M1X A2,B5,A9:A8

Before instruction 4 cycles after instruction

A2 8765 4321h A8 098C 16C1h

B5 1234 5678h A9 EED8 E38Fh

CSR 0001 0100h CSR (1) 0001 0100h

SSR 0000 0000h SSR (1) 0000 0000h

(1) CSR.SAT and SSR.M1 unchanged by operation

319SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MPY32 — Multiply Signed 32-Bit × Signed 32-Bit Into 32-Bit Result www.ti.com

MPY32 Multiply Signed 32-Bit × Signed 32-Bit Into 32-Bit Result

Syntax MPY32 (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 0 0 0 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 int .M1, .M2
src2 xint
dst int

Description Performs a 32-bit by 32-bit multiply. src1 and src2 are signed 32-bit values. Only the
lower 32 bits of the 64-bit result are written to dst.

Execution

if (cond) src1 × src2 → dst
else nop

Instruction Type Four-cycle

Delay Slots 3

See Also MPY32, MPY32SU, MPY32US, MPY32U, SMPY32

320 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MPY32 — Multiply Signed 32-Bit × Signed 32-Bit Into Signed 64-Bit Result

MPY32 Multiply Signed 32-Bit × Signed 32-Bit Into Signed 64-Bit Result

Syntax MPY32 (.unit) src1, src2, dst_o:dst_e

unit = .M1 or .M2

Compatibility C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 1 0 0 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 int .M1, .M2
src2 xint
dst dint

Description Performs a 32-bit by 32-bit multiply. src1 and src2 are signed 32-bit values. The signed
64-bit result is written to the register pair specified by dst.

Execution

if (cond) src1 × src2 → dst_o:dst_e
else nop

Instruction Type Four-cycle

Delay Slots 3

See Also MPY32, MPY32SU, MPY32US, MPY32U, SMPY32

321SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MPY32SU — Multiply Signed 32-Bit × Unsigned 32-Bit Into Signed 64-Bit Result www.ti.com

MPY32SU Multiply Signed 32-Bit × Unsigned 32-Bit Into Signed 64-Bit Result

Syntax MPY32SU (.unit) src1, src2, dst_o:dst_e

unit = .M1 or .M2

Compatibility C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 1 1 0 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 int .M1, .M2
src2 xuint
dst dint

Description Performs a 32-bit by 32-bit multiply. src1 is a signed 32-bit value and src2 is an unsigned
32-bit value. The signed 64-bit result is written to the register pair specified by dst.

Execution

if (cond) src1 × src2 → dst_o:dst_e
else nop

Instruction Type Four-cycle

Delay Slots 3

See Also MPY32, MPY32U, MPY32US, SMPY32

322 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MPY32U — Multiply Unsigned 32-Bit × Unsigned 32-Bit Into Unsigned 64-Bit Result

MPY32U Multiply Unsigned 32-Bit × Unsigned 32-Bit Into Unsigned 64-Bit Result

Syntax MPY32U (.unit) src1, src2, dst_o:dst_e

unit = .M1 or .M2

Compatibility C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 1 0 0 0 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 uint .M1, .M2
src2 xuint
dst duint

Description Performs a 32-bit by 32-bit multiply. src1 and src2 are unsigned 32-bit values. The
unsigned 64-bit result is written to the register pair specified by dst.

Execution

if (cond) src1 × src2 → dst_o:dst_e
else nop

Instruction Type Four-cycle

Delay Slots 3

See Also MPY32, MPY32SU, MPY32US, SMPY32

323SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MPY32US — Multiply Unsigned 32-Bit × Signed 32-Bit Into Signed 64-Bit Result www.ti.com

MPY32US Multiply Unsigned 32-Bit × Signed 32-Bit Into Signed 64-Bit Result

Syntax MPY32US (.unit) src1, src2, dst_o:dst_e

unit = .M1 or .M2

Compatibility C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 1 0 0 1 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 uint .M1, .M2
src2 xint
dst dint

Description Performs a 32-bit by 32-bit multiply. src1 is an unsigned 32-bit value and src2 is a signed
32-bit value. The signed 64-bit result is written to the register pair specified by dst.

Execution

if (cond) src1 × src2 → dst_o:dst_e
else nop

Instruction Type Four-cycle

Delay Slots 3

See Also MPY32, MPY32SU, MPY32U, SMPY32

324 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MV — Move From Register to Register

MV Move From Register to Register

Syntax MV (.unit) src2, dst

unit = .L1, .L2, .S1, .S2, .D1, .D2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.L, .S, .D LSDmvto Figure G-1

LSDmvtfr Figure G-2

Opcode .L unit (if the cross path form is not used)

31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 s p

3 1 5 5 1 1

Opcode map field used... For operand type... Unit

src2 slong .L1, .L2
dst slong

Opcode .L unit (if the cross path form is used)

31 29 28 27 23 22 18 17 16 15 14 13 12 11 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x op 1 1 0 s p

3 1 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src2 xsint .L1, .L2 000 0010
dst sint

src2 xuint .L1, .L2 111 1110
dst uint

325SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MV — Move From Register to Register www.ti.com

Opcode .S unit

31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x 0 0 0 1 1 0 1 0 0 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2 xsint .S1, .S2
dst sint

Opcode .D unit (if the cross path form is not used)

31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 s p

3 1 5 5 1 1

Opcode map field used... For operand type... Unit

src2 sint .D1, .D2
dst sint

Opcode .D unit (if the cross path form is used)

31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x 1 0 0 0 1 1 1 1 0 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2 xuint .D1, .D2
dst uint

Description The MV pseudo-operation moves a value from one register to another. The assembler
will either use the ADD (.unit) 0, src2, dst instruction (see ADD) or the OR (.unit) 0, src2,
dst instruction (see OR) to perform this operation.

Execution

if (cond) 0 + src2 → dst
else nop

Instruction Type Single-cycle

Delay Slots 0

326 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MVC — Move Between Control File and Register File

MVC Move Between Control File and Register File

Syntax MVC (.unit) src2, dst

unit = .S2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.S Sx1 Figure F-30

Opcode C64x and C64x+ CPU

Operands when moving from the control file to the register file:

31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst crlo 0 0 0 0 0 x 0 0 1 1 1 1 1 0 0 0 1 p

3 1 5 5 1 1

Opcode map field used... For operand type... Unit

crlo uint .S2
dst uint

Description For the C64x and C64x+ CPU, the contents of the control file specified by the crlo field is
moved to the register file specified by the dst field.

Register addresses for accessing the control registers are in Table 3-22.

Operands when moving from the register file to the control file:

31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z crlo src2 0 0 0 0 0 x 0 0 1 1 1 0 1 0 0 0 1 p

3 1 5 5 1 1

Opcode map field used... For operand type... Unit

src2 xuint .S2
crlo uint

Description For the C64x and C64x+ CPU, the contents of the register file specified by the src2 field
is moved to the control file specified by the crlo field.

Register addresses for accessing the control registers are in Table 3-22.

327SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MVC — Move Between Control File and Register File www.ti.com

Opcode C64x+ CPU

Operands when moving from the control file to the register file:

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst crlo crhi x 0 0 1 1 1 1 1 0 0 0 1 p

3 1 5 5 5 1 1

Opcode map field used... For operand type... Unit

crlo ucst5 .S2
dst uint
crhi ucst5

Description For the C64x+ CPU, the contents of the control file specified by the crhi and crlo fields is
moved to the register file specified by the dst field. Valid assembler values for crlo and
crhi are shown in Table 3-22.

Operands when moving from the register file to the control file:

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z crlo src2 crhi x 0 0 1 1 1 0 1 0 0 0 1 p

3 1 5 5 5 1 1

Opcode map field used... For operand type... Unit

src2 xuint .S2
crlo ucst5
crhi ucst5

Description For the C64x+ CPU, the contents of the register file specified by the src2 field is moved
to the control file specified by the crhi and crlo fields. Valid assembler values for crlo and
crhi are shown in Table 3-22.

Execution

if (cond) src2 → dst
else nop

NOTE: The MVC instruction executes only on the B side (.S2).

Refer to the individual control register descriptions for specific behaviors
and restrictions in accesses via the MVC instruction.

Pipeline

Pipeline Stage E1

Read src2

Written dst

Unit in use .S2

328 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MVC — Move Between Control File and Register File

Instruction Type Single-cycle

Any write to the ISR or ICR (by the MVC instruction) effectively has one delay slot
because the results cannot be read (by the MVC instruction) in the IFR until two cycles
after the write to the ISR or ICR.

Delay Slots 0

Example MVC .S2 B1,AMR

Before instruction 1 cycle after instruction

B1 F009 0001h B1 F009 0001h

AMR 0000 0000h AMR 0009 0001h

NOTE: The six MSBs of the AMR are reserved and therefore are not written to.

329SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MVC — Move Between Control File and Register File www.ti.com

Table 3-22. Register Addresses for Accessing the Control Registers

Address Supervisor User
Acronym Register Name crhi crlo Read/Write (1) Read/Write (1)

AMR Addressing mode register 00000 00000 R, W R, W

0xxxx 00000

CSR Control status register 00000 00001 R, W* R, W*

00001 00001

0xxxx 00001

DIER Debug interrupt enable register 00000 11001 R, W X

DNUM DSP core number register 00000 10001 R R

ECR Exception clear register 00000 11101 W X

EFR Exception flag register 00000 11101 R X

GFPGFR Galois field multiply control register 00000 11000 R, W R, W

GPLYA GMPY A-side polynomial register 00000 10110 R, W R, W

GPLYB GMPY B-side polynomial register 00000 10111 R, W R, W

ICR Interrupt clear register 00000 00011 W X

0xxxx 00011

IER Interrupt enable register 00000 00100 R, W X

0xxxx 00100

IERR Internal exception report register 00000 11111 R,W X

IFR Interrupt flag register 00000 00010 R X

00010 00010

ILC Inner loop count register 00000 01101 R, W R, W

IRP Interrupt return pointer register 00000 00110 R, W R, W

0xxxx 00110

ISR Interrupt set register 00000 00010 W X

0xxxx 00010

ISTP Interrupt service table pointer register 00000 00101 R, W X

0xxxx 00101

ITSR Interrupt task state register 00000 11011 R, W X

NRP Nonmaskable interrupt or exception return pointer 00000 00111 R, W R, W
register 0xxxx 00111

NTSR NMI/Exception task state register 00000 11100 R, W X

PCE1 Program counter, E1 phase 00000 10000 R R

10000 10000

REP Restricted entry point address register 00000 01111 R, W X

RILC Reload inner loop count register 00000 01110 R, W R, W

SSR Saturation status register 00000 10101 R, W R, W

TSCH Time-stamp counter (high 32 bits) register 00000 01011 R R

TSCL Time-stamp counter (low 32 bits) register 00000 01010 R R

TSR Task state register 00000 11010 R, W* R,W*
(1) R = Readable by the MVC instruction; W = Writeable by the MVC instruction; W* = Partially writeable by the MVC instruction;

X = Access causes exception

330 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MVD — Move From Register to Register, Delayed

MVD Move From Register to Register, Delayed

Syntax MVD (.unit) src2, dst

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 1 1 0 1 0 x 0 0 0 0 1 1 1 1 0 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2 xint .M1, .M2
dst int

Description Moves data from the src2 register to the dst register over 4 cycles. This is done using
the multiplier path.
MVD .M2x A0, B0 ;
NOP ;
NOP ;
NOP ; B0 = A0

Execution

if (cond) src2 → dst
else nop

Pipeline

Pipeline Stage E1 E2 E3 E4

Read src2

Written dst

Unit in use .M

Instruction Type Four-cycle

Delay Slots 3

Example MVD .M2X A5,B8

Before instruction 4 cycles after instruction

A5 6A32 1193h A5 6A32 1193h

B8 xxxx xxxxh B8 6A32 1193h

331SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MVK — Move Signed Constant Into Register and Sign Extend www.ti.com

MVK Move Signed Constant Into Register and Sign Extend

Syntax MVK (.unit) cst, dst

unit = .L1, .L2, .S1, .S2, .D1, .D2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.L Lx5 Figure D-8

.S Smvk8 Figure F-23

.L, .S, .D LSDx1c Figure G-3

LSDx1 Figure G-4

Opcode .S unit

31 29 28 27 23 22 7 6 5 4 3 2 1 0

creg z dst cst16 0 1 0 1 0 s p

3 1 5 16 1 1

Opcode map field used... For operand type... Unit

cst16 scst16 .S1, .S2
dst sint

Opcode .L unit (C64x and C64x+ CPU)

31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst cst5 0 0 1 0 1 x 0 0 1 1 0 1 0 1 1 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

cst5 scst5 .L1, .L2
dst sint

332 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MVK — Move Signed Constant Into Register and Sign Extend

Opcode .D unit (C64x and C64x+ CPU)

31 29 28 27 23 22 21 20 19 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst 0 0 0 0 0 cst5 0 0 0 0 0 0 1 0 0 0 0 s p

3 1 5 5 1 1

Opcode map field used... For operand type... Unit

cst5 scst5 .D1, .D2
dst sint

Description The constant cst is sign extended and placed in dst. The .S unit form allows for a 16-bit
signed constant.

Since many nonaddress constants fall into a 5-bit sign constant range, this allows the
flexibility to schedule the MVK instruction on the .L or .D units. In the .D unit form, the
constant is in the position normally used by src1, as for address math.

In most cases, the C6000 assembler and linker issue a warning or an error when a
constant is outside the range supported by the instruction. In the case of MVK .S, a
warning is issued whenever the constant is outside the signed 16-bit range, -32768 to
32767 (or FFFF 8000h to 0000 7FFFh).

For example:
MVK .S1 0x00008000X, A0

will generate a warning; whereas:
MVK .S1 0xFFFF8000, A0

will not generate a warning.

Execution

if (cond) scst → dst
else nop

Pipeline

Pipeline Stage E1

Read

Written dst

Unit in use .L, .S, or .D

Instruction Type Single cycle

Delay Slots 0

See Also MVKH, MVKL, MVKLH

333SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MVK — Move Signed Constant Into Register and Sign Extend www.ti.com

Examples Example 1
MVK .L2 -5,B8

Before instruction 1 cycle after instruction

B8 xxxx xxxxh B8 FFFF FFFBh

Example 2
MVK .D2 14,B8

Before instruction 1 cycle after instruction

B8 xxxx xxxxh B8 0000 000Eh

334 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MVKH/MVKLH — Move 16-Bit Constant Into Upper Bits of Register

MVKH/MVKLH Move 16-Bit Constant Into Upper Bits of Register

Syntax MVKH (.unit) cst, dst

or

MVKLH (.unit) cst, dst

unit = .S1 or .S2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 23 22 7 6 5 4 3 2 1 0

creg z dst cst16 h 1 0 1 0 s p

3 1 5 16 1 1 1

Opcode map field used... For operand type... Unit

cst16 uscst16 .S1, .S2
dst sint

Description The 16-bit constant, cst16 , is loaded into the upper 16 bits of dst. The 16 LSBs of dst
are unchanged. For the MVKH instruction, the assembler encodes the 16 MSBs of a
32-bit constant into the cst16 field of the opcode. For the MVKLH instruction, the
assembler encodes the 16 LSBs of a constant into the cst16 field of the opcode.

NOTE: Use the MVK instruction (see MVK) to load 16-bit constants. The
assembler generates a warning for any constant over 16 bits. To load
32-bit constants, such as 1234 5678h, use the following pair of
instructions:
MVKL 0x12345678
MVKH 0x12345678

If you are loading the address of a label, use:
MVKL label
MVKH label

Execution For the MVKLH instruction:

if (cond) ((cst 15..0) << 16) or (dst 15..0) → dst
else nop

For the MVKH instruction:

if (cond) ((cst 31..16) << 16) or (dst 15..0) → dst
else nop

335SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MVKH/MVKLH — Move 16-Bit Constant Into Upper Bits of Register www.ti.com

Pipeline

Pipeline Stage E1

Read

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also MVK, MVKL

Examples Example 1
MVKH .S1 0A329123h,A1

Before instruction 1 cycle after instruction

A1 0000 7634h A1 0A32 7634h

Example 2
MVKLH .S1 7A8h,A1

Before instruction 1 cycle after instruction

A1 FFFF F25Ah A1 07A8 F25Ah

336 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com MVKL — Move Signed Constant Into Register and Sign Extend

MVKL Move Signed Constant Into Register and Sign Extend

Syntax MVKL (.unit) cst, dst

unit = .S1 or .S2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 23 22 7 6 5 4 3 2 1 0

creg z dst cst16 0 1 0 1 0 s p

3 1 5 16 1 1

Opcode map field used... For operand type... Unit

cst16 scst16 .S1, .S2
dst sint

Description The 16-bit constant, cst16, is sign extended and placed in dst.

The MVKL instruction is equivalent to the MVK instruction (see MVK), except that the
MVKL instruction disables the constant range checking normally performed by the
assembler/linker. This allows the MVKL instruction to be paired with the MVKH
instruction (see MVKH) to generate 32-bit constants.

To load 32-bit constants, such as 1234 ABCDh, use the following pair of instructions:
MVKL .S1 0x0ABCD, A4
MVKLH .S1 0x1234, A4

This could also be used:
MVKL .S1 0x1234ABCD, A4
MVKH .S1 0x1234ABCD, A4

Use this to load the address of a label:
MVKL .S2 label, B5
MVKH .S2 label, B5

Execution

if (cond) scst → dst
else nop

Pipeline

Pipeline Stage E1

Read

Written dst

Unit in use .S

Instruction Type Single cycle

Delay Slots 0

See Also MVK, MVKH, MVKLH

337SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

MVKL — Move Signed Constant Into Register and Sign Extend www.ti.com

Examples Example 1
MVKL .S1 5678h,A8

Before instruction 1 cycle after instruction

A8 xxxx xxxxh A8 0000 5678h

Example 2
MVKL .S1 0C678h,A8

Before instruction 1 cycle after instruction

A8 xxxx xxxxh A8 FFFF C678h

338 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com NEG — Negate

NEG Negate

Syntax NEG (.unit) src2, dst

or

NEG (.L1 or .L2) src2_h:src2_l, dst_h:dst_l

unit = .L1, .L2, .S1, .S2

Compatibility C62x, C64x, and C64x+ CPU

Opcode .S unit

31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x 0 1 0 1 1 0 1 0 0 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2 xsint .S1, .S2
dst sint

Opcode .L unit

31 29 28 27 23 22 18 17 16 15 14 13 12 11 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x op 1 1 0 s p

3 1 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src2 xsint .L1, .L2 000 0110
dst sint

src2 slong .L1, .L2 010 0100
dst slong

Description The NEG pseudo-operation negates src2 and places the result in dst. The assembler
uses the SUB (.unit) 0, src2, dst instruction to perform this operation (see SUB).

Execution

if (cond) 0 -s src2 → dst
else nop

Instruction Type Single-cycle

Delay Slots 0

See Also SUB

339SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

NOP — No Operation www.ti.com

NOP No Operation

Syntax NOP [count]

unit = none

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

none Unop Figure H-9

Opcode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 src 0 0 0 0 0 0 0 0 0 0 0 0 p

4 1

Opcode map field used... For operand type... Unit

src ucst4 none

Description src is encoded as count - 1. For src + 1 cycles, no operation is performed. The maximum
value for count is 9. NOP with no operand is treated like NOP 1 with src encoded as
0000.

A multicycle NOP will not finish if a branch is completed first. For example, if a branch is
initiated on cycle n and a NOP 5 instruction is initiated on cycle n + 3, the branch is
complete on cycle n + 6 and the NOP is executed only from cycle n + 3 to cycle n + 5. A
single-cycle NOP in parallel with other instructions does not affect operation.

A multicycle NOP instruction cannot be paired with any other multicycle NOP instruction
in the same execute packet. Instructions that generate a multicycle NOP are: ADDKPC,
BNOP, CALLP, and IDLE.

Execution No operation for count cycles

Instruction Type NOP

Delay Slots 0

Examples Example 1
NOP
MVK .S1 125h,A1

1 cycle after NOP
Before NOP (No operation executes) 1 cycle after MVK

A1 1234 5678h A1 1234 5678h A1 0000 0125h

340 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com NOP — No Operation

Example 2
MVK .S1 1,A1
MVKLH .S1 0,A1
NOP 5
ADD .L1 A1,A2,A1

Before NOP 5 1 cycle after ADD instruction (6 cycles after NOP 5)

A1 0000 0001h A1 0000 0004h

A2 0000 0003h A2 0000 0003h

341SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

NORM — Normalize Integer www.ti.com

NORM Normalize Integer

Syntax NORM (.unit) src2, dst

or

NORM (.unit) src2_h:src2_l, dst

unit = .L1 or .L2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 16 15 14 13 12 11 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x op 1 1 0 s p

3 1 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src2 xsint .L1, .L2 110 0011
dst uint

src2 slong .L1, .L2 110 0000
dst uint

Description The number of redundant sign bits of src2 is placed in dst. Several examples are shown
in the following diagram.

In this case, NORM returns 0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 x

In this case, NORM returns 3:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 x

In this case, NORM returns 30:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0

In this case, NORM returns 31:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1

342 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com NORM — Normalize Integer

Execution

if (cond) norm(src) → dst
else nop

Pipeline

Pipeline Stage E1

Read src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

Examples Example 1
NORM .L1 A1,A2

Before instruction 1 cycle after instruction

A1 02A3 469Fh A1 02A3 469Fh

A2 xxxx xxxxh A2 0000 0005h 5

Example 2
NORM .L1 A1,A2

Before instruction 1 cycle after instruction

A1 FFFF F25Ah A1 FFFF F25Ah

A2 xxxx xxxxh A2 0000 0013h 19

Example 3
NORM .L1 A1:A0,A3

Before instruction 1 cycle after instruction

A0 0000 0007h A0 0000 0007h

A1 0000 0000h A1 0000 0000h

A3 xxxx xxxxh A3 0000 0024h 36

343SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

NOT — Bitwise NOT www.ti.com

NOT Bitwise NOT

Syntax NOT(.unit) src2, dst

unit = .L1, .L2, .S1, .S2, .D1, .D2

Compatibility C62x, C64x, and C64x+ CPU

Opcode .L unit

31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 1 1 1 1 1 x 1 1 0 1 1 1 0 1 1 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2 xuint .L1, .L2
dst uint

Opcode .S unit

31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 1 1 1 1 1 x 0 0 1 0 1 0 1 0 0 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2 xuint .S1, .S2
dst uint

Opcode .D unit

31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 1 1 1 1 1 x 1 0 1 1 1 1 1 1 0 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2 xuint .D1, .D2
dst uint

Description The NOT pseudo-operation performs a bitwise NOT on the src2 operand and places the
result in dst. The assembler uses the XOR (.unit) -1, src2, dst instruction to perform this
operation (see XOR).

344 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com NOT — Bitwise NOT

Execution

if (cond) -1 XOR src2 → dst
else nop

Instruction Type Single-cycle

Delay Slots 0

See Also XOR

345SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

OR — Bitwise OR www.ti.com

OR Bitwise OR

Syntax OR (.unit) src1, src2, dst

unit =.D1, .D2, .L1, .L2, .S1, .S2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.L L2c Figure D-7

Opcode .D unit

31 29 28 27 23 22 18 17 13 12 11 10 9 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 op 1 1 0 0 s p

3 1 5 5 5 1 4 1 1

Opcode map field used... For operand type... Unit Opfield

src1 uint .D1, .D2 0010
src2 xuint
dst uint

src1 scst5 .D1, .D2 0011
src2 xuint
dst uint

Opcode .L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1 uint .L1, .L2 111 1111
src2 xuint
dst uint

src1 scst5 .L1, .L2 111 1110
src2 xuint
dst uint

346 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com OR — Bitwise OR

Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x op 1 0 0 0 s p

3 1 5 5 5 1 6 1 1

Opcode map field used... For operand type... Unit Opfield

src1 uint .S1, .S2 01 1011
src2 xuint
dst uint

src1 scst5 .S1, .S2 01 1010
src2 xuint
dst uint

Description Performs a bitwise OR operation between src1 and src2. The result is placed in dst. The
scst5 operands are sign extended to 32 bits.

Execution

if (cond) src1 OR src2 → dst
else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L, .S, or .D

Instruction Type Single-cycle

Delay Slots 0

See Also AND, ANDN, XOR

Examples Example 1
OR .S1 A3,A4,A5

Before instruction 1 cycle after instruction

A3 08A3 A49Fh A3 08A3 A49Fh

A4 00FF 375Ah A4 00FF 375Ah

A5 xxxx xxxxh A5 08FF B7DFh

347SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

OR — Bitwise OR www.ti.com

Example 2
OR .D2 -12,B2,B8

Before instruction 1 cycle after instruction

B2 0000 3A41h B2 0000 3A41h

B8 xxxx xxxxh B8 FFFF FFF5h

348 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com PACK2 — Pack Two 16 LSBs Into Upper and Lower Register Halves

PACK2 Pack Two 16 LSBs Into Upper and Lower Register Halves

Syntax PACK2 (.unit) src1, src2, dst

unit = .L1, .L2, .S1, .S2

Compatibility C64x and C64x+ CPU

Opcode .L unit

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 0 0 0 0 0 1 1 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 i2 .L1, .L2
src2 xi2
dst i2

Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 1 1 1 1 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 i2 .S1, .S2
src2 xi2
dst i2

Description Moves the lower halfwords from src1 and src2 and packs them both into dst. The lower
halfword of src1 is placed in the upper halfword of dst. The lower halfword of src2 is
placed in the lower halfword of dst.

This instruction is useful for manipulating and preparing pairs of 16-bit values to be used
by the packed arithmetic operations, such as ADD2 (see ADD2).

31 16 15 0

a_hi a_lo ← src1

PACK2

b_hi b_lo ← src2

↓

31 16 15 0

a_lo b_lo ← dst

349SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

PACK2 — Pack Two 16 LSBs Into Upper and Lower Register Halves www.ti.com

Execution

if (cond) {
lsb16(src2) → lsb16(dst);
lsb16(src1) → msb16(dst)
}

else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L, .S

Instruction Type Single-cycle

Delay Slots 0

See Also PACKH2, PACKHL2, PACKLH2, SPACK2

Examples Example 1
PACK2 .L1 A2,A8,A9

Before instruction 1 cycle after instruction

A2 3789 F23Ah A2 3789 F23Ah

A8 04B8 4975h A8 04B8 4975h

A9 xxxx xxxxh A9 F23A 4975h

Example 2
PACK2 .S2 B2,B8,B12

Before instruction 1 cycle after instruction

B2 0124 2451h B2 0124 2451h

B8 01A6 A051h B8 01A6 A051h

B12 xxxx xxxxh B12 2451 A051h

350 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com PACKH2 — Pack Two 16 MSBs Into Upper and Lower Register Halves

PACKH2 Pack Two 16 MSBs Into Upper and Lower Register Halves

Syntax PACKH2 (.unit) src1, src2, dst

unit = .L1, .L2, .S1, .S2

Compatibility C64x and C64x+ CPU

Opcode .L unit

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 1 1 1 1 0 1 1 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 i2 .L1, .L2
src2 xi2
dst i2

Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 1 0 0 1 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 i2 .S1, .S2
src2 xi2
dst i2

Description Moves the upper halfwords from src1 and src2 and packs them both into dst. The upper
halfword of src1 is placed in the upper half-word of dst. The upper halfword of src2 is
placed in the lower halfword of dst.

This instruction is useful for manipulating and preparing pairs of 16-bit values to be used
by the packed arithmetic operations, such as ADD2 (see ADD2).

31 16 15 0

a_hi a_lo ← src1

PACKH2

b_hi b_lo ← src2

↓

31 16 15 0

a_hi b_hi ← dst

351SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

PACKH2 — Pack Two 16 MSBs Into Upper and Lower Register Halves www.ti.com

Execution

if (cond) {
msb16(src2) → lsb16(dst);
msb16(src1) → msb16(dst)
}

else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L, .S

Instruction Type Single-cycle

Delay Slots 0

See Also PACK2, PACKHL2, PACKLH2, SPACK2

Examples Example 1
PACKH2 .L1 A2,A8,A9

Before instruction 1 cycle after instruction

A2 3789 F23Ah A2 3789 F23Ah

A8 04B8 4975h A8 04B8 4975h

A9 xxxx xxxxh A9 3789 04B8h

Example 2
PACKH2 .S2 B2,B8,B12

Before instruction 1 cycle after instruction

B2 0124 2451h B2 0124 2451h

B8 01A6 A051h B8 01A6 A051h

B12 xxxx xxxxh B12 0124 01A6h

352 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com PACKH4 — Pack Four High Bytes Into Four 8-Bit Halfwords

PACKH4 Pack Four High Bytes Into Four 8-Bit Halfwords

Syntax PACKH4 (.unit) src1, src2, dst

unit = .L1 or .L2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 0 1 0 0 1 1 1 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 i4 .L1, .L2
src2 xi4
dst i4

Description Moves the high bytes of the two halfwords in src1 and src2, and packs them into dst.
The bytes from src1 are packed into the most-significant bytes of dst, and the bytes from
src2 are packed into the least-significant bytes of dst.

• The high byte of the upper halfword of src1 is moved to the upper byte of the upper
halfword of dst. The high byte of the lower halfword of src1 is moved to the lower
byte of the upper halfword of dst.

• The high byte of the upper halfword of src2 is moved to the upper byte of the lower
halfword of dst. The high byte of the lower halfword of src2 is moved to the lower
byte of the lower halfword of dst.

31 24 23 16 15 8 7 0

a_3 a_2 a_1 a_0 ← src1

PACKH4

b_3 b_2 b_1 b_0 ← src2

↓

31 24 23 16 15 8 7 0

a_3 a_1 b_3 b_1 ← dst

Execution

if (cond) {
byte3(src1) → byte3(dst);
byte1(src1) → byte2(dst);
byte3(src2) → byte1(dst);
byte1(src2) → byte0(dst)
}

else nop

353SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

PACKH4 — Pack Four High Bytes Into Four 8-Bit Halfwords www.ti.com

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also PACKL4, SPACKU4

Examples Example 1
PACKH4 .L1 A2,A8,A9

Before instruction 1 cycle after instruction

A2 37 89 F2 3Ah A2 37 89 F2 3Ah

A8 04 B8 49 75h A8 04 B8 49 75h

A9 xxxx xxxxh A9 37 F2 04 49h

Example 2
PACKH4 .L2 B2,B8,B12

Before instruction 1 cycle after instruction

B2 01 24 24 51h B2 01 24 24 51h

B8 01 A6 A0 51h B8 01 A6 A0 51h

B12 xxxx xxxxh B12 01 24 01 A0h

354 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com PACKHL2 — Pack 16 MSB Into Upper and 16 LSB Into Lower Register Halves

PACKHL2 Pack 16 MSB Into Upper and 16 LSB Into Lower Register Halves

Syntax PACKHL2 (.unit) src1, src2, dst

unit = .L1, .L2, .S1, .S2

Compatibility C64x and C64x+ CPU

Opcode .L unit

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 1 1 1 0 0 1 1 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 i2 .L1, .L2
src2 xi2
dst i2

Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 1 0 0 0 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 i2 .S1, .S2
src2 xi2
dst i2

Description Moves the upper halfword from src1 and the lower halfword from src2 and packs them
both into dst. The upper halfword of src1 is placed in the upper halfword of dst. The
lower halfword of src2 is placed in the lower halfword of dst.

This instruction is useful for manipulating and preparing pairs of 16-bit values to be used
by the packed arithmetic operations, such as ADD2 (see ADD2).

31 16 15 0

a_hi a_lo ← src1

PACKHL2

b_hi b_lo ← src2

↓

31 16 15 0

a_hi b_lo ← dst

355SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

PACKHL2 — Pack 16 MSB Into Upper and 16 LSB Into Lower Register Halves www.ti.com

Execution

if (cond) {
lsb16(src2) → lsb16(dst);
msb16(src1) → msb16(dst)
}

else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L, .S

Instruction Type Single-cycle

Delay Slots 0

See Also PACK2, PACKH2, PACKLH2, SPACK2

Examples Example 1
PACKHL2 .L1 A2,A8,A9

Before instruction 1 cycle after instruction

A2 3789 F23Ah A2 3789 F23Ah

A8 04B8 4975h A8 04B8 4975h

A9 xxxx xxxxh A9 3789 4975h

Example 2
PACKHL2 .S2 B2,B8,B12

Before instruction 1 cycle after instruction

B2 0124 2451h B2 0124 2451h

B8 01A6 A051h B8 01A6 A051h

B12 xxxx xxxxh B12 0124 A051h

356 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com PACKLH2 — Pack 16 LSB Into Upper and 16 MSB Into Lower Register Halves

PACKLH2 Pack 16 LSB Into Upper and 16 MSB Into Lower Register Halves

Syntax PACKLH2 (.unit) src1, src2, dst

unit = .L1, .L2, .S1, .S2

Compatibility C64x and C64x+ CPU

Opcode .L unit

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 1 1 0 1 1 1 1 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 i2 .L1, .L2
src2 xi2
dst i2

Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 0 0 0 0 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 i2 .S1, .S2
src2 xi2
dst i2

Description Moves the lower halfword from src1, and the upper halfword from src2, and packs them
both into dst. The lower halfword of src1 is placed in the upper halfword of dst. The
upper halfword of src2 is placed in the lower halfword of dst.

This instruction is useful for manipulating and preparing pairs of 16-bit values to be used
by the packed arithmetic operations, such as ADD2 (see ADD2).

31 16 15 0

a_hi a_lo ← src1

PACKLH2

b_hi b_lo ← src2

↓

31 16 15 0

a_lo b_hi ← dst

357SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

PACKLH2 — Pack 16 LSB Into Upper and 16 MSB Into Lower Register Halves www.ti.com

Execution

if (cond) {
msb16(src2) → lsb16(dst);
lsb16(src1) → msb16(dst)
}

else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L, .S

Instruction Type Single-cycle

Delay Slots 0

See Also PACK2, PACKH2, PACKHL2, SPACK2

Examples Example 1
PACKLH2 .L1 A2,A8,A9

Before instruction 1 cycle after instruction

A2 3789 F23Ah A2 3789 F23Ah

A8 04B8 4975h A8 04B8 4975h

A9 xxxx xxxxh A9 F23A 04B8h

Example 2
PACKLH2 .S2 B2,B8,B12

Before instruction 1 cycle after instruction

B2 0124 2451h B2 0124 2451h

B8 01A6 A051h B8 01A6 A051h

B12 xxxx xxxxh B12 2451 01A6h

358 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com PACKL4 — Pack Four Low Bytes Into Four 8-Bit Halfwords

PACKL4 Pack Four Low Bytes Into Four 8-Bit Halfwords

Syntax PACKL4 (.unit) src1, src2, dst

unit = .L1 or .L2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 0 1 0 0 0 1 1 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 i4 .L1, .L2
src2 xi4
dst i4

Description Moves the low bytes of the two halfwords in src1 and src2, and packs them into dst. The
bytes from src1 are packed into the most-significant bytes of dst, and the bytes from src2
are packed into the least-significant bytes of dst.

• The low byte of the upper halfword of src1 is moved to the upper byte of the upper
halfword of dst. The low byte of the lower halfword of src1 is moved to the lower byte
of the upper halfword of dst.

• The low byte of the upper halfword of src2 is moved to the upper byte of the lower
halfword of dst. The low byte of the lower halfword of src2 is moved to the lower byte
of the lower halfword of dst.

31 24 23 16 15 8 7 0

a_3 a_2 a_1 a_0 ← src1

PACKL4

b_3 b_2 b_1 b_0 ← src2

↓

31 24 23 16 15 8 7 0

a_2 a_0 b_2 b_0 ← dst

Execution

if (cond) {
byte2(src1) → byte3(dst);
byte0(src1) → byte2(dst);
byte2(src2) → byte1(dst);
byte0(src2) → byte0(dst)
}

else nop

359SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

PACKL4 — Pack Four Low Bytes Into Four 8-Bit Halfwords www.ti.com

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also PACKH4, SPACKU4

Examples Example 1
PACKL4 .L1 A2,A8,A9

Before instruction 1 cycle after instruction

A2 37 89 F2 3Ah A2 37 89 F2 3Ah

A8 04 B8 49 75h A8 04 B8 49 75h

A9 xxxx xxxxh A9 89 3A B8 75h

Example 2
PACKL4 .L2 B2,B8,B12

Before instruction 1 cycle after instruction

B2 01 24 24 51h B2 01 24 24 51h

B8 01 A6 A0 51h B8 01 A6 A0 51h

B12 xxxx xxxxh B12 24 51 A6 51h

360 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com RINT — Restore Previous Enable State

RINT Restore Previous Enable State

Syntax RINT

unit = none

Compatibility C64x+ CPU

Opcode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 p

1

Description Copies the contents of the SGIE bit in TSR into the GIE bit in TSR and CSR, and clears
the SGIE bit in TSR. The value of the SGIE bit in TSR is used for the current cycle as
the GIE indication; if restoring the GIE bit to 1, interrupts are enabled and can be taken
after the E1 phase containing the RINT instruction.

The CPU may service a maskable interrupt in the cycle immediately following the RINT
instruction. See section 5.2 for details.

The RINT instruction cannot be placed in parallel with: MVC reg, TSR; MVC reg, CSR;
B IRP; B NRP; NOP n; DINT; SPKERNEL; SPKERNELR; SPLOOP; SPLOOPD;
SPLOOPW; SPMASK; or SPMASKR.

This instruction executes unconditionally and cannot be predicated.

NOTE: The use of the DINT and RINT instructions in a nested manner, like the
following code:
DINT
DINT
RINT
RINT

leaves interrupts disabled. The first DINT leaves TSR.GIE cleared to 0,
so the second DINT leaves TSR,.SGIE cleared to 0. The RINT
instructions, therefore, copy zero to TSR.GIE (leaving interrupts
disabled).

Execution Enable interrupts in current cycle

SGIE bit in TSR → GIE bit in TSR
SGIE bit in TSR → GIE bit in CSR
0 → SGIE bit in TSR

Instruction Type Single-cycle

Delay Slots 0

See Also DINT

361SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

ROTL — Rotate Left www.ti.com

ROTL Rotate Left

Syntax ROTL (.unit) src2, src1, dst

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 op 1 1 0 0 s p

3 1 5 5 5 1 5 1 1

Opcode map field used... For operand type... Unit Opfield

src1 uint .M1, .M2 11101
src2 xuint
dst uint

src1 ucst5 .M1, .M2 11110
src2 xuint
dst uint

Description Rotates the 32-bit value of src2 to the left, and places the result in dst. The number of
bits to rotate is given in the 5 least-significant bits of src1. Bits 5 through 31 of src1 are
ignored and may be non-zero.

In the following figure, src1 is equal to 8.

31 24 23 16 15 8 7 0

abcdefgh ijklmnop qrstuvwx yzABCDEF ← src2

ROTL

↓

31 0

ijklmnopqrstuvwxyzABCDEFabcdefgh ← dst

(for src1 = 8)

NOTE: The ROTL instruction is useful in cryptographic applications.

Execution

if (cond) (src2 << src1) | (src2 >> (32 - src1)) → dst
else nop

362 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com ROTL — Rotate Left

Pipeline

Pipeline Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Two-cycle

Delay Slots 1

See Also SHL, SHLMB, SHRMB, SHR, SHRU

Examples Example 1
ROTL .M2 B2,B4,B5

Before instruction 2 cycles after instruction

B2 A6E2 C179h B2 A6E2 C179h

B4 1458 3B69h B4 1458 3B69h

B5 xxxx xxxxh B5 C582 F34Dh

Example 2
ROTL .M1 A4,10h,A5

Before instruction 2 cycles after instruction

A4 187A 65FCh A4 187A 65FCh

A5 xxxx xxxxh A5 65FC 187Ah

363SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

RPACK2 — Shift With Saturation and Pack Two 16 MSBs Into Upper and Lower Register Halves www.ti.com

RPACK2 Shift With Saturation and Pack Two 16 MSBs Into Upper and Lower Register
Halves

Syntax RPACK2 (.unit) src1, src2, dst

unit = .S1 or .S2

Compatibility C64x+ CPU

Opcode

31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 dst src2 src1 x 1 1 1 0 1 1 1 1 0 0 s p

5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 sint .S1, .S2
src2 xsint
dst s2

Description src1 and src2 are shifted left by 1 with saturation. The 16 most-significant bits of the
shifted src1 value are placed in the 16 most-significant bits of dst. The 16
most-significant bits of the shifted src2 value are placed in the 16 least-significant bits of
dst.

If either value saturates, the S1 or S2 bit in SSR and the SAT bit in CSR are written one
cycle after the result is written to dst.

This instruction executes unconditionally and cannot be predicated.

31 16 15 0

a_hi a_lo ← src1

RPACK2

b_hi b_lo ← src2

↓ ↓

31 16 15 0

sat(a_hi << 1) sat(b_hi << 1) ← dst

Execution

msb16(sat(src1 << 1)) → msb16(dst)
msb16(sat(src2 << 1)) → lsb16(dst)

Instruction Type Single-cycle

Delay Slots 0

See Also PACK2, PACKH2, SPACK2

364 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com RPACK2 — Shift With Saturation and Pack Two 16 MSBs Into Upper and Lower Register Halves

Examples Example 1
RPACK2 .S1 A0,A1,A2

Before instruction 1 cycle after instruction

A0 FEDC BA98h A2 FDBA 2468h

A1 1234 5678h

CSR 0001 0100h CSR (1) 0001 0100h

SSR 0000 0000h SSR (1) 0000 0000h

(1) CSR.SAT and SSR.S1 unchanged by operation

Example 2
RPACK2 .S2X B0,A1,B2

Before instruction 1 cycle after instruction

B0 8765 4321h B2 8000 2468h

A1 1234 5678h

CSR 0001 0100h CSR (1) 0001 0300h

SSR 0000 0000h SSR (1) 0000 0008h

(1) CSR.SAT and SSR.S2 set to 1, 2 cycles after instruction

365SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SADD — Add Two Signed Integers With Saturation www.ti.com

SADD Add Two Signed Integers With Saturation

Syntax SADD (.unit) src1, src2, dst

or

SADD (.L1 or .L2) src1, src2_h:src2_l, dst_h:dst_l

unit = .L1, .L2, .S1, .S2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.L L3 Figure D-4

.S S3 Figure F-21

Opcode .L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1 sint .L1, .L2 001 0011
src2 xsint
dst sint

src1 xsint .L1, .L2 011 0001
src2 slong
dst slong

src1 scst5 .L1, .L2 001 0010
src2 xsint
dst sint

src1 scst5 .L1, .L2 011 0000
src2 slong
dst slong

Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 0 0 0 0 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 sint .S1, .S2
src2 xsint
dst sint

366 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SADD — Add Two Signed Integers With Saturation

Description src1 is added to src2 and saturated, if an overflow occurs according to the following
rules:

1. If the dst is an int and src1 + src2 > 231 - 1, then the result is 231 - 1.
2. If the dst is an int and src1 + src2 < -231, then the result is -231.
3. If the dst is a long and src1 + src2 > 239 - 1, then the result is 239 - 1.
4. If the dst is a long and src1 + src2 < -239, then the result is -239.

The result is placed in dst. If a saturate occurs, the SAT bit in the control status register
(CSR) is set one cycle after dst is written.

Execution

if (cond) src1 +s src2 → dst
else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L, .S

Instruction Type Single-cycle

Delay Slots 0

See Also ADD

Examples Example 1
SADD .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 5A2E 51A3h 1,512,984,995 A1 5A2E 51A3h

A2 012A 3FA2h 19,546,018 A2 012A 3FA2h

A3 xxxx xxxxh A3 5B58 9145h 1,532,531,013

CSR 0001 0100h CSR 0001 0100h

SSR (1) 0000 0000h SSR 0000 0000h

2 cycles after instruction

A1 5A2E 51A3h

A2 012A 3FA2h

A3 5B58 9145h

CSR 0001 0100h Not saturated

SSR 0000 0000h

(1) Saturation status register (SSR) is only available on the C64x+ DSP.

367SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SADD — Add Two Signed Integers With Saturation www.ti.com

Example 2
SADD .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 4367 71F2h 1,130,852,850 A1 4367 71F2h

A2 5A2E 51A3h 1,512,984,995 A2 5A2E 51A3h

A3 xxxx xxxxh A3 7FFF FFFFh 2,147,483,647

CSR 0001 0100h CSR 0001 0100h

SSR (1) 0000 0000h SSR 0000 0000h

2 cycles after instruction

A1 4367 71F2h

A2 5A2E 51A3h

A3 7FFF FFFFh

CSR 0001 0300h Saturated

SSR 0000 0001h

(1) Saturation status register (SSR) is only available on the C64x+ DSP.

Example 3
SADD .L1X B2,A5:A4,A7:A6

Before instruction 1 cycle after instruction

A5:A4 0000 0000h 7C83 39B1h A5:A4 0000 0000h 7C83 39B1h

2,088,974,769 (1)

A7:A6 xxxx xxxxh xxxx xxxxh A7:A6 0000 0000h 8DAD 7953h

2,376,956,243 (1)

B2 112A 3FA2h 287,981,474 B2 112A 3FA2h

CSR 0001 0100h CSR 0001 0100h

SSR (2) 0000 0000h SSR 0000 0000h

2 cycles after instruction

A5:A4 0000 0000h 7C83 39B1h

A7:A6 0000 0000h 8DAD 7953h

B2 112A 3FA2h

CSR 0001 0100h Not saturated

SSR 0000 0000h

(1) Signed 40-bit (long) integer
(2) Saturation status register (SSR) is only available on the C64x+ DSP.

368 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SADD2 — Add Two Signed 16-Bit Integers on Upper and Lower Register Halves With Saturation

SADD2 Add Two Signed 16-Bit Integers on Upper and Lower Register Halves With
Saturation

Syntax SADD2 (.unit) src1, src2, dst

unit = .S1 or .S2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 0 0 0 0 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 s2 .S1, .S2
src2 xs2
dst s2

Description Performs 2s-complement addition between signed, packed 16-bit quantities in src1 and
src2. The results are placed in a signed, packed 16-bit format into dst.

For each pair of 16-bit quantities in src1 and src2, the sum between the signed 16-bit
value from src1 and the signed 16-bit value from src2 is calculated and saturated to
produce a signed 16-bit result. The result is placed in the corresponding position in dst.

Saturation is performed on each 16-bit result independently. For each sum, the following
tests are applied:

• If the sum is in the range - 215 to 2 15 - 1, inclusive, then no saturation is performed
and the sum is left unchanged.

• If the sum is greater than 215 - 1, then the result is set to 215 - 1.
• If the sum is less than - 215, then the result is set to - 215.

31 16 15 0

a_hi a_lo ← src1

SADD2

b_hi b_lo ← src2

↓ ↓

31 16 15 0

sat(a_hi + b_hi) sat(a_lo + b_lo) ← dst

NOTE: This operation is performed on each halfword separately. This
instruction does not affect the SAT bit in CSR.

369SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SADD2 — Add Two Signed 16-Bit Integers on Upper and Lower Register Halves With Saturation www.ti.com

Execution

if (cond) {
sat(msb16(src1) + msb16(src2)) → msb16(dst);
sat(lsb16(src1) + lsb16(src2)) → lsb16(dst)
}

else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also ADD2, SADD, SADDUS2, SADDU4, SUB2

Examples Example 1
SADD2 .S1 A2,A8,A9

Before instruction 1 cycle after instruction

A2 5789 F23Ah 22409 -3526 A2 5789 F23Ah

A8 74B8 4975h 29880 18805 A8 74B8 4975h

A9 xxxx xxxxh A9 7FFF 3BAFh 32767 15279

Example 2
SADD2 .S2 B2,B8,B12

Before instruction 1 cycle after instruction

B2 0124 847Ch 292 -31260 B2 0124 847Ch

B8 01A6 A051h 422 -24495 B8 01A6 A051h

B12 xxxx xxxxh B12 02CA 8000h 714 -32768

370 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SADDSUB — Parallel SADD and SSUB Operations On Common Inputs

SADDSUB Parallel SADD and SSUB Operations On Common Inputs

Syntax SADDSUB (.unit) src1, src2, dst_o:dst_e

unit = .L1 or .L2

Compatibility C64x+ CPU

Opcode

31 30 29 28 27 24 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 dst 0 src2 src1 x 0 0 0 1 1 1 0 1 1 0 s p

4 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 sint .L1, .L2
src2 xsint
dst dint

Description The following is performed in parallel:

1. src2 is added with saturation to src1. The result is placed in dst_o.
2. src2 is subtracted with saturation from src1. The result is placed in dst_e.

If either result saturates, the L1 or L2 bit in SSR and the SAT bit in CSR are written one
cycle after the results are written to dst_o:dst_e.

This instruction executes unconditionally and cannot be predicated.

Execution

sat(src1 + src2) → dst_o
sat(src1 - src2) → dst_e

Instruction Type Single-cycle

Delay Slots 0

See Also ADDSUB, SADDSUB2

Examples Example 1
SADDSUB .L1 A0,A1,A3:A2

Before instruction 1 cycle after instruction

A0 0700 C005h A2 0700 C006h

A1 FFFF FFFFh A3 0700 C004h

CSR 0001 0100h CSR (1) 0001 0100h

SSR 0000 0000h SSR (1) 0000 0000h

(1) CSR.SAT and SSR.L1 unchanged by operation

371SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SADDSUB — Parallel SADD and SSUB Operations On Common Inputs www.ti.com

Example 2
SADDSUB .L2X B0,A1,B3:B2

Before instruction 1 cycle after instruction

B0 7FFF FFFFh B2 7FFF FFFEh

A1 0000 0001h B3 7FFF FFFFh

CSR 0001 0100h CSR (1) 0001 0300h

SSR 0000 0000h SSR (1) 0000 0002h

(1) CSR.SAT and SSR.L2 set to 1, 2 cycles after instruction

Example 3
SADDSUB .L1X A0,B1,A3:A2

Before instruction 1 cycle after instruction

A0 8000 0000h A2 8000 0000h

B1 0000 0001h A3 8000 0001h

CSR 0001 0100h CSR (1) 0001 0300h

SSR 0000 0000h SSR (1) 0000 0001h

(1) CSR.SAT and SSR.L1 set to 1, 2 cycles after instruction

372 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SADDSUB2 — Parallel SADD2 and SSUB2 Operations On Common Inputs

SADDSUB2 Parallel SADD2 and SSUB2 Operations On Common Inputs

Syntax SADDSUB2 (.unit) src1, src2, dst_o:dst_e

unit = .L1 or .L2

Compatibility C64x+ CPU

Opcode

31 30 29 28 27 24 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 dst 0 src2 src1 x 0 0 0 1 1 1 1 1 1 0 s p

4 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 sint .L1, .L2
src2 xsint
dst dint

Description A SADD2 and a SSUB2 operation are done in parallel.

For the SADD2 operation, the upper and lower halves of the src2 operand are added
with saturation to the upper and lower halves of the src1 operand. The values in src1
and src2 are treated as signed, packed 16-bit data and the results are written in signed,
packed 16-bit format into dst_o.

For the SSUB2 operation, the upper and lower halves of the src2 operand are
subtracted with saturation from the upper and lower halves of the src1 operand. The
values in src1 and src2 are treated as signed, packed 16-bit data and the results are
written in signed, packed 16-bit format into dst_e.

This instruction executes unconditionally and cannot be predicated.

NOTE: These operations are performed separately on each halfword. This
instruction does not affect the SAT bit in CSR or the L1 or L2 bits in SSR.

Execution

sat(lsb16(src1) + lsb16(src2)) → lsb16(dst_o)
sat(msb16(src1) + msb16(src2)) → msb16(dst_o)
sat(lsb16(src1) - lsb16(src2)) → lsb16(dst_e)
sat(msb16(src1) - msb16(src2)) → msb16(dst_e)

Instruction Type Single-cycle

Delay Slots 0

See Also ADDSUB2, SADDSUB

373SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SADDSUB2 — Parallel SADD2 and SSUB2 Operations On Common Inputs www.ti.com

Examples Example 1
SADDSUB2 .L1 A0,A1,A3:A2

Before instruction 1 cycle after instruction

A0 0700 C005h A2 0701 C004h

A1 FFFF 0001h A3 06FF C006h

CSR 0001 0100h CSR (1) 0001 0100h

SSR 0000 0000h SSR (1) 0000 0000h

(1) CSR.SAT and SSR.L1 unchanged by operation

Example 2
SADDSUB2 .L2X B0,A1,B3:B2

Before instruction 1 cycle after instruction

B0 7FFF 8000h B2 7FFF 8001h

A1 FFFF FFFFh B3 7FFE 8000h

CSR 0001 0100h CSR (1) 0001 0100h

SSR 0000 0000h SSR (1) 0000 0000h

(1) CSR.SAT and SSR.L2 unchanged by operation

374 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SADDSU2 — Add Two Signed and Unsigned 16-Bit Integers on Register Halves With Saturation

SADDSU2 Add Two Signed and Unsigned 16-Bit Integers on Register Halves With Saturation

Syntax SADDSU2 (.unit) src2, src1, dst

unit = .S1 or .S2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 0 0 0 1 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 u2 .S1, .S2
src2 xs2
dst u2

Description The SADDSU2 pseudo-operation performs 2s-complement addition between unsigned
and signed packed 16-bit quantities. The values in src1 are treated as unsigned packed
16-bit quantities, and the values in src2 are treated as signed packed 16-bit quantities.
The results are placed in an unsigned packed 16-bit format into dst. The assembler uses
the SADDUS2 (.unit) src1, src2, dst instruction to perform this operation (see
SADDUS2).

For each pair of 16-bit quantities in src1 and src2, the sum between the unsigned 16-bit
value from src1 and the signed 16-bit value from src2 is calculated and saturated to
produce a signed 16-bit result. The result is placed in the corresponding position in dst.

Saturation is performed on each 16-bit result independently. For each sum, the following
tests are applied:

• If the sum is in the range 0 to 216 - 1, inclusive, then no saturation is performed and
the sum is left unchanged.

• If the sum is greater than 216 - 1, then the result is set to 216 - 1.
• If the sum is less than 0, then the result is cleared to 0.

Execution

if (cond) {
sat(smsb16(src2) + umsb16(src1)) → umsb16(dst);
sat(slsb16(src2) + ulsb16(src1)) → ulsb16(dst)
}

else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .S

375SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SADDSU2 — Add Two Signed and Unsigned 16-Bit Integers on Register Halves With Saturation www.ti.com

Instruction Type Single-cycle

Delay Slots 0

See Also SADD, SADD2, SADDUS2, SADDU4

376 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SADDUS2 — Add Two Unsigned and Signed 16-Bit Integers on Register Halves With Saturation

SADDUS2 Add Two Unsigned and Signed 16-Bit Integers on Register Halves With Saturation

Syntax SADDUS2 (.unit) src1, src2, dst

unit = .S1 or .S2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 0 0 0 1 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 u2 .S1, .S2
src2 xs2
dst u2

Description Performs 2s-complement addition between unsigned and signed, packed 16-bit
quantities. The values in src1 are treated as unsigned, packed 16-bit quantities; and the
values in src2 are treated as signed, packed 16-bit quantities. The results are placed in
an unsigned, packed 16-bit format into dst.

For each pair of 16-bit quantities in src1 and src2, the sum between the unsigned 16-bit
value from src1 and the signed 16-bit value from src2 is calculated and saturated to
produce a signed 16-bit result. The result is placed in the corresponding position in dst.

Saturation is performed on each 16-bit result independently. For each sum, the following
tests are applied:

• If the sum is in the range 0 to 216 - 1, inclusive, then no saturation is performed and
the sum is left unchanged.

• If the sum is greater than 216 - 1, then the result is set to 216 - 1.
• If the sum is less than 0, then the result is cleared to 0.

31 16 15 0

ua_hi ua_lo ← src1

SADDUS2

sb_hi sb_lo ← src2

↓ ↓

31 16 15 0

sat(ua_hi + sb_hi) sat(ua_lo + sb_lo) ← dst

NOTE: This operation is performed on each halfword separately. This
instruction does not affect the SAT bit in CSR.

377SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SADDUS2 — Add Two Unsigned and Signed 16-Bit Integers on Register Halves With Saturation www.ti.com

Execution

if (cond) {
sat(umsb16(src1) + smsb16(src2)) → umsb16(dst);
sat(ulsb16(src1) + slsb16(src2)) → ulsb16(dst)
}

else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also ADD2, SADD, SADD2, SADDU4

Examples Example 1
SADDUS2 .S1 A2, A8, A9

Before instruction 1 cycle after instruction

A2 5789 F23Ah 22409 62010 A2 5789 F23Ah
unsigned

A8 74B8 4975h 29880 18805 A8 74B8 4975h
signed

A9 xxxx xxxxh A9 CC41 FFFF 52289 65535
unsigned

Example 2
SADDUS2 .S2 B2, B8, B12

Before instruction 1 cycle after instruction

B2 147C 0124h 5244 292 B2 147C 0124h
unsigned

B8 A051 01A6h -24495 422 B8 A051 01A6h
signed

B12 xxxx xxxxh B12 0000 02CAh 0 714
unsigned

378 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SADDU4 — Add With Saturation, Four Unsigned 8-Bit Pairs for Four 8-Bit Results

SADDU4 Add With Saturation, Four Unsigned 8-Bit Pairs for Four 8-Bit Results

Syntax SADDU4 (.unit) src1, src2, dst

unit = .S1 or .S2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 0 0 1 1 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 u4 .S1, .S2
src2 xu4
dst u4

Description Performs 2s-complement addition between unsigned, packed 8-bit quantities. The values
in src1 and src2 are treated as unsigned, packed 8-bit quantities and the results are
written into dst in an unsigned, packed 8-bit format.

For each pair of 8-bit quantities in src1 and src2, the sum between the unsigned 8-bit
value from src1 and the unsigned 8-bit value from src2 is calculated and saturated to
produce an unsigned 8-bit result. The result is placed in the corresponding position in
dst.

Saturation is performed on each 8-bit result independently. For each sum, the following
tests are applied:

• If the sum is in the range 0 to 28 - 1, inclusive, then no saturation is performed and
the sum is left unchanged.

• If the sum is greater than 28 - 1, then the result is set to 28 - 1.

31 24 23 16 15 8 7 0

ua_3 ua_2 ua_1 ua_0 ← src1

SADDU4

ub_3 ub_2 ub_1 ub_0 ← src2

↓ ↓ ↓ ↓

31 24 23 16 15 8 7 0

sat(ua_3 + ub_3) sat(ua_2 + ub_2) sat(ua_1 + ub_1) sat(ua_0 + ub_0) ← dst

NOTE: This operation is performed on each 8-bit quantity separately. This
instruction does not affect the SAT bit in CSR.

379SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SADDU4 — Add With Saturation, Four Unsigned 8-Bit Pairs for Four 8-Bit Results www.ti.com

Execution

if (cond) {
sat(ubyte0(src1) + ubyte0(src2)) → ubyte0(dst);
sat(ubyte1(src1) + ubyte1(src2)) → ubyte1(dst);
sat(ubyte2(src1) + ubyte2(src2)) → ubyte2(dst);
sat(ubyte3(src1) + ubyte3(src2)) → ubyte3(dst)
}

else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also ADD4, SADD, SADD2, SADDUS2, SUB4

Examples Example 1
SADDU4 .S1 A2, A8, A9

Before instruction 1 cycle after instruction

A2 57 89 F2 3Ah 87 137 242 58 A2 57 89 F2 3Ah
unsigned

A8 74 B8 49 75h 116 184 73 117 A8 74 B8 49 75h
unsigned

A9 xxxx xxxxh A9 CB FF FF AFh 203 255 255 175
unsigned

Example 2
SADDU4 .S2 B2, B8, B12

Before instruction 1 cycle after instruction

B2 14 7C 01 24h 20 124 1 36 B2 14 7C 01 24h
unsigned

B8 A0 51 01 A6h 160 81 1 166 B8 A0 51 01 A6h
unsigned

B12 xxxx xxxxh B12 B4 CD 02 CA 180 205 2 202
unsigned

380 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SAT — Saturate a 40-Bit Integer to a 32-Bit Integer

SAT Saturate a 40-Bit Integer to a 32-Bit Integer

Syntax SAT (.unit) src2_h:src2_l, dst

unit = .L1 or .L2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x 1 0 0 0 0 0 0 1 1 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2 slong .L1, .L2
dst sint

Description A 40-bit src2 value is converted to a 32-bit value. If the value in src2 is greater than what
can be represented in 32-bits, src2 is saturated. The result is placed in dst. If a saturate
occurs, the SAT bit in the control status register (CSR) is set one cycle after dst is
written.

Execution

if (cond) {
if (src2 > (231 - 1)), (231 - 1) → dst
else if (src2 < -231), -231 → dst
else src2 31..0 → dst
}

else nop

Pipeline

Pipeline Stage E1

Read src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

381SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SAT — Saturate a 40-Bit Integer to a 32-Bit Integer www.ti.com

Examples Example 1
SAT .L2 B1:B0,B5

Before instruction 1 cycle after instruction

B1:B0 0000 001Fh 3413 539Ah B1:B0 0000 001Fh 3413 539Ah

B5 xxxx xxxxh B5 7FFF FFFFh

CSR 0001 0100h CSR 0001 0100h

SSR (1) 0000 0000h SSR 0000 0000h

2 cycles after instruction

B1:B0 0000 001Fh 3413 539Ah

B5 7FFF FFFFh

CSR 0001 0300h Saturated

SSR 0000 0002h

(1) Saturation status register (SSR) is only available on the C64x+ DSP.

Example 2
SAT .L2 B1:B0,B5

Before instruction 1 cycle after instruction

B1:B0 0000 0000h A190 7321h B1:B0 0000 0000h A190 7321h

B5 xxxx xxxxh B5 7FFF FFFFh

CSR 0001 0100h CSR 0001 0100h

SSR (1) 0000 0000h SSR 0000 0000h

2 cycles after instruction

B1:B0 0000 0000h A190 7321h

B5 7FFF FFFFh

CSR 0001 0300h Saturated

SSR 0000 0002h

(1) Saturation status register (SSR) is only available on the C64x+ DSP.

382 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SAT — Saturate a 40-Bit Integer to a 32-Bit Integer

Example 3
SAT .L2 B1:B0,B5

Before instruction 1 cycle after instruction

B1:B0 0000 00FFh A190 7321h B1:B0 0000 00FFh A190 7321h

B5 xxxx xxxxh B5 A190 7321h

CSR 0001 0100h CSR 0001 0100h

SSR (1) 0000 0000h SSR 0000 0000h

2 cycles after instruction

B1:B0 0000 00FFh A190 7321h

B5 A190 7321h

CSR 0001 0100h Not saturated

SSR 0000 0000h

(1) Saturation status register (SSR) is only available on the C64x+ DSP.

383SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SET — Set a Bit Field www.ti.com

SET Set a Bit Field

Syntax SET (.unit) src2, csta, cstb, dst

or

SET (.unit) src2, src1, dst

unit = .S1 or .S2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.S Sc5 Figure F-26

Opcode Constant form:

31 29 28 27 23 22 18 17 13 12 8 7 6 5 4 3 2 1 0

creg z dst src2 csta cstb 1 0 0 0 1 0 s p

3 1 5 5 5 5 1 1

Opcode map field used... For operand type... Unit

src2 uint .S1, .S2
csta ucst5
cstb ucst5
dst uint

Opcode Register form:

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 1 0 1 1 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2 xuint .S1, .S2
src1 uint
dst uint

384 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

X

31

X

30

X

29

X

28

X

27

X

26

X

25

X

24 23 22 21 20

1

19

0

18

1

17

0

16 15 14 13 12

X

11

X

10

X

9

X

8

X

7

X

6

X

5

X

4

X

3

X

2

X

1 0

csta

0 1 1 0 1src2

dst

X X X X

cstb

X

31

X

30

X

29

X

28

X

27

X

26

X

25

X

24 23 22 21 20

1

19

1

18

1

17

1

16 15 14 13 12

X

11

X

10

X

9

X

8

X

7

X

6

X

5

X

4

X

3

X

2

X

1 0

1 1 1 1 1 X X X X

www.ti.com SET — Set a Bit Field

Description For cstb ≥ csta, the field in src2 as specified by csta to cstb is set to all 1s in dst. The
csta and cstb operands may be specified as constants or in the 10 LSBs of the src1
register, with cstb being bits 0-4 (src1 4..0) and csta being bits 5-9 (src1 9..5). csta is the
LSB of the field and cstb is the MSB of the field. In other words, csta and cstb represent
the beginning and ending bits, respectively, of the field to be set to all 1s in dst. The LSB
location of src2 is bit 0 and the MSB location of src2 is bit 31.

In the following example, csta is 15 and cstb is 23. For the register version of the
instruction, only the 10 LSBs of the src1 register are valid. If any of the 22 MSBs are
non-zero, the result is invalid.

For cstb < csta, the src2 register is copied to dst. The csta and cstb operands may be
specified as constants or in the 10 LSBs of the src1 register, with cstb being bits 0−4
(src1 4..0) and csta being bits 5−9 (src1 9..5).

Execution If the constant form is used when cstb ≥ csta:

if (cond) src2 SET csta, cstb → dst
else nop

If the register form is used when cstb ≥ csta:

if (cond) src2 SET src1 9..5, src1 4..0 → dst
else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also CLR

385SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SET — Set a Bit Field www.ti.com

Examples Example 1
SET .S1 A0,7,21,A1

Before instruction 1 cycle after instruction

A0 4B13 4A1Eh A0 4B13 4A1Eh

A1 xxxx xxxxh A1 4B3F FF9Eh

Example 2
SET .S2 B0,B1,B2

Before instruction 1 cycle after instruction

B0 9ED3 1A31h B0 9ED3 1A31h

B1 0000 C197h B1 0000 C197h

B2 xxxx xxxxh B2 9EFF FA31h

386 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SHFL — Shuffle

SHFL Shuffle

Syntax SHFL (.unit) src2, dst

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 1 1 1 0 0 x 0 0 0 0 1 1 1 1 0 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2 xuint .M1, .M2
dst uint

Description Performs an interleave operation on the two halfwords in src2. The bits in the lower
halfword of src2 are placed in the even bit positions in dst, and the bits in the upper
halfword of src2 are placed in the odd bit positions in dst.

As a result, bits 0, 1, 2, ..., 14, 15 of src2 are placed in bits 0, 2, 4, ... , 28, 30 of dst.
Likewise, bits 16, 17, 18, .. 30, 31 of src2 are placed in bits 1, 3, 5, ..., 29, 31 of dst.

31 16 15 0

abcdefghijklmnop ABCDEFGHIJKLMNOP ← src2

SHFL

↓

31 16 15 0

aAbBcCdDeEfFgGhH iIjJkKlLmMnNoOpP ← dst

NOTE: The SHFL instruction is the exact inverse of the DEAL instruction
(see DEAL).

Execution

if (cond) {
src2 31,30,29...16 → dst 31,29,27...1

src2 15,14,13...0 → dst 30,28,26...0

}
else nop

387SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SHFL — Shuffle www.ti.com

Pipeline

Pipeline Stage E1 E2

Read src2

Written dst

Unit in use .M

Instruction Type Two-cycle

Delay Slots 1

See Also DEAL

Example SHFL .M1 A1,A2

Before instruction 2 cycles after instruction

A1 B174 6CA4h A1 B174 6CA4h

A2 xxxx xxxxh A2 9E52 6E30h

388 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SHFL3 — 3-Way Bit Interleave On Three 16-Bit Values Into a 48-Bit Result

SHFL3 3-Way Bit Interleave On Three 16-Bit Values Into a 48-Bit Result

Syntax SHFL3 (.unit) src1, src2, dst_o:dst_e

unit = .L1 or .L2

Compatibility C64x+ CPU

Opcode

31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 dst src2 src1 x 0 1 1 0 1 1 0 1 1 0 s p

5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 sint .L1, .L2
src2 xsint
dst dint

Description Performs a 3-way bit interleave on three 16-bit values and creating a 48-bit result.

This instruction executes unconditionally and cannot be predicated.

31 16 15 0

a15 a14 a13 . . . a2 a1 a0 b15 b14 b13 . . . b2 b1 b0 ← src1

c15 c14 c13 . . . c2 c1 c0 d15 d14 d13 . . . d2 d1 d0 ← src2

SHFL3

↓

31 16 15 0

0 0 0 . . . 0 0 0 a15 b15 d15 . . . b11 d11 a10 ← dst_o

b10 d10 a9 . . . d6 a5 b5 d5 a4 b4 . . . a0 b0 d0 ←dst_e

Execution

int inp0, inp1, inp2
dword result;
inp0 = src2 & FFFFh;
inp1 = src1 & FFFFh;
inp2 = src1 >> 16 & FFFFh;
result = 0;
for (I = 0; I < 16; I++)
{

result |= (inp0 >> I & 1) << (I × 3) ;
result |= (inp1 >> I & 1) << ((I × 3) + 1);
result |= (inp2 >> I & 1) << I ((I × 3) + 2)

}

389SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SHFL3 — 3-Way Bit Interleave On Three 16-Bit Values Into a 48-Bit Result www.ti.com

Instruction Type Single-cycle

Delay Slots 0

Example SHFL3 .L1 A0,A1,A3:A2

Before instruction 1 cycle after instruction

A0 8765 4321h A2 7E17 9306h

A1 1234 5678h A3 0000 8C11h

390 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SHL — Arithmetic Shift Left

SHL Arithmetic Shift Left

Syntax SHL (.unit) src2, src1, dst

or

SHL (.unit) src2_h:src2_l, src1, dst_h:dst_l

unit = .S1 or .S2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.S S3i Figure F-22

Ssh5 Figure F-24

S2sh Figure F-25

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x op 1 0 0 0 s p

3 1 5 5 5 1 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2 xsint .S1, .S2 11 0011
src1 uint
dst sint

src2 slong .S1, .S2 11 0001
src1 uint
dst slong

src2 xuint .S1, .S2 01 0011
src1 uint
dst ulong

src2 xsint .S1, .S2 11 0010
src1 ucst5
dst sint

src2 slong .S1, .S2 11 0000
src1 ucst5
dst slong

src2 xuint .S1, .S2 01 0010
src1 ucst5
dst ulong

Description The src2 operand is shifted to the left by the src1 operand. The result is placed in dst.
When a register is used, the six LSBs specify the shift amount and valid values are 0-40.
When an immediate is used, valid shift amounts are 0-31. If src2 is a register pair, only
the bottom 40 bits of the register pair are shifted. The upper 24 bits of the register pair
are unused.

If 39 < src1 < 64, src2 is shifted to the left by 40. Only the six LSBs of src1 are used by
the shifter, so any bits set above bit 5 do not affect execution.

391SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SHL — Arithmetic Shift Left www.ti.com

Execution

if (cond) (src2 & 0xFFFFFF) << src1 → dst
else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also ROTL, SHLMB, SHR, SSHL, SSHVL

Examples Example 1
SHL .S1 A0,4,A1

Before instruction 1 cycle after instruction

A0 29E3 D31Ch A0 29E3 D31Ch

A1 xxxx xxxxh A1 9E3D 31C0h

Example 2
SHL .S2 B0,B1,B2

Before instruction 1 cycle after instruction

B0 4197 51A5h B0 4197 51A5h

B1 0000 0009h B1 0000 0009h

B2 xxxx xxxxh B2 2EA3 4A00h

Example 3
SHL .S2 B1:B0,B2,B3:B2

Before instruction 1 cycle after instruction

B1:B0 0000 0009h 4197 51A5h B1:B0 0000 0009h 4197 51A5h

B2 0000 0022h B2 0000 0000h

B3:B2 xxxx xxxxh xxxx xxxxh B3:B2 0000 0094h 0000 0000h

Example 4
SHL .S1 A5:A4,0,A1:A0

Before instruction 1 cycle after instruction

A5:A4 FFFF FFFFh FFFF FFFFh A5:A4 FFFF FFFFh FFFF FFFFh

A1:A0 xxxx xxxxh xxxx xxxxh A1:A0 0000 00FFh FFFF FFFFh

392 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SHLMB — Shift Left and Merge Byte

SHLMB Shift Left and Merge Byte

Syntax SHLMB (.unit) src1, src2, dst

unit = .L1, .L2, .S1, .S2

Compatibility C64x and C64x+ CPU

Opcode .L unit

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 0 0 0 0 1 1 1 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 u4 .L1, .L2
src2 xu4
dst u4

Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 1 0 0 1 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 u4 .S1, .S2
src2 xu4
dst u4

Description Shifts the contents of src2 left by 1 byte, and then the most-significant byte of src1 is
merged into the least-significant byte position. The result is placed in dst.

31 24 23 16 15 8 7 0

ua_3 ua_2 ua_1 ua_0 ← src1

SHLMB

ub_3 ub_2 ub_1 ub_0 ← src2

↓

31 24 23 16 15 8 7 0

ub_2 ub_1 ub_0 ua_3 ← dst

393SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SHLMB — Shift Left and Merge Byte www.ti.com

Execution

if (cond) {
ubyte2(src2) → ubyte3(dst);
ubyte1(src2) → ubyte2(dst);
ubyte0(src2) → ubyte1(dst);
ubyte3(src1) → ubyte0(dst)
}

else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L, .S

Instruction Type Single-cycle

Delay Slots 0

See Also ROTL, SHL, SHRMB

Examples Example 1
SHLMB .L1 A2, A8, A9

Before instruction 1 cycle after instruction

A2 3789 F23Ah A2 3789 F23Ah

A8 04B8 4975h A8 04B8 4975h

A9 xxxx xxxxh A9 B849 7537h

Example 2
SHLMB .S2 B2,B8, B12

Before instruction 1 cycle after instruction

B2 0124 2451h B2 0124 2451h

B8 01A6 A051h B8 01A6 A051h

B12 xxxx xxxxh B12 A6A0 5101h

394 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SHR — Arithmetic Shift Right

SHR Arithmetic Shift Right

Syntax SHR (.unit) src2, src1, dst

or

SHR (.unit) src2_h:src2_l, src1, dst

unit = .S1 or .S2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.S S3i Figure F-22

Ssh5 Figure F-24

S2sh Figure F-25

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x op 1 0 0 0 s p

3 1 5 5 5 1 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2 xsint .S1, .S2 11 0111
src1 uint
dst sint

src2 slong .S1, .S2 11 0101
src1 uint
dst slong

src2 xsint .S1, .S2 11 0110
src1 ucst5
dst sint

src2 slong .S1, .S2 11 0100
src1 ucst5
dst slong

Description The src2 operand is shifted to the right by the src1 operand. The sign-extended result is
placed in dst. When a register is used, the six LSBs specify the shift amount and valid
values are 0-40. When an immediate value is used, valid shift amounts are 0-31. If src2
is a register pair, only the bottom 40 bits of the register pair are shifted. The upper 24
bits of the register pair are unused.

If 39 < src1 < 64, src2 is shifted to the right by 40. Only the six LSBs of src1 are used by
the shifter, so any bits set above bit 5 do not affect execution.

Execution

if (cond) (src2 & 0xFFFFFF) >>s src1 → dst
else nop

395SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SHR — Arithmetic Shift Right www.ti.com

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also SHL, SHR2, SHRMB, SHRU, SHRU2, SSHVR

Examples Example 1
SHR .S1 A0,8,A1

Before instruction 1 cycle after instruction

A0 F123 63D1h A0 F123 63D1h

A1 xxxx xxxxh A1 FFF1 2363h

Example 2
SHR .S2 B0,B1,B2

Before instruction 1 cycle after instruction

B0 1492 5A41h B0 1492 5A41h

B1 0000 0012h B1 0000 0012h

B2 xxxx xxxxh B2 0000 0524h

Example 3
SHR .S2 B1:B0,B2,B3:B2

Before instruction 1 cycle after instruction

B1:B0 0000 0012h 1492 5A41h B1:B0 0000 0012h 1492 5A41h

B2 0000 0019h B2 0000 090Ah

B3:B2 xxxx xxxxh xxxx xxxxh B3:B2 0000 0000h 0000 090Ah

Example 4
SHR .S1 A5:A4,0,A1:A0

Before instruction 1 cycle after instruction

A5:A4 FFFF FFFFh FFFF FFFFh A5:A4 FFFF FFFFh FFFF FFFFh

A1:A0 xxxx xxxxh xxxx xxxxh A1:A0 0000 00FFh FFFF FFFFh

396 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SHR2 — Arithmetic Shift Right, Signed, Packed 16-Bit

SHR2 Arithmetic Shift Right, Signed, Packed 16-Bit

Syntax SHR2 (.unit) src2, src1, dst

unit = .S1 or .S2

Compatibility C64x and C64x+ CPU

Opcode .S unit (uint form)

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 0 1 1 1 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 uint .S1, .S2
src2 xs2
dst s2

Opcode .S unit (cst form)

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 1 0 0 0 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 ucst5 .S1, .S2
src2 xs2
dst s2

Description Performs an arithmetic shift right on signed, packed 16-bit quantities. The values in src2
are treated as signed, packed 16-bit quantities. The lower 5 bits of src1 are treated as
the shift amount. The results are placed in a signed, packed 16-bit format into dst.

For each signed 16-bit quantity in src2, the quantity is shifted right by the number of bits
specified in the lower 5 bits of src1. Bits 5 through 31 of src1 are ignored and may be
non-zero. The shifted quantity is sign-extended, and placed in the corresponding position
in dst. Bits shifted out of the least-significant bit of the signed 16-bit quantity are
discarded.

31 16 15 0

abcdefgh ijklmnop qrstuvwx yzABCDEF ← src2

SHR2

↓

31 16 15 0

aaaaaaaa abcdefgh qqqqqqqq qrstuvwx ← dst

(for src1 = 8)

397SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SHR2 — Arithmetic Shift Right, Signed, Packed 16-Bit www.ti.com

NOTE: If the shift amount specified in src1 is in the range 16 to 31, the behavior
is identical to a shift value of 15.

Execution

if (cond) {
smsb16(src2) >> src1 → smsb16(dst);
slsb16(src2) >> src1 → slsb16(dst)
}

else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also SHL, SHR, SHRMB, SHRU, SHRU2

Examples Example 1
SHR2 .S2 B2,B4,B5

Before instruction 1 cycle after instruction

B2 A6E2 C179h B2 A6E2 C179h

B4 1458 3B69h shift value 9 B4 1458 3B69h

B5 xxxx xxxxh B5 FFD3 FFE0h

Example 2
SHR2 .S1 A4,0fh,A5 ; shift value is 15

Before instruction 1 cycle after instruction

A4 000A 87AFh A4 000A 87AFh

A5 xxxx xxxxh A5 0000 FFFFh

398 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SHRMB — Shift Right and Merge Byte

SHRMB Shift Right and Merge Byte

Syntax SHRMB (.unit) src1, src2, dst

unit = .L1, .L2, .S1, .S2

Compatibility C64x and C64x+ CPU

Opcode .L unit

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 0 0 0 1 0 1 1 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 u4 .L1, .L2
src2 xu4
dst u4

Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 1 0 1 0 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 u4 .S1, .S2
src2 xu4
dst u4

Description Shifts the contents of src2 right by 1 byte, and then the least-significant byte of src1 is
merged into the most-significant byte position. The result is placed in dst.

31 24 23 16 15 8 7 0

ua_3 ua_2 ua_1 ua_0 ← src1

SHRMB

ub_3 ub_2 ub_1 ub_0 ← src2

↓

31 24 23 16 15 8 7 0

ua_0 ub_3 ub_2 ub_1 ← dst

399SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SHRMB — Shift Right and Merge Byte www.ti.com

Execution

if (cond) {
ubyte0(src1) → ubyte3(dst);
ubyte3(src2) → ubyte2(dst);
ubyte2(src2) → ubyte1(dst);
ubyte1(src2) → ubyte0(dst)
}

else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L, .S

Instruction Type Single-cycle

Delay Slots 0

See Also SHL, SHLMB, SHR, SHR2, SHRU, SHRU2

Examples Example 1
SHRMB .L1 A2,A8,A9

Before instruction 1 cycle after instruction

A2 3789 F23Ah A2 3789 F23Ah

A8 04B8 4975h A8 04B8 4975h

A9 xxxx xxxxh A9 3A04 B849h

Example 2
SHRMB .S2 B2,B8,B12

Before instruction 1 cycle after instruction

B2 0124 2451h B2 0124 2451h

B8 01A6 A051h B8 01A6 A051h

B12 xxxx xxxxh B12 5101 A6A0h

400 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SHRU — Logical Shift Right

SHRU Logical Shift Right

Syntax SHRU (.unit) src2, src1, dst

or

SHRU (.unit) src2_h:src2_l, src1, dst_h:dst_l

unit = .S1 or .S2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.S Ssh5 Figure F-24

S2sh Figure F-25

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x op 1 0 0 0 s p

3 1 5 5 5 1 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2 xuint .S1, .S2 10 0111
src1 uint
dst uint

src2 ulong .S1, .S2 10 0101
src1 uint
dst ulong

src2 xuint .S1, .S2 10 0110
src1 ucst5
dst uint

src2 ulong .S1, .S2 10 0100
src1 ucst5
dst ulong

Description The src2 operand is shifted to the right by the src1 operand. The zero-extended result is
placed in dst. When a register is used, the six LSBs specify the shift amount and valid
values are 0-40. When an immediate value is used, valid shift amounts are 0-31. If src2
is a register pair, only the bottom 40 bits of the register pair are shifted. The upper 24
bits of the register pair are unused.

If 39 < src1 < 64, src2 is shifted to the right by 40. Only the six LSBs of src1 are used by
the shifter, so any bits set above bit 5 do not affect execution.

Execution

if (cond) (src2 & 0xFFFFFF) >>z src1 → dst
else nop

401SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SHRU — Logical Shift Right www.ti.com

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also SHL, SHR, SHR2, SHRMB, SHRU2

Examples Example 1
SHRU .S1 A0,8,A1

Before instruction 1 cycle after instruction

A0 F123 63D1h A0 F123 63D1h

A1 xxxx xxxxh A1 00F1 2363h

Example 2
SHRU .S1 A5:A4,0,A1:A0

Before instruction 1 cycle after instruction

A5:A4 FFFF FFFFh FFFF FFFFh A5:A4 FFFF FFFFh FFFF FFFFh

A1:A0 xxxx xxxxh xxxx xxxxh A1:A0 0000 00FFh FFFF FFFFh

402 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SHRU2 — Arithmetic Shift Right, Unsigned, Packed 16-Bit

SHRU2 Arithmetic Shift Right, Unsigned, Packed 16-Bit

Syntax SHRU2 (.unit) src2, src1, dst

unit = .S1 or .S2

Compatibility C64x and C64x+ CPU

Opcode .S unit (uint form)

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 1 0 0 0 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 uint .S1, .S2
src2 xu2
dst u2

Opcode .S unit (cst form)

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 1 0 0 1 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 ucst5 .S1, .S2
src2 xu2
dst u2

Description Performs an arithmetic shift right on unsigned, packed 16-bit quantities. The values in
src2 are treated as unsigned, packed 16-bit quantities. The lower 5 bits of src1 are
treated as the shift amount. The results are placed in an unsigned, packed 16-bit format
into dst.

For each unsigned 16-bit quantity in src2, the quantity is shifted right by the number of
bits specified in the lower 5 bits of src1. Bits 5 through 31 of src1 are ignored and may
be non-zero. The shifted quantity is zero-extended, and placed in the corresponding
position in dst. Bits shifted out of the least-significant bit of the signed 16-bit quantity are
discarded.

NOTE: If the shift amount specified in src1 is in the range of 16 to 31, the dst
will be cleared to all zeros.

403SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SHRU2 — Arithmetic Shift Right, Unsigned, Packed 16-Bit www.ti.com

31 16 15 0

abcdefgh ijklmnop qrstuvwx yzABCDEF ← src2

SHRU2

↓

31 16 15 0

00000000 abcdefgh 00000000 qrstuvwx ← dst

(for src1 = 8)

Execution

if (cond) {
umsb16(src2) >> src1 → umsb16(dst);
ulsb16(src2) >> src1 → ulsb16(dst)
}

else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also SHL, SHR, SHR2, SHRMB, SHRU

Examples Example 1
SHRU2 .S2 B2,B4,B5

Before instruction 1 cycle after instruction

B2 A6E2 C179h B2 A6E2 C179h

B4 1458 3B69h Shift value 9 B4 1458 3B69h

B5 xxxx xxxxh B5 0053 0060h

Example 2
SHRU2 .S1 A4,0Fh,A5 ; Shift value is 15

Before instruction 1 cycle after instruction

A4 000A 87AFh A4 000A 87AFh

A5 xxxx xxxxh A5 0000 0001h

404 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SL — Store Linked Word to Buffer

SL Store Linked Word to Buffer

Syntax SL (.unit) src, *baseR

unit = .D2

Compatibility C64x+ CPU

NOTE: The atomic operations are not supported on all C64x+ devices, see your
device-specific data manual for more information.

Opcode

31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z src baseR 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 p

3 1 5 5 1

Opcode map field used... For operand type... Unit

baseR address .D2
src int

Description The SL instruction performs a write of the 32-bit word in src to the memory address
specified by baseR. For linked-operation aware systems, the write request is interpreted
as a request to buffer the 32-bit word for use in conjunction with a subsequent CMTL
operation. When initiating the memory write, if the previously buffered address is not
equal to the memory address specified by baseR then the link valid flag is cleared. Other
than this signaling, the operation of the SL instruction from the CPU perspective is
identical to that of STW src, *baseR.

See Chapter 9 for more details.

Execution

if (cond) src → mem
signal store-linked operation

else nop

Instruction Type Store

Delay Slots 0

See Also CMTL, LL

405SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SMPY — Multiply Signed 16 LSB × Signed 16 LSB With Left Shift and Saturation www.ti.com

SMPY Multiply Signed 16 LSB × Signed 16 LSB With Left Shift and Saturation

Syntax SMPY (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.M M3 Figure E-5

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 0 1 0 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 slsb16 .M1, .M2
src2 xslsb16
dst sint

Description The 16 least-significant bits of src1 operand is multiplied by the 16 least-significant bits
of the src2 operand. The result is left shifted by 1 and placed in dst. If the left-shifted
result is 8000 0000h, then the result is saturated to 7FFF FFFFh. If a saturate occurs,
the SAT bit in CSR is set one cycle after dst is written. The source operands are signed
by default.

Execution

if (cond) {
if (((lsb16(src1) × lsb16(src2)) << 1) != 8000 0000h),
((lsb16(src1) × lsb16(src2)) << 1) → dst
else 7FFF FFFFh → dst
}

else nop

Pipeline

Pipeline Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

406 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SMPY — Multiply Signed 16 LSB × Signed 16 LSB With Left Shift and Saturation

Instruction Type Single-cycle (16 × 16)

Delay Slots 1

See Also MPY, SMPYH, SMPYHL, SMPYLH

Example SMPY .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0000 0123h 291 (1) A1 0000 0123h

A2 01E0 FA81h -1407 (1) A2 01E0 FA81h

A3 xxxx xxxxh A3 FFF3 8146h -818,874

CSR 0001 0100h CSR 0001 0100h Not saturated

SSR (2) 0000 0000h SSR 0000 0000h

(1) Signed 16-LSB integer
(2) Saturation status register (SSR) is only available on the C64x+ DSP.

407SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SMPYH — Multiply Signed 16 MSB × Signed 16 MSB With Left Shift and Saturation www.ti.com

SMPYH Multiply Signed 16 MSB × Signed 16 MSB With Left Shift and Saturation

Syntax SMPYH (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.M M3 Figure E-5

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 0 1 0 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 smsb16 .M1, .M2
src2 xsmsb16
dst sint

Description The 16 most-significant bits of src1 operand is multiplied by the 16 most-significant bits
of the src2 operand. The result is left shifted by 1 and placed in dst. If the left-shifted
result is 8000 0000h, then the result is saturated to 7FFF FFFFh. If a saturation occurs,
the SAT bit in CSR is set one cycle after dst is written. The source operands are signed
by default.

Execution

if (cond) {
if (((msb16(src1) × msb16(src2)) << 1) != 8000 0000h),
((msb16(src1) × msb16(src2)) << 1) → dst
else 7FFF FFFFh → dst
}

else nop

Pipeline

Pipeline Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

408 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SMPYH — Multiply Signed 16 MSB × Signed 16 MSB With Left Shift and Saturation

Instruction Type Single-cycle (16 × 16)

Delay Slots 1

See Also MPYH, SMPY, SMPYHL, SMPYLH

409SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SMPYHL — Multiply Signed 16 MSB × Signed 16 LSB With Left Shift and Saturation www.ti.com

SMPYHL Multiply Signed 16 MSB × Signed 16 LSB With Left Shift and Saturation

Syntax SMPYHL (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.M M3 Figure E-5

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 0 1 0 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 smsb16 .M1, .M2
src2 xslsb16
dst sint

Description The 16 most-significant bits of the src1 operand is multiplied by the 16 least-significant
bits of the src2 operand. The result is left shifted by 1 and placed in dst. If the left-shifted
result is 8000 0000h, then the result is saturated to 7FFF FFFFh. If a saturation occurs,
the SAT bit in CSR is set one cycle after dst is written.

Execution

if (cond) {
if (((msb16(src1) × lsb16(src2)) << 1) != 8000 0000h),
((msb16(src1) × lsb16(src2)) << 1) → dst
else 7FFF FFFFh → dst
}

else nop

Pipeline

Pipeline Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

410 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SMPYHL — Multiply Signed 16 MSB × Signed 16 LSB With Left Shift and Saturation

Instruction Type Single-cycle (16 × 16)

Delay Slots 1

See Also MPYHL, SMPY, SMPYH, SMPYLH

Example SMPYHL .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 008A 0000h 138 (1) A1 008A 0000h

A2 0000 00A7h 167 (2) A2 0000 00A7h

A3 xxxx xxxxh A3 0000 B40Ch 46,092

CSR 0001 0100h CSR 0001 0100h Not saturated

SSR (3) 0000 0000h SSR 0000 0000h

(1) Signed 16-MSB integer
(2) Signed 16-LSB integer
(3) Saturation status register (SSR) is only available on the C64x+ DSP.

411SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SMPYLH — Multiply Signed 16 LSB × Signed 16 MSB With Left Shift and Saturation www.ti.com

SMPYLH Multiply Signed 16 LSB × Signed 16 MSB With Left Shift and Saturation

Syntax SMPYLH (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.M M3 Figure E-5

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 0 1 0 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 slsb16 .M1, .M2
src2 xsmsb16
dst sint

Description The 16 least-significant bits of the src1 operand is multiplied by the 16 most-significant
bits of the src2 operand. The result is left shifted by 1 and placed in dst. If the left-shifted
result is 8000 0000h, then the result is saturated to 7FFF FFFFh. If a saturation occurs,
the SAT bit in CSR is set one cycle after dst is written.

Execution

if (cond) {
if (((lsb16(src1) × msb16(src2)) << 1) != 8000 0000h),
((lsb16(src1) × msb16(src2)) << 1) → dst
else 7FFF FFFFh → dst
}

else nop

Pipeline

Pipeline Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

412 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SMPYLH — Multiply Signed 16 LSB × Signed 16 MSB With Left Shift and Saturation

Instruction Type Single-cycle (16 × 16)

Delay Slots 1

See Also MPYLH, SMPY, SMPYH, SMPYHL

Example SMPYLH .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0000 8000h -32,768 (1) A1 0000 8000h

A2 8000 0000h -32,768 (2) A2 8000 0000h

A3 xxxx xxxxh A3 7FFF FFFFh 2,147,483,647

CSR 0001 0100h CSR 0001 0300h Saturated

SSR (3) 0000 0000h SSR 0000 0010h

(1) Signed 16-LSB integer
(2) Signed 16-MSB integer
(3) Saturation status register (SSR) is only available on the C64x+ DSP.

413SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SMPY2 — Multiply Signed by Signed, 16 LSB × 16 LSB and 16 MSB × 16 MSB With Left Shift and Saturation www.ti.com

SMPY2 Multiply Signed by Signed, 16 LSB × 16 LSB and 16 MSB × 16 MSB With Left Shift
and Saturation

Syntax SMPY2 (.unit) src1, src2, dst_o:dst_e

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 0 0 0 1 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 s2 .M1, .M2
src2 xs2
dst sllong

Description Performs two 16-bit by 16-bit multiplies between two pairs of signed, packed 16-bit
values, with an additional left-shift and saturate. The values in src1 and src2 are treated
as signed, packed 16-bit quantities. The two 32-bit results are written into a 64-bit
register pair.

The SMPY2 instruction produces two 16 × 16 products. Each product is shifted left by 1.
If the left-shifted result is 8000 0000h, the output value is saturated to 7FFF FFFFh.

The saturated product of the lower halfwords of src1 and src2 is written to the even
destination register, dst_e. The saturated product of the upper halfwords of src1 and
src2 is written to the odd destination register, dst_o.

31 16 15 0

a_hi a_lo ← src1

× ×

SMPY2

b_hi b_lo ← src2

=

63 32 31 0

sat((a_hi × b_hi) << 1) sat((a_lo × b_lo) << 1) ← dst_o:dst_e

NOTE: If either product saturates, the SAT bit is set in CSR one cycle after the
cycle that the result is written to dst_o:dst_e. If neither product saturates,
the SAT bit in CSR remains unaffected.

414 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SMPY2 — Multiply Signed by Signed, 16 LSB × 16 LSB and 16 MSB × 16 MSB With Left Shift and Saturation

The SMPY2 instruction helps reduce the number of instructions required to perform two
16-bit by 16-bit saturated multiplies on both the lower and upper halves of two registers.

The following code:
SMPY .M1 A0, A1, A2
SMPYH .M1 A0, A1, A3

may be replaced by:
SMPY2 .M1 A0, A1, A3:A2

Execution

if (cond) {
sat((lsb16(src1) × lsb16(src2)) << 1) → dst_e;
sat((msb16(src1) × msb16(src2)) << 1) → dst_o
}

else nop

Pipeline

Pipeline Stage E1 E2 E3 E4

Read src1, src2

Written dst

Unit in use .M

Instruction Type Four-cycle

Delay Slots 3

See Also MPY2, SMPY

Examples Example 1
SMPY2 .M1 A5,A6,A9:A8

Before instruction 4 cycles after instruction

A5 6A32 1193h 27186 4499 A5 6A32 1193h

A6 B174 6CA4h -20108 27812 A6 B174 6CA4h

A9:A8 xxxx xxxxh xxxx xxxxh A9:A8 BED5 6150h 0EEA 8C58h

-1,093,312,176 250,252,376

Example 2
SMPY2 .M2 B2, B5, B9:B8

Before instruction 4 cycles after instruction

B2 1234 3497h 4660 13463 B2 1234 3497h

B5 21FF 50A7h 8703 20647 B5 21FF 50A7h

B9:B8 xxxx xxxxh xxxx xxxxh B9:B8 04D5 AB98h 2122 FD02h

81,111,960 555,941,122

415SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SMPY32 — Multiply Signed 32-Bit × Signed 32-Bit Into 64-Bit Result With Left Shift and Saturation www.ti.com

SMPY32 Multiply Signed 32-Bit × Signed 32-Bit Into 64-Bit Result With Left Shift and
Saturation

Syntax SMPY32 (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C64x+ CPU

Opcode

31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 dst src2 src1 x 0 1 1 0 0 1 1 1 0 0 s p

5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 int .M1, .M2
src2 xint
dst int

Description Performs a 32-bit by 32-bit multiply. src1 and src2 are signed 32-bit values. The 64-bit
result is shifted left by 1 with saturation, and the 32 most-significant bits of the shifted
value are written to dst.

If the result saturates either on the multiply or the shift, the M1 or M2 bit in SSR and the
SAT bit in CSR are written one cycle after the results are written to dst.

This instruction executes unconditionally and cannot be predicated.

NOTE: When both inputs are 8000 0000h, the shifted result cannot be
represented as a 32-bit signed value. In this case, the saturation value
7FFF FFFFh is written into dst.

Execution

msb32(sat((src2 × src1) << 1)) → dst

Instruction Type Four-cycle

Delay Slots 3

See Also MPY32, SMPY2

416 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SMPY32 — Multiply Signed 32-Bit × Signed 32-Bit Into 64-Bit Result With Left Shift and Saturation

Examples Example 1
SMPY32 .M1 A0,A1,A2

Before instruction 4 cycle after instruction

A0 8765 4321h A2 EED8 ED1Ah

A1 1234 5678h

CSR 0001 0100h CSR (1) 0001 0100h

SSR 0000 0000h SSR (1) 0000 0000h

(1) CSR.SAT and SSR.M1 unchanged by operation

Example 2
SMPY32 .L1 A0,A1,A2

Before instruction 4 cycles after instruction

A0 8000 0000h A2 7FFF FFFFh

A1 8000 0000h

CSR 0001 0100h CSR (1) 0001 0300h

SSR 0000 0000h SSR (1) 0000 0010h

(1) CSR.SAT and SSR.M1 set to 1, 5 cycles after instruction

417SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPACK2 — Saturate and Pack Two 16 LSBs Into Upper and Lower Register Halves www.ti.com

SPACK2 Saturate and Pack Two 16 LSBs Into Upper and Lower Register Halves

Syntax SPACK2 (.unit) src1, src2, dst

unit = .S1 or .S2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 0 0 1 0 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 int .S1, .S2
src2 xint
dst s2

Description Takes two signed 32-bit quantities in src1 and src2 and saturates them to signed 16-bit
quantities. The signed 16-bit results are then packed into a signed, packed 16-bit format
and written to dst. Specifically, the saturated 16-bit signed value of src1 is written to the
upper halfword of dst, and the saturated 16-bit signed value of src2 is written to the
lower halfword of dst.

Saturation is performed on each input value independently. The input values start as
signed 32-bit quantities, and are saturated to 16-bit quantities according to the following
rules:

• If the value is in the range - 215 to 215 - 1, inclusive, then no saturation is performed
and the value is truncated to 16 bits.

• If the value is greater than 215 - 1, then the result is set to 215 - 1.
• If the value is less than - 215, then the result is set to - 215.

31 16 15 0

00000000 ABCDEFGH IJKLMNOP QRSTUVWX ← src1

SPACK2

00000000 00000000 00YZ1234 56789ABC ← src2

↓

31 16 15 0

01111111 11111111 00YZ1234 56789ABC ← dst

The SPACK2 instruction is useful in code that manipulates 16-bit data at 32-bit precision
for its intermediate steps, but that requires the final results to be in a 16-bit
representation. The saturate step ensures that any values outside the signed 16-bit
range are clamped to the high or low end of the range before being truncated to 16 bits.

NOTE: This operation is performed on each 16-bit value separately. This
instruction does not affect the SAT bit in CSR.

418 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SPACK2 — Saturate and Pack Two 16 LSBs Into Upper and Lower Register Halves

Execution

if (cond) {
if (src2 > 0000 7FFFh), 7FFFh → lsb16(dst) or
if (src2 < FFFF 8000h), 8000h → lsb16(dst)

else truncate(src2) → lsb16(dst);
if (src1 > 0000 7FFFh), 7FFFFh→ msb16(dst) or
if (src1 < FFFF 8000h), 8000h→ msb16(dst)

else truncate(src1) → msb16(dst)
}

else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also PACK2, PACKH2, PACKHL2, PACKLH2, RPACK2, SPACKU4

Examples Example 1
SPACK2 .S1 A2,A8,A9

Before instruction 1 cycle after instruction

A2 3789 F23Ah 931,787,322 A2 3789 F23Ah

A8 04B8 4975h 79,186,293 A8 04B8 4975h

A9 xxxx xxxxh A9 7FFF 7FFFh 32767 32767

Example 2
SPACK2 .S2 B2,B8,B12

Before instruction 1 cycle after instruction

B2 A124 2451h -1,591,466,927 B2 A124 2451h

B8 01A6 A051h 27,697,233 B8 01A6 A051h

B12 xxxx xxxxh B12 8000 7FFFh -32768 32767

419SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPACKU4 — Saturate and Pack Four Signed 16-Bit Integers Into Four Unsigned 8-Bit Halfwords www.ti.com

SPACKU4 Saturate and Pack Four Signed 16-Bit Integers Into Four Unsigned 8-Bit Halfwords

Syntax SPACKU4 (.unit) src1, src2, dst

unit = .S1 or .S2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 0 1 0 0 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 s2 .S1, .S2
src2 xs2
dst u4

Description Takes four signed 16-bit values and saturates them to unsigned 8-bit quantities. The
values in src1 and src2 are treated as signed, packed 16-bit quantities. The results are
written into dst in an unsigned, packed 8-bit format.

Each signed 16-bit quantity in src1 and src2 is saturated to an unsigned 8-bit quantity as
described below. The resulting quantities are then packed into an unsigned, packed 8-bit
format. Specifically, the upper halfword of src1 is used to produce the most-significant
byte of dst. The lower halfword of src1 is used to produce the second most-significant
byte (bits 16 to 23) of dst. The upper halfword of src2 is used to produce the third
most-significant byte (bits 8 to 15) of dst. The lower halfword of src2 is used to produce
the least-significant byte of dst.

Saturation is performed on each signed 16-bit input independently, producing separate
unsigned 8-bit results. For each value, the following tests are applied:

• If the value is in the range 0 to 28 - 1, inclusive, then no saturation is performed and
the result is truncated to 8 bits.

• If the value is greater than 28 - 1, then the result is set to 28 - 1.
• If the value is less than 0, the result is cleared to 0.

31 16 15 0

00000000 ABCDEFGH 00001111 IJKLMNOP ← src1

SPACKU4

00000000 YZ123456 11111111 QRSTUVWX ← src2

↓

31 24 23 16 15 8 7 0

ABCDEFGH 11111111 YZ123456 00000000 ← dst

420 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SPACKU4 — Saturate and Pack Four Signed 16-Bit Integers Into Four Unsigned 8-Bit Halfwords

The SPACKU4 instruction is useful in code that manipulates 8-bit data at 16-bit precision
for its intermediate steps, but that requires the final results to be in an 8-bit
representation. The saturate step ensures that any values outside the unsigned 8-bit
range are clamped to the high or low end of the range before being truncated to 8 bits.

NOTE: This operation is performed on each 8-bit quantity separately. This
instruction does not affect the SAT bit in CSR.

Execution

if (cond) {
if (msb16(src1) >> 0000 00FFh), FFh → ubyte3(dst) or
if (msb16(src1) << 0), 0 → ubyte3(dst)

else truncate(msb16(src1)) → ubyte3(dst);
if (lsb16(src1) >> 0000 00FFh), FFh → ubyte2(dst) or
if (lsb16(src1) << 0), 0 → ubyte2(dst)

else truncate(lsb16(src1)) → ubyte2(dst);
if (msb16(src2) >> 0000 00FFh), FFh → ubyte1(dst) or
if (msb16(src2) << 0), 0 → ubyte1(dst)

else truncate(msb16(src2)) → ubyte1(dst);
if (lsb16(src2) >> 0000 00FFh), FFh → ubyte0(dst) or
if (lsb16(src2) << 0), 0 → ubyte0(dst)

else truncate(lsb16(src2)) → ubyte0(dst)
}

else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also PACKH4, PACKL4, SPACK2

Examples Example 1
SPACKU4 .S1 A2,A8,A9

Before instruction 1 cycle after instruction

A2 3789 F23Ah 14217 -3526 A2 3789 F23Ah

A8 04B8 4975h 1208 18805 A8 04B8 4975h

A9 xxxx xxxxh A9 FF 00 FF FFh 255 0 255 255

421SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPACKU4 — Saturate and Pack Four Signed 16-Bit Integers Into Four Unsigned 8-Bit Halfwords www.ti.com

Example 2
SPACKU4 .S2 B2,B8,B12

Before instruction 1 cycle after instruction

B2 A124 2451h -24284 9297 B2 A124 2451h

B8 01A6 A051h 422 -24495 B8 01A6 A051h

B12 xxxx xxxxh B12 00 FF FF 00h 0 255 255 0

422 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SPKERNEL — Software Pipelined Loop (SPLOOP) Buffer Operation Code Boundary

SPKERNEL Software Pipelined Loop (SPLOOP) Buffer Operation Code Boundary

Syntax SPKERNEL (fstg, fcyc)

unit = none

Compatibility C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

none Uspk Figure H-7

Opcode

31 30 29 28 27 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 fstg/fcyc 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 s p

6 1 1

Description The SPKERNEL instruction is placed in parallel with the last execute packet of the
SPLOOP code body indicating there are no more instructions to load into the loop buffer.
The SPKERNEL instruction also controls at what point in the epilog the execution of
post-SPLOOP instructions begins. This point is specified in terms of stage and cycle
counts, and is derived from the fstg/fcyc field.

The stage and cycle values for both the post-SPLOOP fetch and reload cases are
derived from the fstg/fcyc field. The 6-bit field is interpreted as a function of the ii value
from the associated SPLOOP(D) instruction. The number of bits allocated to stage and
cycle vary according to ii. The value for cycle starts from the least-significant end; the
value for stage starts from the most-significant end, and they grow together. The number
of epilog stages and the number of cycles within those stages are shown in Table 3-23.
The exact bit allocation to stage and cycle is shown in Table 3-24.

The following restrictions apply to the use of the SPKERNEL instruction:

• The SPKERNEL instruction must be the first instruction in the execute packet
containing it.

• The SPKERNEL instruction cannot be placed in the same execute packet as any
instruction that initiates multicycle NOPs. This includes BNOP, CALLP, NOP n
(n > 1), and protected loads (see compact instruction discussion in Section 3.9).

• The SPKERNEL instruction cannot be placed in the execute packet immediately
following an execute packet containing any instruction that initiates multicycle NOPs.
This includes BNOP, CALLP, NOP n (n > 1), and protected loads (see compact
instruction discussion in Section 3.9).

• The SPKERNEL instruction cannot be placed in parallel with DINT or RINT
instructions.

• The SPKERNEL instruction cannot be placed in parallel with SPMASK, SPMASKR,
SPLOOP, SPLOOPD, or SPLOOPW instructions.

• When the SPKERNEL instruction is used with the SPLOOPW instruction, fstg and
fcyc should both be zero.

423SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPKERNEL — Software Pipelined Loop (SPLOOP) Buffer Operation Code Boundary www.ti.com

NOTE: The delay specified by the SPKERNEL fstg/fcyc parameters will not
extend beyond the end of the kernel epilog. If the end of the kernel epilog
is reached prior to the end of the delay specified by fstg/fcyc parameters
due to either an excessively large value specified for parameters or due
to an early exit from the loop, program fetch will begin immediately and
the value specified by the fstg/fcyc will be ignored.

Table 3-23. Field Allocation in stg/cyc Field

ii Number of Bits for Stage Number of Bits for Cycle

1 6 0

2 5 1

3-4 4 2

5-8 3 3

9-14 2 4

Table 3-24. Bit Allocations to Stage and Cycle in stg/cyc Field

ii stg/cyc[5] stg/cyc[4] stg/cyc[3] stg/cyc[2] stg/cyc[1] stg/cyc[0]

1 stage[0] stage[1] stage[2] stage[3] stage[4] stage[5]

2 stage[0] stage[1] stage[2] stage[3] stage[4] cycle[0]

3-4 stage[0] stage[1] stage[2] stage[3] cycle[1] cycle[0]

5-8 stage[0] stage[1] stage[2] cycle[2] cycle[1] cycle[0]

9-14 stage[0] stage[1] cycle[3] cycle[2] cycle[1] cycle[0]

Execution See Chapter 7 for more information

See Also SPKERNELR

424 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SPKERNELR — Software Pipelined Loop (SPLOOP) Buffer Operation Code Boundary

SPKERNELR Software Pipelined Loop (SPLOOP) Buffer Operation Code Boundary

Syntax SPKERNELR

unit = none

Compatibility C64x+ CPU

Opcode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 s p

1 1

Description The SPKERNELR instruction is placed in parallel with the last execute packet of the
SPLOOP code body indicating there are no more instructions to load into the loop buffer.
The SPKERNELR instruction also indicates that the execution of both post-SPLOOP
instructions and instructions reloaded from the buffer begin in the first cycle of the epilog.

The following restrictions apply to the use of the SPKERNELR instruction:

• The SPKERNELR instruction must be the first instruction in the execute packet
containing it.

• The SPKERNELR instruction cannot be placed in the same execute packet as any
instruction that initiates multicycle NOPs. This includes BNOP, CALLP, NOP n
(n > 1), and protected loads (see compact instruction discussion in Section 3.9).

• The SPKERNELR instruction cannot be placed in the execute packet immediately
following an execute packet containing any instruction that initiates multicycle NOPs.
This includes BNOP, CALLP, NOP n (n > 1), and protected loads (see compact
instruction discussion in Section 3.9).

• The SPKERNELR instruction cannot be placed in parallel with DINT or RINT
instructions.

• The SPKERNELR instruction cannot be placed in parallel with SPMASK,
SPMASKR, SPLOOP, SPLOOPD, or SPLOOPW instructions.

• The SPKERNELR instruction can only be used when the SPLOOP instruction that
began the SPLOOP buffer operation was predicated.

• The SPKERNELR instruction cannot be paired with an SPLOOPW instruction.

This instruction executes unconditionally and cannot be predicated.

Execution See Chapter 7 for more information.

See Also SPKERNEL

425SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPLOOP — Software Pipelined Loop (SPLOOP) Buffer Operation www.ti.com

SPLOOP Software Pipelined Loop (SPLOOP) Buffer Operation

Syntax SPLOOP ii

unit = none

Compatibility C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

none Uspl Figure H-5

Opcode

31 29 28 27 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z ii - 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 s p

3 1 5 1 1

Description The SPLOOP instruction invokes the loop buffer mechanism. See Chapter 7 for more
details.

When the SPLOOP instruction is predicated, it indicates that the loop is a nested loop
using the SPLOOP reload capability. The decision of whether to reload is determined by
the predicate register selected by the creg and z fields.

The following restrictions apply to the use of the SPLOOP instruction:

• The SPLOOP instruction must be the first instruction in the execute packet containing
it.

• The SPLOOP instruction cannot be placed in the same execute packet as any
instruction that initiates multicycle NOPs. This includes BNOP, CALLP, NOP n
(n > 1), and protected loads (see compact instruction discussion in Section 3.9).

• The SPLOOP instruction cannot be placed in parallel with DINT or RINT instructions.
• The SPLOOP instruction cannot be placed in parallel with SPMASK, SPMASKR,

SPKERNEL, or SPKERNELR instructions.

Execution See Chapter 7 for more information.

See Also SPLOOPD, SPLOOPW

426 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SPLOOPD — Software Pipelined Loop (SPLOOP) Buffer Operation With Delayed Testing

SPLOOPD Software Pipelined Loop (SPLOOP) Buffer Operation With Delayed Testing

Syntax SPLOOPD ii

unit = none

Compatibility C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

none Uspl Figure H-5

Uspldr Figure H-6

Opcode

31 29 28 27 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z ii - 1 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 s p

3 1 5 1 1

Description The SPLOOPD instruction invokes the loop buffer mechanism. The testing of the
termination condition is delayed for four cycles. See Chapter 7 for more details.

When the SPLOOPD instruction is predicated, it indicates that the loop is a nested loop
using the SPLOOP reload capability. The decision of whether to reload is determined by
the predicate register selected by the creg and z fields.

The following restrictions apply to the use of the SPLOOPD instruction:

• The SPLOOPD instruction must be the first instruction in the execute packet
containing it.

• The SPLOOPD instruction cannot be placed in the same execute packet as any
instruction that initiates multicycle NOPs. This includes BNOP, CALLP, NOP n
(n > 1), and protected loads (see compact instruction discussion in Section 3.9).

• The SPLOOPD instruction cannot be placed in parallel with DINT or RINT
instructions.

• The SPLOOPD instruction cannot be placed in parallel with SPMASK, SPMASKR,
SPKERNEL, or SPKERNELR instructions.

Execution See Chapter 7 for more information.

See Also SPLOOP, SPLOOPW

427SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPLOOPW — Software Pipelined Loop (SPLOOP) Buffer Operation With Delayed Testing and No Epilog www.ti.com

SPLOOPW Software Pipelined Loop (SPLOOP) Buffer Operation With Delayed Testing and
No Epilog

Syntax SPLOOPW ii

unit = none

Compatibility C64x+ CPU

Opcode

31 29 28 27 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z ii - 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 s p

3 1 5 1 1

Description The SPLOOPW instruction invokes the loop buffer mechanism. The testing of the
termination condition is delayed for four cycles. See Chapter 7 for more details.

The SPLOOPW instruction is always predicated. The termination condition is the value
of the predicate register selected by the creg and z fields.

The following restrictions apply to the use of the SPLOOPW instruction:

• The SPLOOPW instruction must be the first instruction in the execute packet
containing it.

• The SPLOOPW instruction cannot be placed in the same execute packet as any
instruction that initiates multicycle NOPs. This includes BNOP, NOP n (n > 1), and
protected loads (see compact instruction discussion in Section 3.9).

• The SPLOOPW instruction cannot be placed in parallel with DINT or RINT
instructions.

• The SPLOOPW instruction cannot be placed in parallel with SPMASK, SPMASKR,
SPKERNEL, or SPKERNELR instructions.

Execution See Chapter 7 for more information.

See Also SPLOOP, SPLOOPD

428 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SPMASK — Software Pipelined Loop (SPLOOP) Buffer Operation Load/Execution Control

SPMASK Software Pipelined Loop (SPLOOP) Buffer Operation Load/Execution Control

Syntax SPMASK unitmask

unit = none

Compatibility C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

none Uspm Figure H-8

Opcode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 M2 M1 D2 D1 S2 S1 L2 L1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s p

1 1 1 1 1 1 1 1 1 1

Description The SPMASK instruction serves two purposes within the SPLOOP mechanism:

1. The SPMASK instruction inhibits the execution of specified instructions from the
buffer within the current execute packet.

2. The SPMASK inhibits the loading of specified instructions into the buffer during
loading phase, although the instruction will execute normally.

If the SPLOOP is reloading after returning from an interrupt, the SPMASKed instructions
coming from the buffer execute, but the SPMASKed instructions from program memory
do not execute and are not loaded into the buffer.

An SPMASKed instruction encountered outside of the SPLOOP mechanism shall be
treated as a NOP.

The SPMASKed instruction must be the first instruction in the execute packet containing
it.

The SPMASK instruction cannot be placed in parallel with SPLOOP, SPLOOPD,
SPKERNEL, or SPKERNELR instructions.

The SPMASK instruction executes unconditionally and cannot be predicated.

There are two ways to specify which instructions within the current execute packet will
be masked:

1. The functional units of the instruction can be specified as the SPMASK argument.
2. The instruction to be masked can be marked with a caret (^) in the instruction code.

The following three examples are equivalent:
SPMASK D2,L1

|| MV .D2 B0,B1
|| MV .L1 A0,A1

SPMASK D2
|| MV .D2 B0,B1
||^ MV .L1 A0,A1

SPMASK
||^ MV .D2 B0,B1
||^ MV .L1 A0,A1

429SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPMASK — Software Pipelined Loop (SPLOOP) Buffer Operation Load/Execution Control www.ti.com

The following two examples mask two MV instructions, but do not mask the MPY
instruction.

SPMASK D1, D2
|| MV .D1 A0,A1 ;This unit is SPMASKed
|| MV .D2 B0,B1 ;This unit is SPMASKed
|| MPY .L1 A0,B1 ;This unit is Not SPMASKed

SPMASK
||^ MV .D1 A0,A1 ;This unit is SPMASKed
||^ MV .D2 B0,B1 ;This unit is SPMASKed
|| MPY .L1 A0,B1 ;This unit is Not SPMASKed

Execution See Chapter 7

See Also SPMASKR

430 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SPMASKR — Software Pipelined Loop (SPLOOP) Buffer Operation Load/Execution Control

SPMASKR Software Pipelined Loop (SPLOOP) Buffer Operation Load/Execution Control

Syntax SPMASKR unitmask

unit = none

Compatibility C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

none Uspm Figure H-8

Opcode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 M2 M1 D2 D1 S2 S1 L2 L1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 s p

1 1 1 1 1 1 1 1 1 1

Description The SPMASKR instruction serves three purposes within the SPLOOP mechanism.
Similar to the SPMASK instruction:

1. The SPMASKR instruction inhibits the execution of specified instructions from the
buffer within the current execute packet.

2. The SPMASKR instruction inhibits the loading of specified instructions into the buffer
during loading phase, although the instruction will execute normally.

In addition to the functionality of the SPMASK instruction:
3. The SPMASKR instruction controls the reload point for nested loops.

The SPMASKR instruction is placed in the execute packet (in the post-SPKERNEL
code) preceding the execute packet that will overlap with the first cycle of the reload
operation.

The SPKERNELR and the SPMASKR instructions cannot coexist in the same SPLOOP
operation. In the case where reload is intended to start in the first epilog cycle, the
SPKERNELR instruction is used and the SPMASKR instruction is not used for that
nested loop.

The SPMASKR instruction cannot be used in a loop using the SPLOOPW instruction.

An SPMASKR instruction encountered outside of the SPLOOP mechanism shall be
treated as a NOP.

The SPMASKR instruction executes unconditionally and cannot be predicated.

The SPMASKR instruction must be the first instruction in the execute packet containing
it.

The SPMASKR instruction cannot be placed in parallel with SPLOOP, SPLOOPD,
SPKERNEL, or SPKERNELR instructions.

431SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPMASKR — Software Pipelined Loop (SPLOOP) Buffer Operation Load/Execution Control www.ti.com

There are two ways to specify which instructions within the current execute packet will
be masked:

1. The functional units of the instruction can be specified as the SPMASKR argument.
2. The instruction to be masked can be marked with a caret (^) in the instruction code.

The following three examples are equivalent:
SPMASKR D2,L1

|| MV .D2 B0,B1
|| MV .L1 A0,A1

SPMASKR
|| MV .D2 B0,B1
||^ MV .L1 A0,A1

SPMASKR
||^ MV .D2 B0,B1
||^ MV .L1 A0,A1

The following two examples mask two MV instructions, but do not mask the MPY
instruction. The presence of a caret (^) in the instruction code specifies which
instructions are SPMASKed.

SPMASKR D1,D2
|| MV .D1 A0,A1 ;This unit is SPMASKed
|| MV .D2 B0,B1 ;This unit is SPMASKed
|| MPY .L1 A0,B1 ;This unit is Ned SPMASKed

SPMASKR
||^ MV .D1 A0,A1 ;This unit is SPMASKED
||^ MV .D2 B0,B1 ;This unit is SPMASKED
|| MPY .L1 A0,B1 ;This unit is Not SPMASKed

Execution See Chapter 7

See Also SPMASK

Example SPMASKR
||^ LDW .D1 *A0,A1 ;This unit is SPMASKed
||^ LDW .D2 *B0,B1 ;This unit is SPMASKed
|| MPY .M1 A3,A4,A5 ;This unit is Not SPMASKed

432 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SSHL — Shift Left With Saturation

SSHL Shift Left With Saturation

Syntax SSHL (.unit) src2, src1, dst

unit = .S1 or .S2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.S Ssh5 Figure F-24

S2sh Figure F-25

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x op 1 0 0 0 s p

3 1 5 5 5 1 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2 xsint .S1, .S2 10 0011
src1 uint
dst sint

src2 xsint .S1, .S2 10 0010
src1 ucst5
dst sint

Description The src2 operand is shifted to the left by the src1 operand. The result is placed in dst.
When a register is used to specify the shift, the 5 least-significant bits specify the shift
amount. Valid values are 0 through 31, and the result of the shift is invalid if the shift
amount is greater than 31. The result of the shift is saturated to 32 bits. If a saturate
occurs, the SAT bit in CSR is set one cycle after dst is written.

NOTE: For the C64x and C64x+ DSP, when a register is used to specify the
shift, the 6 least-significant bits specify the shift amount. Valid values are
0 through 63. If the shift count value is greater than 32, then the result is
saturated to 32 bits when src2 is non-zero.

Execution

if (cond) {
if (bit(31) through bit(31 - src1) of src2 are all 1s or all 0s),
dst = src2 << src1;
else if (src2 > 0), saturate dst to 7FFF FFFFh;
else if (src2 < 0), saturate dst to 8000 0000h
}

else nop

433SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SSHL — Shift Left With Saturation www.ti.com

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also ROTL, SHL, SHLMB, SHR, SSHVL

Examples Example 1
SSHL .S1 A0,2,A1

Before instruction 1 cycle after instruction 2 cycles after instruction

A0 02E3 031Ch A0 02E3 031Ch A0 02E3 031Ch

A1 xxxx xxxxh A1 0B8C 0C70h A1 0B8C 0C70h

CSR 0001 0100h CSR 0001 0100h CSR 0001 0100h Not saturated

SSR (1) 0000 0000h SSR 0000 0000h SSR 0000 0000h

(1) Saturation status register (SSR) is only available on the C64x+ DSP.

Example 2
SSHL .S1 A0,A1,A2

Before instruction 1 cycle after instruction 2 cycles after instruction

A0 4719 1925h A0 4719 1925h A0 4719 1925h

A1 0000 0006h A1 0000 0006h A1 0000 0006h

A2 xxxx xxxxh A2 7FFF FFFFh A2 7FFF FFFFh

CSR 0001 0100h CSR 0001 0100h CSR 0001 0300h Saturated

SSR (1) 0000 0000h SSR 0000 0000h SSR 0000 0004h

(1) Saturation status register (SSR) is only available on the C64x+ DSP.

434 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SSHVL — Variable Shift Left

SSHVL Variable Shift Left

Syntax SSHVL (.unit) src2, src1, dst

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 1 1 0 0 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 int .M1, .M2
src2 xint
dst int

Description Shifts the signed 32-bit value in src2 to the left or right by the number of bits specified by
src1, and places the result in dst.

The src1 argument is treated as a 2s-complement shift value which is automatically
limited to the range -31 to 31. If src1 is positive, src2 is shifted to the left. If src1 is
negative, src2 is shifted to the right by the absolute value of the shift amount, with the
sign-extended shifted value being placed in dst. It should also be noted that when src1 is
negative, the bits shifted right past bit 0 are lost.

Saturation is performed when the value is shifted left under the following conditions:

• If the shifted value is in the range -231 to 231 - 1, inclusive, then no saturation is
performed, and the result is truncated to 32 bits.

• If the shifted value is greater than 231 - 1, then the result is saturated to 231 - 1.
• If the shifted value is less than - 231, then the result is saturated to - 231.

31 0

abcdefgh ijklmnop qrstuvwx yzABCDEF ← src2

SSHVL

↓

31 0

aaaaaaaa abcdefgh ijklmnop qrstuvwx ← dst

(for src1 = -8)

NOTE: If the shifted value is saturated, then the SAT bit is set in CSR one cycle
after the result is written to dst. If the shifted value is not saturated, then
the SAT bit is unaffected.

435SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SSHVL — Variable Shift Left www.ti.com

Execution

if (cond) {
if (0 <= src1 <= 31), sat(src2 << src1) → dst ;
if (-31 <= src1 < 0), (src2 >> abs(src1)) → dst;
if (src1 > 31), sat(src2 << 31) → dst;
if (src1 < -31), (src2 >> 31) → dst
}

else nop

Pipeline

Pipeline Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Two-cycle

Delay Slots 1

See Also SHL, SHLMB, SSHL, SSHVR

Examples Example 1
SSHVL .M2 B2, B4, B5

Before instruction 2 cycles after instruction

B2 FFFF F000h B2 FFFF F000h

B4 FFFF FFE1h -31 B4 FFFF FFE1h

B5 xxxx xxxxh B5 FFFF FFFFh

Example 2
SSHVL .M1 A2,A4,A5

Before instruction 2 cycles after instruction

A2 F14C 2108h A2 F14C 2108h

A4 0000 0001Fh 31 A4 0000 0001Fh

A5 xxxx xxxxh A5 8000 0000h Saturated to most
negative value

Example 3
SSHVL .M2 B12, B24, B25

Before instruction 2 cycles after instruction

B12 187A 65FCh B12 187A 65FCh

B24 FFFF FFFFh -1 B24 FFFF FFFFh

B25 xxxx xxxxh B25 03CD 32FEh

436 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SSHVR — Variable Shift Right

SSHVR Variable Shift Right

Syntax SSHVR (.unit) src2, src1, dst

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 1 0 1 0 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 int .M1, .M2
src2 xint
dst int

Description Shifts the signed 32-bit value in src2 to the left or right by the number of bits specified by
src1, and places the result in dst.

The src1 argument is treated as a 2s-complement shift value that is automatically limited
to the range -31 to 31. If src1 is positive, src2 is shifted to the right by the value specified
with the sign-extended shifted value being placed in dst. It should also be noted that
when src1 is positive, the bits shifted right past bit 0 are lost. If src1 is negative, src2 is
shifted to the left by the absolute value of the shift amount value and the result is placed
in dst.

Saturation is performed when the value is shifted left under the following conditions:

• If the shifted value is in the range -231 to 231 - 1, inclusive, then no saturation is
performed, and the result is truncated to 32 bits.

• If the shifted value is greater than 231 - 1, then the result is saturated to 231 - 1.
• If the shifted value is less than - 231, then the result is saturated to - 231.

31 0

abcdefgh ijklmnop qrstuvwx yzABCDEF ← src2

SSHVR

↓

31 0

aaaaaaaa bcdefghi jklmnopq rstuvwxy ← dst

(for src1 = 7)

NOTE: If the shifted value is saturated, then the SAT bit is set in CSR one cycle
after the result is written to dst. If the shifted value is not saturated, then
the SAT bit is unaffected.

437SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SSHVR — Variable Shift Right www.ti.com

Execution

if (cond) {
if (0 <= src1 <= 31), (src2 >> src1) → dst;
if (-31 <= src1 < 0), sat(src2 << abs(src1)) → dst;
if (src1 > 31), (src2 >> 31) → dst;
if (src1 < -31), sat(src2 << 31) → dst
}

else nop

Pipeline

Pipeline Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Two-cycle

Delay Slots 1

See Also SHR, SHR2, SHRMB, SHRU, SHRU2, SSHVL

Examples Example 1
SSHVR .M2 B2,B4,B5

Before instruction 2 cycles after instruction

B2 FFFF F000h B2 FFFF F000h

B4 FFFF FFE1h -31 B4 FFFF FFE1h

B5 xxxx xxxxh B5 8000 0000h Saturated to most
negative value

Example 2
SSHVR .M1 A2,A4,A5

Before instruction 2 cycles after instruction

A2 F14C 2108h A2 F14C 2108h

A4 0000 0001Fh 31 A4 0000 0001Fh

A5 xxxx xxxxh A5 FFFF FFFFh

Example 3
SSHVR .M2 B12, B24, B25

Before instruction 2 cycles after instruction

B12 187A 65FCh B12 187A 65FCh

B24 FFFF FFFFh -1 B24 FFFF FFFFh

B25 xxxx xxxxh B25 30F4 CBF8h

438 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SSUB — Subtract Two Signed Integers With Saturation

SSUB Subtract Two Signed Integers With Saturation

Syntax SSUB (.unit) src1, src2, dst

or

SSUB (.unit) src1, src2_h:src2_l, dst_h:dst_l

unit = .L1 or .L2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.L L3 Figure D-4

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1 sint .L1, .L2 000 1111
src2 xsint
dst sint

src1 xsint .L1, .L2 001 1111
src2 sint
dst sint

src1 scst5 .L1, .L2 000 1110
src2 xsint
dst sint

src1 scst5 .L1, .L2 010 1100
src2 slong
dst slong

Description src2 is subtracted from src1 and is saturated to the result size according to the following
rules:

1. If the result is an int and src1 - src2 > 231 - 1, then the result is 231 - 1.
2. If the result is an int and src1 - src2 < -231, then the result is -231.
3. If the result is a long and src1 - src2 > 239 - 1, then the result is 239 - 1.
4. If the result is a long and src1 - src2 < -239, then the result is -239.

The result is placed in dst. If a saturate occurs, the SAT bit in CSR is set one cycle after
dst is written.

439SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SSUB — Subtract Two Signed Integers With Saturation www.ti.com

Execution

if (cond) src1 -s src2 → dst
else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also SUB, SSUB2

Examples Example 1
SSUB .L2 B1,B2,B3

Before instruction 1 cycle after instruction

B1 5A2E 51A3h 1,512,984,995 B1 5A2E 51A3h

B2 802A 3FA2h -2,144,714,846 B2 802A 3FA2h

B3 xxxx xxxxh B3 7FFF FFFFh 2,147,483,647

CSR 0001 0100h CSR 0001 0100h

SSR (1) 0000 0000h SSR 0000 0000h

2 cycles after instruction

B1 5A2E 51A3h

B2 802A 3FA2h

B3 7FFF FFFFh

CSR 0001 0300h Saturated

SSR 0000 0002h

(1) Saturation status register (SSR) is only available on the C64x+ DSP.

440 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SSUB — Subtract Two Signed Integers With Saturation

Example 2
SSUB .L1 A0,A1,A2

Before instruction 1 cycle after instruction

A0 4367 71F2h 1,130,852,850 A0 4367 71F2h

A1 5A2E 51A3h 1,512,984,995 A1 5A2E 51A3h

A2 xxxx xxxxh A2 E939 204Fh -382,132,145

CSR 0001 0100h CSR 0001 0100h

SSR (1) 0000 0000h SSR 0000 0000h

2 cycles after instruction

A0 4367 71F2h

A1 5A2E 51A3h

A2 E939 204Fh

CSR 0001 0100h Not saturated

SSR 0000 0000h

(1) Saturation status register (SSR) is only available on the C64x+ DSP.

441SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SSUB2 — Subtract Two Signed 16-Bit Integers on Upper and Lower Register Halves With Saturation www.ti.com

SSUB2 Subtract Two Signed 16-Bit Integers on Upper and Lower Register Halves With
Saturation

Syntax SSUB2 (.unit) src1, src2, dst

unit = .L1 or .L2

Compatibility C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 0 0 1 0 0 1 1 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 s2 .L1, .L2
src2 xs2
dst s2

Description Performs 2s-complement subtraction between signed, packed 16-bit quantities in src1
and src2. The results are placed in a signed, packed 16-bit format into dst.

For each pair of 16-bit quantities in src1 and src2, the difference between the signed
16-bit value from src1 and the signed 16-bit value from src2 is calculated and saturated
to produce a signed 16-bit result. The result is placed in the corresponding position in
dst.

Saturation is performed on each 16-bit result independently. For each sum, the following
tests are applied:

• If the difference is in the range - 215 to 2 15 - 1, inclusive, then no saturation is
performed and the sum is left unchanged.

• If the difference is greater than 215 - 1, then the result is set to 215 - 1.
• If the difference is less than - 215, then the result is set to - 215.

31 16 15 0

a_hi a_lo ← src1

- -

SSUB2

b_hi b_lo ← src2

= =

31 16 15 0

sat(a_hi - b_hi) sat(a_lo - b_lo) ← dst

NOTE: This operation is performed on each halfword separately. This
instruction does not affect the SAT bit in CSR or the L1 or L2 bit in SSR.

442 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SSUB2 — Subtract Two Signed 16-Bit Integers on Upper and Lower Register Halves With Saturation

Execution

if (cond) {
sat(msb16(src1) - msb16(src2)) → msb16(dst);
sat(lsb16(src1) - lsb16(src2)) → lsb16(dst)
}

else nop

Instruction Type Single-cycle

Delay Slots 0

See Also ADD2, SUB, SUB4, SSUB2

Examples Example 1
SSUB2 .L1 A0,A1,A2

Before instruction 1 cycle after instruction

A0 0007 0005h A2 0008 0006h

A1 FFFF FFFFh

Example 2
SSUB2 .L1 A0,A1,A2

Before instruction 1 cycle after instruction

A0 0007 0005h A2 7FFF 0006h

A1 8000 FFFFh

443SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

STB — Store Byte to Memory With a 5-Bit Unsigned Constant Offset or Register Offset www.ti.com

STB Store Byte to Memory With a 5-Bit Unsigned Constant Offset or Register Offset

Syntax

Register Offset Unsigned Constant Offset

STB (.unit) src, *+baseR[offsetR] STB (.unit) src, *+baseR[ucst5]

unit = .D1 or .D2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.D Doff4 Figure C-9

Dind Figure C-11

Dinc Figure C-13

Ddec Figure C-15

Opcode

31 29 28 27 23 22 18 17 13 12 9 8 7 6 5 4 3 2 1 0

creg z src baseR offsetR/ucst5 mode 0 y 0 1 1 0 1 s p

3 1 5 5 5 4 1 1 1

Description Stores a byte to memory from a general-purpose register (src). Table 3-6 describes the
addressing generator options. The memory address is formed from a base address
register (baseR) and an optional offset that is either a register (offsetR) or a 5-bit
unsigned constant (ucst5).

offsetR and baseR must be in the same register file and on the same side as the .D unit
used. The y bit in the opcode determines the .D unit and register file used: y = 0 selects
the .D1 unit and baseR and offsetR from the A register file, and y = 1 selects the .D2 unit
and baseR and offsetR from the B register file.

offsetR/ucst5 is scaled by a left-shift of 0 bits. After scaling, offsetR/ucst5 is added to or
subtracted from baseR. For the preincrement, predecrement, positive offset, and
negative offset address generator options, the result of the calculation is the address to
be accessed in memory. For postincrement or postdecrement addressing, the value of
baseR before the addition or subtraction is sent to memory.

The addressing arithmetic that performs the additions and subtractions defaults to linear
mode. However, for A4-A7 and for B4-B7, the mode can be changed to circular mode by
writing the appropriate value to the AMR (see Section 2.8.3).

For STB, the 8 LSBs of the src register are stored. src can be in either register file,
regardless of the .D unit or baseR or offsetR used. The s bit determines which file src is
read from: s = 0 indicates src will be in the A register file and s = 1 indicates src will be
in the B register file.

Increments and decrements default to 1 and offsets default to zero when no bracketed
register or constant is specified. Stores that do no modification to the baseR can use the
syntax *R. Square brackets, [], indicate that the ucst5 offset is left-shifted by 0.
Parentheses, (), can be used to set a nonscaled, constant offset. You must type either
brackets or parentheses around the specified offset, if you use the optional offset
parameter.

444 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com STB — Store Byte to Memory With a 5-Bit Unsigned Constant Offset or Register Offset

Execution

if (cond) src → mem
else nop

Pipeline

Pipeline Stage E1

Read baseR, offsetR, src

Written baseR

Unit in use .D2

Instruction Type Store

Delay Slots 0

For more information on delay slots for a store, see Chapter 4.

See Also STH, STW

Examples Example 1
STB .D1 A1,*A10

Before instruction 1 cycle after 3 cycles after
instruction instruction

A1 9A32 7634h A1 9A32 7634h A1 9A32 7634h

A10 0000 0100h A10 0000 0100h A10 0000 0100h

mem 100h 11h mem 100h 11h mem 100h 34h

Example 2
STB .D1 A8,*++A4[5]

Before instruction 1 cycle after 3 cycles after
instruction instruction

A4 0000 4020h A4 0000 4025h A4 0000 4025h

A8 0123 4567h A8 0123 4567h A8 0123 4567h

mem 4024:27h xxxx xxxxh mem 4024:27h xxxx xxxxh mem 4024:27h xxxx 67xxh

Example 3
STB .D1 A8,*A4++[5]

Before instruction 1 cycle after 3 cycles after
instruction instruction

A4 0000 4020h A4 0000 4025h A4 0000 4025h

A8 0123 4567h A8 0123 4567h A8 0123 4567h

mem 4020:23h xxxx xxxxh mem 4020:23h xxxx xxxxh mem 4020:23h xxxx xx67h

445SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

STB — Store Byte to Memory With a 5-Bit Unsigned Constant Offset or Register Offset www.ti.com

Example 4
STB .D1 A8,*++A4[A12]

Before instruction 1 cycle after 3 cycles after
instruction instruction

A4 0000 4020h A4 0000 4026h A4 0000 4026h

A8 0123 4567h A8 0123 4567h A8 0123 4567h

A12 0000 0006h A12 0000 0006h A12 0000 0006h

mem 4024:27h xxxx xxxxh mem 4024:27h xxxx xxxxh mem 4024:27h xx67 xxxxh

446 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com STB — Store Byte to Memory With a 15-Bit Unsigned Constant Offset

STB Store Byte to Memory With a 15-Bit Unsigned Constant Offset

Syntax STB(.unit) src, *+B14/B15[ucst15]

unit = .D2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 23 22 8 7 6 5 4 3 2 1 0

creg z src ucst15 y 0 1 1 1 1 s p

3 1 5 15 1 1 1

Description Stores a byte to memory from a general-purpose register (src). The memory address is
formed from a base address register B14 (y = 0) or B15 (y = 1) and an offset, which is a
15-bit unsigned constant (ucst15). The assembler selects this format only when the
constant is larger than five bits in magnitude. This instruction executes only on the .D2
unit.

The offset, ucst15, is scaled by a left-shift of 0 bits. After scaling, ucst15 is added to
baseR. The result of the calculation is the address that is sent to memory. The
addressing arithmetic is always performed in linear mode.

For STB, the 8 LSBs of the src register are stored. src can be in either register file. The
s bit determines which file src is read from: s = 0 indicates src is in the A register file and
s = 1 indicates src is in the B register file.

Square brackets, [], indicate that the ucst15 offset is left-shifted by 0. Parentheses, (),
can be used to set a nonscaled, constant offset. You must type either brackets or
parentheses around the specified offset, if you use the optional offset parameter.

Execution

if (cond) src → mem
else nop

NOTE: This instruction executes only on the B side (.D2).

Pipeline

Pipeline Stage E1

Read B14/B15, src

Written

Unit in use .D2

Instruction Type Store

Delay Slots 0

See Also STH, STW

447SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

STB — Store Byte to Memory With a 15-Bit Unsigned Constant Offset www.ti.com

Example STB .D2 B1,*+B14[40]

Before instruction 1 cycle after 3 cycles after
instruction instruction

B1 1234 5678h B1 1234 5678h B1 1234 5678h

B14 0000 1000h B14 0000 1000h B14 0000 1000h

mem 1028h 42h mem 1028h 42h mem 1028h 78h

448 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com STDW — Store Doubleword to Memory With a 5-Bit Unsigned Constant Offset or Register Offset

STDW Store Doubleword to Memory With a 5-Bit Unsigned Constant Offset or
Register Offset

Syntax

Register Offset Unsigned Constant Offset

STDW (.unit) src, *+baseR[offsetR] STDW (.unit) src, *+baseR[ucst5]

unit = .D1 or .D2

Compatibility C64x and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.D Doff4DW Figure C-10

DindDW Figure C-12

DincDW Figure C-14

DdecDW Figure C-16

Dpp Figure C-22

Opcode

31 29 28 27 23 22 18 17 13 12 9 8 7 6 5 4 3 2 1 0

creg z src baseR offsetR/ucst5 mode 1 y 1 0 0 0 1 s p

3 1 5 5 5 4 1 1 1

Opcode map field used... For operand type... Unit

src ullong .D1, .D2
baseR uint
offsetR uint

src ullong .D1, .D2
baseR uint
offsetR ucst5

Description Stores a 64-bit quantity to memory from a 64-bit register, src. Table 3-6 describes the
addressing generator options. Alignment to a 64-bit boundary is required. The memory
address is formed from a base address register (baseR) and an optional offset that is
either a register (offsetR) or a 5-bit unsigned constant (ucst5). If an offset is not given,
the assembler assigns an offset of zero.

Both offsetR and baseR must be in the same register file, and on the same side, as the
.D unit used. The y bit in the opcode determines the .D unit and register file used: y = 0
selects the .D1 unit and baseR and offsetR from the A register file, and y = 1 selects the
.D2 unit and baseR and offsetR from the B register file.

The offsetR/ucst5 is scaled by a left shift of 3 bits. After scaling, offsetR/ucst5 is added
to, or subtracted from, baseR. For the preincrement, predecrement, positive offset, and
negative offset address generator options, the result of the calculation is the address to
be accessed in memory. For postincrement or postdecrement addressing, the value of
baseR before the addition or subtraction is the address to be accessed from memory.

449SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

STDW — Store Doubleword to Memory With a 5-Bit Unsigned Constant Offset or Register Offset www.ti.com

The addressing arithmetic that performs the additions and subtractions defaults to linear
mode. However, for A4-A7 and for B4-B7, the mode can be changed to circular mode by
writing the appropriate value to the AMR (see Section 2.8.3).

The src pair can be in either register file, regardless of the .D unit or baseR or offsetR
used. The s bit determines which file src will be loaded from: s = 0 indicates src will be in
the A register file and s = 1 indicates src will be in the B register file.

Assembler Notes When no bracketed register or constant is specified, the assembler defaults increments
and decrements to 1 and offsets to 0. Stores that do no modification to the baseR can
use the assembler syntax *R. Square brackets, [], indicate that the ucst5 offset is
left-shifted by 3 for doubleword stores.

Parentheses, (), can be used to tell the assembler that the offset is a non-scaled,
constant offset. The assembler right shifts the constant by 3 bits for doubleword stores
before using it for the ucst5 field. After scaling by the STDW instruction, this results in
the same constant offset as the assembler source if the least-significant three bits are
zeros.

For example, STDW (.unit) src, *+baseR (16) represents an offset of 16 bytes (2
doublewords), and the assembler writes out the instruction with ucst5 = 2. STDW (.unit)
src, *+baseR [16] represents an offset of 16 doublewords, or 128 bytes, and the
assembler writes out the instruction with ucst5 = 16.

Either brackets or parentheses must be typed around the specified offset if the optional
offset parameter is used. The register pair syntax always places the odd-numbered
register first, a colon, followed by the even-numbered register (that is, A1:A0, B1:B0,
A3:A2, B3:B2, etc.).

Execution

if (cond) src → mem
else nop

Pipeline

Pipeline Stage E1

Read baseR, offsetR, src

Written baseR

Unit in use .D

Instruction Type Store

Delay Slots 0

See Also LDDW, STW

450 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com STDW — Store Doubleword to Memory With a 5-Bit Unsigned Constant Offset or Register Offset

Examples Example 1
STDW .D1 A3:A2,*A0++

Before instruction 1 cycle after instruction

A0 0000 1000h A0 0000 1008h

A3:A2 A176 3B28h 6041 AD65h A3:A2 A176 3B28h 6041 AD65h

Byte Memory Address 1009 1008 1007 1006 1005 1004 1003 1002 1001 1000

Data Value Before Store 00 00 00 00 00 00 00 00 00 00

Data Value After Store 00 00 A1 76 3B 28 60 41 AD 65

Example 2
STDW .D1 A3:A2, *A0++

Before instruction 1 cycle after instruction

A0 0000 1004h A0 0000 100Ch

A3:A2 A176 3B28h 6041 AD65h A3:A2 A176 3B28h 6041 AD65h

Byte Memory Address 100D 100C 100B 100A 1009 1008 1007 1006 1005 1004 1003

Data Value Before Store 00 00 00 00 00 00 00 00 00 00 00

Data Value After Store 00 00 A1 76 3B 28 60 41 AD 65 00

Example 3
STDW .D1 A9:A8, *++A4[5]

Before instruction 1 cycle after instruction

A4 0000 4020h A4 0000 4048h

A9:A8 ABCD EF98h 0123 4567h A9:A8 ABCD EF98h 0123 4567h

Byte Memory Address 4051 4050 404F 404E 404D 404C 404B 404A 4049 4048 4047

Data Value Before Store 00 00 00 00 00 00 00 00 00 00 00

Data Value After Store 00 00 AB CD EF 98 01 23 45 67 00

451SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

STDW — Store Doubleword to Memory With a 5-Bit Unsigned Constant Offset or Register Offset www.ti.com

Example 4
STDW .D1 A9:A8, *++A4(16)

Before instruction 1 cycle after instruction

A4 0000 4020h A4 0000 4030h

A9:A8 ABCD EF98h 0123 4567h A9:A8 ABCD EF98h 0123 4567h

Byte Memory Address 4039 4038 4037 4036 4035 4034 4033 4032 4031 4030 402F

Data Value Before Store 00 00 00 00 00 00 00 00 00 00 00

Data Value After Store 00 00 AB CD EF 98 01 23 45 67 00

Example 5
STDW .D1 A9:A8, *++A4[A12]

Before instruction 1 cycle after instruction

A4 0000 4020h A4 0000 4030h

A9:A8 ABCD EF98h 0123 4567h A9:A8 ABCD EF98h 0123 4567h

A12 0000 0006h A12 0000 0006h

Byte Memory Address 4059 4058 4057 4056 4055 4054 4053 4052 4051 4050 404F

Data Value Before Store 00 00 00 00 00 00 00 00 00 00 00

Data Value After Store 00 00 AB CD EF 98 01 23 45 67 00

452 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com STH — Store Halfword to Memory With a 5-Bit Unsigned Constant Offset or Register Offset

STH Store Halfword to Memory With a 5-Bit Unsigned Constant Offset or
Register Offset

Syntax

Register Offset Unsigned Constant Offset

STH (.unit) src, *+baseR[offsetR] STH (.unit) src, *+baseR[ucst5]

unit = .D1 or .D2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.D Doff4 Figure C-9

Dind Figure C-11

Dinc Figure C-13

Ddec Figure C-15

Opcode

31 29 28 27 23 22 18 17 13 12 9 8 7 6 5 4 3 2 1 0

creg z src baseR offsetR/ucst5 mode 0 y 1 0 1 0 1 s p

3 1 5 5 5 4 1 1 1

Description Stores a halfword to memory from a general-purpose register (src). Table 3-6 describes
the addressing generator options. The memory address is formed from a base address
register (baseR) and an optional offset that is either a register (offsetR) or a 5-bit
unsigned constant (ucst5).

offsetR and baseR must be in the same register file and on the same side as the .D unit
used. The y bit in the opcode determines the .D unit and register file used: y = 0 selects
the .D1 unit and baseR and offsetR from the A register file, and y = 1 selects the .D2 unit
and baseR and offsetR from the B register file.

offsetR/ucst5 is scaled by a left-shift of 1 bit. After scaling, offsetR/ucst5 is added to or
subtracted from baseR. For the preincrement, predecrement, positive offset, and
negative offset address generator options, the result of the calculation is the address to
be accessed in memory. For postincrement or postdecrement addressing, the value of
baseR before the addition or subtraction is sent to memory.

The addressing arithmetic that performs the additions and subtractions defaults to linear
mode. However, for A4-A7 and for B4-B7, the mode can be changed to circular mode by
writing the appropriate value to the AMR (see Section 2.8.3).

For STH, the 16 LSBs of the src register are stored. src can be in either register file,
regardless of the .D unit or baseR or offsetR used. The s bit determines which file src is
read from: s = 0 indicates src will be in the A register file and s = 1 indicates src will be
in the B register file.

Increments and decrements default to 1 and offsets default to zero when no bracketed
register or constant is specified. Stores that do no modification to the baseR can use the
syntax *R. Square brackets, [], indicate that the ucst5 offset is left-shifted by 1.
Parentheses, (), can be used to set a nonscaled, constant offset. You must type either
brackets or parentheses around the specified offset, if you use the optional offset
parameter.

Halfword addresses must be aligned on halfword (LSB is 0) boundaries.

453SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

STH — Store Halfword to Memory With a 5-Bit Unsigned Constant Offset or Register Offset www.ti.com

Execution

if (cond) src → mem
else nop

Pipeline

Pipeline Stage E1

Read baseR, offsetR, src

Written baseR

Unit in use .D2

Instruction Type Store

Delay Slots 0

For more information on delay slots for a store, see Chapter 4.

See Also STB, STW

Examples Example 1
STH .D1 A1,*+A10(4)

Before instruction 1 cycle after 3 cycles after
instruction instruction

A1 9A32 7634h A1 9A32 7634h A1 9A32 7634h

B10 0000 1000h A10 0000 1000h A10 0000 1000h

mem 104h 1134h mem 104h 1134h mem 104h 7634h

Example 2
STH .D1 A1,*A10--[A11]

Before instruction 1 cycle after 3 cycles after
instruction instruction

A1 9A32 2634h A1 9A32 2634h A1 9A32 2634h

A10 0000 0100h A10 0000 00F8h A10 0000 00F8h

A11 0000 0004h A11 0000 0004h A11 0000 0004h

mem F8h 0000h mem F8h 0000h mem F8h 0000h

mem 100h 0000h mem 100h 0000h mem 100h 2634h

454 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com STH — Store Halfword to Memory With a 15-Bit Unsigned Constant Offset

STH Store Halfword to Memory With a 15-Bit Unsigned Constant Offset

Syntax STH(.unit) src, *+B14/B15[ucst15]

unit = .D2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 23 22 8 7 6 5 4 3 2 1 0

creg z src ucst15 y 1 0 1 1 1 s p

3 1 5 15 1 1 1

Description Stores a halfword to memory from a general-purpose register (src). The memory
address is formed from a base address register B14 (y = 0) or B15 (y = 1) and an offset,
which is a 15-bit unsigned constant (ucst15). The assembler selects this format only
when the constant is larger than five bits in magnitude. This instruction executes only on
the .D2 unit.

The offset, ucst15, is scaled by a left-shift of 1 bit. After scaling, ucst15 is added to
baseR. The result of the calculation is the address that is sent to memory. The
addressing arithmetic is always performed in linear mode.

For STH, the 16 LSBs of the src register are stored. src can be in either register file. The
s bit determines which file src is read from: s = 0 indicates src is in the A register file and
s = 1 indicates src is in the B register file.

Square brackets, [], indicate that the ucst15 offset is left-shifted by 1. Parentheses, (),
can be used to set a nonscaled, constant offset. You must type either brackets or
parentheses around the specified offset, if you use the optional offset parameter.

Halfword addresses must be aligned on halfword (LSB is 0) boundaries.

Execution

if (cond) src → mem
else nop

NOTE: This instruction executes only on the B side (.D2).

Pipeline

Pipeline Stage E1

Read B14/B15, src

Written

Unit in use .D2

Instruction Type Store

Delay Slots 0

See Also STB, STW

455SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

STNDW — Store Nonaligned Doubleword to Memory With a 5-Bit Unsigned Constant Offset or Register Offset www.ti.com

STNDW Store Nonaligned Doubleword to Memory With a 5-Bit Unsigned Constant Offset or
Register Offset

Syntax

Register Offset Unsigned Constant Offset

STNDW (.unit) src, *+baseR[offsetR] STNDW (.unit) src, *+baseR[ucst5]

unit = .D1 or .D2

Compatibility C64x and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.D Doff4DW Figure C-10

DindDW Figure C-12

DincDW Figure C-14

DdecDW Figure C-16

Opcode

31 29 28 27 24 23 22 18 17 13 12 9 8 7 6 5 4 3 2 1 0

creg z src sc baseR offsetR/ucst5 mode 1 y 1 1 1 0 1 s p

3 1 4 1 5 5 4 1 1 1

Opcode map field used... For operand type... Unit

src ullong .D1, .D2
baseR uint
offsetR uint

src ullong .D1, .D2
baseR uint
offsetR ucst5

Description Stores a 64-bit quantity to memory from a 64-bit register pair, src. Table 3-6 describes
the addressing generator options. The STNDW instruction may write a 64-bit value to
any byte boundary. Thus alignment to a 64-bit boundary is not required. The memory
address is formed from a base address register (baseR) and an optional offset that is
either a register (offsetR) or a 5-bit unsigned constant (ucst5).

Both offsetR and baseR must be in the same register file and on the same side as the .D
unit used. The y bit in the opcode determines the .D unit and register file used: y = 0
selects the .D1 unit and baseR and offsetR from the A register file, and y = 1 selects the
.D2 unit and baseR and offsetR from the B register file.

The STNDW instruction supports both scaled offsets and non-scaled offsets. The sc field
is used to indicate whether the offsetR/ucst5 is scaled or not. If sc is 1 (scaled), the
offsetR/ucst5 is shifted left 3 bits before adding or subtracting from the baseR. If sc is 0
(nonscaled), the offsetR/ucst5 is not shifted before adding to or subtracting from the
baseR. For the preincrement, predecrement, positive offset, and negative offset address
generator options, the result of the calculation is the address to be accessed in memory.
For postincrement or post-decrement addressing, the value of baseR before the addition
or subtraction is the address to be accessed from memory.

456 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com STNDW — Store Nonaligned Doubleword to Memory With a 5-Bit Unsigned Constant Offset or Register Offset

The addressing arithmetic that performs the additions and subtractions defaults to linear
mode. However, for A4-A7 and for B4-B7, the mode can be changed to circular mode by
writing the appropriate value to the AMR (see Section 2.8.3).

The src pair can be in either register file, regardless of the .D unit or baseR or offsetR
used. The s bit determines which file src will be loaded from: s = 0 indicates src will be in
the A register file and s = 1 indicates src will be in the B register file.

NOTE: No other memory access may be issued in parallel with a nonaligned
memory access. The other .D unit can be used in parallel, as long as it is
not performing a memory access.

Assembler Notes When no bracketed register or constant is specified, the assembler defaults increments
and decrements to 1, and offsets to 0. Loads that do no modification to the baseR can
use the assembler syntax *R. Square brackets, [], indicate that the ucst5 offset is
left-shifted by 3 for doubleword stores.

Parentheses, (), can be used to indicate to the assembler that the offset is a nonscaled
offset.

For example, STNDW (.unit) src, *+baseR (12) represents an offset of 12 bytes and the
assembler writes out the instruction with offsetC = 12 and sc = 0.

STNDW (.unit) src, *+baseR [16] represents an offset of 16 doublewords, or 128 bytes,
and the assembler writes out the instruction with offsetC = 16 and sc = 1.

Either brackets or parentheses must be typed around the specified offset if the optional
offset parameter is used.

Execution

if (cond) src → mem
else nop

Pipeline

Pipeline Stage E1

Read baseR, offsetR, src

Written baseR

Unit in use .D

Instruction Type Store

Delay Slots 0

See Also LDNW, LDNDW, STNW

457SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

STNDW — Store Nonaligned Doubleword to Memory With a 5-Bit Unsigned Constant Offset or Register Offset www.ti.com

Examples Example 1
STNDW .D1 A3:A2, *A0++

Before instruction 1 cycle after instruction

A0 0000 1001h A0 0000 1009h

A3 A176 3B28h 6041 AD65h A3:A2 A176 3B28h 6041 AD65h

Byte Memory Address 1009 1008 1007 1006 1005 1004 1003 1002 1001 1000

Data Value Before Store 00 00 00 00 00 00 00 00 00 00

Data Value After Store 00 A1 76 3B 28 60 41 AD 65 00

Example 2
STNDW .D1 A3:A2, *A0++

Before instruction 1 cycle after instruction

A0 0000 1003h A0 0000 100Bh

A3:A2 A176 3B28h 6041 AD65h A3:A2 A176 3B28h 6041 AD65h

Byte Memory Address 100B 100A 1009 1008 1007 1006 1005 1004 1003 1002 1001 1000

Data Value Before Store 00 00 00 00 00 00 00 00 00 00 00 00

Data Value After Store 00 A1 76 3B 28 60 41 AD 65 00 00 00

458 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com STNW — Store Nonaligned Word to Memory With a 5-Bit Unsigned Constant Offset or Register Offset

STNW Store Nonaligned Word to Memory With a 5-Bit Unsigned Constant Offset or
Register Offset

Syntax

Register Offset Unsigned Constant Offset

STNW (.unit) src, *+baseR[offsetR] STNW (.unit) src, *+baseR[ucst5]

unit = .D1 or .D2

Compatibility C64x and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.D Doff4 Figure C-9

Dind Figure C-11

Dinc Figure C-13

Ddec Figure C-15

Opcode

31 29 28 27 23 22 18 17 13 12 9 8 7 6 5 4 3 2 1 0

creg z src baseR offsetR/ucst5 mode 1 y 1 0 1 0 1 s p

3 1 5 5 5 4 1 1 1

Opcode map field used... For operand type... Unit

src uint .D1, .D2
baseR uint
offsetR uint

src uint .D1, .D2
baseR uint
offsetR ucst5

Description Stores a 32-bit quantity to memory from a 32-bit register, src. Table 3-6 describes the
addressing generator options. The STNW instruction may write a 32-bit value to any byte
boundary. Thus alignment to a 32-bit boundary is not required. The memory address is
formed from a base address register (baseR) and an optional offset that is either a
register (offsetR) or a 5-bit unsigned constant (ucst5).

Both offsetR and baseR must be in the same register file, and on the same side, as the
.D unit used. The y bit in the opcode determines the .D unit and register file used: y = 0
selects the .D1 unit and baseR and offsetR from the A register file, and y = 1 selects the
.D2 unit and baseR and offsetR from the B register file.

The offsetR/ucst5 is scaled by a left shift of 2 bits. After scaling, offsetR/ucst5 is added
to, or subtracted from, baseR. For the preincrement, predecrement, positive offset, and
negative offset address generator options, the result of the calculation is the address to
be accessed in memory. For postincrement or postdecrement addressing, the value of
baseR before the addition or subtraction is the address to be accessed from memory.

459SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

STNW — Store Nonaligned Word to Memory With a 5-Bit Unsigned Constant Offset or Register Offset www.ti.com

The addressing arithmetic that performs the additions and subtractions defaults to linear
mode. However, for A4-A7 and for B4-B7, the mode can be changed to circular mode by
writing the appropriate value to the AMR (see Section 2.8.3).

The src can be in either register file, regardless of the .D unit or baseR or offsetR used.
The s bit determines which file src will be loaded from: s = 0 indicates src will be in the A
register file and s = 1 indicates src will be in the B register file.

NOTE: No other memory access may be issued in parallel with a nonaligned
memory access. The other .D unit can be used in parallel as long as it is
not performing memory access.

Assembler Notes When no bracketed register or constant is specified, the assembler defaults increments
and decrements to 1 and offsets to 0. Loads that do no modification to the baseR can
use the assembler syntax *R. Square brackets, [], indicate that the ucst5 offset is
left-shifted by 2 for word stores.

Parentheses, (), can be used to tell the assembler that the offset is a non-scaled,
constant offset. The assembler right shifts the constant by 2 bits for word stores before
using it for the ucst5 field. After scaling by the STNW instruction, this results in the same
constant offset as the assembler source if the least-significant two bits are zeros.

For example, STNW (.unit) src,*+baseR (12) represents an offset of 12 bytes (3 words),
and the assembler writes out the instruction with ucst5 = 3.

STNW (.unit) src,*+baseR [12] represents an offset of 12 words, or 48 bytes, and the
assembler writes out the instruction with ucst5 = 12.

Either brackets or parentheses must be typed around the specified offset if the optional
offset parameter is used.

Execution

if (cond) src → mem
else nop

Pipeline

Pipeline Stage E1

Read baseR, offsetR, src

Written baseR

Unit in use .D

Instruction Type Store

Delay Slots 0

See Also LDNW, LDNDW, STNDW

460 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com STNW — Store Nonaligned Word to Memory With a 5-Bit Unsigned Constant Offset or Register Offset

Examples Example 1
STNW .D1 A3, *A0++

Before instruction 1 cycle after instruction

A0 0000 1001h A0 0000 1005h

A3 A176 3B28h A3 A176 3B28h

Byte Memory Address 1007 1006 1005 1004 1003 1002 1001 1000

Data Value Before Store 00 00 00 00 00 00 00 00

Data Value After Store 00 00 00 A1 76 3B 28 00

Example 2
STNW .D1 A3, *A0++

Before instruction 1 cycle after instruction

A0 0000 1003h A0 0000 1007h

A3 A176 3B28h A3 A176 3B28h

Byte Memory Address 1007 1006 1005 1004 1003 1002 1001 1000

Data Value Before Store 00 00 00 00 00 00 00 00

Data Value After Store 00 A1 76 3B 28 00 00 00

461SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

STW — Store Word to Memory With a 5-Bit Unsigned Constant Offset or Register Offset www.ti.com

STW Store Word to Memory With a 5-Bit Unsigned Constant Offset or Register Offset

Syntax

Register Offset Unsigned Constant Offset

STW (.unit) src, *+baseR[offsetR] STW (.unit) src, *+baseR[ucst5]

unit = .D1 or .D2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.D Doff4 Figure C-9

Dind Figure C-11

Dinc Figure C-13

Ddec Figure C-15

Opcode

31 29 28 27 23 22 18 17 13 12 9 8 7 6 5 4 3 2 1 0

creg z src baseR offsetR/ucst5 mode 0 y 1 1 1 0 1 s p

3 1 5 5 5 4 1 1 1

Description Stores a word to memory from a general-purpose register (src). Table 3-6 describes the
addressing generator options. The memory address is formed from a base address
register (baseR) and an optional offset that is either a register (offsetR) or a 5-bit
unsigned constant (ucst5).

offsetR and baseR must be in the same register file and on the same side as the .D unit
used. The y bit in the opcode determines the .D unit and register file used: y = 0 selects
the .D1 unit and baseR and offsetR from the A register file, and y = 1 selects the .D2 unit
and baseR and offsetR from the B register file.

offsetR/ucst5 is scaled by a left-shift of 2 bits. After scaling, offsetR/ucst5 is added to or
subtracted from baseR. For the preincrement, predecrement, positive offset, and
negative offset address generator options, the result of the calculation is the address to
be accessed in memory. For postincrement or postdecrement addressing, the value of
baseR before the addition or subtraction is sent to memory.

The addressing arithmetic that performs the additions and subtractions defaults to linear
mode. However, for A4-A7 and for B4-B7, the mode can be changed to circular mode by
writing the appropriate value to the AMR (see Section 2.8.3).

For STW, the entire 32-bits of the src register are stored. src can be in either register
file, regardless of the .D unit or baseR or offsetR used. The s bit determines which file
src is read from: s = 0 indicates src will be in the A register file and s = 1 indicates src
will be in the B register file.

Increments and decrements default to 1 and offsets default to zero when no bracketed
register or constant is specified. Stores that do no modification to the baseR can use the
syntax *R. Square brackets, [], indicate that the ucst5 offset is left-shifted by 2.
Parentheses, (), can be used to set a nonscaled, constant offset. For example,
STW (.unit) src, *+baseR(12) represents an offset of 12 bytes; whereas,
STW (.unit) src, *+baseR[12] represents an offset of 12 words, or 48 bytes. You must
type either brackets or parentheses around the specified offset, if you use the optional
offset parameter.

Word addresses must be aligned on word (two LSBs are 0) boundaries.

462 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com STW — Store Word to Memory With a 5-Bit Unsigned Constant Offset or Register Offset

Execution

if (cond) src → mem
else nop

Pipeline

Pipeline Stage E1

Read baseR, offsetR, src

Written baseR

Unit in use .D2

Instruction Type Store

Delay Slots 0

For more information on delay slots for a store, see Chapter 4.

See Also STB, STH

Examples Example 1
STW .D1 A1,*++A10[1]

Before instruction 1 cycle after 3 cycles after
instruction instruction

A1 9A32 7634h A1 9A32 7634h A1 9A32 7634h

A10 0000 0100h A10 0000 0104h A10 0000 0104h

mem 100h 1111 1134h mem 100h 1111 1134h mem 100h 1111 1134h

mem 104h 0000 1111h mem 104h 0000 1111h mem 104h 9A32 7634h

Example 2
STW .D1 A8,*++A4[5]

Before instruction 1 cycle after 3 cycles after
instruction instruction

A4 0000 4020h A4 0000 4034h A4 0000 4034h

A8 0123 4567h A8 0123 4567h A8 0123 4567h

mem 4020h xxxx xxxxh mem 4020h xxxx xxxxh mem 4020h xxxx xxxxh

mem 4034h xxxx xxxxh mem 4034h xxxx xxxxh mem 4034h 0123 4567h

463SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

STW — Store Word to Memory With a 5-Bit Unsigned Constant Offset or Register Offset www.ti.com

Example 3
STW .D1 A8,*++A4(8)

Before instruction 1 cycle after 3 cycles after
instruction instruction

A4 0000 4020h A4 0000 4028h A4 0000 4028h

A8 0123 4567h A8 0123 4567h A8 0123 4567h

mem 4020h xxxx xxxxh mem 4020h xxxx xxxxh mem 4020h xxxx xxxxh

mem 4028h xxxx xxxxh mem 4028h xxxx xxxxh mem 4028h 0123 4567h

Example 4
STW .D1 A8,*++A4[A12]

Before instruction 1 cycle after 3 cycles after
instruction instruction

A4 0000 4020h A4 0000 4038h A4 0000 4038h

A8 0123 4567h A8 0123 4567h A8 0123 4567h

A12 0000 0006h A12 0000 0006h A12 0000 0006h

mem 4020h xxxx xxxxh mem 4020h xxxx xxxxh mem 4020h xxxx xxxxh

mem 4038h xxxx xxxxh mem 4038h xxxx xxxxh mem 4038h 0123 4567h

464 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com STW — Store Word to Memory With a 15-Bit Unsigned Constant Offset

STW Store Word to Memory With a 15-Bit Unsigned Constant Offset

Syntax STW(.unit) src, *+B14/B15[ucst15]

unit = .D2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.D Dstk Figure C-17

Dpp Figure C-22

Opcode

31 29 28 27 23 22 8 7 6 5 4 3 2 1 0

creg z src ucst15 y 1 1 1 1 1 s p

3 1 5 15 1 1 1

Description Stores a word to memory from a general-purpose register (src). The memory address is
formed from a base address register B14 (y = 0) or B15 (y = 1) and an offset, which is a
15-bit unsigned constant (ucst15). The assembler selects this format only when the
constant is larger than five bits in magnitude. This instruction executes only on the .D2
unit.

The offset, ucst15, is scaled by a left-shift of 2 bits. After scaling, ucst15 is added to
baseR. The result of the calculation is the address that is sent to memory. The
addressing arithmetic is always performed in linear mode.

For STW, the entire 32-bits of the src register are stored. src can be in either register
file. The s bit determines which file src is read from: s = 0 indicates src is in the A
register file and s = 1 indicates src is in the B register file.

Square brackets, [], indicate that the ucst15 offset is left-shifted by 2. Parentheses, (),
can be used to set a nonscaled, constant offset. For example,
STW (.unit) src, *+B14/B15(60) represents an offset of 12 bytes; whereas,
STW (.unit) src, *+B14/B15[60] represents an offset of 60 words, or 240 bytes. You must
type either brackets or parentheses around the specified offset, if you use the optional
offset parameter.

Word addresses must be aligned on word (two LSBs are 0) boundaries.

Execution

if (cond) src → mem
else nop

NOTE: This instruction executes only on the B side (.D2).

465SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

STW — Store Word to Memory With a 15-Bit Unsigned Constant Offset www.ti.com

Pipeline

Pipeline Stage E1

Read B14/B15, src

Written

Unit in use .D2

Instruction Type Store

Delay Slots 0

See Also STB, STH

466 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SUB — Subtract Two Signed Integers Without Saturation

SUB Subtract Two Signed Integers Without Saturation

Syntax SUB (.unit) src1, src2 , dst

or

SUB (.L1 or .L2) src1, src2, dst_h:dst_l

or

SUB (.D1 or .D2) src2, src1, dst (if the cross path form is not used)

or

SUB (.D1 or .D2) src1, src2, dst (if the cross path form is used)

unit = .D1, .D2, .L1, .L2, .S1, .S2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.L L3 Figure D-4

Lx1 Figure D-11

.S S3 Figure F-21

Sx2op Figure F-28

Sx1 Figure F-30

.D Dx2op Figure C-18

Dx1 Figure C-21

NOTE: Subtraction with a signed constant on the .L and .S units allows either
the first or the second operand to be the signed 5-bit constant.

SUB (.unit) src1, scst5, dst is encoded as ADD (.unit) −scst5, src2, dst
where the src1 register is now src2 and scst5 is now −scst5.

The .D unit, when the cross path form is not used, provides only the
second operand as a constant since it is an unsigned 5-bit constant.
ucst5 allows a greater offset for addressing with the .D unit.

467SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SUB — Subtract Two Signed Integers Without Saturation www.ti.com

Opcode .L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1 sint .L1, .L2 000 0111
src2 xsint
dst sint

src1 xsint .L1, .L2 001 0111
src2 sint
dst sint

src1 sint .L1, .L2 010 0111
src2 xsint
dst slong

src1 xsint .L1, .L2 011 0111
src2 sint
dst slong

src1 scst5 .L1, .L2 000 0110
src2 xsint
dst sint

src1 scst5 .L1, .L2 010 0100
src2 slong
dst slong

468 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SUB — Subtract Two Signed Integers Without Saturation

Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x op 1 0 0 0 s p

3 1 5 5 5 1 6 1 1

Opcode map field used... For operand type... Unit Opfield

src1 sint .S1, .S2 01 0111
src2 xsint
dst sint

src1 scst5 .S1, .S2 01 0110
src2 xsint
dst sint

src2 - src1:

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 0 1 0 1 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2 xsint .S1, .S2
src1 sint
dst sint

Description for .L1, .L2 and .S1, .S2 Opcodes src2 is subtracted from src1. The result is placed in dst.

Execution for .L1, .L2 and .S1, .S2 Opcodes

if (cond) src1 - src2 → dst
else nop

469SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SUB — Subtract Two Signed Integers Without Saturation www.ti.com

Opcode .D unit (if the cross path form is not used)

31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 src1 op 1 0 0 0 0 s p

3 1 5 5 5 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2 sint .D1, .D2 01 0001
src1 sint
dst sint

src2 sint .D1, .D2 01 0011
src1 ucst5
dst sint

Description src1 is subtracted from src2. The result is placed in dst.

Execution

if (cond) src2 - src1 → dst
else nop

Opcode .D unit (if the cross path form is used)

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 1 1 0 0 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 sint .D1, .D2
src2 xsint
dst sint

Description src2 is subtracted from src1. The result is placed in dst.

Execution

if (cond) src1 - src2 → dst
else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L, .S, or .D

470 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SUB — Subtract Two Signed Integers Without Saturation

Instruction Type Single-cycle

Delay Slots 0

See Also ADD, NEG, SUBC, SUBU, SSUB, SUB2

Example SUB .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 325Ah 12,890 A1 0000 325Ah

A2 FFFF FF12h -238 A2 FFFF FF12h

A3 xxxx xxxxh A3 0000 3348h 13,128

471SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SUBAB — Subtract Using Byte Addressing Mode www.ti.com

SUBAB Subtract Using Byte Addressing Mode

Syntax SUBAB (.unit) src2, src1, dst

unit = .D1 or .D2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 src1 op 1 0 0 0 0 s p

3 1 5 5 5 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2 sint .D1, .D2 11 0001
src1 sint
dst sint

src2 sint .D1, .D2 11 0011
src1 ucst5
dst sint

Description src1 is subtracted from src2 using the byte addressing mode specified for src2. The
subtraction defaults to linear mode. However, if src2 is one of A4-A7 or B4-B7, the mode
can be changed to circular mode by writing the appropriate value to the AMR (see
Section 2.8.3).The result is placed in dst.

Execution

if (cond) src2 - src1 → dst
else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .D

Instruction Type Single-cycle

Delay Slots 0

See Also SUB, SUBAH, SUBAW

472 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SUBAB — Subtract Using Byte Addressing Mode

Example SUBAB .D1 A5,A0,A5

Before instruction (1) 1 cycle after instruction

A0 0000 0004h A0 0000 0004h

A5 0000 4000h A5 0000 400Ch

AMR 0003 0004h AMR 0003 0004h

(1) BK0 = 3 → size = 16
A5 in circular addressing mode using BK0

473SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SUBABS4 — Subtract With Absolute Value, Four 8-Bit Pairs for Four 8-Bit Results www.ti.com

SUBABS4 Subtract With Absolute Value, Four 8-Bit Pairs for Four 8-Bit Results

Syntax SUBABS4 (.unit) src1, src2, dst

unit = .L1 or .L2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 1 1 0 1 0 1 1 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 u4 .L1, .L2
src2 xu4
dst u4

Description Calculates the absolute value of the differences between the packed 8-bit data contained
in the source registers. The values in src1 and src2 are treated as unsigned, packed
8-bit quantities. The result is written into dst in an unsigned, packed 8-bit format.

For each pair of unsigned 8-bit values in src1 and src2, the absolute value of the
difference is calculated. This result is then placed in the corresponding position in dst.

• The absolute value of the difference between src1 byte0 and src2 byte0 is placed in
byte0 of dst.

• The absolute value of the difference between src1 byte1 and src2 byte1 is placed in
byte1 of dst.

• The absolute value of the difference between src1 byte2 and src2 byte2 is placed in
byte2 of dst.

• The absolute value of the difference between src1 byte3 and src2 byte3 is placed in
byte3 of dst.

The SUBABS4 instruction aids in motion-estimation algorithms, and other algorithms,
that compute the "best match" between two sets of 8-bit quantities.

31 24 23 16 15 8 7 0

ua_3 ua_2 ua_1 ua_0 ← src1

- - - -

SUBABS4

ub_3 ub_2 ub_1 ub_0 ← src2

= = = =

31 24 23 16 15 8 7 0

abs(ua_3 - ub_3) abs(ua_2 - ub_2) abs(ua_1 - ub_1) abs(ua_0 - ub_0) ← dst

474 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SUBABS4 — Subtract With Absolute Value, Four 8-Bit Pairs for Four 8-Bit Results

Execution

if (cond) {
abs(ubyte0(src1) - ubyte0(src2)) → ubyte0(dst);
abs(ubyte1(src1) - ubyte1(src2)) → ubyte1(dst);
abs(ubyte2(src1) - ubyte2(src2)) → ubyte2(dst);
abs(ubyte3(src1) - ubyte3(src2)) → ubyte3(dst)
}

else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also ABS, SUB, SUB4

Example SUBABS4 .L1 A2, A8, A9

Before instruction 1 cycle after instruction

A2 37 89 F2 3Ah 55 137 242 58 A2 37 89 F2 3Ah
unsigned

A8 04 B8 49 75h 4 184 73 117 A8 04 B8 49 75h
unsigned

A9 xxxx xxxxh A9 33 2F A9 3Bh 51 47 169 59
unsigned

475SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SUBAH — Subtract Using Halfword Addressing Mode www.ti.com

SUBAH Subtract Using Halfword Addressing Mode

Syntax SUBAH (.unit) src2, src1, dst

unit = .D1 or .D2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 src1 op 1 0 0 0 0 s p

3 1 5 5 5 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2 sint .D1, .D2 11 0101
src1 sint
dst sint

src2 sint .D1, .D2 11 0111
src1 ucst5
dst sint

Description src1 is subtracted from src2 using the halfword addressing mode specified for src2. The
subtraction defaults to linear mode. However, if src2 is one of A4-A7 or B4-B7, the mode
can be changed to circular mode by writing the appropriate value to the AMR (see
Section 2.8.3). src1 is left shifted by 1. The result is placed in dst.

Execution

if (cond) src2 - src1<<1 → dst
else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .D

Instruction Type Single-cycle

Delay Slots 0

See Also SUB, SUBAB, SUBAW

476 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SUBAW — Subtract Using Word Addressing Mode

SUBAW Subtract Using Word Addressing Mode

Syntax SUBAW (.unit) src2, src1, dst

unit = .D1 or .D2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.D Dx5p Figure C-20

Opcode

31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 src1 op 1 0 0 0 0 s p

3 1 5 5 5 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2 sint .D1, .D2 11 1001
src1 sint
dst sint

src2 sint .D1, .D2 11 1011
src1 ucst5
dst sint

Description src1 is subtracted from src2 using the word addressing mode specified for src2. The
subtraction defaults to linear mode. However, if src2 is one of A4-A7 or B4-B7, the mode
can be changed to circular mode by writing the appropriate value to the AMR (see
Section 2.8.3). src1 is left shifted by 2. The result is placed in dst.

Execution

if (cond) src2 - src1<<2 → dst
else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .D

Instruction Type Single-cycle

Delay Slots 0

See Also SUB, SUBAB, SUBAH

477SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SUBAW — Subtract Using Word Addressing Mode www.ti.com

Example SUBAW .D1 A5,2,A3

Before instruction (1) 1 cycle after instruction

A3 xxxx xxxxh A3 0000 0108h

A5 0000 0100h A5 0000 0100h

AMR 0003 0004h AMR 0003 0004h

(1) BK0 = 3 → size = 16
A5 in circular addressing mode using BK0

478 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SUBC — Subtract Conditionally and Shift—Used for Division

SUBC Subtract Conditionally and Shift—Used for Division

Syntax SUBC (.unit) src1, src2, dst

unit = .L1 or .L2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 0 1 0 1 1 1 1 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 uint .L1, .L2
src2 xuint
dst uint

Description Subtract src2 from src1. If result is greater than or equal to 0, left shift result by 1, add 1
to it, and place it in dst. If result is less than 0, left shift src1 by 1, and place it in dst. This
step is commonly used in division.

Execution

if (cond) {
if (src1 - src2 ≥ 0), ((src1 - src2) << 1) + 1 → dst
else (src1 << 1) → dst
}

else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also ADD, SSUB, SUB, SUBU, SUB2

479SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SUBC — Subtract Conditionally and Shift—Used for Division www.ti.com

Examples Example 1
SUBC .L1 A0,A1,A0

Before instruction 1 cycle after instruction

A0 0000 125Ah 4698 A0 0000 024B4h 9396

A1 0000 1F12h 7954 A1 0000 1F12h

Example 2
SUBC .L1 A0,A1,A0

Before instruction 1 cycle after instruction

A0 0002 1A31h 137,777 A0 0000 47E5h 18,405

A1 0001 F63Fh 128,575 A1 0001 F63Fh

480 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SUBU — Subtract Two Unsigned Integers Without Saturation

SUBU Subtract Two Unsigned Integers Without Saturation

Syntax SUBU (.unit) src1, src2, dst

or

SUBU (.unit) src1, src2, dst_h:dst_l

unit = .L1 or .L2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1 uint .L1, .L2 010 1111
src2 xuint
dst ulong

src1 xuint .L1, .L2 011 1111
src2 uint
dst ulong

Description src2 is subtracted from src1. The result is placed in dst.

Execution

if (cond) src1 - src2 → dst
else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also ADDU, SSUB, SUB, SUBC, SUB2

481SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SUBU — Subtract Two Unsigned Integers Without Saturation www.ti.com

Example SUBU .L1 A1,A2,A5:A4

Before instruction 1 cycle after instruction

A1 0000 325Ah 12,890 (1) A1 0000 325Ah

A2 FFFF FF12h 4,294,967,058 (1) A2 FFFF FF12h

A5:A4 xxxx xxxxh xxxx xxxxh A5:A4 0000 00FFh 0000 3348h -4,294,954,168 (2)

(1) Unsigned 32-bit integer
(2) Signed 40-bit (long) integer

482 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SUB2 — Subtract Two 16-Bit Integers on Upper and Lower Register Halves

SUB2 Subtract Two 16-Bit Integers on Upper and Lower Register Halves

Syntax SUB2 (.unit) src1, src2, dst

unit = .L1, .L2, .S1, .S2, .D1, .D2

Compatibility C62x, C64x, and C64x+ CPU

Opcode .L unit

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 0 0 1 0 0 1 1 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 i2 .L1, .L2
src2 xi2
dst i2

Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 0 0 0 1 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 i2 .S1, .S2
src2 xi2
dst i2

Opcode .D unit

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 0 1 0 1 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 i2 .D1, .D2
src2 xi2
dst i2

483SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SUB2 — Subtract Two 16-Bit Integers on Upper and Lower Register Halves www.ti.com

Description The upper and lower halves of src2 are subtracted from the upper and lower halves of
src1 and the result is placed in dst. Any borrow from the lower-half subtraction does not
affect the upper-half subtraction. Specifically, the upper-half of src2 is subtracted from
the upper-half of src1 and placed in the upper-half of dst. The lower-half of src2 is
subtracted from the lower-half of src1 and placed in the lower-half of dst.

31 16 15 0

a_hi a_lo ← src1

- -

SUB2

b_hi b_lo ← src2

= =

31 16 15 0

a_hi - b_hi a_lo - b_lo ← dst

NOTE: Unlike the SUB instruction, the argument ordering on the .D unit form of
.S2 is consistent with the argument ordering for the .L and .S unit forms.

Execution

if (cond) {
(lsb16(src1) - lsb16(src2)) → lsb16(dst);
(msb16(src1) - msb16(src2)) → msb16(dst)
}

else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L, .S, .D

Instruction Type Single-cycle

Delay Slots 0

See Also ADD2, SUB, SUBU, SUB4, SSUB2

484 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SUB2 — Subtract Two 16-Bit Integers on Upper and Lower Register Halves

Examples Example 1
SUB2 .S1 A3, A4, A5

Before instruction 1 cycle after instruction

A3 1105 6E30h 4357 28208 A3 1105 6E30h

A4 1105 6980h 4357 27008 A4 1105 6980h

A5 xxxx xxxxh A5 0000 04B0h 0 1200

Example 2
SUB2 .D2 B2, B8, B15

Before instruction 1 cycle after instruction

B2 F23A 3789h -3526 14217 B2 F23A 3789h

B8 04B8 6732h 1208 26418 B8 04B8 6732h

B15 xxxx xxxxh B15 ED82 D057h -4734 -12201

Example 3
SUB2 .S2X B1,A0,B2

Before instruction 1 cycle after instruction

A0 0021 3271h 33 (1) 12913 (2) A0 0021 3271h

B1 003A 1B48h 58 (1) 6984 (2) B1 003A 1B48h

B2 xxxx xxxxh B2 0019 E8D7h 25 (1) -5929 (2)

(1) Signed 16-MSB integer
(2) Signed 16-LSB integer

485SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SUB4 — Subtract Without Saturation, Four 8-Bit Pairs for Four 8-Bit Results www.ti.com

SUB4 Subtract Without Saturation, Four 8-Bit Pairs for Four 8-Bit Results

Syntax SUB4 (.unit) src1, src2, dst

unit = .L1 or .L2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 0 0 1 1 0 1 1 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 i4 .L1, .L2
src2 xi4
dst i4

Description Performs 2s-complement subtraction between packed 8-bit quantities. The values in src1
and src2 are treated as packed 8-bit data and the results are written into dst in a packed
8-bit format.

For each pair of 8-bit values in src1 and src2, the difference between the 8-bit value from
src1 and the 8-bit value from src2 is calculated to produce an 8-bit result. No saturation
is performed. The result is placed in the corresponding position in dst:

• The difference between src1 byte0 and src2 byte0 is placed in byte0 of dst.
• The difference between src1 byte1 and src2 byte1 is placed in byte1 of dst.
• The difference between src1 byte2 and src2 byte2 is placed in byte2 of dst.
• The difference between src1 byte3 and src2 byte3 is placed in byte3 of dst.

31 24 23 16 15 8 7 0

a_3 a_2 a_1 a_0 ← src1

- - - -

SUB4

b_3 b_2 b_1 b_0 ← src2

= = = =

31 24 23 16 15 8 7 0

a_3 - b_3 a_2 - b_2 a_1 - b_1 a_0 - b_0 ← dst

486 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SUB4 — Subtract Without Saturation, Four 8-Bit Pairs for Four 8-Bit Results

Execution

if (cond) {
(byte0(src1) - byte0(src2)) → byte0(dst);
(byte1(src1) - byte1(src2)) → byte1(dst);
(byte2(src1) - byte2(src2)) → byte2(dst);
(byte3(src1) - byte3(src2)) → byte3(dst)
}

else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also ADD4, SUB, SUB2

Example SUB4 .L1 A2, A8, A9

Before instruction 1 cycle after instruction

A2 37 89 F2 3Ah 55 137 242 58 A2 37 89 F2 3Ah

A8 04 B8 49 75h 04 184 73 117 A8 04 B8 49 75h

A9 xxxx xxxxh A9 33 D1 A9 C5h 51 -47 169 -59

487SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SWAP2 — Swap Bytes in Upper and Lower Register Halves www.ti.com

SWAP2 Swap Bytes in Upper and Lower Register Halves

Syntax SWAP2 (.unit) src2, dst

unit = .L1, .L2, .S1, .S2

Compatibility C64x and C64x+ CPU

Opcode .L unit

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 1 1 0 1 1 1 1 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2 s2 .L1, .L2
dst s2

Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 0 0 0 0 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2 s2 .S1, .S2
dst s2

Description The SWAP2 pseudo-operation takes the lower halfword from src2 and places it in the
upper halfword of dst, while the upper halfword from src2 is placed in the lower halfword
of dst. The assembler uses the PACKLH2 (.unit) src1, src2, dst instruction to perform
this operation (see PACKLH2).

31 16 15 0

b_hi b_lo ← src2

SWAP2

↓

31 16 15 0

b_lo b_hi ← dst

The SWAP2 instruction can be used in conjunction with the SWAP4 instruction (see
SWAP4) to change the byte ordering (and therefore, the endianess) of 32-bit data.

488 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SWAP2 — Swap Bytes in Upper and Lower Register Halves

Execution

if (cond) {
msb16(src2) → lsb16(dst);
lsb16(src2) → msb16(dst)
}

else nop

Pipeline

Pipeline Stage E1

Read src2

Written dst

Unit in use .L, .S

Instruction Type Single-cycle

Delay Slots 0

See Also SWAP4

Examples Example 1
SWAP2 .L1 A2,A9

Before instruction 1 cycle after instruction

A2 3789 F23Ah 14217 -3526 A2 3789 F23Ah

A9 xxxx xxxxh A9 F23A 3789h -3526 14217

Example 2
SWAP2 .S2 B2,B12

Before instruction 1 cycle after instruction

B2 0124 2451h 292 9297 B2 0124 2451h

B12 xxxx xxxxh B12 2451 0124h 9297 292

489SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SWAP4 — Swap Byte Pairs in Upper and Lower Register Halves www.ti.com

SWAP4 Swap Byte Pairs in Upper and Lower Register Halves

Syntax SWAP4 (.unit) src2, dst

unit = .L1 or .L2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src 0 0 0 0 1 x 0 0 1 1 0 1 0 1 1 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2 xu4 .L1, .L2
dst u4

Description Exchanges pairs of bytes within each halfword of src2, placing the result in dst. The
values in src2 are treated as unsigned, packed 8-bit values.

Specifically the upper byte in the upper halfword is placed in the lower byte in the upper
halfword, while the lower byte of the upper halfword is placed in the upper byte of the
upper halfword. Also the upper byte in the lower halfword is placed in the lower byte of
the lower halfword, while the lower byte in the lower halfword is placed in the upper byte
of the lower halfword.

31 24 23 16 15 8 7 0

ub_3 ub_2 ub_1 ub_0 ← src2

SWAP4

↓

31 24 23 16 15 8 7 0

ub_2 ub_3 ub_0 ub_1 ← dst

By itself, this instruction changes the ordering of bytes within halfwords. This effectively
changes the endianess of 16-bit data packed in 32-bit words. The endianess of full 32-bit
quantities can be changed by using the SWAP4 instruction in conjunction with the
SWAP2 instruction (see SWAP2).

Execution

if (cond) {
ubyte0(src2) → ubyte1(dst);
ubyte1(src2) → ubyte0(dst);
ubyte2(src2) → ubyte3(dst);
ubyte3(src2) → ubyte2(dst)
}

else nop

490 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SWAP4 — Swap Byte Pairs in Upper and Lower Register Halves

Pipeline

Pipeline Stage E1

Read src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also SWAP2

Example SWAP4 .L1 A1,A2

Before instruction 1 cycle after instruction

A1 9E 52 6E 30h 158 82 110 48 A1 9E 52 6E 30h

A2 xxxx xxxxh A2 52 9E 30 6Eh 82 158 48 110

491SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SWE — Software Exception www.ti.com

SWE Software Exception

Syntax SWE

unit = none

Compatibility C64x+ CPU

Opcode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 p

1

Description Causes an internal exception to be taken. It can be used as a mechanism for User mode
programs to request Supervisor mode services. Execution of the SWE instruction results
in an exception being recognized in the E1 pipeline phase containing the SWE
instruction. The SXF bit in EFR is set to 1. The HWE bit in NTSR is cleared to 0. If
exceptions have been globally enabled, this causes an exception to be recognized
before execution of the next execute packet. The address of that next execute packet is
placed in NRP.

Execution

1 → SXF bit in EFR
0 → HWE bit in TSR

Instruction Type Single-cycle

Delay Slots 0

See Also SWENR

492 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SWENR — Software Exception—No Return

SWENR Software Exception—No Return

Syntax SWENR

unit = none

Compatibility C64x+ CPU

Opcode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 p

1

Description Causes an internal exception to be taken. It is intended for use in systems supporting a
secure operating mode. It can be used as a mechanism for User mode programs to
request Supervisor mode services. It differs from the SWE instruction in four ways:

1. TSR is not copied into NTSR.
2. No return address is placed in NRP (it remains unmodified).
3. The IB bit in TSR is set to 1. This will be observable only in the case where another

exception is recognized simultaneously.
4. A branch to REP (restricted entry point register) is forced in the context switch rather

than the ISTP-based exception (NMI) vector.

This instruction executes unconditionally.

If another exception (internal or external) is recognized simultaneously with the
SWENR-raised exception then the other exception(s) takes priority and normal exception
behavior occurs; that is, NTSR and NRP are used and execution is directed to the NMI
vector.

Execution

1 → SXF bit in EFR
0 → HWE bit in TSR

Instruction Type Single-cycle

Delay Slots 0

See Also SWE

493SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

UNPKHU4 — Unpack 16 MSB Into Two Lower 8-Bit Halfwords of Upper and Lower Register Halves www.ti.com

UNPKHU4 Unpack 16 MSB Into Two Lower 8-Bit Halfwords of Upper and Lower Register
Halves

Syntax UNPKHU4 (.unit) src2, dst

unit = .L1, .L2, .S1, .S2

Compatibility C64x and C64x+ CPU

Opcode .L unit

31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 0 0 0 1 1 x 0 0 1 1 0 1 0 1 1 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2 xu4 .L1, .L2
dst u2

Opcode .S unit

31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 0 0 0 1 1 x 1 1 1 1 0 0 1 0 0 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2 xu4 .S1, .S2
dst u2

Description Moves the two most-significant bytes of src2 into the two low bytes of the two halfwords
of dst.

Specifically the upper byte in the upper halfword is placed in the lower byte in the upper
halfword, while the lower byte of the upper halfword is placed in the lower byte of the
lower halfword. The src2 bytes are zero-extended when unpacked, filling the two high
bytes of the two halfwords of dst with zeros.

31 24 23 16 15 8 7 0

ub_3 ub_2 ub_1 ub_0 ← src2

UNPKHU4

↓

31 24 23 16 15 8 7 0

00000000 ub_3 00000000 ub_2 ← dst

494 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com UNPKHU4 — Unpack 16 MSB Into Two Lower 8-Bit Halfwords of Upper and Lower Register Halves

Execution

if (cond) {
ubyte3(src2) → ubyte2(dst);
0 → ubyte3(dst);
ubyte2(src2) → ubyte0(dst);
0 → ubyte1(dst)
}

else nop

Pipeline

Pipeline Stage E1

Read src2

Written dst

Unit in use .L, .S

Instruction Type Single cycle

Delay Slots 0

See Also UNPKLU4

Examples Example 1
UNPKHU4 .L1 A1,A2

Before instruction 1 cycle after instruction

A1 9E 52 6E 30h A1 9E 52 6E 30h

A2 xxxx xxxxh A2 00 9E 00 52h

Example 2
UNPKHU4 .L2 B17,B18

Before instruction 1 cycle after instruction

B17 11 05 69 34h B17 11 05 69 34h

B18 xxxx xxxxh B18 00 11 00 05h

495SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

UNPKLU4 — Unpack 16 LSB Into Two Lower 8-Bit Halfwords of Upper and Lower Register Halves www.ti.com

UNPKLU4 Unpack 16 LSB Into Two Lower 8-Bit Halfwords of Upper and Lower Register
Halves

Syntax UNPKLU4 (.unit) src2, dst

unit = .L1, .L2, .S1, .S2

Compatibility C64x and C64x+ CPU

Opcode .L unit

31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 0 0 0 1 0 x 0 0 1 1 0 1 0 1 1 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2 xu4 .L1, .L2
dst u2

Opcode .S unit

31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 0 0 0 1 0 x 1 1 1 1 0 0 1 0 0 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2 xu4 .S1, .S2
dst u2

Description Moves the two least-significant bytes of src2 into the two low bytes of the two halfwords
of dst.

Specifically, the upper byte in the lower halfword is placed in the lower byte in the upper
halfword, while the lower byte of the lower halfword is kept in the lower byte of the lower
halfword. The src2 bytes are zero-extended when unpacked, filling the two high bytes of
the two halfwords of dst with zeros.

31 24 23 16 15 8 7 0

ub_3 ub_2 ub_1 ub_0 ← src2

UNPKLU4

↓

31 24 23 16 15 8 7 0

00000000 ub_1 00000000 ub_0 ← dst

496 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com UNPKLU4 — Unpack 16 LSB Into Two Lower 8-Bit Halfwords of Upper and Lower Register Halves

Execution

if (cond) {
ubyte0(src2) → ubyte0(dst);
0 → ubyte1(dst);
ubyte1(src2) → ubyte2(dst);
0 → ubyte3(dst);
}

else nop

Pipeline

Pipeline Stage E1

Read src2

Written dst

Unit in use .L, .S

Instruction Type Single cycle

Delay Slots 0

See Also UNPKHU4

Examples Example 1
UNPKLU4 .L1 A1,A2

Before instruction 1 cycle after instruction

A1 9E 52 6E 30h A1 9E 52 6E 30h

A2 xxxx xxxxh A2 00 6E 00 30h

Example 2
UNPKLU4 .L2 B17,B18

Before instruction 1 cycle after instruction

B17 11 05 69 34h B17 11 05 69 34h

B18 xxxx xxxxh B18 00 69 00 34h

497SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

XOR — Bitwise Exclusive OR www.ti.com

XOR Bitwise Exclusive OR

Syntax XOR (.unit) src1, src2, dst

unit = .L1, .L2, .S1, .S2, .D1, .D2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.L L2c Figure D-7

.L, .S, .D LSDx1 Figure G-4

Opcode .L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1 uint .L1, .L2 110 1111
src2 xuint
dst uint

src1 scst5 .L1, .L2 110 1110
src2 xuint
dst uint

Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x op 1 0 0 0 s p

3 1 5 5 5 1 6 1 1

Opcode map field used... For operand type... Unit Opfield

src1 uint .S1, .S2 00 1011
src2 xuint
dst uint

src1 scst5 .S1, .S2 00 1010
src2 xuint
dst uint

498 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com XOR — Bitwise Exclusive OR

Opcode .D unit

31 29 28 27 23 22 18 17 13 12 11 10 9 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 op 1 1 0 0 s p

3 1 5 5 5 1 4 1 1

Opcode map field used... For operand type... Unit Opfield

src1 uint .D1, .D2 1110
src2 xuint
dst uint

src1 scst5 .D1, .D2 1111
src2 xuint
dst uint

Description Performs a bitwise exclusive-OR (XOR) operation between src1 and src2. The result is
placed in dst. The scst5 operands are sign extended to 32 bits.

Execution

if (cond) src1 XOR src2 → dst
else nop

Pipeline

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L, .S, or .D

Instruction Type Single-cycle

Delay Slots 0

See Also AND, ANDN, NOT, OR

Examples Example 1
XOR .S1 A3, A4, A5

Before instruction 1 cycle after instruction

A3 0721 325Ah A3 0721 325Ah

A4 0019 0F12h A4 0019 0F12h

A5 xxxx xxxxh A5 0738 3D48h

499SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

XOR — Bitwise Exclusive OR www.ti.com

Example 2
XOR .D2 B1, 0Dh, B8

Before instruction 1 cycle after instruction

B1 0000 1023h B1 0000 1023h

B8 xxxx xxxxh B8 0000 102Eh

500 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com XORMPY — Galois Field Multiply With Zero Polynomial

XORMPY Galois Field Multiply With Zero Polynomial

Syntax XORMPY (.unit) src1, src2, dst

unit = .M1 or .M2

Compatibility C64x+ CPU

Opcode

31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 dst src2 src1 x 0 1 1 0 1 1 1 1 0 0 s p

5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1 uint .M1, .M2
src2 xuint
dst uint

Description Performs a Galois field multiply, where src1 is 32 bits and src2 is limited to 9 bits. This
multiply connects all levels of the gmpy4 together and only extends out by 8 bits. The
XORMPY instruction is identical to a GMPY instruction executed with a zero-value
polynomial.
uword xormpy(uword src1,uword src2)
{

// the multiply is always between GF(2^9) and GF(2^32)
// so no size information is needed

uint pp;
uint mask, tpp;
uint I;

pp = 0;
mask = 0x00000100; // multiply by computing

// partial products.
for (I=0; i<8; I++){
if (src2 & mask) pp ^= src1;
mask >>= 1;
pp <<= 1;

}
if (src2 & 0x1) pp ^= src1;

return (pp) ; // leave it asserted left.
}

Execution

GMPY_poly = 0
(lsb9(src2) gmpy uint(src1)) → uint(dst)

Instruction Type Four-cycle

Delay Slots 3

See Also GMPY, GMPY4, XOR

501SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

XORMPY — Galois Field Multiply With Zero Polynomial www.ti.com

Example XORMPY .M1 A0,A1,A2 GPLYA = FFFFFFFF (ignored)

Before instruction 1 cycle after instruction

A0 1234 5678h A2 1E65 4210h

A1 0000 0126h

502 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com XPND2 — Expand Bits to Packed 16-Bit Masks

XPND2 Expand Bits to Packed 16-Bit Masks

Syntax XPND2 (.unit) src2, dst

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 1 1 0 0 1 x 0 0 0 0 1 1 1 1 0 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2 xuint .M1, .M2
dst uint

Description Reads the two least-significant bits of src2 and expands them into two halfword masks
written to dst. Bit 1 of src2 is replicated and placed in the upper halfword of dst. Bit 0 of
src2 is replicated and placed in the lower halfword of dst. Bits 2 through 31 of src2 are
ignored.

31 24 23 16 15 8 7 0

XXXXXXXX XXXXXXXX XXXXXXXX XXXXXX10 ← src2

XPND2

↓

31 24 23 16 15 8 7 0

11111111 11111111 00000000 00000000 ← dst

The XPND2 instruction is useful, when combined with the output of the CMPGT2 or
CMPEQ2 instruction, for generating a mask that corresponds to the individual halfword
positions that were compared. That mask may then be used with ANDN, AND, or OR
instructions to perform other operations like compositing. This is an example:
CMPGT2 .S1 A3, A4, A5 ; Compare two registers, both upper

; and lower halves.
XPND2 .M1 A5, A2 ; Expand the compare results into

; two 16-bit masks.
NOP
AND .D1 A2, A7, A8 ; Apply the mask to a value to create result.

Because the XPND2 instruction only examines the two least-significant bits of src2, it is
possible to store a large bit mask in a single 32-bit word and expand it using multiple
SHR and XPND2 instruction pairs. This can be useful for expanding a packed
1-bit-per-pixel bitmap into full 16-bit pixels in imaging applications.

503SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

XPND2 — Expand Bits to Packed 16-Bit Masks www.ti.com

Execution

if (cond) {
XPND2(src2 & 1) → lsb16(dst);
XPND2(src2 & 2) → msb16(dst)
}

else nop

Pipeline

Pipeline Stage E1 E2

Read src2

Written dst

Unit in use .M

Instruction Type Two-cycle

Delay Slots 1

See Also CMPEQ2, CMPGT2, XPND4

Examples Example 1
XPND2 .M1 A1,A2

Before instruction 2 cycles after instruction

A1 B174 6CA1h 2 LSBs are 01 A1 B174 6CA1h

A2 xxxx xxxxh A2 0000 FFFFh

Example 2
XPND2 .M2 B1,B2

Before instruction 2 cycles after instruction

B1 0000 0003h 2 LSBs are 11 B1 0000 0003h

B2 xxxx xxxxh B2 FFFF FFFFh

504 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com XPND4 — Expand Bits to Packed 8-Bit Masks

XPND4 Expand Bits to Packed 8-Bit Masks

Syntax XPND4 (.unit) src2, dst

unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 1 1 0 0 0 x 0 0 0 0 1 1 1 1 0 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2 xuint .M1, .M2
dst uint

Description Reads the four least-significant bits of src2 and expands them into four-byte masks
written to dst. Bit 0 of src2 is replicated and placed in the least-significant byte of dst. Bit
1 of src2 is replicated and placed in second least-significant byte of dst. Bit 2 of src2 is
replicated and placed in second most-significant byte of dst. Bit 3 of src2 is replicated
and placed in most-significant byte of dst. Bits 4 through 31 of src2 are ignored.

31 24 23 16 15 8 7 0

XXXXXXXX XXXXXXXX XXXXXXXX XXXX1001 ← src2

XPND4

↓

31 24 23 16 15 8 7 0

11111111 00000000 00000000 11111111 ← dst

The XPND4 instruction is useful, when combined with the output of the CMPGT4 or
CMPEQ4 instruction, for generating a mask that corresponds to the individual byte
positions that were compared. That mask may then be used with ANDN, AND, or OR
instructions to perform other operations like compositing.

This is an example:
CMPEQ4 .S1 A3, A4, A5 ; Compare two 32-bit registers all four bytes.
XPND4 .M1 A5, A2 ; Expand the compare results into

; four 8-bit masks.
NOP
AND .D1 A2, A7, A8 ; Apply the mask to a value to create result.

Because the XPND4 instruction only examines the four least-significant bits of src2, it is
possible to store a large bit mask in a single 32-bit word and expand it using multiple
SHR and XPND4 instruction pairs. This can be useful for expanding a packed,
1-bit-per-pixel bitmap into full 8-bit pixels in imaging applications.

505SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

XPND4 — Expand Bits to Packed 8-Bit Masks www.ti.com

Execution

if (cond) {
XPND4(src2 & 1) → byte0(dst);
XPND4(src2 & 2) → byte1(dst):
XPND4(src2 & 4) → byte2(dst);
XPND4(src2 & 8) → byte3(dst)
}

else nop

Pipeline

Pipeline Stage E1 E2

Read src2

Written dst

Unit in use .M

Instruction Type Two-cycle

Delay Slots 1

See Also CMPEQ4, CMPGTU4, XPND2

Examples Example 1
XPND4 .M1 A1,A2

Before instruction 2 cycles after instruction

A1 B174 6CA4h 4 LSBs are 0100 A1 B174 6CA4h

A2 xxxx xxxxh A2 00 FF 00 00h

Example 2
XPND4 .M2 B1,B2

Before instruction 2 cycles after instruction

B1 0000 000Ah 4 LSBs are 1010 B1 00 00 00 0Ah

B2 xxxx xxxxh B2 FF 00 FF 00h

506 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com ZERO — Zero a Register

ZERO Zero a Register

Syntax ZERO (.unit) dst

or

ZERO (.unit) dst_o:dst_e

unit = .L1, .L2, .D1, .D2, .S1, .S2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

Opcode map field used... For operand type... Unit Opfield

dst sint .L1, .L2 001 0111

dst slong .L1, .L2 011 0111

dst sint .D1, .D2 01 0001

dst sint .S1, .S2 01 0111

Description This is a pseudo-operation used to fill the destination register or register pair with 0s.

When the destination is a single register, the assembler uses the MVK instruction to load
it with zeros: MVK (.unit) 0, dst (see MVK).

When the destination is a register pair, the assembler uses the SUB instruction (see
SUB) to subtract a value from itself and store the result in the destination pair.

Execution

if (cond) 0 → dst
else nop

or

if (cond) src − src → dst_o:dst_e
else nop

Instruction Type Single-cycle

Delay Slots 0

See Also MVK, SUB

Examples Example 1
ZERO .D1 A1

Before instruction 1 cycle after instruction

A1 B174 6CA1h A1 0000 0000h

507SPRU732J–July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

ZERO — Zero a Register www.ti.com

Example 2
ZERO .L1 A1:A0

Before instruction 1 cycle after instruction

A0 B174 6CA1h A0 0000 0000h

A1 1234 5678h A1 0000 0000h

508 Instruction Set SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

Chapter 4
SPRU732J–July 2010

Pipeline

The C64x/C64x+ DSP pipeline provides flexibility to simplify programming and improve performance.
These two factors provide this flexibility:

1. Control of the pipeline is simplified by eliminating pipeline interlocks.
2. Increased pipelining eliminates traditional architectural bottlenecks in program fetch, data access, and

multiply operations. This provides single-cycle throughput.

This chapter starts with a description of the pipeline flow. Highlights are:

• The pipeline can dispatch eight parallel instructions every cycle.
• Parallel instructions proceed simultaneously through each pipeline phase.
• Serial instructions proceed through the pipeline with a fixed relative phase difference between

instructions.
• Load and store addresses appear on the CPU boundary during the same pipeline phase, eliminating

read-after-write memory conflicts.

All instructions require the same number of pipeline phases for fetch and decode, but require a varying
number of execute phases. This chapter contains a description of the number of execution phases for
each type of instruction.

Finally, this chapter contains performance considerations for the pipeline. These considerations include
the occurrence of fetch packets that contain multiple execute packets, execute packets that contain
multicycle NOPs, and memory considerations for the pipeline. For more information about fully optimizing
a program and taking full advantage of the pipeline, see the TMS320C6000 Programmer's Guide
(SPRU198).

Topic ... Page

4.1 Pipeline Operation Overview ... 510
4.2 Pipeline Execution of Instruction Types ... 518
4.3 Performance Considerations ... 527
4.4 C64x+ DSP Differences .. 531

509SPRU732J–July 2010 Pipeline

Copyright © 2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spru198

Fetch Decode Execute

Pipeline Operation Overview www.ti.com

4.1 Pipeline Operation Overview

The pipeline phases are divided into three stages:

• Fetch
• Decode
• Execute

All instructions in the C64x/C64x+ DSP instruction set flow through the fetch, decode, and execute stages
of the pipeline. The fetch stage of the pipeline has four phases for all instructions, and the decode stage
has two phases for all instructions. The execute stage of the pipeline requires a varying number of
phases, depending on the type of instruction. The stages of the C64x/C64x+ DSP pipeline are shown in
Figure 4-1.

Figure 4-1. Pipeline Stages

510 Pipeline SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

PG PS PW PR(a) Functional
units

Registers

PG

CPU

(b)

PR

PS

Memory

PW

SMPYH SMPY B MVKLDW LDW MVKLH MV

LDW LDW MVK ADD SHL LDW LDW MVK

LDW LDW SMPYH SMPY SADD SADD B MVK

LDW LDW SHR SHR SMPYH SMPYH MV NOP PG

PS

PW

PR

256Fetch

(c)

Decode

www.ti.com Pipeline Operation Overview

4.1.1 Fetch

The fetch phases of the pipeline are:

• PG: Program address generate
• PS: Program address send
• PW: Program access ready wait
• PR: Program fetch packet receive

The C64x/C64x+ DSP uses a fetch packet (FP) of eight words. All eight of the words proceed through
fetch processing together, through the PG, PS, PW, and PR phases. Figure 4-2(a) shows the fetch
phases in sequential order from left to right. Figure 4-2(b) is a functional diagram of the flow of instructions
through the fetch phases. During the PG phase, the program address is generated in the CPU. In the PS
phase, the program address is sent to memory. In the PW phase, a memory read occurs. Finally, in the
PR phase, the fetch packet is received at the CPU. Figure 4-2(c) shows fetch packets flowing through the
phases of the fetch stage of the pipeline. In Figure 4-2(c), the first fetch packet (in PR) is made up of four
execute packets, and the second and third fetch packets (in PW and PS) contain two execute packets
each. The last fetch packet (in PG) contains a single execute packet of eight instructions.

Figure 4-2. Fetch Phases of the Pipeline

511SPRU732J–July 2010 Pipeline

Copyright © 2010, Texas Instruments Incorporated

(b)

DCDP
(a)

DP

3232323232323232

NOP
(A)

ADDKSTWSTWADD

DCMPYHMPYH

.L1 .S1 .D1.M1 .L2.S2.D2 .M2

Decode

ADD

Functional

units

Pipeline Operation Overview www.ti.com

4.1.2 Decode

The decode phases of the pipeline are:

• DP: Instruction dispatch
• DC: Instruction decode

In the DP phase of the pipeline, the fetch packets are split into execute packets. Execute packets consist
of one instruction or from two to eight parallel instructions. During the DP phase, the instructions in an
execute packet are assigned to the appropriate functional units. In the DC phase, the source registers,
destination registers, and associated paths are decoded for the execution of the instructions in the
functional units.

Figure 4-3(a) shows the decode phases in sequential order from left to right. Figure 4-3(b) shows a fetch
packet that contains two execute packets as they are processed through the decode stage of the pipeline.
The last six instructions of the fetch packet (FP) are parallel and form an execute packet (EP). This EP is
in the dispatch phase (DP) of the decode stage. The arrows indicate each instruction's assigned functional
unit for execution during the same cycle. The NOP instruction in the eighth slot of the FP is not dispatched
to a functional unit because there is no execution associated with it.

The first two slots of the fetch packet (shaded below) represent an execute packet of two parallel
instructions that were dispatched on the previous cycle. This execute packet contains two MPY
instructions that are now in decode (DC) one cycle before execution. There are no instructions decoded
for the .L, .S, and .D functional units for the situation illustrated.

Figure 4-3. Decode Phases of the Pipeline

A NOP is not dispatched to a functional unit.

512 Pipeline SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

SADD
.L1

B
.S1

SMPY
.M1

SMPY
.M1

31 30 29 28 10 9 8 7 6 5 4 3 2 1 0

...

STH
.D2

SMPYH
.M2

SUB
.S2

SADD
.L2

31 30 29 28 10 9 8 7 6 5 4 3 2 1 0

...
32

E1
Execute

Register file A Register file B

DA1
Data address 1

L1 Data cache control

DA1
Data address 2

LD2LD1

64 64

ST1

6464

ST2

32 32

E1 E2 E3 E4 E5(a)

(b)

www.ti.com Pipeline Operation Overview

4.1.3 Execute

The execute portion of the pipeline is subdivided into five phases (E1-E5). Different types of instructions
require different numbers of these phases to complete their execution. These phases of the pipeline play
an important role in your understanding the device state at CPU cycle boundaries. The execution of
different types of instructions in the pipeline is described in Section 4.2. Figure 4-4(a) shows the execute
phases of the pipeline in sequential order from left to right. Figure 4-4(b) shows the portion of the
functional block diagram in which execution occurs.

Figure 4-4. Execute Phases of the Pipeline

513SPRU732J–July 2010 Pipeline

Copyright © 2010, Texas Instruments Incorporated

PG PS PW PR DP DC E1 E2 E3 E4 E5

Fetch Decode Execute

Pipeline Operation Overview www.ti.com

4.1.4 Pipeline Operation Summary

Figure 4-5 shows all the phases in each stage of the pipeline in sequential order, from left to right.

Figure 4-5. Pipeline Phases

Figure 4-6 shows an example of the pipeline flow of consecutive fetch packets that contain eight parallel
instructions. In this case, where the pipeline is full, all instructions in a fetch packet are in parallel and split
into one execute packet per fetch packet. The fetch packets flow in lockstep fashion through each phase
of the pipeline.

For example, examine cycle 7 in Figure 4-6. When the instructions from FPn reach E1, the instructions in
the execute packet from FP n +1 are being decoded. FP n + 2 is in dispatch while FPs n + 3, n + 4, n + 5,
and n + 6 are each in one of four phases of program fetch. See Section 4.3 for additional detail on code
flowing through the pipeline. Table 4-1 summarizes the pipeline phases and what happens in each phase.

Figure 4-6. Pipeline Operation: One Execute Packet per Fetch Packet
Clock cycle

Fetch packet 1 2 3 4 5 6 7 8 9 10 11 12 13

n PG PS PW PR DP DC E1 E2 E3 E4 E5

n+1 PG PS PW PR DP DC E1 E2 E3 E4 E5

n+2 PG PS PW PR DP DC E1 E2 E3 E4 E5

n+3 PG PS PW PR DP DC E1 E2 E3 E4

n+4 PG PS PW PR DP DC E1 E2 E3

n+5 PG PS PW PR DP DC E1 E2

n+6 PG PS PW PR DP DC E1

n+7 PG PS PW PR DP DC

n+8 PG PS PW PR DP

n+9 PG PS PW PR

n+10 PG PS PW

514 Pipeline SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Pipeline Operation Overview

Table 4-1. Operations Occurring During Pipeline Phases

Stage Phase Symbol During This Phase

Program Program address PG The address of the fetch packet is determined.
fetch generate

Program address send PS The address of the fetch packet is sent to memory.

Program wait PW A program memory access is performed.

Program data receive PR The fetch packet is at the CPU boundary.

Program Dispatch DP The next execute packet in the fetch packet is determined and sent to the
decode appropriate functional units to be decoded.

Decode DC Instructions are decoded in functional units.

Execute Execute 1 E1 For all instruction types, the conditions for the instructions are evaluated and
operands are read.

For load and store instructions, address generation is performed and address
modifications are written to a register file. (1)

For branch instructions, branch fetch packet in PG phase is affected. (1)

For single-cycle instructions, results are written to a register file. (1)

Execute 2 E2 For load instructions, the address is sent to memory. For store instructions, the
address and data are sent to memory. (1)

Single-cycle instructions that saturate results set the SAT bit in the control
status register (CSR) if saturation occurs. (1)

For single 16 × 16 multiply instructions, results are written to a
register file. (1)

For multiply unit, nonmultiply instructions, results are written to a register file. (2)

Execute 3 E3 Data memory accesses are performed. Any multiply instructions that saturate
results set the SAT bit in the control status register (CSR) if saturation occurs. (1)

Execute 4 E4 For load instructions, data is brought to the CPU boundary. (1)

For multiply extensions, results are written to a register file. (3)

Execute 5 E5 For load instructions, data is written into a register. (1)

(1) This assumes that the conditions for the instructions are evaluated as true. If the condition is evaluated as false, the instruction
does not write any results or have any pipeline operation after E1.

(2) Multiply unit, nonmultiply instructions are AVG2, AVGU4, BITC4, BITR, DEAL, ROT, SHFL, SSHVL, and SSHVR.
(3) Multiply extensions include MPY2, MPY4, DOTPx2, DOTPU4, MPYHIx, MPYLIx, and MVD.

Figure 4-7 shows a functional block diagram of the pipeline stages. The pipeline operation is based on
CPU cycles. A CPU cycle is the period during which a particular execute packet is in a particular pipeline
phase. CPU cycle boundaries always occur at clock cycle boundaries.

As code flows through the pipeline phases, it is processed by different parts of the DSP. Figure 4-7 shows
a full pipeline with a fetch packet in every phase of fetch. One execute packet of eight instructions is being
dispatched at the same time that a 7-instruction execute packet is in decode. The arrows between DP and
DC correspond to the functional units identified in the code in Example 4-1.

In the DC phase portion of Figure 4-7, one box is empty because a NOP was the eighth instruction in the
fetch packet in DC and no functional unit is needed for a NOP. Finally, Figure 4-7 shows six functional
units processing code during the same cycle of the pipeline.

Registers used by the instructions in E1 are shaded in Figure 4-7. The multiplexers used for the input
operands to the functional units are also shaded in the figure. The bold cross paths are used by the MPY
instructions.

Most DSP instructions are single-cycle instructions, which means they have only one execution phase
(E1). A small number of instructions require more than one execute phase. The types of instructions, each
of which require different numbers of execute phases, are described in Section 4.2.

515SPRU732J–July 2010 Pipeline

Copyright © 2010, Texas Instruments Incorporated

29

DP

PR

PW

PS

PG

3232323232323232

256

SMPYHSMPYHLDWLDW

BSUBSMPY

SMPYH

SMPYH

SMPYH

SADDSADD

SADD

STH

LDW

STH

LDW

BSUBSMPYSMPYHSADDSADDSTHSTH

BSUBSMPYSMPYHSADDSADDSTHSTH

Register file A Register file BData 1

6464

3232

Data cache control

DCLDW SHRSMPYH MVLDWSMPYHSHR

32

E1
SADD

.L1
B

.S1 .D1
SMPY

.M1

0135 4 268 71028 93031 012345628293031

SADD
.L2

MVK
.S2.D2

SMPYH
.M2

Fetch

Decode

Execute

SADD

SADD

SADD

SHR SHR

SHR SHR

DA 1

ST 1 LD 1 LD 2

DA 2

64

78910

..
..

ST 2

64

Data 2

Pipeline Operation Overview www.ti.com

Figure 4-7. Pipeline Phases Block Diagram

516 Pipeline SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Pipeline Operation Overview

Example 4-1. Execute Packet in Figure 4-7

SADD .L1 A2,A7,A2 ; E1 Phase
|| SADD .L2 B2,B7,B2
|| SMPYH .M2X B3,A3,B2
|| SMPY .M1X B3,A3,A2
|| B .S1 LOOP1
|| MVK .S2 117,B1

LDW .D2 *B4++,B3 ; DC Phase
|| LDW .D1 *A4++,A3
|| MV .L2X A1,B0
|| SMPYH .M1 A2,A2,A0
|| SMPYH .M2 B2,B2,B10
|| SHR .S1 A2,16,A5
|| SHR .S2 B2,16,B5

LOOP1:

STH .D1 A5,*A8++[2] ; DP, PW, and PG Phases
|| STH .D2 B5,*B8++[2]
|| SADD .L1 A2,A7.A2
|| SADD .L2 B2,B7,B2
|| SMPYH .M2X B3,A3,B2
|| SMPY .M1X B3,A3,A2
|| [B1] B .S1 LOOP1
|| [B1] SUB .S2 B1,1,B1

LDW .D2 *B4++,B3 ; PR and PS Phases
|| LDW .D1 *A4++,A3
|| SADD .L1 A0,A1,A1
|| SADD .L2 B10,B0,B0
|| SMPYH .M1 A2,A2,A0
|| SMPYH .M2 B2,B2,B10
|| SHR .S1 A2,16,A5
|| SHR .S2 B2,16,B5

517SPRU732J–July 2010 Pipeline

Copyright © 2010, Texas Instruments Incorporated

Pipeline Execution of Instruction Types www.ti.com

4.2 Pipeline Execution of Instruction Types

The pipeline operation of the C64x/C64x+ DSP instructions can be categorized into seven instruction
types. Six of these (NOP is not included) are shown in Table 4-2, which is a mapping of operations
occurring in each execution phase for the different instruction types. The delay slots associated with each
instruction type are also listed.

The execution of instructions is defined in terms of delay slots. A delay slot is a CPU cycle that occurs
after the first execution phase (E1) of an instruction. Results from instructions with delay slots are not
available until the end of the last delay slot. For example, a multiply instruction has one delay slot, which
means that one CPU cycle elapses before the results of the multiply are available for use by a subsequent
instruction. However, results are available from other instructions finishing execution during the same CPU
cycle in which the multiply is in a delay slot.

Table 4-2. Execution Stage Length Description for Each Instruction Type

Instruction Type

16 × 16 Single
Execution Multiply/.M Unit C64x Multiply
Phase (1) (2) Single Cycle Nonmultiply Store Extensions Load Branch

E1 Compute result Read operands Compute address Reads operands Compute address Target code in
and write to and start and start PG (3)

register computations computations

E2 Compute result Send address Send address to
and write to and data to memory
register memory

E3 Access memory Access memory

E4 Write results to Send data back
register to CPU

E5 Write data into
register

Delay slots 0 1 0 (4) 3 4 (4) 5 (3)

Functional 1 1 1 1 1 1
unit latency

(1) This table assumes that the condition for each instruction is evaluated as true. If the condition is evaluated as false, the
instruction does not write any results or have any pipeline operation after E1.

(2) NOP is not shown and has no operation in any of the execution phases.
(3) See Section 4.2.6 for more information on branches.
(4) See Section 4.2.3 and Section 4.2.5 for more information on execution and delay slots for stores and loads.

518 Pipeline SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

PG PS PW PR DP DC E1

Operands
(data)

Register file

Write results

Functional
unit

.L, .S, .M,
or .D

E1

www.ti.com Pipeline Execution of Instruction Types

4.2.1 Single-Cycle Instructions

Single-cycle instructions complete execution during the E1 phase of the pipeline (Table 4-3). Figure 4-8
shows the fetch, decode, and execute phases of the pipeline that the single-cycle instructions use.

Figure 4-9 shows the single-cycle execution diagram. The operands are read, the operation is performed,
and the results are written to a register, all during E1. Single-cycle instructions have no delay slots.

Table 4-3. Single-Cycle Instruction Execution

Pipeline Stage E1

Read src1, src2

Written dst

Unit in use .L, .S, .M, or .D

Figure 4-8. Single-Cycle Instruction Phases

Figure 4-9. Single-Cycle Instruction Execution Block Diagram

519SPRU732J–July 2010 Pipeline

Copyright © 2010, Texas Instruments Incorporated

PG PS PW PR DP DC E1 E2 1 delay slot

Operands
(data)

Register file

Write results

Functional
unit
.M

E1

E2

Pipeline Execution of Instruction Types www.ti.com

4.2.2 Two-Cycle Instructions and .M Unit Nonmultiply Operations

Two-cycle or multiply instructions use both the E1 and E2 phases of the pipeline to complete their
operations (Table 4-4). Figure 4-10 shows the fetch, decode, and execute phases of the pipeline that the
two-cycle instructions use.

Figure 4-11 shows the operations occurring in the pipeline for a multiply instruction. In the E1 phase, the
operands are read and the multiply begins. In the E2 phase, the multiply finishes, and the result is written
to the destination register. Multiply instructions have one delay slot. Figure 4-11 also applies to the other
.M unit nonmultiply operations.

Table 4-4. Multiply Instruction Execution

Pipeline Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Figure 4-10. Two-Cycle Instruction Phases

Figure 4-11. Single 16 × 16 Multiply Instruction Execution Block Diagram

520 Pipeline SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

PG PS PW PR DP DC E1 E2 E3
A

d
d
re

s
s

m
o
d
if
ic

a
ti
o
n

Memory

E2

E3

Memory controller

Register file

E1

Data

E2

Address

Functional
unit
.D

www.ti.com Pipeline Execution of Instruction Types

4.2.3 Store Instructions

Store instructions require phases E1 through E3 of the pipeline to complete their operations (Table 4-5).
Figure 4-12 shows the fetch, decode, and execute phases of the pipeline that the store instructions use.

Figure 4-13 shows the operations occurring in the pipeline phases for a store instruction. In the E1 phase,
the address of the data to be stored is computed. In the E2 phase, the data and destination addresses are
sent to data memory. In the E3 phase, a memory write is performed. The address modification is
performed in the E1 stage of the pipeline. Even though stores finish their execution in the E3 phase of the
pipeline, they have no delay slots. There is additional explanation of why stores have zero delay slots in
Section 4.2.5.

Table 4-5. Store Instruction Execution

Pipeline Stage E1 E2 E3

Read baseR,
offsetR, src

Written baseR

Unit in use .D2

Figure 4-12. Store Instruction Phases

Figure 4-13. Store Instruction Execution Block Diagram

521SPRU732J–July 2010 Pipeline

Copyright © 2010, Texas Instruments Incorporated

Pipeline Execution of Instruction Types www.ti.com

When you perform a load and a store to the same memory location, these rules apply (i = cycle):

• When a load is executed before a store, the old value is loaded and the new value is stored.

i LDW
i + 1 STW

• When a store is executed before a load, the new value is stored and the new value is loaded.

i STW
i + 1 LDW

• When the instructions are executed in parallel, the old value is loaded first and then the new value is
stored, but both occur in the same phase.

i STW
i || LDW

522 Pipeline SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

PG PS PW PR DP DC E1 E2 E3 E4

3 delay slots

Operands
(data)

Register file

Write results

Functional
unit
.M

E4

www.ti.com Pipeline Execution of Instruction Types

4.2.4 Extended Multiply Instructions

The extended multiply instructions use phases E1 through E4 to complete their operations (Table 4-6).
Figure 4-14 shows the fetch, decode, and execute phases of the pipeline that the extended multiply
instructions.

Figure 4-15 shows the operations occurring in the pipeline for the multiply extensions. In the E1 phase, the
operands are read and the multiplies begin. In the E4 phase, the multiplies finish, and the results are
written to the destination register. Extended multiply instructions have three delay slots.

Table 4-6. Extended Multiply Instruction Execution

Pipeline Stage E1 E2 E3 E4

Read src1, src2

Written dst

Unit in use .M

Figure 4-14. Extended Multiply Instruction Phases

Figure 4-15. Extended Multiply Instruction Execution Block Diagram

523SPRU732J–July 2010 Pipeline

Copyright © 2010, Texas Instruments Incorporated

PG PS PW PR DP DC E1 E2 E3 E4 E5

4 delay slots

A
d

d
r
e
s
s

m
o

d
if

ic
a
ti

o
n

E5

Address

E3

Memory

E2

E4
Memory controller

Register file

E1

Functional
unit
.D

Data

Pipeline Execution of Instruction Types www.ti.com

4.2.5 Load Instructions

Data loads require all five, E1 through E5, of the pipeline execute phases to complete their operations
(Table 4-7). Figure 4-16 shows the fetch, decode, and execute phases of the pipeline that the load
instructions use.

Figure 4-17 shows the operations occurring in the pipeline phases for a load. In the E1 phase, the data
address pointer is modified in its register. In the E2 phase, the data address is sent to data memory. In the
E3 phase, a memory read at that address is performed.

Table 4-7. Load Instruction Execution

Pipeline Stage E1 E2 E3 E4 E5

Read baseR,
offsetR, src

Written baseR dst

Unit in use .D

Figure 4-16. Load Instruction Phases

Figure 4-17. Load Instruction Execution Block Diagram

524 Pipeline SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

Branch
target

PG PS PW PR DP DC E1

5 delay slots

PG PS PW PR DP DC E1

www.ti.com Pipeline Execution of Instruction Types

In the E4 stage of a load, the data is received at the CPU core boundary. Finally, in the E5 phase, the
data is loaded into a register. Because data is not written to the register until E5, load instructions have
four delay slots. Because pointer results are written to the register in E1, there are no delay slots
associated with the address modification.

In the following code, pointer results are written to the A4 register in the first execute phase of the pipeline
and data is written to the A3 register in the fifth execute phase.
LDW .D1 *A4++,A3

Because a store takes three execute phases to write a value to memory and a load takes three execute
phases to read from memory, a load following a store accesses the value placed in memory by that store
in the cycle after the store is completed. This is why the store is considered to have zero delay slots.

4.2.6 Branch Instructions

Although branch instructions take one execute phase, there are five delay slots between the execution of
the branch and execution of the target code (Table 4-8). Figure 4-18 shows the pipeline phases used by
the branch instruction and branch target code. The delay slots are shaded.

Figure 4-19 shows a branch instruction execution block diagram. If a branch is in the E1 phase of the
pipeline (in the .S2 unit in Figure 4-19), its branch target is in the fetch packet that is in PG during that
same cycle (shaded in the figure). Because the branch target has to wait until it reaches the E1 phase to
begin execution, the branch takes five delay slots before the branch target code executes.

On the C64x+ DSP, a stall is inserted if a branch is taken to an execute packet that spans fetch packets to
give time to fetch the second packet. Normally the assembler compensates for this by preventing branch
targets from spanning fetch packets. The one case in which this cannot be done is in the case that an
interrupt or exception occurred and the return target is a fetch packet spanning execute packet.

Table 4-8. Branch Instruction Execution

Target Instruction

Pipeline Stage E1 PS PW PR DP DC E1

Read src2

Written

Branch taken ✓
Unit in use .S2

Figure 4-18. Branch Instruction Phases

525SPRU732J–July 2010 Pipeline

Copyright © 2010, Texas Instruments Incorporated

DP

PR

PW

PS

PG

3232323232323232

256

NOPMVSMPYHSMPYHSHRSHRLDWLDW

B

LDW

SUB

LDW

SMPY

SMPYH

SMPYH

SMPYH

SADD

SHR

SADD

SHR

STH

SADD

STH

SADD

BSUBSMPYSMPYHSADDSADDSTHSTH

MVKBSADDSADDSMPYSMPYH

DC
LDWLDW

E1

.L1

MVK

.S1 .D1

SMPY

.M1

B

.S2.D2

SMPYH

.M2

Fetch

Decode

Execute

.L2

Pipeline Execution of Instruction Types www.ti.com

Figure 4-19. Branch Instruction Execution Block Diagram

526 Pipeline SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Performance Considerations

4.3 Performance Considerations

The C64x/C64x+ DSP pipeline is most effective when it is kept as full as the algorithms in the program
allow it to be. It is useful to consider some situations that can affect pipeline performance.

A fetch packet (FP) is a grouping of eight instructions. Each FP can be split into from one to eight execute
packets (EPs). Each EP contains instructions that execute in parallel. Each instruction executes in an
independent functional unit. The effect on the pipeline of combinations of EPs that include varying
numbers of parallel instructions, or just a single instruction that executes serially with other code, is
considered here.

In general, the number of execute packets in a single FP defines the flow of instructions through the
pipeline. Another defining factor is the instruction types in the EP. Each type of instruction has a fixed
number of execute cycles that determines when this instruction's operations are complete. Section 4.3.2
covers the effect of including a multicycle NOP in an individual EP.

Finally, the effect of the memory system on the operation of the pipeline is considered. The access of
program and data memory is discussed, along with memory stalls.

4.3.1 Pipeline Operation With Multiple Execute Packets in a Fetch Packet

Referring to Figure 4-6, pipeline operation is shown with eight instructions in every fetch packet.
Figure 4-20, however, shows the pipeline operation with a fetch packet that contains multiple execute
packets. Code for Figure 4-20 might have this layout:

instruction A ; EP k FP n
|| instruction B ;

instruction C ; EP k + 1 FP n
|| instruction D
|| instruction E

instruction F ; EP k + 2 FP n
|| instruction G
|| instruction H

instruction I ; EP k + 3 FP n + 1
|| instruction J
|| instruction K
|| instruction L
|| instruction M
|| instruction N
|| instruction O
|| instruction P

... continuing with EPs k+4 through k+8, which have eight instructions in parallel,
like k+3.

527SPRU732J–July 2010 Pipeline

Copyright © 2010, Texas Instruments Incorporated

Performance Considerations www.ti.com

Figure 4-20. Pipeline Operation: Fetch Packets With Different Numbers of Execute Packets
Clock cycle

Fetch packet Execute packet

(FP) (EP) 1 2 3 4 5 6 7 8 9 10 11 12 13

n k PG PS PW PR DP DC E1 E2 E3 E4 E5

n k+1 DP DC E1 E2 E3 E4 E5

n k+2 DP DC E1 E2 E3 E4 E5

n+1 k+3 PG PS PW PR DP DC E1 E2 E3 E4

n+2 k+4 PG PS PW Pipeline PR DP DC E1 E2 E3

n+3 k+5 PG PS stall PW PR DP DC E1 E2

n+4 k+6 PG PS PW PR DP DC E1

n+5 k+7 PG PS PW PR DP DC

n+6 k+8 PG PS PW PR DP

In Figure 4-20, fetch packet n, which contains three execute packets, is shown followed by six fetch
packets (n + 1 through n + 6), each with one execute packet (containing eight parallel instructions). The
first fetch packet (n) goes through the program fetch phases during cycles 1-4. During these cycles, a
program fetch phase is started for each of the fetch packets that follow.

In cycle 5, the program dispatch (DP) phase, the CPU scans the p-bits and detects that there are three
execute packets (k through k + 2) in fetch packet n. This forces the pipeline to stall, which allows the DP
phase to start for execute packets k + 1 and k + 2 in cycles 6 and 7. Once execute packet k + 2 is ready
to move on to the DC phase (cycle 8), the pipeline stall is released.

The fetch packets n + 1 through n + 4 were all stalled so the CPU could have time to perform the DP
phase for each of the three execute packets (k through k + 2) in fetch packet n. Fetch packet n + 5 was
also stalled in cycles 6 and 7: it was not allowed to enter the PG phase until after the pipeline stall was
released in cycle 8. The pipeline continues operation as shown with fetch packets n + 5 and n + 6 until
another fetch packet containing multiple execution packets enters the DP phase, or an interrupt occurs.

528 Pipeline SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

Execute packet

Cycle

i + 5

i + 4

i + 3

i + 2

i + 1

i

Can use LD result

Can use MPY results

Can use ADD results

NOPMPYADDLD(a)

Execute packet

Cycle

i + 5

i + 4

i + 3

i + 2

i + 1

i

All values available on i + 5

NOP 5MPYADDLD

(b)

www.ti.com Performance Considerations

4.3.2 Multicycle NOPs

The NOP instruction has an optional operand, count, that allows you to issue a single instruction for
multicycle NOPs. A NOP 2, for example, fills in extra delay slots for the instructions in its execute packet
and for all previous execute packets. If a NOP 2 is in parallel with an MPY instruction, the MPY result is
available for use by instructions in the next execute packet.

Figure 4-21 shows how a multicycle NOP drives the execution of other instructions in the same execute
packet. Figure 4-21(a) shows a NOP in an execute packet (in parallel) with other code. The results of the
LD, ADD, and MPY is available during the proper cycle for each instruction. Hence, NOP has no effect on
the execute packet.

Figure 4-21(b) shows the replacement of the single-cycle NOP with a multicycle NOP (NOP 5) in the same
execute packet. The NOP5 causes no operation to perform other than the operations from the instructions
inside its execute packet. The results of the LD, ADD, and MPY cannot be used by any other instructions
until the NOP5 period has completed.

Figure 4-21. Multicycle NOP in an Execute Packet

Figure 4-22 shows how a multicycle NOP can be affected by a branch. If the delay slots of a branch finish
while a multicycle NOP is still dispatching NOPs into the pipeline, the branch overrides the multicycle NOP
and the branch target begins execution five delay slots after the branch was issued.

529SPRU732J–July 2010 Pipeline

Copyright © 2010, Texas Instruments Incorporated

Normal
EP7

Cycle #

11

10

9

8

7

6

5

4

3

2

1

Target

E1

DC

DP

PR

PW

PS

PG

Branch

E1

EP6

EP5

EP4

EP3

EP2

EP1

NOP5ADDMPYLD

EP without branch

EP without branch

. . .B

EP without branch

EP without branch

Branch will execute here

Pipeline Phase

Branch
EP7

See Figure 4-21 (b)

(A)

(A)

(A)

(A)

(A)

Program memory accesses use these pipeline phases

Data load accesses use these pipeline phases

PG PS PW PR DP

E1 E2 E3 E4 E5

Performance Considerations www.ti.com

Figure 4-22. Branching and Multicycle NOPs

A Delay slots of the branch

In one case, execute packet 1 (EP1) does not have a branch. The NOP 5 in EP6 forces the CPU to wait
until cycle 11 to execute EP7.

In the other case, EP1 does have a branch. The delay slots of the branch coincide with cycles 2 through
6. Once the target code reaches E1 in cycle 7, it executes.

4.3.3 Memory Considerations

The C64x/C64x+ DSP has a memory configuration with program memory in one physical space and data
memory in another physical space. Data loads and program fetches have the same operation in the
pipeline, they just use different phases to complete their operations. With both data loads and program
fetches, memory accesses are broken into multiple phases. This enables the C64x/C64x+ DSP to access
memory at a high speed. These phases are shown in Figure 4-23.

Figure 4-23. Pipeline Phases Used During Memory Accesses

To understand the memory accesses, compare data loads and instruction fetches/dispatches. The
comparison is valid because data loads and program fetches operate on internal memories of the same
speed on the C64x/C64x+ DSP and perform the same types of operations (listed in Table 4-9) to
accommodate those memories. Table 4-9 shows the operation of program fetches pipeline versus the
operation of a data load.

530 Pipeline SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com C64x+ DSP Differences

Table 4-9. Program Memory Accesses Versus Data Load Accesses

Operation Program Memory Access Phase Data Load Access Phase

Compute address PG E1

Send address to memory PS E2

Memory read/write PW E3

Program memory: receive fetch packet at CPU boundary PR E4

Data load: receive data at CPU boundary

Program memory: send instruction to functional units DP E5

Data load: send data to register

Depending on the type of memory and the time required to complete an access, the pipeline may stall to
ensure proper coordination of data and instructions.

A memory stall occurs when memory is not ready to respond to an access from the CPU. This access
occurs during the PW phase for a program memory access and during the E3 phase for a data memory
access. The memory stall causes all of the pipeline phases to lengthen beyond a single clock cycle,
causing execution to take additional clock cycles to finish. The results of the program execution are
identical whether a stall occurs or not. Figure 4-24 illustrates this point.

Figure 4-24. Program and Data Memory Stalls
Clock cycle

Fetch packet

(FP) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

n PG PS PW PR DP DC E1 E2 E3 E4 E5

n+1 PG PS PW PR DP DC E1 E2 E3 E4

n+2 PG PS PW PR DP Program DC E1 E2 E3

n+3 PG PS PW PR memory stall DP DC Data E1 E2

n+4 PG PS PW PR DP memory stall DC E1

n+5 PG PS PW PR DP DC

n+6 PG PS PW PR DP

n+7 PG PS PW PR

n+8 PG PS PW

n+9 PG PS

n+10 PG

4.4 C64x+ DSP Differences

The pipeline in the C64x+ DSP has the following differences:

• On the C64x DSP, the fetch packet is 8 words which is the same as 8 instructions. On the C64x+ DSP,
the fetch packet is still 8 words, but due to the possibility of compact instructions in a header-based
packet, the fetch packet may contain as many as 14 instructions.

• There is an additional 2-cycle delay in processing interrupts on the C64x+ DSP as compared to the
C64x DSP.

• On the C64x+ DSP, if a branch is taken to an execute packet that spans fetch packets, a stall is
inserted to provide time to fetch the second fetch packet.

• On the C64x+ DSP, if an interrupt or exception is taken and the return target is a fetch packet
spanning an execute packet, a stall is inserted to provide time to fetch the second fetch packet.

531SPRU732J–July 2010 Pipeline

Copyright © 2010, Texas Instruments Incorporated

532 Pipeline SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

Chapter 5
SPRU732J–July 2010

Interrupts

This chapter describes CPU interrupts, including reset and the nonmaskable interrupt (NMI). It details the
related CPU control registers and their functions in controlling interrupts. It also describes interrupt
processing, the method the CPU uses to detect automatically the presence of interrupts and divert
program execution flow to your interrupt service code. Finally, this chapter describes the programming
implications of interrupts.

Topic ... Page

5.1 Overview .. 534
5.2 Globally Enabling and Disabling Interrupts ... 540
5.3 Individual Interrupt Control ... 543
5.4 Interrupt Detection and Processing on the C64x CPU .. 545
5.5 Interrupt Detection and Processing on the C64x+ CPU ... 548
5.6 Performance Considerations ... 557
5.7 Programming Considerations ... 557
5.8 Differences Between C64x and C64x+ CPU Interrupts .. 562

533SPRU732J–July 2010 Interrupts

Copyright © 2010, Texas Instruments Incorporated

Overview www.ti.com

5.1 Overview

Typically, DSPs work in an environment that contains multiple external asynchronous events. These
events require tasks to be performed by the DSP when they occur. An interrupt is an event that stops the
current process in the CPU so that the CPU can attend to the task needing completion because of the
event. These interrupt sources can be on chip or off chip, such as timers, analog-to-digital converters, or
other peripherals.

Servicing an interrupt involves saving the context of the current process, completing the interrupt task,
restoring the registers and the process context, and resuming the original process. There are eight
registers that control servicing interrupts.

An appropriate transition on an interrupt pin sets the pending status of the interrupt within the interrupt flag
register (IFR). If the interrupt is properly enabled, the CPU begins processing the interrupt and redirecting
program flow to the interrupt service routine.

5.1.1 Types of Interrupts and Signals Used

There are four types of interrupts on the CPU.

• Reset
• Maskable
• Nonmaskable
• Exception (C64x+ core only)

NOTE: The nonmaskable interrupt (NMI) is not supported on all C6000 devices, see your
device-specific data manual for more information.

These first three types are differentiated by their priorities, as shown in Table 5-1. The reset interrupt has
the highest priority and corresponds to the RESET signal. The nonmaskable interrupt (NMI) has the
second highest priority and corresponds to the NMI signal. The lowest priority interrupts are interrupts
4-15 corresponding to the INT4-INT15 signals. RESET, NMI, and some of the INT4-INT15 signals are
mapped to pins on C6000 devices. Some of the INT4-INT15 interrupt signals are used by internal
peripherals and some may be unavailable or can be used under software control. Check your
device-specific datasheet to see your interrupt specifications.

The C64x+ CPU supports exceptions as another type of interrupt. When exceptions are enabled, the NMI
input behaves as an exception. This chapter does not deal in depth with exceptions, as it assumes for
discussion of NMI as an interrupt that they are disabled. Chapter 6 discusses exceptions including NMI
behavior as an exception.

CAUTION

Code Compatibility
The C64x+ CPU code compatibility with existing code compiled for the C64x
CPU using NMI as an interrupt is only assured when exceptions are not
enabled. Any additional or modified code requiring the use of NMI as an
exception to ensure correct behavior will likely require changes to the
pre-existing code to adjust for the additional functionality added by enabling
exceptions.

534 Interrupts SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Overview

Table 5-1. Interrupt Priorities

Priority Interrupt Name Interrupt Type

Highest Reset Reset

NMI Nonmaskable

INT4 Maskable

INT5 Maskable

INT6 Maskable

INT7 Maskable

INT8 Maskable

INT9 Maskable

INT10 Maskable

INT11 Maskable

INT12 Maskable

INT13 Maskable

INT14 Maskable

Lowest INT15 Maskable

5.1.1.1 Reset (RESET)

Reset is the highest priority interrupt and is used to halt the CPU and return it to a known state. The reset
interrupt is unique in a number of ways:

• RESET is an active-low signal. All other interrupts are active-high signals.
• RESET must be held low for 10 clock cycles before it goes high again to reinitialize the CPU properly.
• The instruction execution in progress is aborted and all registers are returned to their default states.
• The reset interrupt service fetch packet must be located at a specific address which is specific to the

specific device. See the device datasheet for more information.
• RESET is not affected by branches.

5.1.1.2 Nonmaskable Interrupt (NMI)

NOTE: The nonmaskable interrupt (NMI) is not supported on all C6000 devices, see your
device-specific data manual for more information.

NMI is the second-highest priority interrupt and is generally used to alert the CPU of a serious hardware
problem such as imminent power failure.

For NMI processing to occur, the nonmaskable interrupt enable (NMIE) bit in the interrupt enable register
(IER) must be set to 1. If NMIE is set to 1, the only condition that can prevent NMI processing is if the NMI
occurs during the delay slots of a branch (whether the branch is taken or not).

NMIE is cleared to 0 at reset to prevent interruption of the reset. It is cleared at the occurrence of an NMI
to prevent another NMI from being processed. You cannot manually clear NMIE, but you can set NMIE to
allow nested NMIs. While NMI is cleared, all maskable interrupts (INT4-INT15) are disabled.

On the C64x+ CPU, if an NMI is recognized within an SPLOOP operation, the behavior is the same as for
an NMI with exceptions enabled. The SPLOOP operation terminates immediately (loop does not wind
down as it does in case of an interrupt). The SPLX bit in the NMI/exception task state register (NTSR) is
set for status purposes. The NMI service routine must look at this as one of the factors on whether a
return to the interrupted code is possible. If the SPLX bit in NTSR is set, then a return to the interrupted
code results in incorrect operation. See Section 7.13 for more information.

535SPRU732J–July 2010 Interrupts

Copyright © 2010, Texas Instruments Incorporated

xxxx 000h

xxxx 020h

xxxx 040h

xxxx 060h

xxxx 080h

xxxx 0A0h

xxxx 0C0h

xxxx 0E0h

xxxx 100h

xxxx 120h

xxxx 140h

xxxx 160h

xxxx 180h

xxxx 1A0h

xxxx 1C0h

xxxx 1E0h

Program memory

RESET ISFP

NMI ISFP

Reserved

Reserved

INT4 ISFP

INT5 ISFP

INT6 ISFP

INT7 ISFP

INT8 ISFP

INT9 ISFP

INT10 ISFP

INT11 ISFP

INT12 ISFP

INT13 ISFP

INT14 ISFP

INT15 ISFP

Overview www.ti.com

5.1.1.3 Maskable Interrupts (INT4-INT15)

The CPUs have 12 interrupts that are maskable. These have lower priority than the NMI and reset
interrupts as well as all exceptions. These interrupts can be associated with external devices, on-chip
peripherals, software control, or not be available.

Assuming that a maskable interrupt does not occur during the delay slots of a branch (this includes
conditional branches that do not complete execution due to a false condition), the following conditions
must be met to process a maskable interrupt:

• The global interrupt enable bit (GIE) bit in the control status register (CSR) is set to1.
• The NMIE bit in the interrupt enable register (IER) is set to1.
• The corresponding interrupt enable (IE) bit in the IER is set to1.
• The corresponding interrupt occurs, which sets the corresponding bit in the interrupt flags register (IFR)

to 1 and there are no higher priority interrupt flag (IF) bits set in the IFR.

5.1.2 Interrupt Service Table (IST)

When the CPU begins processing an interrupt, it references the interrupt service table (IST). The IST is a
table of fetch packets that contain code for servicing the interrupts. The IST consists of 16 consecutive
fetch packets. Each interrupt service fetch packet (ISFP) contains up to 14 instructions (either 8 32-bit
instructions in a nonheader-based fetch packet or up to 14 instructions in a compact header-based fetch
packet). A simple interrupt service routine may fit in an individual fetch packet.

The addresses and contents of the IST are shown in Figure 5-1. Because each fetch packet contains eight
32-bit instruction words (or 32 bytes), each address in the table is incremented by 32 bytes (20h) from the
one adjacent to it.

Figure 5-1. Interrupt Service Table

536 Interrupts SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

Instr3

Interrupt service table (IST)

Instr2

Instr4

Instr5

Instr6

B IRP

NOP 5

ISFP for INT6

xxxx 000h

xxxx 020h

xxxx 040h

xxxx 060h

xxxx 080h

xxxx 0A0h

xxxx 0C0h

xxxx 0E0h

xxxx 100h

xxxx 120h

xxxx 140h

xxxx 160h

xxxx 180h

xxxx 1A0h

xxxx 1C0h

xxxx 1E0h

0C0h

0C4h

0C8h

0CCh

0D0h

0D4h

0D8h

0DCh

The interrupt service
routine for INT6 is short

enough to be contained in
a single fetch packet.

Program memory

RESET ISFP

NMI ISFP

Reserved

Reserved

INT4 ISFP

INT5 ISFP

INT6 ISFP

INT7 ISFP

INT8 ISFP

INT9 ISFP

INT10 ISFP

INT11 ISFP

INT12 ISFP

INT13 ISFP

INT14 ISFP

INT15 ISFP

Instr1

www.ti.com Overview

5.1.2.1 Interrupt Service Fetch Packet (ISFP)

An ISFP is a fetch packet used to service an interrupt. Figure 5-2 shows an ISFP that contains an interrupt
service routine small enough to fit in a single fetch packet (FP). To branch back to the main program, the
FP contains a branch to the interrupt return pointer instruction (B IRP). This is followed by a NOP 5
instruction to allow the branch target to reach the execution stage of the pipeline.

NOTE: The ISFP should be exactly 8 words long. To prevent the compiler from using compact
instructions (see Section 3.9), the interrupt service table should be preceded by a .nocmp
directive. See the TMS320C6000 Assembly Language Tools User’s Guide (SPRU186).

If the NOP 5 was not in the routine, the CPU would execute the next five execute packets
(some of which are likely to be associated with the next ISFP) because of the delay slots
associated with the B IRP instruction. See Section 4.2.6 for more information.

Figure 5-2. Interrupt Service Fetch Packet

If the interrupt service routine for an interrupt is too large to fit in a single fetch packet, a branch to the
location of additional interrupt service routine code is required. Figure 5-3 shows that the interrupt service
routine for INT4 was too large for a single fetch packet, and a branch to memory location 1234h is
required to complete the interrupt service routine.

NOTE: The instruction B LOOP branches into the middle of a fetch packet and processes code
starting at address 1234h. The CPU ignores code from address 1220h−1230h, even if it is in
parallel to code at address 1234h.

537SPRU732J–July 2010 Interrupts

Copyright © 2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spru186

IST

RESET ISFP

NMI ISFP

Reserved

Reserved

INT4 ISFP

INT5 ISFP

INT6 ISFP

INT7 ISFP

INT8 ISFP

INT9 ISFP

INT10 ISFP

INT11 ISFP

INT12 ISFP

INT13 ISFP

INT14 ISFP

INT15 ISFP

Additional ISFP for INT4

1220h

The interrupt service routine
for INT4 includes this

7-instruction extension of
the interrupt ISFP. Instr1

Instr2

B LOOP

Instr4

Instr5

Instr6

Instr7

Instr8

ISFP for INT4

080h

084h

088h

08Ch

090h

094h

098h

09Ch

Program memory

-

-

-

-

-

Instr9

Instr11

1224h

1228h

122Ch

1230h

LOOP: 1234h

1238h

123Ch

B IRP

xxxx 000h

xxxx 020h

xxxx 040h

xxxx 060h

xxxx 080h

xxxx 0A0h

xxxx 0C0h

xxxx 0E0h

xxxx 100h

xxxx 120h

xxxx 140h

xxxx 160h

xxxx 180h

xxxx 1A0h

xxxx 1C0h

xxxx 1E0h

Additional ISFP for INT4

1240h Instr12

Instr13

Instr14

Instr15

-

-

-

1244h

1248h

124Ch

1250h

1254h

1258h

125Ch

-

Overview www.ti.com

Figure 5-3. Interrupt Service Table With Branch to Additional Interrupt Service Code
Located Outside the IST

538 Interrupts SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

IST

NMI ISFP

Reserved

Reserved

INT4 ISFP

INT5 ISFP

INT6 ISFP

INT7 ISFP

INT8 ISFP

INT9 ISFP

INT10 ISFP

INT11 ISFP

INT12 ISFP

INT13 ISFP

INT14 ISFP

INT15 ISFP

0

xxxx 820h

xxxx 840h

xxxx 860h

xxxx 880h

xxxx 8A0h

xxxx 8C0h

xxxx 8E0h

xxxx 900h

xxxx 920h

xxxx 940h

xxxx 96h0

xxxx 980h

xxxx 9A0h

xxxx 9C0h

xxxx 9E0h

Program memory

xxxx 800h

RESET ISFP

1) Copy IST, located between 0h and 200h, to the memory location
between 800h and A00h.

2) Write 800h to ISTP: MVK 800h, A2
MVC A2, ISTP

ISTP = 800h = 1000 0000 0000b

RESET ISFP

Assume: IFR = BBC0h = 1011 1011 1100 0000b
IER = 1230h = 0001 0010 0011 0001b

2 enabled interrupts pending: INT9 and INT12

The 1s in IFR indicate pending interrupts; the 1s in IER
indicate the interrupts that are enabled. INT9 has a higher prior-
ity than INT12, so HPEINT is encoded with the value for INT9,
01001b.

HPEINT corresponds to bits 9-5 of the ISTP:
ISTP = 1001 0010 0000b = 920h = address of INT9

(b) How the ISTP directs the CPU to the appropriate ISFP in the
relocated IST

(a) Relocating the IST to 800h

www.ti.com Overview

5.1.2.2 Interrupt Service Table Pointer (ISTP)

The reset fetch packet must be located at the default location (see device data manual for more
information), but the rest of the IST can be at any program memory location that is on a 256-word
boundary (that is, any 1K byte boundary). The location of the IST is determined by the interrupt service
table base (ISTB) field of the interrupt service table pointer register (ISTP). The ISTP is shown in
Figure 2-12 and described in Table 2-15. Example 5-1 shows the relationship of the ISTB to the table
location.

Since the HPEINT field in ISTP gives the value of the highest priority interrupt that is both pending and
enabled, the whole of ISTP gives the address of the highest priority interrupt that is both pending and
enabled

Example 5-1. Relocation of Interrupt Service Table

539SPRU732J–July 2010 Interrupts

Copyright © 2010, Texas Instruments Incorporated

Globally Enabling and Disabling Interrupts www.ti.com

5.1.3 Summary of Interrupt Control Registers

Table 5-2 lists the interrupt control registers on the C64x/C64x+ CPU. The TSR, ITSR, and NTSR exist
only on the C64x+ CPU.

Table 5-2. Interrupt Control Registers

Acronym Register Name Description Section

CSR Control status register Allows you to globally set or disable interrupts Section 2.8.4

ICR Interrupt clear register Allows you to clear flags in the IFR manually Section 2.8.6

IER Interrupt enable register Allows you to enable interrupts Section 2.8.7

IFR Interrupt flag register Shows the status of interrupts Section 2.8.8

IRP Interrupt return pointer Contains the return address used on return from a Section 2.8.9
register maskable interrupt. This return is accomplished via the

B IRP instruction.

ISR Interrupt set register Allows you to set flags in the IFR manually Section 2.8.10

ISTP Interrupt service table Pointer to the beginning of the interrupt service table Section 2.8.11
pointer register

ITSR Interrupt task state register Interrupted (non-NMI) machine state. (C64x+ CPU only) Section 2.9.9

NRP Nonmaskable interrupt return Contains the return address used on return from a Section 2.8.12
pointer register nonmaskable interrupt. This return is accomplished via the

B NRP instruction.

NTSR Nonmaskable interrupt task Interrupted (NMI) machine state. (C64x+ CPU only) Section 2.9.10
state register

TSR Task state register Allows you to globally set or disable interrupts. Contains Section 2.9.15
status of current machine state. (C64x+ CPU only)

5.2 Globally Enabling and Disabling Interrupts

The control status register (CSR) contains two fields that control interrupts: GIE and PGIE, as shown in
Figure 2-4 and described in Table 2-9.

On the C64x+ CPU, there is one physical GIE bit that is mapped to bit 0 of both CSR and TSR. Similarly,
there is one physical PGIE bit. It is mapped as CSR.PGIE (bit 1) and ITSR.GIE (bit 0). Modification to
either of these bits is reflected in both of the mappings. In the following discussion, references to the GIE
bit in CSR also refer to the GIE bit in TSR, and references to the PGIE bit in CSR also refer to the GIE bit
in ITSR.

The global interrupt enable (GIE) allows you to enable or disable all maskable interrupts by controlling the
value of a single bit. GIE is bit 0 of both the control status register (CSR) and the task state register (TSR).

• GIE = 1 enables the maskable interrupts so that they are processed.
• GIE = 0 disables the maskable interrupts so that they are not processed.

The CPU detects interrupts in parallel with instruction execution. As a result, the CPU may begin interrupt
processing in the same cycle that an MVC instruction writes 0 to GIE to disable interrupts. The PGIE bit
(bit 1 of CSR) records the value of GIE after the CPU begins interrupt processing, recording whether the
program was in the process of disabling interrupts.

During maskable interrupt processing, the CPU finishes executing the current execute packet. The CPU
then copies the current value of GIE to PGIE, overwriting the previous value of PGIE. The CPU then
clears GIE to prevent another maskable interrupt from occurring before the handler saves the machine’s
state. (Section 5.7.2 discusses nesting interrupts.)

When the interrupt handler returns to the interrupted code with the B IRP instruction, the CPU copies
PGIE back to GIE. When the interrupted code resumes, GIE reflects the last value written by the
interrupted code.

Because interrupt detection occurs in parallel with CPU execution, the CPU can take an interrupt in the
cycle immediately following an MVC instruction that clears GIE. The behavior of PGIE and the B IRP
instruction ensures, however, that interrupts do not occur after subsequent execute packets. Consider the
code in Example 5-2.

540 Interrupts SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Globally Enabling and Disabling Interrupts

Example 5-2. Interrupts Versus Writes to GIE

;Assume GIE = 1
MVC CSR,B0 ; (1) Get CSR
AND -2,B0,B0 ; (2) Get ready to clear GIE
MVC B0,CSR ; (3) Clear GIE
ADD A0,A1,A2 ; (4)
ADD A3,A4,A5 ; (5)

In Example 5-2, the CPU may service an interrupt between instructions 1 and 2, between instructions 2
and 3, or between instructions 3 and 4. The CPU will not service an interrupt between instructions 4 and
5.

If the CPU services an interrupt between instructions 1 and 2 or between instructions 2 and 3, the PGIE
bit will hold the value 1 when arriving at the interrupt service routine. If the CPU services an interrupt
between instructions 3 and 4, the PGIE bit will hold the value 0. Thus, when the interrupt service routine
resumes the interrupted code, it will resume with GIE set as the interrupted code intended.

On the C64x CPU, programs must directly manipulate the GIE bit in CSR to disable and enable interrupts.
Example 5-3 and Example 5-4 show code examples for disabling and enabling maskable interrupts
globally, respectively.

Example 5-3. TMS320C64x Code Sequence to Disable Maskable Interrupts Globally

MVC CSR,B0 ; get CSR
AND -2,B0,B0 ; get ready to clear GIE
MVC B0,CSR ; clear GIE

Example 5-4. TMS320C64x Code Sequence to Enable Maskable Interrupts Globally

MVC CSR,B0 ; get CSR
OR 1,B0,B0 ; get ready to set GIE
MVC B0,CSR ; set GIE

The C64x+ CPU handles this process differently, in a manner that is backward compatible with the
techniques that the C64x CPU requires. When it begins processing of a maskable interrupt, the C64x+
CPU copies TSR to ITSR, thereby, saving the old value of GIE. It then clears TSR.GIE. (ITSR.GIE is
physically the same bit as CSR.PGIE and TSR.GIE is physically the same bit as CSR.GIE.) When
returning from an interrupt with the B IRP instruction, the CPU restores the TSR state by copying ITSR
back to TSR.

The C64x+ CPU provides two new instructions that allow for simpler and safer manipulation of the GIE bit.

• The DINT instruction disables interrupts by:

– Copies the value of CSR.GIE (and TSR.GIE) to TSR.SGIE
– Clears CSR.GIE and TSR.GIE to 0 (disabling interrupts immediately)
The CPU will not service an interrupt between the execute packet containing DINT and the execute
packet that follows it.

• The RINT instruction restores interrupts to the previous state by:

– Copies the value of TSR.SGIE to CSR.GIE (and TSR.GIE)
– Clears TSR.SGIE to 0

If SGIE bit in TSR when RINT executes, interrupts are enabled immediately and the CPU may service an
interrupt in the cycle immediately following the execute packet containing RINT.

541SPRU732J–July 2010 Interrupts

Copyright © 2010, Texas Instruments Incorporated

Globally Enabling and Disabling Interrupts www.ti.com

Example 5-5 illustrates the use and timing of the DINT instruction in disabling maskable interrupts globally
and Example 5-6 shows how to enable maskable interrupts globally using the complementary RINT
instruction.

Example 5-5. Code Sequence with Disable Global Interrupt Enable (C64x+ CPU only)

;Assume GIE = 1
ADD B0,1,B0 ; Interrupt possible between ADD and DINT
DINT ; No interrupt between DINT and SUB
SUB B0,1,B0 ;

Example 5-6. Code Sequence with Restore Global Interrupt Enable (C64x+ CPU only)

;Assume SGIE == 1, GIE = 0
ADD B0,1,B0 ; No Interrupt between ADD and RINT
RINT ; Interrupt possible between RINT and SUB
SUB B0,1,B0 ;

Example 5-7 shows a code fragment in which a load/modify/store is executed with interrupts disabled so
that the register cannot be modified by an interrupt between the read and write operation. Since the DINT
instruction saves the CSR.GIE bit to the TSR.SGIE bit and the RINT instruction copies the TSR.SGIE bit
back to the CSR.GIE bit, if interrupts were disabled before the DINT instruction, they will still be disabled
after the RINT instruction. If they were enabled before the DINT instruction, they will be enabled after the
RINT instruction.

Example 5-7. Code Sequence with Disable Reenable Interrupt Sequence (C64x+ CPU only)

DINT ; Disable interrupts
LDW *B0,B1 ; Load data
NOP 3 ; Wait for data to reach register
OR B1,1,B1 ; Set bit in word
STW B1,*B0 ; Store modified data back to original location
RINT ; Re−enable interrupts

NOTE: The use of DINT and RINT instructions in a nested manner, like the following code:

DINT
DINT
RINT
RINT

leaves interrupts disabled after the second RINT instruction. The successive use of the DINT
instruction leaves the TSR.SGIE bit cleared to 0, so the RINT instructions copy zero to the
GIE bit.

542 Interrupts SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Individual Interrupt Control

5.3 Individual Interrupt Control

Servicing interrupts effectively requires individual control of all three types of interrupts: reset,
nonmaskable, and maskable. Enabling and disabling individual interrupts is done with the interrupt enable
register (IER). The status of pending interrupts is stored in the interrupt flag register (IFR). Manual
interrupt processing can be accomplished through the use of the interrupt set register (ISR) and interrupt
clear register (ICR). The interrupt return pointers restore context after servicing nonmaskable and
maskable interrupts.

5.3.1 Enabling and Disabling Interrupts

You can enable and disable individual interrupts by setting and clearing bits in the IER that correspond to
the individual interrupts. An interrupt can trigger interrupt processing only if the corresponding bit in the
IER is set. Bit 0, corresponding to reset, is not writeable and is always read as 1, so the reset interrupt is
always enabled. You cannot disable the reset interrupt. Bits IE4-IE15 can be written as 1 or 0, enabling or
disabling the associated interrupt, respectively. The IER is shown in Figure 2-8 and described in
Table 2-12.

When NMIE = 0, all nonreset interrupts are disabled, preventing interruption of an NMI. The NMIE bit is
cleared at reset to prevent any interruption of process or initialization until you enable NMI. After reset, you
must set the NMIE bit to enable the NMI and to allow INT15-INT4 to be enabled by the GIE bit in CSR and
the corresponding IER bit. You cannot manually clear the NMIE bit; the NMIE bit is unaffected by a write
of 0. The NMIE bit is also cleared by the occurrence of an NMI. If cleared, the NMIE bit is set only by
completing a B NRP instruction or by a write of 1 to the NMIE bit. Example 5-8 and Example 5-9 show
code for enabling and disabling individual interrupts, respectively.

Example 5-8. Code Sequence to Enable an Individual Interrupt (INT9)

MVK 200h,B1 ; set bit 9
MVC IER,B0 ; get IER
OR B1,B0,B0 ; get ready to set IE9
MVC B0,IER ; set bit 9 in IER

Example 5-9. Code Sequence to Disable an Individual Interrupt (INT9)

MVK FDFFh,B1 ; clear bit 9
MVC IER,B0
AND B1,B0,B0 ; get ready to clear IE9
MVC B0,IER ; clear bit 9 in IER

5.3.2 Status of Interrupts

The interrupt flag register (IFR) contains the status of INT4-INT15 and NMI. Each interrupt's
corresponding bit in IFR is set to 1 when that interrupt occurs; otherwise, the bits have a value of 0. If you
want to check the status of interrupts, use the MVC instruction to read IFR. The IFR is shown in
Figure 2-9 and described in Table 2-13.

543SPRU732J–July 2010 Interrupts

Copyright © 2010, Texas Instruments Incorporated

Individual Interrupt Control www.ti.com

5.3.3 Setting and Clearing Interrupts

The interrupt set register (ISR) and the interrupt clear register (ICR) allow you to set or clear maskable
interrupts manually in IFR. Writing a 1 to IS4-IS15 in ISR causes the corresponding interrupt flag to be set
in IFR. Similarly, writing a 1 to a bit in ICR causes the corresponding interrupt flag to be cleared. Writing a
0 to any bit of either ISR or ICR has no effect. Incoming interrupts have priority and override any write to
ICR. You cannot set or clear any bit in ISR or ICR to affect NMI or reset. The ISR is shown in Figure 2-11
and described in Table 2-14. The ICR is shown in Figure 2-7 and described in Table 2-11.

NOTE: Any write to the ISR or ICR (by the MVC instruction) effectively has one delay slot because
the results cannot be read (by the MVC instruction) in IFR until two cycles after the write to
ISR or ICR.

Any write to ICR is ignored by a simultaneous write to the same bit in ISR.

Example 5-10 and Example 5-11 show code examples to set and clear individual interrupts.

Example 5-10. Code to Set an Individual Interrupt (INT6) and Read the Flag Register

MVK 40h,B3
MVC B3,ISR
NOP
MVC IFR,B4

Example 5-11. Code to Clear an Individual Interrupt (INT6) and Read the Flag Register

MVK 40h,B3
MVC B3,ICR
NOP
MVC IFR,B4

5.3.4 Returning From Interrupt Servicing

Returning control from interrupts is handled differently for all three types of interrupts: reset, nonmaskable,
and maskable.

5.3.4.1 CPU State After RESET

After RESET, the control registers and bits contain the following values:

• AMR, ISR, ICR, and IFR = 0
• ISTP = Default value varies by device (See data manual for correct value)
• IER = 1
• IRP and NRP = undefined
• CSR bits 15-0

= 100h in little-endian mode
= 000h in big-endian mode

• TSR = 0 (C64x+ CPU only)
• ITSR = 0 (C64x+ CPU only)
• NTSR = 0 (C64x+ CPU only)

The program execution begins at the address specified by the ISTB field in ISTP.

544 Interrupts SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Interrupt Detection and Processing on the C64x CPU

5.3.4.2 Returning From Nonmaskable Interrupts

The NMI return pointer register (NRP), shown in Figure 2-13, contains the return pointer that directs the
CPU to the proper location to continue program execution after NMI processing. A branch using the
address in NRP (B NRP) in your interrupt service routine returns to the program flow when NMI servicing
is complete. Example 5-12 shows how to return from an NMI.

The NTSR register will be copied back into the TSR register during the transfer of control out of the
interrupt.

Example 5-12. Code to Return From NMI

B NRP ; return, sets NMIE
NOP 5 ; delay slots

5.3.4.3 Returning From Maskable Interrupts

The interrupt return pointer register (IRP), shown in Figure 2-10, contains the return pointer that directs the
CPU to the proper location to continue program execution after processing a maskable interrupt. A branch
using the address in IRP (B IRP) in your interrupt service routine returns to the program flow when
interrupt servicing is complete. Example 5-13 shows how to return from a maskable interrupt.

The ITSR will be copied back into the TSR during the transfer of control out of the interrupt.

Example 5-13. Code to Return from a Maskable Interrupt

B IRP ; return, moves PGIE to GIE
NOP 5 ; delay slots

5.4 Interrupt Detection and Processing on the C64x CPU

This section describes interrupts on the C64x CPU. For information about interrupts on the C64x+ CPU,
see Section 5.5.

When an interrupt occurs, it sets a flag in the interrupt flag register (IFR). Depending on certain conditions,
the interrupt may or may not be processed. This section discusses the mechanics of setting the flag bit,
the conditions for processing an interrupt, and the order of operation for detecting and processing an
interrupt. The similarities and differences between reset and nonreset interrupts are also discussed.

5.4.1 Setting the Nonreset Interrupt Flag

Figure 5-4 shows the processing of a nonreset interrupt (INTm). The flag (IFm) for INTm in IFR is set
following the low-to-high transition of the INTm signal on the CPU boundary. This transition is detected on
a clock-cycle by clock-cycle basis and is not affected by memory stalls that might extend a CPU cycle.
Once there is a low-to-high transition on an external interrupt pin (cycle 1), it takes two clock cycles for the
signal to reach the CPU boundary (cycle 3). When the interrupt signal enters the CPU, it is has been
detected (cycle 4). Two clock cycles after detection, the interrupt's corresponding flag bit in the IFR is set
(cycle 6).

In Figure 5-4, IFm is set during CPU cycle 6. You could attempt to clear IFm by using an MVC instruction
to write a 1 to bit m of the ICR in execute packet n + 3 (during CPU cycle 4). However, in this case, the
automated write by the interrupt detection logic takes precedence and IFm remains set.

Figure 5-4 assumes INTm is the highest-priority pending interrupt and is enabled by the GIE and NMIE
bits, as necessary. If it is not the highest-priority pending interrupt, IFm remains set until either you clear it
by writing a 1 to bit m of ICR or the processing of INTm occurs.

545SPRU732J–July 2010 Interrupts

Copyright © 2010, Texas Instruments Incorporated

ISFP

n+10

n+9

n+8

n+7

n+6

Annulled Instructions

E5E4E3E2E1DCDPPRPWPSPG

PG

PSPG

PWPS

PRPW

PG

PS

DPPRPW

PG

PSPG

E5E4

E5

E3

E4

E5

DC

E1

E2

E3

E4

DP

DC

E1

E2

E3

PR

DP

DC

E1

E2

PW

PR

DP

DC

E1

PS

PW

PR

DP

DC

E5E4E3E2E1

n+5

n+4

n+3

n+2

n+1

n

Execute packet

IFm

External INTm
at pin

Clock cycle 17161514131211109876543210

Cycles 6 - 12: Nonreset
interrupt processing is disabled.

17161514131211109876543210CPU cycle

PG

PS

PW

PR

DP

DC

PG

PS

PW

PR

DP

DC E5E4E3E2E1

n+11

Contains no branch

(A)

(B)

Interrupt Detection and Processing on the C64x CPU www.ti.com

5.4.2 Conditions for Processing a Nonreset Interrupt

In clock cycle 4 of Figure 5-4, a nonreset interrupt in need of processing is detected. For this interrupt to
be processed, the following conditions must be valid on the same clock cycle and are evaluated every
clock cycle:

• IFm is set during CPU cycle 6. (This determination is made in CPU cycle 4 by the interrupt logic.)
• There is not a higher priority IFm bit set in IFR.
• The corresponding bit in IER is set (IEm = 1).
• GIE = 1
• NMIE = 1
• The five previous execute packets (n through n + 4) do not contain a branch (even if the branch is not

taken).

Figure 5-4. Nonreset Interrupt Detection and Processing: Pipeline Operation

A IFm is set on the next CPU cycle boundary after a 4-clock cycle delay after the rising edge of INTm.

B After this point, interrupts are still disabled. All nonreset interrupts are disabled when NMIE = 0. All maskable
interrupts are disabled when GIE = 0.

Any pending interrupt will be taken as soon as pending branches are completed.

546 Interrupts SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

Reset ISFP

CPU cycle

n+7

n+6

Pipeline flush

E1DCDPPRPWPSPG

PG

PS

PW

PR

DP

DC

E1

n+5

n+4

n+3

n+2

n+1

n

Execut
packete

IF0

Clock cycle 17161514131211109876543210

Cycles 15 - 21:
Nonreset interrupt

processing is disabled

17161514131211109876543210

RESET
at pin

PG

PS

PW

PR

DP

DC

E2E1

2221201918

2221201918

(A)

(B)

www.ti.com Interrupt Detection and Processing on the C64x CPU

5.4.3 Actions Taken During Nonreset Interrupt Processing

During CPU cycles 6 through 12 of Figure 5-4, the following interrupt processing actions occur:

• Processing of subsequent nonreset interrupts is disabled.
• For all interrupts except NMI, the PGIE bit is set to the value of the GIE bit and then the GIE bit is

cleared.
• For NMI, the NMIE bit is cleared.
• The next execute packets (from n + 5 on) are annulled. If an execute packet is annulled during a

particular pipeline stage, it does not modify any CPU state. Annulling also forces an instruction to be
annulled in future pipeline stages.

• The address of the first annulled execute packet (n + 5) is loaded in NRP (in the case of NMI) or IRP
(for all other interrupts).

• A branch to the address held in ISTP (the pointer to the ISFP for INTm) is forced into the E1 phase of
the pipeline during cycle 7.

• IFm is cleared during cycle 8.

5.4.4 Setting the RESET Interrupt Flag

RESET must be held low for a minimum of 10 clock cycles. Four clock cycles after RESET goes high,
processing of the reset vector begins. The flag for RESET (IF0) in the IFR is set by the low-to-high
transition of the RESET signal on the CPU boundary. In Figure 5-5, IF0 is set during CPU cycle 15. This
transition is detected on a clock-cycle by clock-cycle basis and is not affected by memory stalls that might
extend a CPU cycle.

Figure 5-5. RESET Interrupt Detection and Processing: Pipeline Operation

A IF0 is set on the next CPU cycle boundary after a 4-clock cycle delay after the rising edge of .

B After this point, interrupts are still disabled. All nonreset interrupts are disabled when NMIE = 0. All maskable
interrupts are disabled when GIE = 0.

547SPRU732J–July 2010 Interrupts

Copyright © 2010, Texas Instruments Incorporated

Interrupt Detection and Processing on the C64x+ CPU www.ti.com

5.4.5 Actions Taken During RESET Interrupt Processing

A low signal on the RESET pin is the only requirement to process a reset. Once RESET makes a
high-to-low transition, the pipeline is flushed and CPU registers are returned to their reset values. The GIE
bit, the NMIE bit, and the ISTB bits in ISTP are cleared. For the CPU state after reset, see Section 5.3.4.1.

During CPU cycles 15 through 21 of Figure 5-5, the following reset processing actions occur:

• Processing of subsequent nonreset interrupts is disabled because the GIE and NMIE bits are cleared.
• A branch to the address held in ISTP (the pointer to the ISFP for INT0) is forced into the E1 phase of

the pipeline during cycle 16.
• IF0 is cleared during cycle 17.

NOTE: Code that starts running after reset must explicitly enable the GIE bit, the NMIE bit, and IER
to allow interrupts to be processed.

5.5 Interrupt Detection and Processing on the C64x+ CPU

This section describes interrupts on the C64x+ CPU. For information about interrupts on the C64x CPU,
see Section 5.4.

When an interrupt occurs, it sets a flag in the interrupt flag register (IFR). Depending on certain conditions,
the interrupt may or may not be processed. This section discusses the mechanics of setting the flag bit,
the conditions for processing an interrupt, and the order of operation for detecting and processing an
interrupt. The similarities and differences between reset and nonreset interrupts are also discussed.

5.5.1 Setting the Nonreset Interrupt Flag

Figure 5-6 shows the processing of a nonreset interrupt (INTm) for the C64x+ CPU. The flag (IFm) for
INTm in IFR is set following the low-to-high transition of the INTm signal on the CPU boundary. This
transition is detected on a clock-cycle by clock-cycle basis and is not affected by memory stalls that might
extend a CPU cycle. Once there is a low-to-high transition on an interrupt pin, the interrupt is detected as
pending inside the CPU. When the interrupt signal has been detected (cycle 4). Two clock cycles after
detection, the interrupt's corresponding flag bit in IFR is set (cycle 6).

In Figure 5-6, IFm is set during CPU cycle 6. You could attempt to clear bit IFm by using an MVC
instruction to write a 1 to bit m of ICR in execute packet n + 3 (during CPU cycle 4). However, in this case,
the automated write by the interrupt detection logic takes precedence and IFm remains set.

Figure 5-6 assumes INTm is the highest priority pending interrupt and is enabled by the GIE and NMIE
bits, as necessary. If it is not the highest priority pending interrupt, IFm remains set until either you clear it
by writing a 1 to bit m of ICR, or the processing of INTm occurs.

5.5.1.1 Detection of Missed Interrupts

Each INTm input has a corresponding output that indicates if a low-to-high transition occurred on the input
while the pending flag for that input had not yet been cleared. These outputs may be used by the interrupt
controller to create an exception back to the CPU to notify the user of the missed interrupt. See your
device-specific data manual to verify your device supports this feature.

548 Interrupts SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Interrupt Detection and Processing on the C64x+ CPU

5.5.2 Conditions for Processing a Nonreset Interrupt

In clock cycle 4 of Figure 5-6, a nonreset interrupt in need of processing is detected. For this interrupt to
be processed, the following conditions must be valid on the same clock cycle and are evaluated every
clock cycle:

• IFm is set during CPU cycle 6. (This determination is made in CPU cycle 4 by the interrupt logic.)
• There is not a higher priority IFm bit set in IFR.
• The corresponding bit in IER is set (IEm = 1).
• GIE = 1
• NMIE = 1
• The five previous execute packets (n through n + 4) do not contain a branch (even if the branch is not

taken) and are not in the delay slots of a branch.
• The two previous execute packets and the current execute packet (n + 3 through n + 5) do note

contain an SPLOOP, SPLOOPD, or SPLOOPW instruction.
• If an SPLOOP is active, then the conditions set forth in Section 7.13.1 apply.

Any pending interrupt will be taken as soon as pending branches are completed.

549SPRU732J–July 2010 Interrupts

Copyright © 2010, Texas Instruments Incorporated

21 22201917 18161514

E10

2221201918171615

E1DC

14

1211108 9764 53

E10

E10

E9

E9

E8E7

E8

E10

E9

E8

E8

E7

E6

E9

E8

E7

E7

E6

E5

E4

E6

E5

E7

E6

E5

E6

E5

E4

E4

E3

E3

E2

E1

E2

E5

E4

E3

E3

E2

E1

E4

E3

E2

E2

E1

E1

DC

DP

DC

DP

PR

PW

DC

DP

PR

21CPU cycle

IFm

0

CPU bdry
INTm at

E2

E1

DC

E1

DC

DP

DP

PR

PW

PS

PR

PW

PS

PG

n

n+1

n+2

n+3

n+4

n+5

n+6

DC

DP

PR

PW

PS

PG

Execute
packet

PR

1211

PWPS

1098

PG

DP

PW

PR

PS

PG

PR

PS

PW

PS

PG

PG

PW

PS

PG

76543

PGn+7

n+9

n+8

n+10

n+11

21

ISFP

CPU cycle 0

13

E10

13

DP

E9

Cycles 6-14: Nonreset
interrupt processing is disabled

Annulled Instructions

Contains no branch

E8E7E6E4 E5E3E2

EXC

PCXM

DCXM

TSR.GIE

TSR.XEN

DCXM at point of interrupt

PCXM at point of interrupt

TSR.SPLX at point of interruptTSR.SPLX

TSR.INT

TSR.EXC

CXM at point of interruptTSR.CXM

ITSR.SPLX at point of interruptITSR.SPLX set to 1 if SPLOOP was interrupted, 0 otherwise

TSR
v

ITSR

(A)

Interrupt Detection and Processing on the C64x+ CPU www.ti.com

Figure 5-6. C64x+ Nonreset Interrupt Detection and Processing: Pipeline Operation

A After this point, interrupts are still disabled. All nonreset interrupts are disabled when NMIE = 0. All maskable
interrupts are disabled when GIE = 0.

550 Interrupts SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

17161514

17161514

1211108 9764 53

E7

E6

E5

E6

E5

E4

E4

E3

E3

E2

E5

E4

E3

E3

E2

E1

E4

E3

E2

E2

E1

E1

DC

DP

DC

DP

PR

PW

DC

DP

PR

21CPU cycle 0

E2

E1

DC

E1

DC

DP

DP

PR

PW

PS

PR

PW

PS

PG

n
B IRP

n+2

n+3

n+4

n+5

n+6

DC

DP
PR

PW

PS

PG

Execute
packet

12111098

DP

PR

PR

PW

PS

PG

PW

PS

76543

PGIRP target

t+1

21CPU cycle 0

13

13

EXC

PCXM

DCXM

TSR.GIE

TSR.XEN

TSR.SPLX

TSR.INT

TSR.EXC

CXM at point of interruptTSR.CXM

PCXM at point of interrupt

DCXM at point of interrupt

XEN at point of interrupt

INT at point of interrupt

E1DC

DP

E1

DC

E2

E1

1 if SPLOOP was interrupted; sampled for return target in SPLOOP state machineITSR.SPLX

controlled by SPLOOP state machine

DC E1

www.ti.com Interrupt Detection and Processing on the C64x+ CPU

Figure 5-7. C64x+ Return from Interrupt Execution and Processing: Pipeline Operation

5.5.3 Saving TSR Context in Nonreset Interrupt Processing

When control is transferred to the interrupt processing sequence, the context needed to return from the
ISR is saved in the interrupt task state register (ITSR). The task state register (TSR) is set for the default
interrupt processing context. Table 5-3 shows the behavior for each bit in TSR. Figure 5-6 shows the
timing of the changes to the TSR bits as well as the CPU outputs used in interrupt processing.

The current execution mode is held in a piped series of register bits allowing a change in the mode to
progress from the PS phase through the E1 phase. Fetches from program memory use the PS-valid
register which is only loaded at the start of a transfer of control. This value is an output on the program
memory interface and is shown in the timing diagram as PCXM. As the target execute packet progresses
through the pipeline, the new mode is registered for that stage. Each stage uses its registered version of
the execution mode. The field in TSR is the E1-valid version of CXM. It always indicates the execution
mode for the instructions executing in E1. The mode is used in the data memory interface, and is
registered for all load/store instructions when they execute in E1. This is shown in the timing diagram as
DCXM. Note that neither PCXM nor DCXM is visible in any register to you.

551SPRU732J–July 2010 Interrupts

Copyright © 2010, Texas Instruments Incorporated

Interrupt Detection and Processing on the C64x+ CPU www.ti.com

Table 5-3. TSR Field Behavior When an Interrupt is Taken

Bit Field Action

0 GIE Saved to GIE bit in ITSR (will be 1). Cleared to 0.

1 SGIE Saved to SGIE bit in ITSR. Cleared to 0.

2 GEE Saved to GEE bit in ITSR. Unchanged.

3 XEN Saved to XEN bit in ITSR. Cleared to 0.

7-6 CXM Saved to CXM bits in ITSR. Cleared to 0 (Supervisor mode).

9 INT Saved to INT bit in ITSR. Set to 1.

10 EXC Saved to EXC bit in ITSR. Cleared to 0.

14 SPLX SPLX is set in the TSR by the SPLOOP buffer whenever it is in operation. Upon interrupt, if the SPLOOP
buffer is operating (thus SPLX = 1), then ITSR.SPLX will be set to 1, and the TSR.SPLX bit will be cleared to
0 after the SPLOOP buffer winds down and the interrupt vector is taken. See Section 7.4.5 for more
information on SPLOOP.

15 IB Saved to IB bit in ITSR (will be 0). Set by CPU control logic.

5.5.4 Actions Taken During Nonreset Interrupt Processing

During CPU cycles 6-14 of Figure 5-6, the following interrupt processing actions occur:

• Processing of subsequent nonreset interrupts is disabled.
• The PGIE bit is set to the value of the GIE bit and then the GIE bit is cleared. TSR context is saved

into ITSR, and TSR is set to default interrupt processing values as shown in Table 5-3. Explicit (MVC)
writes to the TSR are completed before the TSR is saved to the ITSR.

• The next execute packets (from n + 5 on) are annulled. If an execute packet is annulled during a
particular pipeline stage, it does not modify any CPU state. Annulling also forces an instruction to be
annulled in future pipeline stages.

• The address of the first annulled execute packet (n + 5) is loaded in IRP.
• A branch to the address formed from ISTP (the pointer to the ISFP for INTm) is forced into the E1

phase of the pipeline during cycle 9.
• IFm is cleared during cycle 8.

5.5.5 Conditions for Processing a Nonmaskable Interrupt

In clock cycle 4 of Figure 5-8, a nonmaskable interrupt (NMI) in need of processing is detected. For this
interrupt to be processed, the following conditions must be valid on the same clock cycle and are
evaluated every clock cycle:

• The NMIF bit is set during CPU cycle 6. (This determination is made in CPU cycle 4 by the interrupt
logic.)

• Reset is not active.
• NMIE = 1
• The five previous execute packets (n through n + 4) do not contain a branch (even if the branch is not

taken) and are not in the delay slots of a branch. Note that this functionality has changed when
exceptions are enabled, see Chapter 6 for more information.

A pending NMI will be taken as soon as pending branches are completed.

552 Interrupts SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

21 22201917 18161514

E10

22212019

(A)

18171615

E1DC

14

1211108 9764 53

E10

E10

E9

E9

E8E7

E8

E10

E9

E8

E8

E7

E6

E9

E8

E7

E7

E6

E5

E4

E6

E5

E7

E6

E5

E6

E5

E4

E4

E3

E3

E2

E1

E2

E5

E4

E3

E3

E2

E1

E4

E3

E2

E2

E1

E1

DC

DP

DC

DP

PR

PW

DC

DP

PR

21CPU cycle

NMIF

0

NMI at
CPU bdry

E2

E1

DC

E1

DC

DP

DP

PR

PW

PS

PR

PW

PS

PG

n

n+1

n+2

n+3

n+4

n+5

n+6

DC

DP

PR

PW

PS

PG

Execute
packet

PR

1211

PWPS

1098

PG

DP

PW

PR

PS

PG

PR

PS

PW

PS

PG

PG

PW

PS

PG

76543

PGn+7

n+9

n+8

n+10

n+11

21

ISFP

CPU cycle 0

13

E10

13

DP

E9

Cycles 6-14: Nonreset
interrupt processing is disabled

Annulled Instructions

Contains no branch

E8E7E6E4 E5E3E2

TSR
v

NTSR

EXC

PCXM

DCXM

TSR.GIE

TSR.GEE

IER.NMIE

DCXM at point of interrupt

PCXM at point of interrupt

set to 1 if NMI caused SPLOOP to terminate, 0 otherwiseNTSR.SPLX

TSR.INT

TSR.EXC

CXM at point of interruptTSR.CXM

unchanged by NMI processing

X X X X X X X X X X X X X X XX X X X

www.ti.com Interrupt Detection and Processing on the C64x+ CPU

Figure 5-8. C64x+ CPU Nonmaskable Interrupt Detection and Processing: Pipeline Operation

A After this point, interrupts are still disabled. All nonreset interrupts are disabled when NMIE = 0. All maskable
interrupts are disabled when GIE = 0.

553SPRU732J–July 2010 Interrupts

Copyright © 2010, Texas Instruments Incorporated

17161514

17161514

1211108 9764 53

E7

E6

E5

E6

E5

E4

E4

E3

E3

E2

E5

E4

E3

E3

E2

E1

E4

E3

E2

E2

E1

E1

DC

DP

DC

DP

PR

PW

DC

DP

PR

21CPU cycle 0

E2

E1

DC

E1

DC

DP

DP

PR

PW

PS

PR

PW

PS

PG

n
B NRP

n+2

n+3

n+4

n+5

n+6

DC

DP
PR

PW

PS

PG

Execute
packet

12111098

DP

PR

PR

PW

PS

PG

PW

PS

76543

PGIRP target

t+1

21CPU cycle 0

13

13

EXC

PCXM

DCXM

TSR.GIE

TSR.XEN

GIE at point of interrupt

TSR.INT

TSR.EXC

CXM at point of interruptTSR.CXM

PCXM at point of interrupt

DCXM at point of interrupt

INT at point of interrupt

E1DC

DP

E1

DC

E2

E1

DC E1

Interrupt Detection and Processing on the C64x+ CPU www.ti.com

Figure 5-9. C64x+ CPU Return from Nonmaskable Interrupt Execution and Processing: Pipeline
Operation

554 Interrupts SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Interrupt Detection and Processing on the C64x+ CPU

5.5.6 Saving of Context in Nonmaskable Interrupt Processing

When control is transferred to the interrupt processing sequence, the context needed to return from the
ISR is saved in the nonmaskable interrupt task state register (NTSR). The task state register (TSR) is set
for the default NMI processing context. Table 5-4 shows the behavior for each bit in TSR. Figure 5-8
shows the timing of the changes to the TSR bits as well as the CPU outputs used in interrupt processing.

Table 5-4. TSR Field Behavior When an NMI Interrupt is Taken

Bit Field Action

0 GIE Saved to GIE bit in NTSR. Unchanged.

1 SGIE Saved to SGIE bit in NTSR. Cleared to 0.

2 GEE Saved to GEE bit in NTSR. Unchanged.

3 XEN Saved to XEN bit in NTSR. Cleared to 0.

7-6 CXM Saved to CXM bits in NTSR. Cleared to 0 (Supervisor mode).

9 INT Saved to INT bit in NTSR. Set to 1.

10 EXC Saved to EXC bit in NTSR. Cleared to 0.

14 SPLX SPLX is set in the TSR by the SPLOOP buffer whenever it is in operation. Upon interrupt, if the SPLOOP
buffer is operating (thus SPLX = 1), then ITSR.SPLX will be set to 1, and the TSR.SPLX bit will be cleared to
0 after the SPLOOP buffer winds down and the interrupt vector is taken. See Section 7.4.5 for more
information on SPLOOP.

15 IB Saved to IB bit in NTSR. Set by CPU control logic.

5.5.7 Actions Taken During Nonmaskable Interrupt Processing

During CPU cycles 6-14 of Figure 5-8, the following interrupt processing actions occur:

• Processing of subsequent nonreset interrupts is disabled.
• The GIE and PGIE bits are unchanged. TSR context is saved into NTSR, and TSR is set to default

NMI processing values as shown in Table 5-4.
• The NMIE bit is cleared.
• The next execute packets (from n + 5 on) are annulled. If an execute packet is annulled during a

particular pipeline stage, it does not modify any CPU state. Annulling also forces an instruction to be
annulled in future pipeline stages.

• The address of the first annulled execute packet (n + 5) is loaded in NRP.
• A branch to the NMI ISFP (derived from ISTP) is forced into the E1 phase of the pipeline during

cycle 9.
• NMIF is cleared during cycle 8.

5.5.8 Setting the RESET Interrupt Flag

RESET must be held low for a minimum of 10 clock cycles. Four clock cycles after RESET goes high,
processing of the reset vector begins. The flag for RESET (IF0) in the IFR is set by the low-to-high
transition of the RESET signal on the CPU boundary. In Figure 5-10, IF0 is set during CPU cycle 15. This
transition is detected on a clock-cycle by clock-cycle basis and is not affected by memory stalls that might
extend a CPU cycle.

555SPRU732J–July 2010 Interrupts

Copyright © 2010, Texas Instruments Incorporated

Reset ISFP

n+7
n+6

Pipeline flush

E1DCDPPRPWPSPG

PG
PS

PW

PR

DP

DC

E1

n+5

n+4

n+3

n+2

n+1

n

Execute
packet

IF0

Clock cycle 17161514131211109876543210

Cycles 15 - 21:
Nonreset interrupt

processing is disabled

17161514131211109876543210CPU cycle

RESET
at pin

PG

PS

PW

PR

DP

DC

E2E1

2221201918

2221201918

(A)

(B)

Interrupt Detection and Processing on the C64x+ CPU www.ti.com

5.5.9 Actions Taken During RESET Interrupt Processing

A low signal on the RESET pin is the only requirement to process a reset. Once RESET makes a
high-to-low transition, the pipeline is flushed and CPU registers are returned to their reset values. The GIE
bit, the NMIE bit, and the ISTB bits in ISTP are cleared. For the CPU state after reset, see Section 5.3.4.1.

Note that a nested exception can force an internally-generated reset that does not reset all the registers to
their hardware reset state. See Section 6.3.4 for more information.

During CPU cycles 15-21 of Figure 5-10, the following reset processing actions occur:

• Processing of subsequent nonreset interrupts is disabled because the GIE and NMIE bits are cleared.
• A branch to the address held in ISTP (the pointer to the ISFP for INT0) is forced into the E1 phase of

the pipeline during cycle 16.
• IF0 is cleared during cycle 17.

NOTE: Code that starts running after reset must explicitly enable the GIE bit, the NMIE bit, and IER
to allow interrupts to be processed.

Figure 5-10. RESET Interrupt Detection and Processing: Pipeline Operation

A IF0 is set on the next CPU cycle boundary after a 4-clock cycle delay after the rising edge of .

B After this point, interrupts are still disabled. All nonreset interrupts are disabled when NMIE = 0. All maskable
interrupts are disabled when GIE = 0.

556 Interrupts SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Performance Considerations

5.6 Performance Considerations

The interaction of the C6000 CPU and sources of interrupts present performance issues for you to
consider when you are developing your code.

5.6.1 General Performance
• Overhead. Overhead for all CPU interrupts on the C64x CPU is 7 cycles. You can see this in

Figure 5-4, where no new instructions are entering the E1 pipeline phase during CPU cycles 6 through
12.
Overhead for all CPU interrupts on the C64x+ CPU is 9 cycles. You can see this in Figure 5-6 and
Figure 5-7, where no new instructions are entering the E1 pipeline phase during CPU cycles 6 through
14.

• Latency. Interrupt latency on the C64x CPU is 11 cycles (21 cycles for RESET). In Figure 5-4 although
the interrupt is active in cycle 2, execution of interrupt service code does not begin until cycle 13.
Interrupt latency on the C64x+ CPU is 13 cycles (21 cycles for RESET) . In Figure 5-8, although the
interrupt is active in cycle 2, execution of interrupt service code does not begin until cycle 15.

• Frequency. The logic clears the nonreset interrupt (IFm) on cycle 8, with any incoming interrupt having
highest priority. Thus, an interrupt is can be recognized every second cycle. Also, because a
low-to-high transition is necessary, an interrupt can occur only every second cycle. However, the
frequency of interrupt processing depends on the time required for interrupt service and whether you
reenable interrupts during processing, thereby allowing nested interrupts. Effectively, only two
occurrences of a specific interrupt can be recognized in two cycles.

5.6.2 Pipeline Interaction

Because the serial or parallel encoding of fetch packets does not affect the DC and subsequent phases of
the pipeline, no conflicts between code parallelism and interrupts exist. There are three operations or
conditions that can affect or are affected by interrupts:

• Branches. Nonreset interrupts are delayed, if any execute packets n through n + 4 in Figure 5-4
contain a branch or are in the delay slots of a branch.

• Memory stalls. Memory stalls delay interrupt processing, because they inherently extend CPU cycles.
• Multicycle NOPs. Multicycle NOPs (including the IDLE instruction) operate like other instructions

when interrupted, except when an interrupt causes annulment of any but the first cycle of a multicycle
NOP. In that case, the address of the next execute packet in the pipeline is saved in NRP or IRP. This
prevents returning to an IDLE instruction or a multicycle NOP that was interrupted.

5.7 Programming Considerations

The interaction of the C6000 CPUs and sources of interrupts present programming issues for you to
consider when you are developing your code.

5.7.1 Single Assignment Programming

Using the same register to store different variables (called here: multiple assignment) can result in
unpredictable operation when the code can be interrupted.

To avoid unpredictable operation, you must employ the single assignment method in code that can be
interrupted. When an interrupt occurs, all instructions entering E1 prior to the beginning of interrupt
processing are allowed to complete execution (through E5). All other instructions are annulled and
refetched upon return from interrupt. The instructions encountered after the return from the interrupt do not
experience any delay slots from the instructions prior to processing the interrupt. Thus, instructions with
delay slots prior to the interrupt can appear, to the instructions after the interrupt, to have fewer delay slots
than they actually have.

Example 5-14 shows a code fragment which stores two variables into A1 using multiple assignment.
Example 5-15 shows equivalent code using the single assignment programming method which stores the
two variables into two different registers.

557SPRU732J–July 2010 Interrupts

Copyright © 2010, Texas Instruments Incorporated

Programming Considerations www.ti.com

For example, before reaching the code in Example 5-14, suppose that register A1 contains 0 and register
A0 points to a memory location containing a value of 10. The ADD instruction, which is in a delay slot of
the LDW, sums A2 with the value in A1 (0) and the result in A3 is just a copy of A2. If an interrupt
occurred between the LDW and ADD, the LDW would complete the update of A1 (10), the interrupt would
be processed, and the ADD would sum A1 (10) with A2 and place the result in A3 (equal to A2 + 10).
Obviously, this situation produces incorrect results.

In Example 5-15, the single assignment method is used. The register A1 is assigned only to the ADD
input and not to the result of the LDW. Regardless of the value of A6 with or without an interrupt, A1 does
not change before it is summed with A2. Result A3 is equal to A2.

Example 5-14. Code Without Single Assignment: Multiple Assignment of A1

LDW .D1 *A0,A1
ADD .L1 A1,A2,A3
NOP 3
MPY .M1 A1,A4,A5 ; uses new A1

Example 5-15. Code Using Single Assignment

LDW .D1 *A0,A6
ADD .L1 A1,A2,A3
NOP 3
MPY .M1 A6,A4,A5 ; uses A6

Another method for preventing problems with nonsingle-assignment programming would be to disable
interrupts before using multiple assignment, then reenable them afterwards. Of course, you must be
careful with the tradeoff between high-speed code that uses multiple-assignment and increasing interrupt
latency. When using multiple assignment within software pipelined code, the SPLOOP buffer on the
C64x+ CPU can help you deal with the tradeoff between performance and interruptibility. See Chapter 7
for more information.

5.7.2 Nested Interrupts

Generally, when the CPU enters an interrupt service routine, interrupts are disabled. However, when the
interrupt service routine is for one of the maskable interrupts (INT4-INT15), an NMI can interrupt
processing of the maskable interrupt. In other words, an NMI can interrupt a maskable interrupt, but
neither an NMI nor a maskable interrupt can interrupt an NMI.

Also, there may be times when you want to allow an interrupt service routine to be interrupted by another
(particularly higher priority) interrupt. Even though the processor by default does not allow interrupt service
routines to be interrupted unless the source is an NMI, it is possible to nest interrupts under software
control. To allow nested interrupts, the interrupt service routine must perform the following initial steps in
addition to its normal work of saving any registers (including control registers) that it modifies:

1. The contents of IRP (or NRP) must be saved
2. The contents of the PGIE bit must be saved
3. The contents of ITSR must be saved (C64x+ CPU only)
4. The GIE bit must be set to 1

558 Interrupts SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Programming Considerations

Prior to returning from the interrupt service routine, the code must restore the registers saved above as
follows:

1. The GIE bit must be first cleared to 0
2. The PGIE bit saved value must be restored
3. The contents of ITSR must be restored (C64x+ CPU only)
4. The IRP (or NRP) saved value must be restored

Although steps 2, 3, and 4 above may be performed in any order, it is important that the GIE bit is cleared
first. This means that the GIE and PGIE bits must be restored with separate writes to CSR. If these bits
are not restored separately, then it is possible that the PGIE bit is overwritten by nested interrupt
processing just as interrupts are being disabled.

Example 5-16 shows a simple assembly interrupt handler that allows nested interrupts on the C64x CPU.
This example saves its context to the system stack, pointed to by B15. This assumes that the C runtime
conventions are being followed. The example code is not optimized, to aid in readability. To adapt this
code to run on the C64x+ CPU, the ITSR would also need to be saved.

Example 5-17 shows a C-based interrupt handler that allows nested interrupts on the C64x CPU. The
steps are similar, although the compiler takes care of allocating the stack and saving CPU registers. To
adapt this code to run on the C64x+ CPU, the ITSR would also need to be restored. For more information
on using C to access control registers and write interrupt handlers, see the TMS320C6000 Optimizing
Compiler User's Guide, SPRU187.

NOTE: When coding nested interrupts for the C64x+ CPU, the ITSR should be saved and restored
to prevent corruption by the nested interrupt.

Example 5-16. Assembly Interrupt Service Routine That Allows Nested Interrupts

_isr:
STW B0, *B15--[4] ; Save B0, allocate 4 words of stack
STW B1, *B15[1] ; Save B1 on stack

MVC IRP, B0
STW B0, *B15[2] ; Save IRP on stack

MVC CSR, B0
STW B0, *B15[3] ; Save CSR (and thus PGIE) on stack

OR B0, 1, B1
MVC B1, CSR ; Enable interrupts

; Interrupt service code goes here.
; Interrupts may occur while this code executes.

MVC CSR, B0 ;\
AND B0, -2, B1 ; |-- Disable interrupts.
MVC B1, CSR ;/ (Clear GIE to 0)

LDW *B15[3], B0 ; get saved value of CSR into B0
NOP 4 ; wait for LDW *B15[3] to finish
MVC B0, CSR ; Restore PGIE

LDW *B15[2], B0 ; get saved value of IRP into B1
NOP 4
MVC B0, IRP ; Restore IRP

B IRP ; Return from interrupt
|| LDW *B15[1], B1 ; Restore B1

LDW *++B15[4], B0 ; Restore B0, release stack.

NOP 4 ; wait for B IRP and LDW to complete

559SPRU732J–July 2010 Interrupts

Copyright © 2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spru187

Programming Considerations www.ti.com

Example 5-17. C Interrupt Service Routine That Allows Nested Interrupts

/* c6x.h contains declarations of the C6x control registers */
#include <c6x.h>

interrupt void isr(void)
{

unsigned old_csr;
unsigned old_irp;

old_irp = IRP ;/* Save IRP */
old_csr = CSR ;/* Save CSR (and thus PGIE) */

CSR = old_csr | 1 ;/* Enable interrupts */

/* Interrupt service code goes here. */
/* Interrupts may occur while this code executes */

CSR = CSR & -2 ;/* Disable interrupts */
CSR = old_csr ;/* Restore CSR (and thus PGIE) */
IRP = old_irp ;/* Restore IRP */

Example 5-17 uses the interrupt keyword along with explicit context save and restore code. An alternative
is to use the DSP/BIOS interrupt dispatcher that also provides an easy way to nest interrupt service
routines.

5.7.3 Manual Interrupt Processing (polling)

You can poll IFR and IER to detect interrupts manually and then branch to the value held in the ISTP as
shown below in Example 5-18.

The code sequence begins by copying the address of the highest priority interrupt from the ISTP to the
register B2. The next instruction extracts the number of the interrupt, which is used later to clear the
interrupt. The branch to the interrupt service routine comes next with a parallel instruction to set up the
ICR word.

The last five instructions fill the delay slots of the branch. First, the 32-bit return address is stored in the
B2 register and then copied to the interrupt return pointer (IRP). Finally, the number of the highest priority
interrupt, stored in B1, is used to shift the ICR word in B1 to clear the interrupt.

Example 5-18. Manual Interrupt Processing

MVC ISTP,B2 ; get related ISFP address
EXTU B2,23,27,B1 ; extract HPEINT

[B1] B B2 ; branch to interrupt
|| [B1] MVKL 1,A0 ; setup ICR word

[B1] MVKL RET_ADR,B2 ; create return address
[B1] MVKH RET_ADR,B2 ;
[B1] MVC B2,IRP ; save return address
[B1] SHL A0,B1,B1 ; create ICR word
[B1] MVC B1,ICR ; clear interrupt flag

RET_ADR: (Post interrupt service routine Code)

560 Interrupts SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Programming Considerations

5.7.4 Traps

A trap behaves like an interrupt, but is created and controlled with software. The trap condition can be
stored in any one of the conditional registers: A0, A1, A2, B0, B1, or B2. If the trap condition is valid, a
branch to the trap handler routine processes the trap and the return.

Example 5-19 and Example 5-20 show a trap call and the return code sequence, respectively. In the first
code sequence, the address of the trap handler code is loaded into register B0 and the branch is called. In
the delay slots of the branch, the context is saved in the B0 register, the GIE bit is cleared to disable
maskable interrupts, and the return pointer is stored in the B1 register.

The trap is processed with the code located at the address pointed to by the label TRAP_HANDLER. If
the B0 or B1 registers are needed in the trap handler, their contents must be stored to memory and
restored before returning. The code shown in Example 5-20 should be included at the end of the trap
handler code to restore the context prior to the trap and return to the TRAP_RETURN address.

Example 5-19. Code Sequence to Invoke a Trap

[A1] MVKL TRAP_HANDLER,B0 ; load 32-bit trap address
[A1] MVKH TRAP_HANDLER,B0
[A1] B B0 ; branch to trap handler
[A1] MVC CSR,B0 ; read CSR
[A1] AND -2,B0,B1 ; disable interrupts: GIE = 0
[A1] MVC B1,CSR ; write to CSR
[A1] MVKL TRAP_RETURN,B1 ; load 32-bit return address
[A1] MVKH TRAP_RETURN,B1

TRAP_RETURN: (post-trap code)

Note: A1 contains the trap condition.

Example 5-20. Code Sequence for Trap Return

B B1 ; return
MVC B0,CSR ; restore CSR
NOP 4 ; delay slots

Often traps are used to handle unexpected conditions in the execution of the code. The C64x+ CPU
provides explicit exception handling support which may be used for this purpose.

Another alternative to using traps as software triggered interrupts is the software interrupt capability (SWI)
provided by the DSP/BIOS real-time kernel.

561SPRU732J–July 2010 Interrupts

Copyright © 2010, Texas Instruments Incorporated

Differences Between C64x and C64x+ CPU Interrupts www.ti.com

5.8 Differences Between C64x and C64x+ CPU Interrupts

Table 5-5 summarizes the differences between the interrupt function on the C64x CPU and the C64x+
CPU.

Table 5-5. Differences Between C64x and C64x+ CPU Interrupts

Function C64x CPU C64x+ CPU

Interrupt latency 7 cycles 9 cycles

Interrupt overhead 11 cycles 13 cycles

Exceptions No Yes

TSR, ITSR, and NTSR registers No Yes

DINT and RINT instructions No Yes

On interrupt GIE bit in CSR copied to PGIE bit in CSR TSR copied to ITSR

On return from interrupt PGIE bit in CSR copied to GIE bit in CSR ITSR copied to TSR

Default location of IST 0000 0000h Varies. Check device-specific data manual
for correct value.

NMI used as Nonmaskable interrupt Nonmaskable Interrupt, or Exception
processing

SPLOOP buffer None Provides interruptible software pipelined
code

Interrupt branch-in-progress No Yes (via exceptions)

Missed interrupt detection No Yes

Number of instruction in ISFP 8 Up to 14

Flag to show when processing hardware No Yes (TSR.INT)
interrupts

562 Interrupts SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

Chapter 6
SPRU732J–July 2010

C64x+ CPU Exceptions

This chapter describes CPU exceptions on the C64x+ CPU. It details the related CPU control registers
and their functions in controlling exceptions. It also describes exception processing, the method the CPU
uses to detect automatically the presence of exceptions and divert program execution flow to your
exception service code. Finally, the chapter describes the programming implications of exceptions.

The C64x CPU does not support exceptions. This chapter applies only to the C64x+ CPU.

Topic ... Page

6.1 Overview .. 564
6.2 Exception Control .. 567
6.3 Exception Detection and Processing .. 569
6.4 Performance Considerations ... 572
6.5 Programming Considerations ... 575

563SPRU732J–July 2010 C64x+ CPU Exceptions

Copyright © 2010, Texas Instruments Incorporated

Overview www.ti.com

6.1 Overview

The exception mechanism on the C64x+ CPU is intended to support error detection and program
redirection to error handling service routines. Error signals generated outside of the CPU are consolidated
to one exception input to the CPU. Exceptions generated within the CPU are consolidated to one internal
exception flag with information as to the cause in a register. Fatal errors detected outside of the CPU are
consolidated and incorporated into the NMI input to the CPU.

6.1.1 Types of Exceptions and Signals Used

There are three types of exceptions on the C64x+ CPU.

• one externally generated maskable exception
• one externally generated nonmaskable exception,
• a set of internally generated nonmaskable exceptions

Check the device-specific data manual for your external exception specifications.

6.1.1.1 Reset (RESET)

While reset can be classified as an exception, its behavior is fully described in the chapter on interrupts
and its operation is independent of the exception mechanism.

6.1.1.2 Nonmaskable Interrupt (NMI)

NMI is also described in the interrupt chapter, and as stated there it is generally used to alert the CPU of a
serious hardware problem. The intent of NMI on C6000 devices was clearly for use as an exception.
However, the inability of NMI to interrupt program execution independent of branch delay slots lessens its
usefulness as an exception input. By default the NMI input retains its behavior for backward compatibility.
When used in conjunction with the exception mechanism it will be treated as a nonmaskable exception
with the primary behavioral difference being that branch delay slots will not prevent the recognition of NMI.
The new behavior is enabled when exceptions are globally enabled. This is accomplished by setting the
global exception enable (GEE) bit in the task state register (TSR) to 1. Once the exception mechanism
has been enabled, it remains enabled until a reset occurs (GEE can only be cleared by reset). When the
GEE bit is set to 1, NMI behaves as an exception. All further discussion of NMI in this chapter is in
reference to its behavior as an exception.

For NMI processing to occur, the nonmaskable interrupt enable (NMIE) bit in the interrupt enable register
(IER) must be set to 1. If the NMIE bit is set to 1, the only condition that can prevent NMI processing is the
CPU being stalled.

The NMIE bit is cleared to 0 at reset to prevent interruption of the reset processing. It is cleared at the
occurrence of an NMI to prevent another NMI from being processed. You cannot manually clear NMIE, but
you can set NMIE to allow nested NMIs. While NMIE is cleared, all external exceptions are disabled.
Internal exceptions are not affected by NMIE.

When NMI is recognized as pending, the NMI exception flag (NXF) bit in the exception flag register (EFR)
is set. Unlike the NMIF bit in the interrupt flag register (IFR), the NXF bit is not cleared automatically upon
servicing of the NMI. The NXF bit remains set until manually cleared in the exception service routine.

Transitions on the NMI input while the NXF bit is set are ignored. In the event an attempt to clear the flag
using the MVC instruction coincides with the automated write by the exception detection logic, the
automatic write takes precedence and the NXF bit remains set.

6.1.1.3 Exception (EXCEP)

EXCEP is the maskable external exception input to the CPU. It is enabled by the XEN bit in TSR. For this
exception to be recognized, the XEN bit must be set to 1, the GEE bit must be set to 1, and the NMIE bit
must be set to 1.

When EXCEP is recognized as pending, the external exception flag (EXF) bit in EFR is set. The EXF bit
remains set until manually cleared in the exception service routine.

564 C64x+ CPU Exceptions SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Overview

6.1.1.4 Internal Exceptions

Internal exceptions are those generated within the CPU. There are multiple causes for internal exceptions.
Examples are illegal opcodes, illegal behavior within an instruction, and resource conflicts. Once enabled
by the GEE bit, internal exceptions cannot be disabled. They are recognized independently of the state of
the NMIE and XEN exception enable bits.

Instructions that have already entered E1 before a context switch begins are allowed to complete. Any
internal exceptions generated by these completing instructions are ignored. This is true for both interrupt
and exception context switches.

When an internal exception is recognized as pending, the internal exception flag (IXF) bit in EFR is set.
The IXF bit remains set until manually cleared in the exception service routine.

6.1.1.5 Exception Acknowledgment

The exception processing (EXC) bit in TSR is provided as an output at the CPU boundary. This signal in
conjunction with the IACK signal alerts hardware external to the C64x+ CPU that an exception has
occurred and is being processed.

6.1.2 Exception Service Vector

When the CPU begins processing an exception, it references the interrupt service table (IST). The NMI
interrupt service fetch packet (ISFP) is the fetch packet used to service all exceptions (external, internal,
and NMI).

In general, the exception service routine for an exception is too large to fit in a single fetch packet, so a
branch to the location of additional exception service routine code is required. This is shown in Figure 6-1.

6.1.3 Summary of Exception Control Registers

Table 6-1 lists the control registers related to exceptions on the C64x+ CPU.

Table 6-1. Exception-Related Control Registers

Acronym Register Name Description Section

ECR Exception clear register Used to clear pending exception flags Section 2.9.3

EFR Exception flag register Contains pending exception flags Section 2.9.4

IER Interrupt enable register Contains NMI exception enable (NMIE) bit Section 2.8.7

IERR Internal exception report Indicates cause of an internal exception Section 2.9.7
register

ISTP Interrupt service table Pointer to the beginning of the interrupt service table that Section 2.8.11
pointer register contains the exception interrupt service fetch packet

NRP Nonmaskable interrupt return Contains the return address used on return from an Section 2.8.12
pointer register exception. This return is accomplished via the B NRP

instruction

NTSR Nonmaskable Stores contents of TSR upon taking an exception Section 2.9.10
interrupt/exception task state
register

REP Restricted entry point Contains the address to where the SWENR instruction Section 2.9.11
address register transfers control

TSR Task state register Contains global exception enable (GEE) and exception Section 2.9.15
enable (XEN) bits

565SPRU732J–July 2010 C64x+ CPU Exceptions

Copyright © 2010, Texas Instruments Incorporated

IST

RESET ISFP

NMI ISFP

Reserved

Reserved

INT4 ISFP

INT5 ISFP

INT6 ISFP

INT7 ISFP

INT8 ISFP

INT9 ISFP

INT10 ISFP

INT11 ISFP

INT12 ISFP

INT13 ISFP

INT14 ISFP

INT15 ISFP

Additional ISFP for NMI

1220h

includes this instruction extension
The exception service routine

of the exception ISFP.

Instr1

Instr2

B 1234h

Instr4

Instr5

Instr6

Instr7

Instr8

ISFP for exceptions

020h

024h

028h

02Ch

030h

034h

038h

03Ch

Program memory

-

-

-

-

-

Instr9

Instr11

1224h

1228h

122Ch

1230h

1234h

1238h

123Ch

B NRP

xxxx 000h

xxxx 020h

xxxx 040h

xxxx 060h

xxxx 080h

xxxx 0A0h

xxxx 0C0h

xxxx 0E0h

xxxx 100h

xxxx 120h

xxxx 140h

xxxx 160h

xxxx 180h

xxxx 1A0h

xxxx 1C0h

xxxx 1E0h

Additional ISFP for NMI

1240h Instr12

Instr13

Instr14

Instr15

-

-

-

1244h

1248h

124Ch

1250h

1254h

1258h

125Ch

-

Overview www.ti.com

Figure 6-1. Interrupt Service Table With Branch to Additional Exception Service Code
Located Outside the IST

566 C64x+ CPU Exceptions SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Exception Control

6.2 Exception Control

Enabling and disabling individual exceptions is done with the task state register (TSR) and the interrupt
enable register (IER). The status of pending exceptions is stored in the exception flag register (EFR). The
nonmaskable interrupt return pointer register (NRP) and the nonmaskable interrupt/exception task state
register (NTSR) are used to restore context after servicing exceptions. In many cases it is not possible to
return to the interrupted code since exceptions can be taken at noninterruptible points.

6.2.1 Enabling and Disabling External Exceptions

Exceptions are globally enabled by the GEE bit in TSR. This bit must be set to 1 to enable any exception
processing. Once it is set to 1, the GEE bit can only be cleared by a reset. The GEE bit is the only enable
for internal exceptions. Therefore, once internal exceptions have been enabled they cannot be disabled.
Global enabling of exceptions also causes the NMI input to be treated as an exception rather than an
interrupt.

External exceptions are also qualified by the NMIE bit in IER. An external exception (EXCEP or NMI) can
trigger exception processing only if this bit is set. Internal exceptions are not affected by NMIE. The IER is
shown in Figure 2-8 and described in Table 2-12. The EXCEP exception input can also be disabled by
clearing the XEN bit in TSR.

When NMIE = 0, all interrupts and external exceptions are disabled, preventing interruption of an
exception service routine. The NMIE bit is cleared at reset to prevent any interruption of processor
initialization until you enable exceptions. After reset, you must set the NMIE bit to enable external
exceptions and to allow INT15-INT4 to be enabled by the GIE bit and the appropriate IER bit. You cannot
manually clear the NMIE bit; the NMIE bit is unaffected by a write of 0. The NMIE bit is also cleared by the
occurrence of an NMI. If cleared, the NMIE bit is set only by completing a B NRP instruction or by a write
of 1 to NMIE.

6.2.2 Pending Exceptions

EFR contains four bits that indicate which exceptions have been detected. It is possible for all four bits to
be set when entering the exception service routine. The prioritization and handling of multiple exceptions
is left to software. Clearing of the exception flags is done by writing a 1 to the bit position to be cleared in
the exception clear register (ECR). Bits that are written as 0 to ECR have no effect. The EFR is shown in
Figure 2-17 and described in Table 2-18.

6.2.3 Exception Event Context Saving

TSR contains the CPU execution context that is saved into NTSR at the start of exception processing.
TSR is then set to indicate the transition to supervisor mode and that exception processing is active. The
TSR is shown in Figure 2-28 and described in Table 2-23.

Execution of a B NRP instruction causes the saved context in NTSR to be loaded into TSR to resume
execution. Similarly, a B IRP instruction restores context from ITSR into TSR.

Information about the CPU context at the point of an exception is retained in NTSR. Table 6-2 shows the
behavior for each bit in NTSR. The information in NTSR is used upon execution of a B NRP instruction to
restore the CPU context before resuming the interrupted instruction execution. The HWE bit in NTSR is
set when an internal or external exception is taken. The HWE bit is cleared by the SWE and SWENR
instructions. The NTSR is shown in Figure 2-23 and described in Table 2-21.

567SPRU732J–July 2010 C64x+ CPU Exceptions

Copyright © 2010, Texas Instruments Incorporated

Exception Control www.ti.com

Table 6-2. NTSR Field Behavior When an Exception is Taken

Bit Field Action

0 GIE GIE bit in TSR at point exception is taken.

1 SGIE SGIE bit in TSR at point exception is taken.

2 GEE GEE bit in TSR at point exception is taken (must be 1).

3 XEN XEN bit in TSR at point exception is taken.

7-6 CXM CXM bits in TSR at point exception is taken.

9 INT INT bit in TSR at point exception is taken.

10 EXC EXC bit in TSR at point exception is taken (must be 0).

14 SPLX Terminated an SPLOOP

15 IB Exception occurred while interrupts were blocked.

16 HWE Hardware exception taken (NMI, EXCEP, or internal).

6.2.4 Returning From Exception Servicing

The NMI return pointer register (NRP) stores the return address used by the CPU to resume correct
program execution after NMI processing. A branch using the address in the NRP (B NRP) in your
exception service routine causes the program to exit the exception service routine and return to normal
program execution.

It is not always possible to safely exit the exception handling routine. Conditions that can prevent a safe
return from exceptions include:

• SPLOOPs that are terminated by an exception cannot be resumed correctly. The SPLX bit in NTSR
should be verified to be 0 before returning.

• Exceptions that occur when interrupts are blocked cannot be resumed correctly. The IB bit in NTSR
should be verified to be 0 before returning.

• Exceptions that occur at any point in the code that cannot be interrupted safely (for example, a tight
loop containing multiple assignments) cannot be safely returned to. The compiler will normally disable
interrupts at these points in the program; check the GIE bit in NTSR to be 1 to verify that this condition
is met.

Example 6-1 shows code that checks these conditions.

If the exception cannot be safely returned from, the appropriate response will be different based on the
specific cause of the exception. In some cases, a warm reset will be required. In other cases, restarting a
user task may be sufficient.

The NRP contains the 32-bit address of the first execute packet in the program flow that was not executed
because of an exception. Although you can write a value to this register, any subsequent exception
processing may overwrite that value. The NRP is shown in Figure 2-13.

Example 6-1. Code to Return From Exception

STNDW B1:B0,*SP-- ; save B0 and B1
|| MVC NTSR,B0 ; read NTSR

EXTU B0,16,30,B1 ; B1 = NTSR.IB and NTSR.SPLX
|| AND B0,1,B0 ; B0 = NTSR.GIE
[B1] MVK 0,B0 ; B0 = 1 if resumable
[B0] B NRP ; if B0 != 0, return

LDNDW *SP++,B1:B0 ; restore B0 and B1
NOP 4 ; delay slots

cant_restart:
;code to handle non-resumable case starts here

568 C64x+ CPU Exceptions SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Exception Detection and Processing

6.3 Exception Detection and Processing

When an exception occurs, it sets a flag in the exception flag register (EFR). Depending on certain
conditions, the exception may or may not be processed. This section discusses the mechanics of setting
the flag bit, the conditions for processing an exception, and the order of operation for detecting and
processing an exception.

6.3.1 Setting the Exception Pending Flag

Figure 6-2 shows the processing of an external exception (EXCEP) for the C64x+ CPU. The internal
pending flag for EXCEP is set following the low-to-high transition of the EXCEP signal on the CPU
boundary. This transition is detected on a clock-cycle by clock-cycle basis and is not affected by memory
stalls that might extend a CPU cycle. Two clock cycles after detection, the EXCEP exception's
corresponding flag bit (EXF) in EFR is set (cycle 6).

Figure 6-2 assumes EXCEP is enabled by the XEN, NMIE, and GEE bits, as necessary.

6.3.2 Conditions for Processing an External Exception

In clock cycle 4 of Figure 6-2, a nonreset exception in need of processing is detected. For this exception
to be processed, the following conditions must be valid on the same clock cycle and are evaluated every
clock cycle:

• EXF or NXF bit is set during CPU cycle 6. (This determination is made in CPU cycle 4 by the
exception/interrupt logic.)

• NMIE = 1
• GEE = 1
• For EXCEP, XEN = 1

Any pending exception will be taken as soon as any stalls are completed.

When control is transferred to the interrupt processing sequence the context needed to return from the
ISR is saved in ITSR. TSR is set for the default interrupt processing context. Table 6-3 shows the
behavior for each bit in TSR. Figure 6-2 shows the timing of the changes to the TSR bits as well as the
CPU outputs used in exception processing.

Fetches from program memory use the PS-valid register that is only loaded at the start of a context
switch. This value is an output on the program memory interface and is shown in the timing diagram as
PCXM. As the target execute packet progresses through the pipeline, the new mode is registered for that
stage. Each stage uses its registered version of the execution mode. The field in TSR is the E1-valid
version of CXM. It always indicates the execution mode for the instructions executing in E1. The mode is
used in the data memory interface, and is registered for all load/store instructions when they execute in
E1. This is shown in the timing diagram as DCXM.

Figure 6-3 shows the transitions in the case of a return from exception initiated by executing a B NRP
instruction.

569SPRU732J–July 2010 C64x+ CPU Exceptions

Copyright © 2010, Texas Instruments Incorporated

21 22201917 18161514

E10

2221201918171615

E1DC

14

1211108 9764 53

E10

E10

E9

E9

E8E7

E8

E10

E9

E8

E8

E7

E6

E9

E8

E7

E7

E6

E5

E4

E6

E5

E7

E6

E5

E6

E5

E4

E4

E3

E3

E2

E1

E2

E5

E4

E3

E3

E2

E1

E4

E3

E2

E2

E1

E1

DC

DP

DC

DP

PR

PW

DC

DP

PR

21CPU cycle

EFR.EXF

0

EXCEP at
CPU bdry

E2

E1

DC

E1

DC

DP

DP

PR

PW

PS

PR

PW

PS

PG

n

n+1
n+2

n+3

n+4

n+5

n+6

DC

DP

PR

PW

PS

PG

Execute
packet

PR

1211

PWPS

1098

PG

DP

PW

PR

PS

PG

PR

PS

PW

PS

PG

PG

PW

PS

PG

76543

PGn+7

n+9

n+8

n+10

n+11

21

ISFP

CPU cycle 0

13

E10

13

DP

E9

Cycles 6-14: Nonreset
interrupt processing is disabled

Annulled Instructions

E8E7E6E4 E5E3E2

TSR
v

NTSR

EXC

PCXM

DCXM

TSR.GIE

TSR.XEN

IER.NMIE

DCXM at point of exception

PCXM at point of exception

GIE at point of exception

SPLX at point of exceptionTSR.SPLX

TSR.INT

TSR.EXC

CXM at point of exceptionTSR.CXM

INT at point of exception

Exception Detection and Processing www.ti.com

Figure 6-2. External Exception (EXCEP) Detection and Processing: Pipeline Operation

570 C64x+ CPU Exceptions SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

17161514

17161514

1211108 9764 53

E7

E6

E5

E6

E5

E4

E4

E3

E3

E2

E5

E4

E3

E3

E2

E1

E4

E3

E2

E2

E1

E1

DC

DP

DC

DP

PR

PW

DC

DP

PR

21CPU cycle 0

E2

E1

DC

E1

DC

DP

DP

PR

PW

PS

PR

PW

PS

PG

n
B NRP

n+2

n+3

n+4

n+5

n+6

DC

DP
PR

PW

PS

PG

Execute
packet

12111098

DP

PR

PR

PW

PS

PG

PW

PS

76543

PGNRP target

t+1

21CPU cycle 0

13

13

EXC

PCXM

DCXM

TSR.GIE

TSR.XEN

IER.NMIE

GIE at point of exception

TSR.INT

TSR.EXC

CXM at point of exceptionTSR.CXM

PCXM at point of exception

DCXM at point of exception

GIE at point of exception

INT at point of exception

E1DC

DP

E1

DC

E2

E1

E1DC

www.ti.com Exception Detection and Processing

Table 6-3. TSR Field Behavior When an Exception is Taken (EXC = 0)

Bit Field Action

0 GIE Saved to GIE bit in NTSR. Cleared to 0.

1 SGIE Saved to SGIE bit in NTSR. Cleared to 0.

2 GEE Saved to GEE bit in NTSR (will be 1). Unchanged.

3 XEN Saved to XEN bit in NTSR. Cleared to 0.

7-6 CXM Saved to CXM bits in NTSR. Set to Supervisor mode.

9 INT Saved to INT bit in NTSR. Cleared to 0.

10 EXC Saved to EXC bit in NTSR. Set to 1.

14 SPLX Saved to SPLX bit in NTSR. Cleared to 0.

15 IB Saved to IB bit in NTSR. Set by CPU control logic.

Figure 6-3. Return from Exception Processing: Pipeline Operation

571SPRU732J–July 2010 C64x+ CPU Exceptions

Copyright © 2010, Texas Instruments Incorporated

Performance Considerations www.ti.com

6.3.3 Actions Taken During External Exception (EXCEP) Processing

During CPU cycles 6-14 of Figure 6-2, the following exception processing actions occur:

• Processing of subsequent EXCEP exceptions is disabled by clearing the XEN bit in TSR.
• Processing of interrupts is disabled by clearing the GIE bit in TSR.
• The next execute packets (from n + 5 on) are annulled. If an execute packet is annulled during a

particular pipeline stage, it does not modify any CPU state. Annulling also forces an instruction to be
annulled in future pipeline stages.

• The address of the first annulled execute packet (n + 5) is loaded in to NRP.
• A branch to the NMI ISFP is forced into the E1 phase of the pipeline during cycle 9.
• During cycle 7, IACK and EXC are asserted to indicate the exception is being processed. INUM is also

valid in this cycle with a value of 1.

6.3.4 Nested Exceptions

When the CPU enters an exception service routine, the EXC bit in TSR is set to indicate an exception is
being processed. If a new exception is recognized while this bit is set, then the reset vector is used when
redirecting program execution to service the second exception. In this case, NTSR and NRP are left
unchanged. TSR is copied to ITSR and the current PC is copied to IRP. TSR is set to the default
exception processing value and the NMIE bit in IER is cleared in this case preventing any further external
exceptions.

The NTSR, ITSR, IRP, and the NRP can be tested in the users boot code to determine if reset pin initiated
reset or a reset caused by a nested exception.

6.4 Performance Considerations

6.4.1 General Performance
• Overhead. Overhead for all CPU exceptions on the C64x+ CPU is 9 cycles. You can see this in

Figure 6-2, where no new instructions are entering the E1 pipeline phase during CPU cycles 6 through
14.

• Latency. Exception latency is 13 cycles. If the exception is active in cycle 2, execution of exception
service code does not begin until cycle 15.

• Frequency. The pending exceptions are not automatically cleared upon servicing as is the case with
interrupts.

6.4.2 Pipeline Interaction

Because the serial or parallel encoding of fetch packets does not affect the DC and subsequent phases of
the pipeline, no conflicts between code parallelism and exceptions exist. There are two operations or
conditions that can affect, or are affected by, exceptions:

• Memory stalls. Memory stalls delay exception processing, because they inherently extend CPU
cycles.

• Multicycle NOPs. Multicycle NOPs (including the IDLE instruction) operate like other instructions
when interrupted by an exception, except when an exception causes annulment of any but the first
cycle of a multicycle NOP. In that case, the address of the next execute packet in the pipeline is saved
in NRP. This prevents returning to an IDLE instruction or a multicycle NOP that was interrupted.

572 C64x+ CPU Exceptions SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

21 22201917 18161514

E10

2221201918171615

E1DC

14

1211108 9764 53

E10

E10

E9

E9

E8E7

E8

E10

E9

E8

E8

E7

E6

E9

E8

E7

E7

E6

E5

E4

E6

E5

E7

E6

E5

E6

E5

E4

E4

E3

E3

E2

E1

E2

E5

E4

E3

E3

E2

E1

E4

E3

E2

E2

E1

E1

DC

DP

DC

DP

PR

PW

DC

DP

PR

21CPU cycle

EFR.NXF

0

NMI at CPU
bdry

E2

E1

DC

E1

DC

DP

DP

PR

PW

PS

PR

PW

PS

PG

n

n+1
n+2

n+3

n+4

n+5

n+6

DC

DP

PR

PW

PS

PG

Execute
packet

PR

1211

PWPS

1098

PG

DP

PW

PR

PS

PG

PR

PS

PW

PS

PG

PG

PW

PS

PG

76543

PGn+7

n+9

n+8

n+10

n+11

21

ISFP

CPU cycle 0

13

E10

13

DP

E9

Cycles 6-14: Nonreset
interrupt processing is disabled

Annulled Instructions

E8E7E6E4 E5E3E2

TSR
v

NTSR

EXC

PCXM

DCXM

TSR.GIE

TSR.XEN

IER.NMIE

DCXM at point of exception

PCXM at point of exception

GIE at point of exception

SPLX at point of exceptionTSR.SPLX

TSR.INT

TSR.EXC

CXM at point of exceptionTSR.CXM

INT at point of exception

www.ti.com Performance Considerations

Figure 6-4. NMI Exception Detection and Processing: Pipeline Operation

573SPRU732J–July 2010 C64x+ CPU Exceptions

Copyright © 2010, Texas Instruments Incorporated

21 22201917 18161514

E10

2221201918171615

E1DC

14

1211108 9764 53

E10

E10

E9

E9

E8E7

E8

E10

E9

E8

E8

E7

E6

E9

E8

E7

E7

E6

E5

E4

E6

E5

E7

E6

E5

E6

E5

E4

E4

E3

E3

E2

E1

DC

E5

E4

E3

E3

E2

E1

E4

E3

E2

E2

E1

E1

DC

DP

DC

DP

PR

PW

DC

DP

PR

21CPU cycle

EFR.EXF

0

EXCEP at
CPU bdry

E2

E1

DC

E1

DC

DP

DP

PR

PW

PS

PR

PW

PS

PG

n
n+1

n+2

n+3

n+4

n+5

n+6

DC

DP
PR

PW

PS

PG

Execute
packet

PR

1211

PWPS

1098

PG

DP

PW

PR

PS

PG

PR

PS

PW

PS

PG

PG

PW

PS

PG

76543

PGn+7

n+9

n+8

n+10

n+11

21

ISR

CPU cycle 0

13

E10

13

DP

E9

Annulled Instructions

TSR

NTSR

EXC

TSR.GIE

TSR.XEN

IER.NMIE

GIE at point of exception

TSR.INT

TSR.EXC

CXM at point of exceptionTSR.CXM

INT at point of interrupt

EFR.NXF

NMI at CPU
bdry

DCPRPWPSPG DP

PRPWPSPG DP
Annulled Instructions

TSR

ITSR

IRP

&(ISR)

PWPSPG PR

ISR+1

ISR+2

ISR+3

ISR+4

ISR+5

PWPSPG

PSPG

PG

NRP

&(n+5)

Performance Considerations www.ti.com

Figure 6-5. Double Exception Detection and Processing: Pipeline Operation

574 C64x+ CPU Exceptions SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Programming Considerations

6.5 Programming Considerations

There are two types of exceptions that can result directly from instruction execution. The first is an
intentional use via the SWE or SWENR instructions. The second is execution error detection exceptions
that are internally generated within the CPU. These internal exceptions are primarily intended to facilitate
program debug.

6.5.1 Internal Exceptions

Causes of internal exceptions:

• Fetch error

– Program memory fetch error (privilege, parity, etc.)

• Single input from L1P returned with data indicates error
– Two branches taken in same execute packet
– Branch to middle of 32-bit instruction in header-based fetch packet
– Branch to header

• Illegal fetch packets

– Reserved fetch packet header
• Illegal opcode

– Specified set of reserved opcodes
– Header not in word 7

• Privilege violation

– Access to restricted control register
– Attempt to execute restricted instruction

• Register write conflicts
• Loop buffer exceptions (SPLOOP, SPKERNEL)

– Unit conflicts
– Missed (but required) stall
– Attempt to enter early-exit in reload while draining
– Unexpected SPKERNEL
– Write to ILC or RILC in prohibited timing window
– Multicycle NOP prior to SPKERNEL or SPKERNELR instruction

6.5.2 Internal Exception Report Register (IERR)

The internal exception report register (IERR) contains flags that indicate the cause of the internal
exception. In the case of simultaneous internal exceptions, the same flag may be set by different
exception sources. In this case, it may not be possible to determine the exact causes of the individual
exceptions. The IERR is shown in Figure 2-20 and described in Table 2-19.

575SPRU732J–July 2010 C64x+ CPU Exceptions

Copyright © 2010, Texas Instruments Incorporated

Programming Considerations www.ti.com

6.5.3 Software Exception

6.5.3.1 SWE Instruction

When an SWE instruction is executed, the SXF bit in EFR is set. On the following cycle, the exception
detection logic sees the SXF bit in EFR as a 1, and takes an exception. This instruction can be used to
effect a system call while running in User mode. Execution of the instruction results in transfer of control to
the exception service routine operating in Supervisor mode. If the SXF bit is the only bit set in EFR, then
the exception can be interpreted as a system service request. An appropriate calling convention using the
general-purpose registers may be adopted to provide parameters for the call. This is left as a
programming choice. An example of code to quickly detect the system call case at the beginning of the
exception service routine is shown in Example 6-2. Since other exceptions are in general error conditions
and interrupt program execution at nonreturnable points, the need to process these is not particularly time
critical.

Example 6-2. Code to Quickly Detect OS Service Request

STW B0,*SP-- ; save B0
|| MVC EFR,B0 ; read EFR

CMPEQ B0,1,B0 ; is SEF the only exception?
[B0] B OS_Service ; if so,
[B0] ... ; conditionally execute service
[B0] ... ; code until branch takes effect

6.5.3.2 SWENR Instruction

The SWENR instruction causes a software exception to be taken similarly to that caused by the SWE
instruction. It is intended for use in systems supporting a secure operating mode. The SWENR instruction
can be used as a mechanism for nonsecure programs to return to secure Supervisor mode services such
as an interrupt dispatcher. It differs from the SWE instruction in four ways:

1. TSR is not copied into NTSR
2. No return address is placed in NRP (it stays unmodified)
3. A branch to restricted entry point control register (REP) is forced in the context switch rather than the

ISTP-based exception (NMI) register.
4. The IB bit in TSR is set to 1. This is observable only in the case where another exception is recognized

simultaneously.

If another exception (internal or external) is recognized simultaneously with the SWENR-raised exception,
then the other exceptions(s) take priority and normal exception behavior occurs; that is, NTSR and NRP
are used, execution is directed to the NMI vector. In this case, the setting of the IB bit in TSR by the
SWENR instruction is registered in NTSR. Assuming the SWE or SWENR instruction was not placed in an
execute slot where interrupts are architecturally blocked (as should always be the case), then the IB bit in
NTSR will differentiate whether the simultaneous exception occurred with SWE or SWENR.

The SWENR instruction causes a change in control to the address contained in REP. It should have been
previously initialized to a correct value by a privileged supervisor mode process.

576 C64x+ CPU Exceptions SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

Chapter 7
SPRU732J–July 2010

Software Pipelined Loop (SPLOOP) Buffer

This chapter describes the software pipelined loop (SPLOOP) buffer hardware and software mechanisms.

The C64x CPU does not support software pipelined loops (SPLOOP). This chapter applies only to the
C64x+ CPU.

Under normal circumstances, the compiler/assembly optimizer will do a good job coding SPLOOPs and it
will not be necessary for the programmer to hand code usage of the SPLOOP buffer. This chapter is
intended to describe the functioning of the buffer hardware and the instructions that control it.

Topic ... Page

7.1 Software Pipelining .. 578
7.2 Software Pipelining .. 578
7.3 Terminology .. 579
7.4 SPLOOP Hardware Support .. 579
7.5 SPLOOP-Related Instructions ... 580
7.6 Basic SPLOOP Example ... 583
7.7 Loop Buffer ... 586
7.8 Execution Patterns .. 590
7.9 Loop Buffer Control Using the Unconditional SPLOOP(D) Instruction 594
7.10 Loop Buffer Control Using the SPLOOPW Instruction .. 600
7.11 Using the SPMASK Instruction .. 602
7.12 Program Memory Fetch Control ... 606
7.13 Interrupts .. 607
7.14 Branch Instructions ... 609
7.15 Instruction Resource Conflicts and SPMASK Operation 609
7.16 Restrictions on Cross Path Stalls .. 610
7.17 Restrictions on AMR-Related Stalls ... 610
7.18 Restrictions on Instructions Placed in the Loop Buffer .. 611

577SPRU732J–July 2010 Software Pipelined Loop (SPLOOP) Buffer

Copyright © 2010, Texas Instruments Incorporated

Stage 0

Stage 1

Stage 3

Stage 2

iter 0

Stage 3

Stage 2

Stage 1

iter 1

Stage 0

Stage 3

Stage 2

Stage 1

Stage 0

Stage 2

Stage 3

Stage 0

Stage 1

iter n-2

iter n-1

Prolog

Kernel

Epilog

P0

P1

P2

Kn

E0

E1

E2

Execution
flow Code layout

Software Pipelining www.ti.com

7.1 Software Pipelining

Software pipelining is a type of instruction scheduling that exploits instruction level parallelism (ILP) across
loop iterations. Modulo scheduling is a form of software pipelining that initiates loop iterations at a constant
rate, called the initiation interval (ii). To construct a modulo scheduled loop, a single loop iteration is
divided into a sequence of stages, each with length ii. In the steady state of the execution of the software
pipelined loop, each of the stages is executing in parallel.

The instruction schedule for a modulo scheduled loop has three components: a kernel, a prolog, and an
epilog (Figure 7-1). The kernel is the instruction schedule that executes the pipeline steady state. The
prolog and epilog are the instruction schedules that setup and drain the execution of the loop kernel. In
Figure 7-1, the steady state has four stages, each from a different iteration, executing in parallel. A single
iteration produces a result in the time it takes four stages to complete, but in the steady state of the
software pipeline, a result is available every stage (that is, every ii cycles).

The first prolog stage, P0, is equal to the first loop stage, S0. Each prolog stage, Pn (where n > 0), is
made up of the loop stage, Sn, plus all the loop stages in the previous prolog stage, Pn - 1. The kernel
includes all the loop stages. The first epilog stage, E0, is made up of the kernel stage minus the first loop
stage, S0. Each epilog stage, En (where n > 0), is made up of the previous epilog stage, En - 1, minus the
loop stage, Sn.

The dynamic length (dynlen) of the loop is the number of instruction cycles required for one iteration of the
loop to complete. The length of the prolog is (dynlen − ii). The length of the epilog is the same as the
length of the prolog.

Figure 7-1. Software Pipelined Execution Flow

7.2 Software Pipelining

The SPLOOP facility on the C64x+ DSP stores a single iteration of loop in a specialized buffer and
contains hardware that will selectively overlay copies of the single iteration in a software pipeline manner
to construct an optimized execution of the loop.

This provides the following benefits.

• Since the prolog and epilog do not need to be explicitly code, code size is significantly reduced.
• The SPLOOP version of the loop can be easily interrupted unlike the non- SPLOOP version of the

same loop.
• Since the instructions in the loop do not need to be fetched on each cycle, the memory bandwidth and

power requirements are reduced.
• Since the loop executes out of a buffer, the branch to the start of loop is implicit (hence not required).

In some cases this may permit a tighter loop since a .S unit is freed.

578 Software Pipelined Loop (SPLOOP) Buffer SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Terminology

7.3 Terminology

The following terminology is used in the discussion in this chapter.

• Iteration interval (ii) is the interval (in instruction cycles) between successive iterations of the loop.
• A stage is the code executed in one iteration interval.
• Dynamic length (dynlen) is the length (in instruction cycles) of a single iteration of the loop. It is

therefore equal to the number of stages times the iteration interval.5
• The kernel is the period when the loop is executing in a steady state with the maximum number of loop

iterations executing simultaneously. For example: in Figure 7-1 the kernel is the set of instructions
contained in stage 0, stage 1, stage, 2, and stage 3.

• The prolog is the period before the loop reaches the kernel in which the loop is winding up. The length
of the prolog will by the dynamic length minus the iteration interval (dynlen - ii).

• The epilog is the period after the loop leaves the kernel in which the loop is winding down. The length
of the prolog will by the dynamic length minus the iteration interval (dynlen - ii).

7.4 SPLOOP Hardware Support

The basic hardware support for the SPLOOP operation is:

• Loop buffer
• Loop buffer count register (LBC)
• Inner loop count register (ILC)
• Reload inner loop count register (RILC)
• Task state register (TSR)
• Interrupt task state register (ITSR)
• NMI/Exception task state register (NTSR)

7.4.1 Loop Buffer

The loop buffer is used to store the instructions that comprise the loop and information describing the
sequence that the instructions were added to the buffer and the state (active or inactive) of each
instruction.

The loop buffer has enough storage for up to 14 execute packets.

7.4.2 Loop Buffer Count Register (LBC)

A loop buffer count register (LBC) is maintained as an index into the loop buffer. It is cleared to 0 when an
SPLOOP, SPLOOPD or SPLOOPW instruction is encountered and is incremented by 1 at the end of each
cycle. When LBC becomes equal to the iteration interval (ii) specified by the SPLOOP, SPLOOPD or
SPLOOPW instruction, then a stage boundary has been reached and LBC is reset to 0 and the inner loop
count register (ILC) is decremented.

There are two LBCs to support overlapped nested loops. LBC is not a user-visible register.

7.4.3 Inner Loop Count Register (ILC)

The inner loop count register (ILC) is used as a down counter to determine when the SPLOOP is
complete when the SPLOOP is initiated by either a SPLOOP or SPLOOPD instruction. When the loop is
initiated using a SPLOOPW instruction, the ILC is not used to determine when the SPLOOP is complete.
It is decremented once each time a stage boundary is encountered; that is, whenever the loop buffer
count register (LBC) becomes equal to the iteration interval (ii).

There is a 4 cycle latency between when ILC is loaded and when its contents are available for use. When
used with the SPLOOP instruction, it should be loaded 4 cycles before the SPLOOP instruction is
encountered. ILC must be loaded explicitly using the MVC instruction.

579SPRU732J–July 2010 Software Pipelined Loop (SPLOOP) Buffer

Copyright © 2010, Texas Instruments Incorporated

SPLOOP-Related Instructions www.ti.com

7.4.4 Reload Inner Loop Count Register (RILC)

The reload inner loop count register (RILC) is used for resetting the inner loop count register (ILC) for the
next invocation of a nested inner loop. There is a 4 cycle latency between when RILC is loaded with the
MVC instructions and when the value loaded to RILC is available for use. RILC must be loaded explicitly
using the MVC instruction.

7.4.5 Task State Register (TSR), Interrupt Task State Register (ITSR), and
NMI/Exception Task State Register (NTSR)

The SPLX bit in the task state register (TSR) indicates whether an SPLOOP is currently executing or not
executing.

When an interrupt occurs, the contents of TSR (including the SPLX bit) is copied to the interrupt task state
register (ITSR).

When an exception or non-maskable interrupt occurs, the contents of TSR (including the SPLX bit) is
copied to the NMI/Exception task state register (NTSR).

See Section 2.9.15 for more information on TSR. See Section 2.9.9 for more information on ITSR. See
Section 2.9.10 for more information on NTSR.

7.5 SPLOOP-Related Instructions

The following instructions are used to control the operation of an SPLOOP:

• SPLOOP, SPLOOPD, and SPLOOPW
• SPKERNEL and SPKERNELR
• SPMASK and SPMASKR

7.5.1 SPLOOP, SPLOOPD, and SPLOOPW Instructions

One of the SPLOOP, SPLOOPD, or SPLOOPW (collectively called SPLOOP(D/W)) instructions are used
to invoke the loop buffer mechanism. They each fulfil the same basic purpose, but differ in details. In each
case, they must be the first instruction of the execute packet containing it. They cannot be placed in the
same execute packet as any instruction that initiates a multicycle NOP (for example: BNOP or NOP n).

When you know in advance the number of iterations that the loop will execute, you can use the SPLOOP
or SPLOOPD instructions. If you do not know the exact number of iterations that the loop should execute,
you can use the SPLOOPW in a fashion similar to a do−while loop.

The SPLOOP(D/W) instructions each clear the loop buffer count register (LBC), load the iteration interval
(ii), and start the LBC counting.

7.5.1.1 SPLOOP Instruction

The SPLOOP instruction is coded as:
[cond] SPLOOP ii

The ii parameter is the iteration interval which specifies the interval (in instruction cycles) between
successive iterations of the loop.

The SPLOOP instruction is used when the number of loop iterations is known in advance. The number of
loop iterations is determined by the value loaded to the inner loop count register (ILC). ILC should be
loaded with an initial value 4 cycles before the SPLOOP instruction is encountered.

The (optional) conditional predication is used to indicate when and if a nested loop should be reloaded.
The contents of the reload inner loop counter (RILC) is copied to ILC when either a SPKERNELR or a
SPMASKR instruction is executed with the predication condition on the SPLOOP instruction true. If the
loop is not nested, then the conditional predication should not be used.

580 Software Pipelined Loop (SPLOOP) Buffer SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com SPLOOP-Related Instructions

7.5.1.2 SPLOOPD Instruction

The SPLOOPD instruction is coded as:
[cond] SPLOOPD ii

The ii parameter is the iteration interval which specifies the interval (in instruction cycles) between
successive iterations of the loop.

The SPLOOPD instruction is used to initiate a loop buffer operation when the known minimum iteration
count of the loop is great enough that the inner loop count register (ILC) can be loaded in parallel with the
SPLOOPD instruction and the 4 cycle latency will have passed before the last iteration of the loop.

Unlike the SPLOOP instruction, the load of ILC is performed in parallel with the SPLOOPD instruction.
Due to the inherent latency of the load to ILC, the value to ILC should be predecremented to account for
the 4 cycle latency. The amount of the predecrement is given in Table 7-4.

The number of loop iterations is determined by the value loaded to ILC.

The (optional) conditional predication is used to indicate when and if a nested loop should be reloaded.
The contents of the reload inner loop counter (RILC) is copied to ILC when either a SPKERNELR or a
SPMASKR instruction is executed with the predication condition on the SPLOOP instruction true. If the
loop is not nested, then the conditional predication should not be used.

The use of the SPLOOPD instruction can result in reducing the time spent in setting up the loop by
eliminating up to 4 cycles that would otherwise be spent in setting up ILC. The tradeoff is that the
SPLOOPD instruction cannot be used if the loop is not long enough to accommodate the 4 cycle delay.

7.5.1.3 SPLOOPW Instruction

The SPLOOPW instruction is coded as:
[cond] SPLOOPW ii

The ii parameter is the iteration interval which specifies the interval (in instruction cycles) between
successive iterations of the loop.

The SPLOOPW instruction is used to initiate a loop buffer operation when the total number of loops
required is not known in advance. The SPLOOPW instruction must be predicated. The loop terminates if
the predication condition is not true. The value in the inner loop count register (ILC) is not used to
determine the number of loops.

Unlike the SPLOOP and SPLOOPD instructions, predication on the SPLOOPW instruction does not imply
a nested SPLOOP operation. The SPLOOPW instruction cannot be used in a nested SPLOOP operation.

When using the SPLOOPW instruction, the predication condition is used to determine the exit condition
for the loop. The ILC is not used for this purpose when using the SPLOOPW instruction.

When the SPLOOPW instruction is used to initiate a loop buffer operation, the epilog is skipped when the
loop terminates.

7.5.2 SPKERNEL and SPKERNELR Instructions

The SPKERNEL or the SPKERNELR (collectively called SPKERNEL(R)) instruction is used to mark the
end of the software pipelined loop. The SPKERNEL(R) instruction is placed in parallel with the last
execute packet of the SPLOOP code body indicating that there are no more instructions to load to the
loop buffer.

The SPKERNEL(R) instruction also controls the point in the epilog that the execution of post-SPLOOP
instructions begin.

In each case, the SPKERNEL(R) instruction must be the first instruction in an execute packet and cannot
be placed in the same execute packet as any instruction that initiates multicycle NOPs.

581SPRU732J–July 2010 Software Pipelined Loop (SPLOOP) Buffer

Copyright © 2010, Texas Instruments Incorporated

SPLOOP-Related Instructions www.ti.com

7.5.2.1 SPKERNEL Instruction

The SPKERNEL instruction is coded as:
SPKERNEL (fstg, fcyc)

The (optional) fstg and fcyc parameters specify the delay interval between the SPKERNEL instruction and
the start of the post epilog code. The fstg specifies the number of complete stages and the fcyc specifies
the number of cycles in the last stage in the delay.

The SPKERNEL instruction has arguments that instruct the SPLOOP hardware to begin execution of
post-SPLOOP instructions by an amount of delay (stages/cycles) after the start of the epilog.

Note that the post-epilog instructions are fetched from program memory and overlaid with the epilog
instructions fetched from the SPLOOP buffer. Functional unit conflicts can be avoided by either coding for
a sufficient delay using the SPKERNEL instruction arguments or by using the SPMASK instruction to
inhibit the operation of instructions from the buffer that might conflict with the instructions from the epilog.

7.5.2.2 SPKERNELR Instruction

The SPKERNELR instruction is coded as:
SPKERNELR

The SPKERNELR instruction is used to support nested SPLOOP execution where a loop needs to be
restarted with perfect overlap of the prolog of the second loop with the epilog of the first loop.

If a reload is required with a delay between the SPKERNEL and the point of reload (that is, nonperfect
overlap) use the SPMASKR instruction with the SPKERNEL (not SPKERNELR) to indicate the point of
reload.

The SPKERNELR instruction has no arguments. The execution of post-SPLOOP instructions commences
simultaneous with the first cycle of epilog. If the predication of the SPLOOP instruction indicates that the
loop is being reloaded, the instructions are fetched from both the SPLOOP buffer and of program memory.

The SPKERNELR instruction cannot be used in the same SPLOOP operation as the SPMASKR
instruction.

7.5.3 SPMASK and SPMASKR Instructions

The SPMASK and SPMASKR (collectively called SPMASK(R)) instructions are used to inhibit the
operation of instructions on specified functional units within the current execute packet.

• If there is an instruction from the buffer that would utilize the specified functional unit in the current
cycle, the execution of that instruction is inhibited.

• If the buffer is in the loading stage and there is an instruction (regardless of functional unit) that is
scheduled for execution during that cycle, the execution of that instruction proceeds, but the instruction
is not loaded into the buffer.

• If the case where an SPMASK(R) instruction is encountered while the loop is resuming after returning
from an interrupt, the SPMASK(R) instruction causes the instructions coming from the buffer to
execute, but instructions coming from program memory to be inhibited and are not loaded to the buffer.

The SPMASKR instruction is identical to the function of the SPMASK instruction with one additional
operation. In the case of nested loops where it is not desired that the reload of the buffer happen
immediately after the SPKERNEL instruction, the SPMASKR instruction can be used to mark the point in
the epilog that the reload should begin.

The SPMASKR instruction cannot be used in the same SPLOOP operation as the SPKERNELR
instruction.

The SPMASK and SPMASKR instructions are coded as:
SPMASK (unitmask)

SPMASKR (unitmask)

582 Software Pipelined Loop (SPLOOP) Buffer SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Basic SPLOOP Example

The unitmask parameter specifies which functional units are masked by the SPMASK or SPMASKR
instruction. The units may alternatively be specified by marking the instructions with a caret (^) symbol.
The following two forms are equivalent and will each mask the .D1 unit. Example 7-1 and Example 7-2
show the two ways of specifying the masked instructions.

Example 7-1. SPMASK Using Unit Mask to Indicate Masked Unit

SPMASK D1 ;Mask .D1 unit
|| LDW .D1 *A0,A1 ;This instruction is masked
|| MV .L1 A2,A3 ;This instruction is NOT masked

Example 7-2. SPMASK Using Caret to Indicate Masked Unit

SPMASK ;Mask .D1 unit
||^ LDW .D1 *A0,A1 ;This instruction is masked
|| MV .L1 A2,A3 ;This instruction is NOT masked

7.6 Basic SPLOOP Example

This section discusses a simple SPLOOP example. Example 7-3 shows an example of a loop coded in C
and Example 7-4 shows an implementation of the same loop using the SPLOOP instruction. The loop
copies a number of words from one location in memory to another.

Example 7-3. Copy Loop Coded as C Fragment

for (I=0; i<val; I++) {
dest[i]=source[i];
}

Example 7-4. SPLOOP Implementation of Copy Loop

MVC .S2 8,ILC ;Do 8 loops
NOP 3 ;4 cycle for ILC to load
SPLOOP 1 ;Iteration interval is 1
LDW *A1++,A2 ;Load source
NOP 4 ;Wait for source to load
MV .L2X A2,B2 ;Position data for write
SPKERNEL 6,0 ;End loop and store value

|| STW B2,*B0++

Example 7-5 is an alternate implementation of the same loop using the SPLOOPD instruction. The load of
the inner loop count register (ILC) can be made in the same cycle as the SPLOOPD instruction, but due to
the inherent delay between loading the ILC and its use, the value needs to be predecremented to account
for the 4 cycle delay.

Example 7-5. SPLOOPD Implementation of Copy Loop

SPLOOPD 1 ;Iteration interval is 1
|| MVC .S2 8-4,ILC ;Do 8 iterations

LDW *A1++,A2 ;Load source
NOP 4 ;Wait for source to load
MV .L1X A2,B2 ;Position data for write
SPKERNEL 6,0 ;End loop and store value

|| STW B2,*B0++

583SPRU732J–July 2010 Software Pipelined Loop (SPLOOP) Buffer

Copyright © 2010, Texas Instruments Incorporated

Basic SPLOOP Example www.ti.com

Table 7-1. SPLOOP Instruction Flow for Example 7-4 and Example 7-5

Loop

Cycle 1 2 3 4 5 6 7 8

1 LDW

2 NOP LDW

3 NOP NOP LDW

4 NOP NOP NOP LDW

5 NOP NOP NOP NOP LDW

6 MV NOP NOP NOP NOP LDW

7 STW MV NOP NOP NOP NOP LDW

8 STW MV NOP NOP NOP NOP LDW

9 STW MV NOP NOP NOP NOP

10 STW MV NOP NOP NOP

11 STW MV NOP NOP

12 STW MV NOP

13 STW MV

14 STW

7.6.1 Some Points About the Basic SPLOOP Example

Note the following points about Example 7-4, Example 7-5, and Table 7-1.

• In Example 7-4, due to the 4 cycle latency of loading ILC, the load to ILC happens at least 4 cycles
before the SPLOOP instruction is encountered. In this case, the MVC instruction that loads ILC is
followed by 3 cycles of NOP.

• In Example 7-5, the use of the SPLOOPD instruction allows you to load ILC in the same cycle of the
SPLOOPD instruction; but the value loaded to ILC is adjusted to account for the inherent 4 cycle delay
between loading the ILC and its use.

• The iteration interval (ii) is specified in the argument of the SPLOOP instruction.
• The termination condition (ILC equal to 0) is tested at every stage boundary. In this example, with ii

equal to 1, it is tested at each instruction cycle. Once the termination condition is true, the loop starts
draining.

• Cycles 1 through 6 constitute the prolog. Until cycle 7, the pipeline is filling.
• Cycles 7 and 8 each constitute a single iteration of the kernel. During each of these cycles, the pipeline

is filled as full as it is going to be.
• Cycles 9 through 14 constitute the epilog. During this interval, the pipeline is draining.
• In this example, the iteration interval is 1. A new iteration of the loop is started each cycle.
• The dynamic length (dynlen) is 7. One cycle for the LDW instruction. One cycle for the MV instruction.

One instruction for the SPKERNEL and STW instructions executed in parallel. Four cycles of NOP.
• The length of the prolog is (dynlen - ii) = 6 cycles. The length of the epilog is equal to the length of the

prolog.
• There is no branch back to the start of the loop. The instructions are executed from the SPLOOP

buffer and the SPKERNEL instruction marks the point that the execution is reset to the start of the
buffer.

• The body of the SPLOOP is a single scheduled iteration without pipeline optimization. The execution of
the SPLOOP overlays the execution of the instructions to optimize the execution of the loop.

• The argument in the SPKERNEL instruction indicates that the post-epilog code is delayed until after
the epilog (6 cycles) completes.

• The MV instruction needs to be there to move the data between the A side and the B side. If it were
not there, there would eventually be a unit conflict between the LDW and STW instructions as they try
to execute in the same cycle.

584 Software Pipelined Loop (SPLOOP) Buffer SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Basic SPLOOP Example

7.6.2 Same Example Using the SPLOOPW Instruction

For completeness, Example 7-6 shows an example of a loop coded in C and Example 7-7 is the same
example using the SPLOOPW instruction. The SPLOOPW instruction is intended to support while−loop
constructions in which the number of loops is not known in advance and (in general) is determined as the
loop progresses.

Example 7-6. Example C Coded Loop

do {
I--;
dest[i]=source[i];
} while (I);

Example 7-7. SPLOOPW Implementation of C Coded Loop

MVK 8,A0 ;Do 8 loops
[!A0] SPLOOPW 1 ;Check loop

LDW .D1 *A1++,A2 ;Load source value
NOP 1
SUB .S1 A0,1,A0 ;Adjust loop counter
NOP 2 ;Wait for source to load
MV .L2X A2,B2 ;Position data for write
SPKERNEL 0,0 ;End loop

|| STW .D2 B2,*B0++ ;Store value

Table 7-2. SPLOOPW Instruction Flow for Example 7-7

Loop

Cycle 1 2 3 4 5 6 7 8 9 10 11 12

1 LDW

2 NOP LDW

3 SUB NOP LDW

4 NOP SUB NOP LDW

5 NOP NOP SUB NOP LDW

6 MV NOP NOP SUB NOP LDW

7 STW MV NOP NOP SUB NOP LDW

8 STW MV NOP NOP SUB NOP LDW

9 STW MV NOP NOP SUB NOP LDW

10 STW MV NOP NOP SUB NOP LDW

11 STW MV NOP NOP SUB NOP LDW

12 STW MV NOP NOP SUB NOP LDW

585SPRU732J–July 2010 Software Pipelined Loop (SPLOOP) Buffer

Copyright © 2010, Texas Instruments Incorporated

Loop Buffer www.ti.com

7.6.3 Some Points About the SPLOOPW Example

Note the following points about Example 7-7 and Table 7-2.

• Unlike the SPLOOP and SPLOOPD instructions, the number of loops does not depend on ILC. It
depends, instead, on the value in the predication register used with the SPLOOPW instruction (in this
case, the value in A0).

• The termination condition (A0 equal to 0) is tested at every stage boundary. In this example, with ii
equal to 1, it is tested at each instruction cycle. Once the termination condition is true, the loop
terminates abruptly without executing the epilog.

• The termination condition (A0 equal to 0) needs to be true 3 cycles before you actually test it, so the
value of A0 needs to be adjusted 4 cycles before the SPKERNEL instruction. In this case, the SUB
instruction was positioned using the NOP instructions so that its result would be available 3 cycles
before the SPKERNEL.

• Unlike the SPLOOP and SPLOOPD instructions, the SPLOOPW instruction causes the loop to exit
without an epilog. In cycle 13, the loop terminates abruptly.

• Loop 9 through loop 14 begin, but they do not finish. The loop exits abruptly on the stage boundary 3
cycles after the termination condition becomes true. It is important that the loop is coded so that the
extra iterations of the early instructions do not cause problems by overwriting significant locations. For
example: if the loop contains an early write to a buffer we might find that in incorrectly coded loop
might write beyond the end of the buffer overwriting data unintentionally.

7.7 Loop Buffer

The basic facility to support software pipelined loops is the loop buffer. The loop buffer has storage for up
to 14 execute packets. The buffer is filled from the SPLOOP body that follows an SPLOOP(D/W)
instruction and ends with the first execute packet containing an SPKERNEL instruction.

The SPLOOP body is a single, scheduled iteration of the loop. It consists of one or more stages of ii
cycles each. The execution of the prolog, kernel, and epilog are generated from copies of this single
iteration time shifted by multiples of ii cycles and overlapped for simultaneous execution. The final stage
may contain fewer than ii cycles, omitting the final cycles if they have only NOP instructions.

The dynamic length (dynlen) is the length of the SPLOOP body in cycles starting with the cycle after the
SPLOOP(D) instruction. The dynamic length counts both execute packets and NOP cycles, but does not
count stall cycles. The loop buffer can accommodate a SPLOOP body of up to 48 cycles.

Example 7-8 demonstrates counting of dynamic length. There are 4 cycles of NOP that could be
combined into a single NOP 4. It is split up here to be clearer about the cycle and stage boundaries.

Example 7-8. SPLOOP, SPLOOP Body, and SPKERNEL

SPLOOP 2 ;ii=2, dynlen=7
|| MV A0,A1 ;save previous cond reg
;-----Start of stage 0

LDW *B7[A0],A5 ;cycle 1
NOP ;cycle 2

;-----stage boundary. End of stage 0, start of stage 1
NOP 2 ;cycles 3 and 4

;-----stage boundary. End of stage 1, start of stage 2
NOP ;cycle 5
EXTU A5,12,7,A6 ;cycle 6

;-----stage boundary. End of stage 2, start of stage 3
SPKERNEL 0,0 ;last exe pkt of SPLOOOP body

|| ADD .D1 A6,A7,A7 ;accumulate (cycle 7)
; NOP ;can omit final NOP of last stage
;-----stage boundary. End of stage 3

586 Software Pipelined Loop (SPLOOP) Buffer SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Loop Buffer

7.7.1 Software Pipeline Execution From the Loop Buffer

The loop buffer is the mechanism that both generates the execution of the loop prolog, kernel, and epilog,
and saves the repeated fetching and decoding of instructions in the loop. As the SPLOOP body is fetched
and executed the first time, it is loaded into the loop buffer. By the time the entire SPLOOP body has been
loaded into the loop buffer, the loop kernel is present in the loop buffer and the execution of the loop
kernel can be entirely from the loop buffer. The last portion of the software pipeline is the epilog; which is
generated by removing instructions from the buffer in the order that they were loaded into it.

In Table 7-3, the instructions in the CPU pipeline are executed from program memory. The instructions in
the SPL buffer are executed from the SPLOOP buffer. At K0 for example, stage3 is being executed from
program memory and stage0, stage1, and stage2 are being executed from the SPLOOP buffer. At Kn and
later, by contrast, all stages are being executed from the SPLOOP buffer.

Table 7-3. Software Pipeline Instruction Flow Using the Loop Buffer

Execution Flow CPU Pipeline SPL Buffer

P0 stage0 -

P1 stage1 stage0

P2 stage2 stage0 stage1

K0 stage3 stage0 stage1 stage2

Kn - stage0 stage1 stage2 stage3

E0 - - stage1 stage2 stage3

E1 - - - stage2 stage3

E2 - - - - stage3

7.7.2 Stage Boundary Terminology

A stage boundary is reached every ii cycles. The following terminology is used to describe specific stage
boundaries.

• First loading stage boundary: The first stage boundary after the SPLOOP(D/W) instruction. The
stage boundary at the end of P0 in Table 7-3.

• Last loading stage boundary: The first stage boundary that occurs in parallel with or after the
SPKERNEL instruction. The stage boundary at the end of K0 in Table 7-3. This is the same as the first
kernel stage boundary.

• First kernel stage boundary: The same as the last loading stage boundary.
• Last kernel stage boundary: The last stage boundary before the loop is only executing epilog

instructions. The stage boundary at the end of Kn in Table 7-3.

587SPRU732J–July 2010 Software Pipelined Loop (SPLOOP) Buffer

Copyright © 2010, Texas Instruments Incorporated

Loop Buffer www.ti.com

7.7.3 Loop Buffer Operation

On the cycle after an SPLOOP(D/W) instruction is encountered, instructions are loaded into the loop
buffer. A loop buffer count register (LBC) is maintained as an index into the loop buffer. At the end of each
cycle, LBC is incremented by 1. If LBC becomes equal to the ii, then a stage boundary has been reached
and LBC is reset to 0. There are two LBCs to support overlapped nested loops.

The loop buffer has four basic operations:

• Load: instructions fetched from program memory are executed and written into the loop buffer at the
current LBC and marked as valid on the next cycle

• Fetch: valid instructions are fetched from the loop buffer at the current LBC and executed in parallel
with any instructions fetched from program memory.

• Drain: instructions at the current LBC are marked as invalid on the current cycle and not executed.
• Reload: instructions at the current LBC are marked as valid on the current cycle and executed.

The execution of a software pipeline prolog and the first kernel stage are implemented by fetching valid
instructions from the loop buffer and executing them in parallel with instructions fetched from program
memory. The instructions fetched from program memory are loaded into the loop buffer and marked as
valid on the next cycle. The execution of the remaining kernel stages is implemented by exclusively
fetching valid instructions from the loop buffer. The execution of a software pipeline epilog is implemented
by draining the loop buffer by marking instructions as invalid, while fetching the remaining valid
instructions from the loop buffer.

For example: referring to Example 7-4 and Table 7-1; as each instruction in loop 1 is reached in turn, it is
fetched from program memory, executed and stored in the loop buffer. When each instruction is reached
in loop 2 through loop 12, it is fetched from the loop buffer and executed. As cycles 8 through 12 execute,
instructions in the loop buffer are marked as invalid so that for each cycle fewer instructions are fetched
from the loop buffer.

The loop buffer supports the execution of a nested software pipelined loop by reenabling the instructions
stored in the loop buffer. The reexecution of the software pipeline prolog is implemented by reenabling
instructions in the loop buffer (by marking them as valid) and then fetching valid instructions from the loop
buffer. The point of reload for the nested loop is signaled by the SPKERNELR or SPMASKR instruction.

The loop buffer also supports do−while type of constructs in which the number of iterations is not known in
advance, but is determined in the course of the execution of the loop. In this case, the loop immediately
completes after the last kernel stage without executing the epilog.

7.7.3.1 Interrupt During SPLOOP Operation

If an interrupt occurs while a software pipeline is executing out of the loop buffer, the loop will pipe down
by executing an epilog and then service the interrupt. The interrupt return address stored in the interrupt
return pointer register (IRP) or the nonmaskable interrupt return pointer register (NRP) is the address of
the execute packet containing the SPLOOP instruction. The task state register (TSR) is copied into the
interrupt task state register (ITSR) or the NMI/exception task state register (NTSR) with the SPLX bit set to
1. On return from the interrupt with ITSR or NTSR copied back into TSR and the SPLX bit set to 1,
execution is resumed at the address of the SPLOOP(D/W) instruction, and the loop is piped back up by
executing a prolog.

7.7.3.2 Loop Buffer Active or Idle

After reset the loop buffer is idle. The loop buffer becomes active when an SPLOOP(D/W) instruction is
encountered. The loop buffer remains active until one of the following conditions occur:

• The loop buffer is not reloading and after the last delay slot of a taken branch.
• The SPLOOPW loop stage boundary termination condition is true.
• An interrupt occurs and the loop finishes draining in preparation for interrupt (prior to taking interrupt).
• The SPLOOP(D) loop is finished draining and the loop is not reloading.

When the loop buffer is active, the SPLX bit in TSR is set to 1; when the loop buffer is idle, the SPLX bit in
TSR is cleared to 0.

588 Software Pipelined Loop (SPLOOP) Buffer SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Loop Buffer

There is one case where the SPLX bit is set to 1 when the loop buffer is idle. When executing a B IRP
instruction to return to an interrupted SPLOOP, the ITSR is copied back into TSR in the E1 stage of the
branch. The SPLX bit is set to 1 beginning in the E2 stage of the branch, which is before the loop buffer
has restarted. If the loop buffer state machine is started in the branch delay slots of a B IRP or B NRP
instruction, it uses the SPLX bit to determine if this is a restart of an interrupted SPLOOP. The SPLX bit is
not checked if starting an SPLOOP outside the delay slots of one of these branches.

7.7.3.3 Loading Instructions into the Loop Buffer

A loading counter is used to keep track of the current offset from the beginning of the loop and to
determine the dynlen. The loading counter is incremented each cycle until an SPKERNEL instruction is
encountered. When an SPLOOP(D/W) instruction is encountered, LBC and the loading counter are
cleared to 0. On each cycle thereafter, the instructions fetched from program memory are stored in the
loop buffer indexed by LBC along with a record of the loading counter. On the next cycle, these
instructions appear as valid in the loop buffer.

When the SPKERNEL instruction is encountered, the loop is finished loading, the dynlen is assigned the
current value of the loading counter, and program memory fetch is disabled. If the SPKERNEL is on the
last kernel stage boundary, program memory fetch may immediately be reenabled (or effectively never
disabled).

SPMASKed instructions from program memory are not stored in the loop buffer. The BNOP
<displacement> instruction does not use a functional unit and cannot be specified by the SPMASK
instruction, so this instruction is treated in the same way as an SPMASKed instruction.

When returning to an SPLOOP(D) instruction with the SPLX bit in TSR set to 1, SPMASKed instructions
from program memory execute like a NOP. The NOP cycles associated with ADDKPC, BNOP, or
protected LD instructions that are masked, are always executed when resuming an interrupted
SPLOOP(D).

A warning or error (detected by the assembler) occurs when loading if:

• An MVC, ADDKPC, or S-unit B (branch) instruction appears in the SPLOOP body and the instruction
is not masked by an SPMASK instruction.

• Another SPLOOP(D) instruction is encountered.
• The loading counter reaches 48 before an SPKERNEL instruction is encountered.
• A resource conflict occurs when storing an instruction in the loop buffer.
• The dynlen is less than ii + 1 for SPLOOP(D) or dynlen < ii for SPLOOPW.

The assembler will ensure that there are no resource conflicts that would occur if the first kernel stage
were actually reached.

7.7.3.4 Fetching (Dispatching) Instructions from the Loop Buffer

After the first loading stage boundary, instructions marked as valid in the loop buffer at the current LBC
are fetched from the loop buffer and executed in parallel with any instructions fetched from program
memory. Once fetching begins, it continues until the loop buffer is no longer active for the given loop.

Instructions fetched from the loop buffer that are masked by an SPMASK instruction are not executed. An
instruction fetched from program memory may execute on the units that were used by an SPMASKed
instruction. (See Section 7.15).

7.7.3.5 Disabling (Draining) Instructions in the Loop Buffer

The loop buffer starts draining:

• On the cycle after the loop termination condition is true
• On the cycle after the interrupt is detected and the conditions required for taking the interrupt are met

(see Section 7.13).

The draining counter is used to retrace the order in which instructions were loaded into the loop buffer.
The draining counter is initialized to 0 and then incremented by 1 each cycle. Instructions in the loop
buffer are marked as invalid in the order that they were loaded.

589SPRU732J–July 2010 Software Pipelined Loop (SPLOOP) Buffer

Copyright © 2010, Texas Instruments Incorporated

Execution Patterns www.ti.com

Instructions in the loop buffer indexed by LBC are marked as invalid if their loading counter value (from
when they were loaded into the loop buffer) is equal to the draining counter value.

When the draining counter is equal to (dynlen - ii), draining is complete. Any remaining valid instructions
for the loop (with a loading counter > (dynlen - ii)) are all marked as invalid.

If the loop is interrupt draining, then program memory fetch remains disabled until the interrupt is taken. If
the loop is normal draining, program memory fetch is enabled after a delay specified by the
SPKERNEL(R) instruction.

7.7.3.6 Enabling (Reloading) Instructions in the Loop Buffer

On the cycle after the reload condition is true (see Section 7.9.6), the loop buffer begins reloading
instructions in the loop buffer. Instructions in the loop buffer are marked as valid in the order that they
were originally loaded.

The reloading counter is initialized to 0 and then incremented by 1 each cycle until it equals the dynlen.
The reloading counter is used to retrace the order in which instructions were loaded into the loop buffer.

Instructions in the loop buffer indexed by LBC are marked as valid, if their loading counter value (from
when they were written into the loop buffer) is equal to the reloading counter value.

Reloading does not have to start on a stage boundary. Reloading and draining may access different
offsets in the loop buffer. Therefore, there are two LBCs. When reload begins, the unused LBC (the one
not being used for draining) is allocated for reloading.

When the reloading counter is equal to the dynlen, the reloading of the software pipeline loop is complete,
all the original loop instructions have been reenabled, and the reloading counter stops incrementing.

Program memory fetch of the epilog is disabled when the reload counter equals the dynlen or after the last
delay slot of a branch that executed with a true condition. In general, the branch is used in a nested loop
to place the PC back at the address of the execute packet after the SPKERNEL(R) instruction to reuse
the same epilog code between each execution of the inner loop.

A hardware exception is raised while reloading if the termination condition is true and the draining counter
for the previous invocation of the loop has not reached the value of dynlen − ii. This describes a condition
where both invocations of the loop are attempting to drain at the same time (this could happen, for
example, if the RILC value was smaller than the ILC value).

7.8 Execution Patterns

The four loop buffer operations (load, fetch, drain, and reload) are combined in ways that implement
various software pipelined loop execution patterns. The three execution patterns are:

• Full execution of a single loop (Section 7.8.1)
• Early exit from a loop (Section 7.8.2)
• Reload of a loop (Section 7.8.3)

7.8.1 Prolog, Kernel, and Epilog Execution Patterns

Figure 7-2 shows a generalization of the basic prolog, kernel, and epilog execution pattern. For simplicity
these patterns assume that the SPKERNEL instruction appears on a stage boundary.

In Figure 7-3, the termination condition is true on the first kernel stage boundary K0, and falling through to
the epilog, the software pipeline only executes a single kernel stage.

590 Software Pipelined Loop (SPLOOP) Buffer SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

P0

P1

P2

K0

E2

E1

Kn

E0

Execution
pattern

Loop buffer
operation

L
o
a
d

F
e
tc

h

D
ra

in

P0

P1

P2

K0

E2

E1

E0

Execution
pattern

Loop buffer
operation

L
o
a
d

F
e
tc

h

D
ra

in

www.ti.com Execution Patterns

Figure 7-2. General Prolog, Kernel, and Epilog Execution Pattern

Figure 7-3. Single Kernel Stage Execution Pattern

7.8.2 Early-Exit Execution Pattern

If the termination condition is true before an SPKERNEL(R) instruction is encountered, then the epilog
execution pattern begins before the prolog execution pattern is complete. Since the loop has started
draining before it has finished loading, this is referred to as an early-exit.

The execution of a software pipeline early-exit is implemented by beginning to drain the loop buffer by
disabling instructions in the order that they were originally loaded, fetching the remaining valid instructions
from the loop buffer, and then loading the instructions fetched from program memory into the loop buffer
and marking them as valid on the next cycle. An early-exit execution pattern is shown in Figure 7-4. In this
case the termination condition was found to be true at the end of P1.

If the termination condition is encountered on the first stage boundary (end of P0) as in Figure 7-5, then
no instructions actually execute from the loop buffer. In this special case of early-exit, the loop is only
executing a single iteration.

591SPRU732J–July 2010 Software Pipelined Loop (SPLOOP) Buffer

Copyright © 2010, Texas Instruments Incorporated

Execution
pattern

Loop buffer
operation

P0

P1

P2

K0

E2

E1

E0 L
o
a
d

F
e
tc

h

D
ra

in

P0

P1

P2

K0 E2

E1

E0

Execution
pattern

Loop buffer
operation

L
o
a
d

F
e
tc

h

D
ra

in

Execution Patterns www.ti.com

Figure 7-4. Early-Exit Execution Pattern

Figure 7-5. Single Loop Iteration Execution Pattern

7.8.3 Reload Execution Pattern

The loop buffer can reload a software pipeline by reactivating the instructions that are stored in the loop
buffer. A reload prolog uses the information stored in the loop buffer to reenable instructions in the order
that they were originally loaded during the initial prolog.

In Figure 7-6, the loop buffer begins executing a reload prolog while completing the epilog of a previous
invocation of the same loop.

The execution of a reload early-exit is implemented by reloading (marking as valid) instructions in the loop
buffer, disabling (marking as invalid) instructions in the loop buffer, and then fetching the remaining valid
instructions from the loop buffer. A reload early-exit execution pattern is shown in Figure 7-7.

592 Software Pipelined Loop (SPLOOP) Buffer SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

P01

P11

P21

K01

E21

E11

Kn1

E01

E22

E02

E12

Kn2

K02

P22

P02

P12

Execution
pattern

Loop buffer
operation

L
o
a
d

F
e
tc

h

D
ra

in

L
o
a
d

F
e
tc

h

D
ra

in

P01

P11

P21

K01

E21

E11

Kn1

E01

E22

E02

E12

K02

P22

P02

P12

Execution
pattern

Loop buffer
operation

L
o
a
d

F
e
tc

h

D
ra

in

L
o
a
d

F
e
tc

h

D
ra

in

www.ti.com Execution Patterns

Figure 7-6. Reload Execution Pattern

Figure 7-7. Reload Early-Exit Execution Pattern

593SPRU732J–July 2010 Software Pipelined Loop (SPLOOP) Buffer

Copyright © 2010, Texas Instruments Incorporated

Loop Buffer Control Using the Unconditional SPLOOP(D) Instruction www.ti.com

7.9 Loop Buffer Control Using the Unconditional SPLOOP(D) Instruction

The unconditional form of the SPLOOP(D) instruction uses an inner loop count register (ILC) as a down
counter, it can delay execution of program memory instructions overlapped with epilog instructions, and it
can reload to support nested loops.

7.9.1 Initial Termination Condition Test and ILC Decrement

The termination condition is the set of conditions which determine whether or not to continue the execution
of an SPLOOP. The initial termination condition is the value of the termination condition upon entry to the
SPLOOP. When using the SPLOOPW or SPLOOPD, the initial termination condition is always false.
When using the SPLOOP, the initial termination condition is true if ILC is equal to zero, false otherwise.

If the initial termination condition is true, then the following occur:

• Non-SPMASKed instructions are stored in the loop buffer as disabled.
• Non-SPMASKed instructions execute as NOPs.
• SPMASKed program memory instructions execute as normal.

If the initial termination condition is true and the SPKERNEL instruction is unconditional, the loop buffer is
idle after the last loading stage boundary. If the SPKERNEL instruction is not on a stage boundary, the
loop buffer issues NOPs until the last loading stage boundary. If the SPKERNEL instruction is conditional,
indicating a possible reload, then the reload condition is evaluated at the last loading stage boundary.

When all of the following conditions are true, ILC is decremented:

• An unconditional SPLOOP (not SPLOOPD) instruction is encountered.
• ILC is not 0.

The bottom line is, the minimum number of iterations:

• is zero for an SPLOOP;
• depends on the iteration interval, but will be at least one iteration for an SPLOOPD;
• will be at least one iteration for an SPLOOPW.

7.9.2 Stage Boundary Termination Condition Test and ILC Decrement

The stage boundary termination condition is true when a stage boundary is reached and ILC is equal to 0;
otherwise, the stage boundary termination condition is false. When the stage boundary termination
condition is true, the loop buffer starts draining instructions.

When all of the following conditions are true, ILC is decremented:

• A stage boundary has been reached.
• ILC is not 0.
• The loop is not interrupt draining.
• The loop will not start interrupt draining on the next cycle.

For the first 3 cycles of a loop initiated by an unconditional SPLOOPD instruction, the stage boundary
termination condition is always false, ILC decrement is disabled, and the loop cannot be interrupted.

If the loop is interrupted and after interrupt draining is complete, ILC contains the current number of
remaining loop iterations.

Example 7-9 shows a case in which the value loaded to ILC is determined at run time. The loop may
begin draining at any point whenever the ILC decrements to zero (that is, the loop may execute 0 or more
iterations). The comments in the example show the stage number (N), the test for termination and the
conditional decrement of ILC. ILC will not decrement below zero.

594 Software Pipelined Loop (SPLOOP) Buffer SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Loop Buffer Control Using the Unconditional SPLOOP(D) Instruction

Example 7-9. Using ILC With the SPLOOP Instruction

MVC A1,ILC ;ILC = A1
NOP ;delay slot 1
NOP ;delay slot 2
ZERO A3 ;delay slot 3
SPLOOP 1 ;Initial, term_condition=!ILC, if (ILC) ILC--;
LDW *A5++,A2 ;Stage 0, term_condition=!ILC, if (ILC) ILC--;
NOP ;Stage 1, term_condition=!ILC, if (ILC) ILC--;
NOP ;Stage 2, term_condition=!ILC, if (ILC) ILC--;
NOP ;Stage 3, term_condition=!ILC, if (ILC) ILC--;
NOP ;Stage 4, term_condition=!ILC, if (ILC) ILC--;
SPKERNEL 5,0 ;Delay fetch until done with epilog;

|| ADD A2,A3,A3 ;StageN, term_condition=!ILC, if (ILC) ILC--;
MV A3,A4

7.9.3 Using SPLOOPD for Loops with Known Minimum Iteration Counts

For loops with known iteration counts, the unconditional SPLOOPD instruction is used to compensate for
the 4-cycle latency to the assignment of ILC. The unconditional SPLOOPD instruction differs from the
SPLOOP instruction in the following ways:

• The initial termination condition test is always false and the initial ILC decrement is disabled. The loop
must execute at least one iteration.

• The stage boundary termination condition is forced to false, and ILC decrement is disabled for the first
3 cycles of the loop.

• The loop cannot be interrupted for the first 3 cycles of the loop.

The SPLOOPD will test the SPLX bit in the TSR to determine if it is already set to one (indicating a return
from interrupt). In this case the SPLOOPD instruction executes like an unconditional SPLOOP instruction.

The SPLOOPD instruction is used when the loop is known to execute for a minimum number of loop
iterations. The required minimum of number of iterations is a function of ii, as shown in Table 7-4.

Table 7-4. SPLOOPD Minimum Loop Iterations

Minimum Number of
ii Loop Iterations

1 4

2 2

3 2

≥ 4 1

When using the SPLOOPD instruction, ILC must be loaded with a value that is biased to compensate for
the required minimum number of loop iterations. As shown in Example 7-10, for a loop with an ii equal to 1
that will execute 100 iterations, ILC is loaded with 96.

595SPRU732J–July 2010 Software Pipelined Loop (SPLOOP) Buffer

Copyright © 2010, Texas Instruments Incorporated

Loop Buffer Control Using the Unconditional SPLOOP(D) Instruction www.ti.com

Example 7-10. Using ILC With a SPLOOPD Instruction

MVK 96,B1 ;Execute 96+4 iterations
SPLOOPD 1 ;Initial, term condition=false

|| MVC B1,ILC ;ILC=A1 (E1 Stage)
|| ZERO A3

LDW *A1++,A2 ;Stage0, term condition=false
NOP ;Stage1, term condition=false
NOP ;Stage2, term condition=false
NOP ;Stage3, term_cond=!ILC; if (ILC) ILC--;
NOP ;Stage3, term_cond=!ILC; if (ILC) ILC--;
SPKERNEL ;StageN, term_cond=!ILC; if (ILC) ILC--;

|| ADD A2,A3,A3

7.9.4 Program Memory Fetch Enable Delay During Epilog

After the last kernel stage boundary, program memory fetch is enabled such that instructions are fetched
from program memory and executed in parallel with instructions fetched from the loop buffer. This
provides for overlapping post-loop instructions with loop epilog instructions.

Program memory fetch enable is delayed until a specific stage and cycle in the execution of the epilog.
The SPKERNEL instruction fstg and fcyc operands are combined (by the assembler) to calculate the
delay in instruction cycles:

delay = (fstg * ii) + fcyc

Program memory fetch is delayed until the following conditions are all true:

• The loop has reached the last kernel stage boundary
• The loop is not interrupt draining
• The draining counter has reached the delay value specified by fstg and fcyc.

Referring back to Example 7-4, the program memory fetch delay is set to start fetching after the last epilog
instruction.

If the loop buffer goes to idle (for example, if the epilog is smaller than the specified delay or if the loop
early−exit execution pattern), program memory fetch is enabled and the fetch enable delay is ignored.

7.9.5 Stage Boundary and SPKERNEL(R) Position

An SPKERNEL(R) instruction does not have to occur on a stage boundary. If an SPKERNEL(R)
instruction is not on a stage boundary and the loop executes 0 or 1 iteration, then the loop buffer executes
until the last loading stage boundary. If there are instructions in between the SPKERNEL(R) instruction
and the last loading stage boundary, the loop buffer issues NOP instructions and program memory fetch
remains disabled.

If the loop is reloading and the loop executes 0 or 1 iteration, then the loop buffer executes until the last
reloading stage boundary. Between when the reloading counter becomes equal to the dynlen and the last
reloading stage boundary, the loop buffer issues NOP instructions.

7.9.6 Loop Buffer Reload

Using the conditional form of the SPLOOP(D) instruction, the loop buffer supports the execution of a
nested loop by reloading a new loop invocation while draining the previous invocation of the loop. A loop
that reloads must have either an SPKERNELR instruction to end the loop body or an SPMASKR
instruction in the post-SPLOOP code.

Under all of the following conditions, the reload condition is true.

• The loop is on the last kernel stage boundary (that is, ILC = 0).
• The SPLOOP(D) instruction condition is true 4 cycles before the last kernel stage boundary.

596 Software Pipelined Loop (SPLOOP) Buffer SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Loop Buffer Control Using the Unconditional SPLOOP(D) Instruction

7.9.6.1 Reload Start

When the reload condition is true, reenabling of instructions in the loop buffer begins on the cycle after:

• the last kernel stage boundary for loops using SPKERNELR
• an SPMASKR is encountered in the post-SPLOOP instruction stream.

The reload does not have to start on a stage boundary of the draining loop as indicated by the second and
third conditions above.

7.9.6.2 Resetting ILC With RILC

The reload inner loop count register (RILC) is used for resetting the inner loop count register (ILC) for the
next invocation of the nested inner loop. There is a 4-cycle latency (3 delay slots) between an instruction
that writes a value to RILC and the value appearing to the loop buffer.

If the initial termination condition is false, then the value stored in RILC is extracted, decremented and
copied into ILC and normal reloading begins. The value of RILC is unchanged.

If RILC is equal to 0 on the cycle before the reload begins, the initial termination condition is true for the
reloaded loop. If the initial termination condition is true, then the reloaded loop invocation is skipped: the
instructions in the loop buffer execute as NOPs until the last reloading stage boundary and the reload
condition is evaluated again.

7.9.6.3 Program Memory Fetch Disable During Reload

After the reload condition becomes true, program memory fetch is disabled after the last delay slot of a
branch that executed with a true condition or after the reload counter equals the dynlen.

The PC remains at its current location when program memory fetch is disabled. If a branch disabled
program memory fetch, then the PC remains at the branch target address.

Note that the first condition above is the only time that the loop buffer will not go to idle after the last delay
slot of a taken branch.

7.9.6.4 Restrictions on Interruptible Loops that Reload

When the loop buffer has finished loading after returning from an interrupt, the PC points at the address
after the SPKERNEL instruction. A reloaded loop is not interruptible if a branch does not execute during
reloading that places the PC back at the execute packet after the SPKERNEL instruction. You should
disable interrupts around these types of loops.

7.9.6.5 Restrictions on Reload Enforced by the Assembler

By enforcing the following restrictions by issuing either errors or warnings, the assembler enforces the
most common and useful cases for using reload. An assembler switch disables these checks for
advanced users.

There must be at least one valid outer loop branch that will always execute with a true condition when the
loop is reloading. An outer loop branch is valid under all of the following conditions:

• The branch always executes if the reload condition was true.
• The branch target is the execute packet after the SPKERNEL execute packet.
• The last delay slot of the branch occurs before the reloading counter equals the dynlen. Note that this

restriction implies a minimum for dynlen of 6 cycles.

There may be one or more valid post loop branch instructions that will always execute with a false
condition when the loop is reloading, and that may execute with a true condition when the loop is not
reloading.

597SPRU732J–July 2010 Software Pipelined Loop (SPLOOP) Buffer

Copyright © 2010, Texas Instruments Incorporated

Loop Buffer Control Using the Unconditional SPLOOP(D) Instruction www.ti.com

For loops initiated with a conditional SPLOOP or SPLOOPD instruction, an exception (detected by the
assembler) occurs if:

• There is not a valid outer loop branch instruction after the SPKERNEL(R) instruction.
• A reload has not been initiated by an SPMASKR instruction before the delay slots of the outer branch

have completed.
• There is a branch instruction after the SPKERNEL instruction that may execute when the loop is

reloading that is neither a valid outer loop branch nor a valid post loop branch.
• An SPMASKR is encountered for a loop that uses SPKERNELR.
• An SPMASKR is encountered for an unconditional (nonreload) loop.

Example 7-11 is a nested loop using the reload condition. Figure 7-8 shows the instruction execution flow
for an invocation of the inner loop, the outer loop code, and then another inner loop. Notice that the reload
starts after the first epilog stage of the inner loop as specified by the SPMASKR instruction in the last
cycle of that stage.

Example 7-11. Using ILC With a SPLOOPD Instruction

;*------------------------------
;* for (j=0; j<32; j++)
;* for (I=0; i<32; I++)
;* y[j] += x[i+j] * h[i]
;*------------------------------
;* x=a4, h=b4, y=a6

MVK .S2 32,B0
MVC .S2 B0,ILC ;Inner loop count
NOP 3

[B0] SPLOOP 2
|| MVC .S2 B0,RILC ;Reload inner loop count
|| SUB .D2 B0,1,B0 ;Outer loop count
|| MVK .S1 62,A5 ;X delta
|| MV .L2 B4,B5 ;Copy h
|| ZERO .D1 A7 ;Sum = 0

;*------------Start of loop-------------------------
LDH .D1T1 *A4++,A2 ;t1 = *x

|| LDH .D2T2 *B4++,B2 ;t2 = *h
NOP 4
MPY .M1X A2,B2,A2 ;p = t1*t2
NOP 1
SPKERNEL 0

|| ADD .L1 A2,A7,A7 ;sum += p

outer:
;*--------start epilog

SUB .D1 A4,A5,A4 ;x -= 62
|| MV .D2 B4,B5 ;h -= 64

SPMASKR

;*--------start reload, I=0
[B0] BNOP .S1 outer,4
[B0] SUB .S2 B0,1,b0 ;j -= 1

STH .D1 A7,*A6++ ;*Y++ = sum
|| MVK .S1 0,A7 ;Sum = 0
;*--------branch, stop fetching

598 Software Pipelined Loop (SPLOOP) Buffer SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Loop Buffer Control Using the Unconditional SPLOOP(D) Instruction

Figure 7-8. Instruction Flow Using Reload

CPU Pipeline SPL Buffer
--------------- ---
LD || LD --
nop --
nop LD || LD
nop --
nop LD || LD
MPY --
nop LD || LD
ADD MPY
-- LD || LD
-- MPY || ADD
. .
. .
-- LD || LD
-- MPY || ADD
SUB || MV --
SPMASKR MPY || ADD <- ILC = RILC
[B0] BNOP || [B0] SUB LD || LD <- first reload cycle
nop MPY || ADD
nop LD || LD
nop ADD <- last epilog cycle
nop LD || LD
STH || MVK MPY
-- LD || LD
-- MPY || ADD
. .
. .
-- LD || LD
-- MPY || ADD
SUB || MV --
SPMASKR MPY || ADD <- ILC = RILC
[B0] BNOP || [B0] SUB LD || LD <- first reload cycle
nop MPY || ADD
nop LD || LD
nop ADD <- last epilog cycle
nop LD || LD
STH || MVK MPY
-- LD || LD
-- MPY || ADD
. .
. .

599SPRU732J–July 2010 Software Pipelined Loop (SPLOOP) Buffer

Copyright © 2010, Texas Instruments Incorporated

Loop Buffer Control Using the SPLOOPW Instruction www.ti.com

7.9.7 Restrictions on Accessing ILC and RILC

There is a 4-cycle latency (3 delay slots) between an instruction that writes a value to the inner loop count
register (ILC) or the reload inner loop count register (RILC) and a read of the register by the loop buffer.

If an SPLOOP (not SPLOOPD or SPLOOPW) instruction is used, then ILC is used for the 3 cycles before
the SPLOOP instruction and until the loop buffer is draining and not reloading.

If an SPLOOPD instruction is used, then ILC is used on the first cycle after the SPLOOPD instruction and
until the loop buffer is draining and not reloading.

In general, it is an error to read or write ILC or RILC while the loop buffer is using them. This error is
enforced by the following hardware and assembler exceptions. The value obtained by reading ILC during
loading is not assured to be consistent across different implementations, due to potential differences in
timing of the decrement of the register by the loop hardware.

An exception (detected by hardware) occurs if:

• RILC is written in the 3 cycles before the loop buffer reads it on the cycle before reloading begins.
• ILC is written in the 3 cycles before an unconditional SPLOOP (not SPLOOPD) instruction.

An error or warning (detected by the assembler) occurs if:

• An MVC instruction that writes ILC appears in parallel or in the 3 executes packets preceding an
SPLOOP (not SPLOOPD) instruction.

• An MVC instruction that reads or writes ILC appears in the SPLOOP body.
• An MVC instruction that writes the RILC appears in the 3 execute packets preceding the execute

packet before a reload prolog is initiated.
• An MVC instruction that reads or writes the ILC appears in an execute packet after an SPKERNEL

instruction in a nested loop, and the MVC instruction may execute during or in three cycles preceding
the reload prolog of the loop.

7.10 Loop Buffer Control Using the SPLOOPW Instruction

For the SPLOOPW instruction, the termination condition is determined by evaluating the SPLOOPW
instruction condition operand. When the SPLOOPW instruction is encountered, the condition operand is
recorded by the loop buffer. The initial termination testing is the same as for the SPLOOPD instruction,
that is, no checking is done for the first four cycles of the loop.

The SPLOOPW instruction is intended to be used for do-while loops. These are loops whose termination
condition is more complex than a simple down counter by 1. In addition, these types of loops compute the
loop termination condition and exit without executing an epilog. This technique may require over executing
(or speculating) some instructions.

When using the SPLOOPW instruction condition operand as the termination condition, the following
behavior occurs:

• Termination is determined by the SPLOOPW instruction condition that will be on a stage boundary.
• ILC and RILC are not accessed or modified.
• The loop cannot be reloaded.
• After the last kernel stage boundary, the loop buffer goes idle.
• The stage boundary termination condition is evaluated while interrupt draining.
• The SPKERNEL fetch delay must be 0.
• When returning to a conditional SPLOOPW from an interrupt with the SPLX bit set to 1 in TSR, the

SPLOOPW retains its delayed initial termination testing behavior. This is different from the SPLOOPD
instruction.

600 Software Pipelined Loop (SPLOOP) Buffer SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Loop Buffer Control Using the SPLOOPW Instruction

7.10.1 Initial Termination Condition Using the SPLOOPW Condition

The initial termination condition is always false when an SPLOOPW instruction is encountered. The loop
must execute at least one iteration.

7.10.2 Stage Boundary Termination Condition Using the SPLOOPW Condition

The stage boundary termination condition is true when a stage boundary is reached and the SPLOOPW
instruction condition operand evaluates as false 3 cycles before the stage boundary; otherwise, the
termination condition is false. The termination condition is always false for the first 3 cycles of the loop.

7.10.3 Interrupting the Loop Buffer When Using SPLOOPW

If the loop is interrupted when using the conditional form of the SPLOOPW instruction, the stage boundary
termination condition is evaluated on each stage boundary while interrupt draining. If the stage boundary
termination condition is true while interrupt draining, the loop buffer goes to idle, execution resumes at the
instruction after the loop body, and that instruction is interrupted.

The instruction that defines the termination condition register must occur at least 4 cycles before a stage
boundary and at least 4 cycles before the last instruction in the loop. If the termination condition is
determined in the last loading stage, the dynlen must be a multiple of ii. These restrictions ensure that on
return from an interrupt to a SPLOOPW instruction, the loop executes 1 or more iterations.

Note that when returning to a SPLOOPW instruction from an interrupt service routine with the SPLX bit set
to 1 in TSR, the SPLOOPW instruction termination condition behavior is unchanged, that is, the initial
termination condition is always false, and the stage boundary termination condition is always false for the
first 3 cycles of the loop.

An exception occurs if the termination condition register is not defined properly to ensure correct interrupt
behavior.

Example 7-12 shows a loop with a loop counter that down counts by an unknown value. For this loop, it
must be safe to over-execute the LDH instructions 8 times.

Example 7-13 shows a string copy implementation. Figure 7-9 shows the execution flow if the source
points to a null string. In this version, it must be safe to over-execute the LDB instruction 4 times.

Example 7-12. Using the SPLOOPW Instruction

;*------------------------------
;* do {
; sum += *x++ * *y++;
; n -= m;
; } while (n >= 0)
;*------------------------------
[!A1] SPLOOPW 1
|| MVK .S1 0x0,A1 ;C = false

LDH .D1T1 *A5++,A3 ;t1 = *x++
|| LDH .D2T2 *B5++,B6 ;t2 = *y++

NOP 2
SUB .L2 B4,B7,B4 ;n -=m
CMPLT .L2 B4,0,A1 ;c = n < 0 // term_cond = !A1
MPY .M1X B6,A3,A4 ;p = t1 * t2 // delay slot 1
NOP 1 // delay slot 2
ADD .L1 A4,A6,A6 ;sum += p; // delay slot 3
SPKERNEL ;if (c) break; // cycle term_cond used

601SPRU732J–July 2010 Software Pipelined Loop (SPLOOP) Buffer

Copyright © 2010, Texas Instruments Incorporated

Using the SPMASK Instruction www.ti.com

Example 7-13. strcpy() Using the SPLOOPW Instruction

;*------------------------------
;* do {
; t = *src++;
; *dst++ = t;
; } while (t != 0)
;*------------------------------

[A0] SPLOOPW 1
|| MVK .S2 1,B0
|| MVK .S1 1,A0

[A0] LDB .D1 *A4++,A0 ;t = *src++
NOP 4

[B0] MV .L2X A0,B0 ;if (!t) break;
NOP 2 ;Ensure A0 set 4 cycles early

SPKERNEL
|| [B0] STB .D2 B0,*B4++ ;*dest++ = t

STB B0,*B4 ;*t = '/0'

Figure 7-9. Instruction Flow for strcpy() of Null String

CPU Pipeline SPL buffer
----------------- ------------------------------------
[a0] LDB *a4++,a0 --

nop [a0] LDB *a4++,a0
nop [a0] LDB *a4++,a0
nop [a0] LDB *a4++,a0
nop [a0] LDB *a4++,a0 0 written to a0 in this cycle

[b0] mv a0,b0 [a0] LDB *a4++,a0 <- a0 = 0, term_cond = true
nop [a0] LDB *a4++,a0 || [b0] mv a0,b0 <- b0 = 0
nop [a0] LDB *a4++,a0 || [b0] mv a0,b0

[b0] STB b0,*b4++ [a0] LDB *a4++,a0 || [b0] mv a0,b0
STB b0,*a4 – terminate string in post epilog with /0

7.10.4 Under-Execution of Early Stages of SPLOOPW When Termination Condition
Becomes True While Interrupt Draining

Usually an SPLOOPW block terminates abruptly when the termination condition is true without executing
an epilog; however, when an SPLOOPW block is interrupted, it executes an epilog to drain the loop prior
to servicing the interrupt.

If the termination condition becomes true while interrupt draining, the action of interrupt draining results in
the under-execution of the early stages of the loop body in comparison to the same loop when not
interrupted. The loop body must be coded such that the under-execution of the early stages of the loop
body are safe.

7.11 Using the SPMASK Instruction

A logical progression for a loop might be:

• Do initial setup
• Execute the loop
• Do post loop operations

If the loop were to be reloaded, the progression might loop like:

• Do initial setup
• Execute the loop
• Adjust setup for reloaded loop
• Reload the loop
• Do post loop operations

602 Software Pipelined Loop (SPLOOP) Buffer SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Using the SPMASK Instruction

The initial setup, the post loop operations, and adjusting the setup for the reloaded loop are all overhead
that may be minimized by moving their execution to within the same instruction cycles as the operation of
the SPLOOP.

If some setup code is required to do some initialization that is not used until late in the loop; you can save
instruction cycles by using the SPMASK instruction to overlay the setup code with the first few cycles of
the SPLOOP. The SPMASK will cause the masked instructions to be executed once without being loaded
to the SPLOOP buffer. Example 7-14 shows how this might be done.

If the SPMASK is used in the outer loop code (that is, post epilog code), it will force the substitution of the
SPMASKed instructions in the outer loop code for the instruction using the same functional unit in the
SPLOOP buffer for the first iteration of the reloaded inner loop. For example, if pointers need to be reset
at the point that a loop is reloaded, the instructions that do the reset can be inhibited using the SPMASK
instruction so that the instructions that originally adjusted the pointers are replaced in the execution flow
with instruction in the outer loop that are marked with the SPMASK instruction. Example 7-15 shows how
this might be done.

7.11.1 Using SPMASK to Merge Setup Code Example

Example 7-14 copies a number of words (the number is passed in the A6 register from one buffer to an
offset into another buffer). The size of the offset is passed in the B6 register. Due to the use of the
SPMASK instruction, the ADD instruction is executed only once and is not loaded to the SPLOOP buffer.
The caret (^) symbol is used to identify the instructions masked by the SPMASK instruction. Table 7-5
shows the instruction flow for the first three iterations of the loop.

Example 7-14. Using the SPMASK Instruction to Merge Setup Code with SPLOOPW

;*------------------------------
; dst=&(dst[n])
;* do {
; t = *src++;
; *dst++ = t;
; } while (count--)
;
;A4 = Source address
;B4 = Destination address
;A6 = Number of words to copy
;B6 = Offset into destination to do copy
;*------------------------------
[A1] SPLOOPW 1
|| ADD .L1 A6,1,A1 ;Position loop cnt to valid reg
|| SHL .S2 B6,2,B6 ;Adjust offset for size of WORD

SPMASK
||^ ADD .L2 B6,B4,B4 ;Add offset into buffer to dest
|| LDW .D1 *A4++,A0 ;Load word and inc ptr

NOP 1 ;Wait for portion of delay
[A1] SUB .S1 A1,1,A1 ;Decrement loop count

NOP 2 ;Complete necessary wait
MV .L2X A0,B0 ;Position Word for write
SPKERNEL 0,0

|| STW .D2 B0,*B4++ ;Store word

603SPRU732J–July 2010 Software Pipelined Loop (SPLOOP) Buffer

Copyright © 2010, Texas Instruments Incorporated

Using the SPMASK Instruction www.ti.com

Table 7-5. SPLOOP Instruction Flow for First Three Cycles of Example 7-14

Loop

Cycle 1 2 3 Notes

0 ADD Instructions are in parallel with the SPLOOP, so they execute only once.
SHL

1 ADD The ADD is SPMASKed so it executes only once. The LDW is loaded to the SPLOOP
LDW buffer.

2 NOP LDW The ADD was not added to the SPLOOP buffer in cycle 2, so it is not executed here.

3 SUB NOP LDW The SUB is a conditional instruction and may not execute.

4 NOP SUB NOP The SUB is a conditional instruction and may not execute.

5 NOP NOP SUB The SUB is a conditional instruction and may not execute.

6 MV NOP NOP

7 STW MV NOP

8 STW MV

9 STW

7.11.2 Some Points About the SPMASK to Merge Setup Code Example

Note the following points about the execution of Example 7-14:

• The ADD and SHL instructions in the same execute packet as the SPLOOPW instruction are only
executed once. They are not loaded to the SPLOOP buffer.

• Because of the SPMASK instruction in the execute packet, the ADD in the same execute packet as
the SPMASK instruction is executed only once and is not loaded to the SPLOOP buffer. Without the
SPMASK, the ADD would conflict with the MV instruction.

• The SHL and the 2nd ADD instructions could have been placed before the start of the SPLOOP, but
by placing the SHL in parallel with the SPLOOP instruction and by using the SPMASK to restrict the
ADD to a single execution, you have saved a couple of instruction cycles.

604 Software Pipelined Loop (SPLOOP) Buffer SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Using the SPMASK Instruction

7.11.3 Using SPMASK to Merge Reset Code Example

Example 7-15 copies a number of words (the number is passed in the A8 register from one buffer to
another buffer). The loop is reloaded and the contents of a second source buffer are copied to a second
destination buffer. Table 7-6 shows the instruction flow for the first 13 cycles of the example.

Example 7-15. Using the SPMASK Instruction to Merge Reset Code with SPLOOP

;*------------------------------
; dst=&(dst[n])
;* do {
; t = *src++;
; *dst++ = t;
; } while (count--)
; adjust buffer pointers
;* do {
; t = *src++;
; *dst++ = t;
; } while (count--)
;
;A4 = 1st source address
;B4 = 1st destination address
;A6 = 2nd source address
;B6 = 2nd destination address
;A8 = number of locations to copy from each buffer
;*------------------------------

MVC A8,ILC ;Setup number of loops
MVC A8,RILC ;Reload count
MVK 1,A1 ;Reload flag
NOP 3 ;Wait for ILC load to complete

[A1] SPLOOP 1 ;Start SPLOOP with ii=1
LDW .D1 *A4++,A0 ;Load value from buffer
NOP 4 ;Wait for it to arrive
MV .L2X A0,B0 ;Move it to other side for xfer
SPKERNELR ;End of SPLOOP, immediate reload
STW .D2 B0,*B4++ ;...and store value to buffer

BR_TARGET:
SPMASK D1 ;Mask LDW instruction

|| [A1] B BR_TARGET ;Branch to start if post-epilog
|| [A1] SUB .S1 A1, 1, A1 ;Adjust reload flag
|| [A1] LDW .D1 *A6,A0 ;Load first word of 2nd buffer
|| [A1] ADD .L1 A6,4,A4 ;Select new source buffer

NOP 4 ;Keep in sync with SPLOOP body
OR .S2 B6,0,B4 ;Adjust destination to 2nd buffer
NOP

605SPRU732J–July 2010 Software Pipelined Loop (SPLOOP) Buffer

Copyright © 2010, Texas Instruments Incorporated

Program Memory Fetch Control www.ti.com

Table 7-6. SPLOOP Instruction Flow for Example 7-15

Loop

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13

1 LDW

2 NOP LDW

3 NOP NOP LDW

4 NOP NOP NOP LDW

5 NOP NOP NOP NOP LDW

6 MV NOP NOP NOP NOP LDW

7 STW MV NOP NOP NOP NOP LDW

8 STW MV NOP NOP NOP NOP LDW
SUB
ADD

9 STW MV NOP NOP NOP NOP LDW

10 STW MV NOP NOP NOP NOP LDW

11 STW MV NOP NOP NOP NOP LDW

12 STW MV NOP NOP NOP NOP LDW

13 STW MV NOP NOP NOP NOP LDW
OR

14 STW MV NOP NOP NOP NOP

7.11.4 Some Points About the SPMASK to Merge Reset Code Example

Note the following points about the execution of Example 7-15 (see Table 7-6 for the instruction flow)::

• The loop begins reloading from the SPLOOP buffer immediately after the SPKERNELR instruction with
no delay. In Table 7-6, the SPKERNELR is in cycle 7 and the reload happens in cycle 8.

• Because of the SPMASK instruction, the LDW instruction in the post epilog code replaces the LDW
instruction within the loop, so that the first word copied in the reloaded loop is from the new input
buffer. The ADD instruction is used to adjust the source buffer address for subsequent iterations within
the SPLOOP body. In Table 7-6, this happens in loop 8. Note that the D1 operand in the SPMASK
instruction indicates that the SPMASK applies to the .D1 unit. This could have been indicated by
marking the LDW instruction with a caret (^) instead.

• The OR instructions are used to adjust the destination address. It is positioned in the post-epilog code
as the MV instruction is within the SPLOOP body so that it will not corrupt the data from the STW
instructions within the SPLOOP epilog still executing from before the reload. In Table 7-6, this happens
in cycle 13 (loop 8).

• The B instruction is used to reset the program counter to the start of the epilog between executions of
the inner loop.

7.11.5 Returning from an Interrupt

When an SPLOOP is piping up after returning from an interrupt, the SPMASKed instructions coming from
the buffer are executed and instructions coming from program memory are not executed.

7.12 Program Memory Fetch Control

When the loop buffer is active and program memory fetch is enabled, then instructions are fetched from
program memory and the loop buffer and executed in parallel.

When the loop buffer is active and under certain conditions as described below, instruction execution from
program memory is suspended. When this occurs, instructions are only fetched and executed from the
loop buffer and the PC is unchanged.

606 Software Pipelined Loop (SPLOOP) Buffer SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Interrupts

7.12.1 Program Memory Fetch Disable

Instruction fetch from program memory is disabled under the following conditions:

• When loading: on the cycle after the SPKERNEL instruction is encountered, and that cycle is either a
kernel cycle or a draining cycle where fetch has not yet been reenabled.

• When reloading: on the cycle after the last delay slot of a branch that executes with a true condition
or after the reload counter equals the dynlen.

If program memory fetch is disabled on the last loading or reloading stage boundary, the stage boundary
termination condition is true, and the program memory fetch enable delay has completed, then program
memory fetch is not disabled.

Program memory fetch remains disabled while interrupt draining or until a specific stage and cycle during
noninterrupt draining as determined by the program fetch enable delay operand of the SPKERNEL
instruction.

7.12.2 Program Memory Fetch Enable

Program memory fetch is enabled, if the loop buffer goes idle.

7.13 Interrupts

When an SPLOOP(D/W) instruction is encountered, the address of the execute packet containing the
SPLOOP(D/W) instruction is recorded. If the loop buffer is interrupted, the address stored in the interrupt
return pointer register (IRP) is the address of the execute packet containing the SPLOOP(D/W)
instruction.

7.13.1 Interrupting the Loop Buffer

Interrupts are automatically disabled 2 cycles before an SPLOOP(D/W) instruction is encountered. When
all of the following conditions are true, the loop buffer begins interrupt draining.

• An enabled interrupt is pending and not architecturally blocked (for example, in branch delay slots).
• The loop is on a stage boundary.
• The termination condition is false.
• The loop is not loading.
• The loop is not draining.
• The loop is not reloading or waiting to reload.
• The loop is not within the first 3 CPU cycles after an SPLOOPD or SPLOOPW instruction. This means

that a minimum number of 4 cycles of an SPLOOP(D/W) loop must be executed before an interrupt
can be taken.

• The loop is not within the first 3 CPU cycles after an SPLOOPD or SPLOOPW instruction.
• For SPLOOP or SPLOOPD instructions, the current ILC >= ceil(dynlen/ii). This prevents returning to a

loop that would early-exit. The value of ceil(dynlen/ii) is equal to the number of loading stages.

When the loop is finished draining and all pending register writes are complete the interrupt is taken. This
means that the interrupt latency has increased by the number of instruction cycles in the epilog compared
to the non−SPLOOP case.

The above conditions mean SPLOOP loops starting initial execution or starting reload with ILC < =
(ceil(dynlen / ii) + 3) are not interruptible because there are not enough kernel stages to allow an interrupt
to be taken without violating the last requirement.

After an SPLOOP(D/W) instruction is encountered, the SPLX bit is set to 1 in TSR. While the loop buffer is
active, the SPLX bit is 1. When the loop buffer is idle, the SPLX bit in TSR is cleared to 0.

Program memory fetch is disabled when interrupt draining. When the draining is finished, the address of
the execute packet that contains the SPLOOP instruction is stored in IRP or NRP, and TSR is copied to
ITSR or NTSR. The SPLX bit in TSR is cleared to 0. The SPLX bit in ITSR or NTSR is set to 1.

607SPRU732J–July 2010 Software Pipelined Loop (SPLOOP) Buffer

Copyright © 2010, Texas Instruments Incorporated

Interrupts www.ti.com

Interrupt service routines must save and restore the ITSR or NTSR, ILC, and RILC registers. A B IRP
instruction copies ITSR to TSR, and a B NRP restores TSR from NTSR. The value of the SPLX bit in
ITSR or NTSR when the return branch is executed is used to alter the behavior of SPLOOP(D/W) when it
is restarted upon returning from the interrupt.

7.13.2 Returning to an SPLOOP(D/W) After an Interrupt

When returning from an interrupt to an SPLOOP(D/W) instruction with the SPLX bit set to 1 in ITSR, the
loop buffer executes normally with the following exceptions:

• Instructions executing in parallel with the SPLOOP(D/W) instruction are not executed.
• SPMASKed instructions from program memory execute as a NOP.
• SPMASKed instructions in the loop buffer execute as normal - the SPMASK is ignored.
• BNOP label,n instructions are executed as NOP n + 1
• An SPLOOPD instruction executes as an SPLOOP instruction.

Note that if returning to an unconditional SPLOOP(D) instruction, the interrupt return code must restore
the value of ILC 4 cycles before the SPLOOP(D) instruction is executed (if the ISR modified ILC).

7.13.3 Exceptions

If an internal or external exception occurs while the loop buffer is active, then the following occur:

• The exception is recognized immediately and the loop buffer becomes idle.
• The loop buffer does not execute an epilog to drain the currently executing loop.
• TSR is copied into NTSR with the SPLX bit set to 1 in NTSR and cleared to 0 in TSR.

7.13.4 Branch to Interrupt, Pipe-Down Sequence
1. Hardware detects an interrupt.
2. Execute until the end of a stage boundary (if termination condition is false).
3. Pipe-down the SPLOOP by draining.
4. Fetch enable condition is false.
5. Store return address of SPLOOP in IRP or NRP.
6. Copy TSR to ITSR or NTSR with SPLX bit set to 1.
7. Complete all pending register writes (drain pipeline).
8. Begin execution at interrupt service routine target address.

7.13.5 Return from Interrupt, Pipe-Up Sequence
1. Copy ITSR or NTSR to TSR.
2. Pipe-up the SPLOOP.
3. The SPLOOPD instruction executes like the SPLOOP instruction.
4. The SPMASKed instructions from program memory are executed like NOPs.
5. The SPMASKed instructions in the loop buffer execute as normal.
6. Instructions in parallel with the SPLOOP(D/W) instruction are executed like NOPs.

7.13.6 Disabling Interrupts During Loop Buffer Operation

Instructions that disable interrupts should not be executed within 4 cycles of reaching dynlen while loading
or reloading. If this condition is violated, there is a possibility that an interrupt is recognized as enabled
causing the loop to drain for an interrupt with the interrupt no longer enabled when draining is completed.
In this case, the loop terminates and execution continues with the post-SPKERNEL instruction stream with
no interrupt being serviced at that point.

608 Software Pipelined Loop (SPLOOP) Buffer SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Branch Instructions

7.14 Branch Instructions

If a branch executes with a true condition or is unconditional, then the branch is taken on the cycle after
the 5 delay slots have expired.

If a branch is taken and the loop buffer is not reloading, the loop buffer becomes idle, and execution
continues from the branch target address.

If a branch executes with a false condition (the branch is not taken), the execution of the SPLOOP(D/W)
instruction is unaffected by the presence of the untaken branch except that interrupts are blocked during
the delay slots of the branch.

This behavior allows the code in Example 7-16 to run as you expect, branching around the loop if the
condition is false before beginning.

If a branch is taken anytime while the loop buffer is active, except when in reloading, the loop buffer goes
to idle, and execution continues from the branch target address. If a branch is taken while reloading, the
PC is assigned the branch target and program memory fetch is disabled.

Example 7-16. Initiating a Branch Prior to SPLOOP Body

[!A0] B around
|| MVC A0,ILC

NOP 3
SPLOOP ii

; loop body
. . .

; end of loop body
around:

; code following loop

7.15 Instruction Resource Conflicts and SPMASK Operation

There are three execution candidates for each unit: prolog instructions coming from the buffer (BP), epilog
instructions coming from the buffer (BE), and nonbuffer instructions coming from program memory (PM).
There are four phases where conflict can occur:

• Loading phase, between BP and PM
• Draining only phase, between BE and PM
• Draining/reload phase, between BE, BP, and PM
• Reload only phase, between BP and PM

In the case of any conflict, an SPMASK(R) instruction must be present specifying all units having conflicts.
SPMASKed units for that cycle:

• Disable execution of any loop buffer instructions: BP, BE, or both.
• Execute a PM instruction, if present, with no effect on the buffer contents.

The only special behavior is in the case of restarting SPLOOP(D/W) after return from interrupt. In this
case, during loading SPMASKed units:

• Do not disable execution of any loop buffer instructions.
• Do not execute a present PM instruction.

If an SPMASK instruction is encountered when the loop buffer is idle or not loading or not draining, the
SPMASK instruction executes as a NOP.

609SPRU732J–July 2010 Software Pipelined Loop (SPLOOP) Buffer

Copyright © 2010, Texas Instruments Incorporated

Restrictions on Cross Path Stalls www.ti.com

7.15.1 Program Memory and Loop Buffer Resource Conflicts

A hardware exception occurs if:

• An instruction fetched from program memory has a resource conflict with an instruction fetched from
the loop buffer and the instruction coming from the loop buffer is not masked by an SPMASK(R)
instruction.

• An instruction fetched from the loop buffer as part of draining has a resource conflict with an instruction
fetched from the loop buffer for reload and the unit with the conflict is not masked by an SPMASK(R)
instruction.

7.15.2 Restrictions on Stall Detection Within SPLOOP Operation

There are two CPU stalls that occur because of certain back-to-back execute packets. In both of these
cases, the CPU generates a 1-cycle stall between the instruction doing the write and instruction using the
written value.

• The cross path register file read stall where the source for an instruction executing on one side of the
datapath is a register from the opposite side and that register was written in the previous cycle. No stall
is required or inserted when the register being read has data placed by a load instruction. See
Section 3.7.4 for more information.

• The AMR use stall where an instruction uses an address register in the cycle immediately following a
write to the addressing mode register (AMR).

Stall detection is one critical speed path in the CPU design. Adding to that path for the case where
instructions are coming from the loop buffer is undesirable and unnecessary. There are no compelling
cases where you would want to schedule a stall within the loop body. In fact, the compiler works to ensure
this does not happen. For these reasons, the C64x+ CPU will not stall for instructions coming from the
loop buffer that read/use values written on the previous cycle that require a stall for correct behavior.

In the event that a case occurs where a stall is required for correct operation but did not occur, an internal
exception is generated. This internal exception sets the LBX and MSX bits in the internal exception report
register (IERR), indicating a missed stall with loop buffer operation. The exception is only generated in the
event that the stall is actually required.

There is one special case that causes an unnecessary stall in normal operation and can be generated by
the compiler. It is the case where the two instructions involved in the stall detection are predicated on
opposite conditions. This means only one of the instructions actually executes and a stall was not required
for correct behavior. Since the stall detection is earlier in the pipeline, the decision to stall must be made
before it is known whether the instructions execute. Thus a stall is caused, even though it later turns out
not to be needed. In this case, the lack of detection for the instruction coming from the loop buffer does
not cause incorrect behavior. This allows the compiler to continue to generate code using this case that
can result in improved scheduling and performance. The internal exception is not generated in this case.

7.16 Restrictions on Cross Path Stalls

The following restriction is enforced by the assembler (that is, an assembly error will be signaled): an
instruction fetched from the loop buffer that reads a source operand from the register file cross path must
be scheduled such that the read does not require a cross path stall (the register being read cannot be
written in the previous cycle).

It is possible for the assembly language programmer to place an instruction in the delay slots of a branch
to an SPLOOP that causes a pipelined write to happen while the loop buffer is active. It is also possible
for the assembly language programmer to predicate the write and reads with different predicate values
that are not mutually exclusive. The assembler cannot prevent these cases from occurring; if they do the
internal exception will occur.

7.17 Restrictions on AMR-Related Stalls

The following restriction is enforced by the assembler: an instruction fetched from the loop buffer that uses
an address register (A4−A7 or B4−B7) must be scheduled such that a write to the addressing mode
register (AMR) does not occur in the preceding cycle.

610 Software Pipelined Loop (SPLOOP) Buffer SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Restrictions on Instructions Placed in the Loop Buffer

7.18 Restrictions on Instructions Placed in the Loop Buffer

The following instructions cannot be placed in the loop buffer and must be masked by SPMASK(R) when
occurring in the loop body: ADDKPC, B reg, BNOP reg, CALLP, and MVC.

The NOP, NOP n, and BNOP instructions are the only unitless instructions allowed to be used in an
SPLOOP(D/W) body. The assembler disallows the use of any other unitless instruction in the loop body.

611SPRU732J–July 2010 Software Pipelined Loop (SPLOOP) Buffer

Copyright © 2010, Texas Instruments Incorporated

612 Software Pipelined Loop (SPLOOP) Buffer SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

Chapter 8
SPRU732J–July 2010

C64x+ CPU Privilege

This chapter describes the C64x+ CPU privilege system.

The C64x CPU does not support privilege. This chapter applies only to the C64x+ CPU.

Topic ... Page

8.1 Overview .. 614
8.2 Execution Modes ... 614
8.3 Interrupts and Exception Handling ... 616
8.4 Operating System Entry ... 617

613SPRU732J–July 2010 C64x+ CPU Privilege

Copyright © 2010, Texas Instruments Incorporated

Overview www.ti.com

8.1 Overview

The C64x+ CPU includes support for a form of protected-mode operation with a two-level system of
privileged program execution. The C64x CPU does not include support for privileged execution. This
chapter does not apply to the C64x CPU.

The privilege system is designed to support several objectives:

• Support the emergence of higher capability operating systems on the C6000 family architecture.
• Support more robust end-equipment, especially in conjunction with exceptions.
• Provide protection to support system features such as memory protection.

The support for powerful operating systems is especially important. By dividing operation into privileged
and unprivileged modes, the operating mode for the operating system is differentiated from applications,
allowing the operating system to have special privilege to manage the processor and system. In particular,
privilege allows the operating system to:

• control the operation of unprivileged software
• protect access to critical system resources (that is, interrupts)
• control entry to itself

The privilege system allows two distinct types of operation.

• Supervisor-only execution. This is used for programs that require full access to all control registers,
and have no need to run unprivileged (User mode) programs. This case includes legacy (preprivilege)
programs that do not comprehend a privilege system. Legacy programs run fully compatibly with the
understanding that undefined or illegal operations may behave differently on the C64x+ CPU than on
previous C64x devices. For example, an illegal opcode may result in an exception on the C64x+ CPU,
whereas, it previously had undefined results.

• Two-tiered system. This is where the OS and trusted applications execute in Supervisor mode, and
less trusted applications execute in User mode.

8.2 Execution Modes

There are two execution modes:

• Supervisor Mode
• User Mode

8.2.1 Privilege Mode After Reset

Reset forces the C64x+ CPU to the Supervisor mode. Execution of the reset interrupt service fetch packet
(ISFP) begins in Supervisor mode.

8.2.2 Execution Mode Transitions

Mode transitions occur only on the following events:

• Interrupt: goes to Supervisor mode and saves mode (return with B IRP instruction)
• B IRP instruction: returns to saved mode from interrupt
• Nonmaskable interrupt (NMI): goes to Supervisor mode and saves mode (return with B NRP

instruction)
• Exception: goes to Supervisor mode and saves mode (return with B NRP instruction, if restartable)
• Operating system service request: goes to Supervisor mode and saves mode (return with B NRP

instruction)
• B NRP instruction: returns to saved mode from NMI or exception

614 C64x+ CPU Privilege SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Execution Modes

8.2.3 Supervisor Mode

The Supervisor mode serves two purposes:

1. It is the compatible execution mode.
2. It is the privileged execution mode where all functions of the processor are available. In User mode,

the privileged operations and resources that are restricted are listed in Section 8.2.4.

8.2.4 User Mode

The User mode provides restricted capabilities such that more privileged supervisory software may
manage the machine with complete authority. User mode restricts access to certain instructions and
control registers to prevent an unprivileged program from bypassing the management of the hardware by
the supervisory software.

8.2.4.1 Restricted Control Register Access in User Mode

Certain control registers are not available for use in User mode. An attempt to access one of these
registers in User mode results in an exception. The resource access exception (RAX) and privilege
exception (PRX) bits are set in the internal exception report register (IERR) when this exception occurs.
The following control registers are restricted from access in User mode:

• Exception clear register (ECR)
• Exception flags register (EFR)
• Interrupt clear register (ICR)
• Interrupt enable register (IER)
• Internal exception report register (IERR)
• Interrupt flags register (IFR)
• Interrupt service table pointer register (ISTP)
• Interrupt task state register (ITSR)
• NMI/exception task state register (NTSR)
• Restricted entry point register (REP)

8.2.4.2 Partially Restricted Control Register Access in User Mode

The following control registers are partially restricted from access in User mode:

• Control status register (CSR)
• Task state register (TSR)

All bits in these registers can be read in User mode; however, only certain bits in these registers can be
written while in User mode. Writes to these restricted bits have no effect. Since access to some bits is
allowed, there is no exception caused by access to these registers.

8.2.4.2.1 Restrictions on Using CSR in User Mode

The following functions of CSR are restricted when operating in User mode:

• PGIE, PWRD, PCC, and DCC bits cannot be written in User mode. Writes to these bits have no effect.
• GIE and SAT bits are not restricted in User mode, and their behavior is the same as in Supervisor

mode.

8.2.4.2.2 Restrictions on Using TSR in User Mode

The GIE and SGIE bits are not restricted in User mode. All other bits are restricted from being written;
writes to these bits have no effect.

615SPRU732J–July 2010 C64x+ CPU Privilege

Copyright © 2010, Texas Instruments Incorporated

Interrupts and Exception Handling www.ti.com

8.2.4.3 Restricted Instruction Execution in User Mode

Certain instructions are not available for use in User mode. An attempt to execute one of these
instructions results in an exception. The opcode exception (OPX) and privilege exception (PRX) bits are
set in the internal exception report register (IERR) when this exception occurs. The following instructions
are restricted in User mode:

• B IRP
• B NRP
• IDLE

8.3 Interrupts and Exception Handling

As described in Section 8.2.2, mode switching mostly occurs for interrupt or exception handling. This
section describes the execution mode behavior of interrupt and exception processing.

8.3.1 Inhibiting Interrupts in User Mode

The GIE bit in the control status register (CSR) can be used to inhibit interrupts in User mode. This allows
a usage model where User mode programs may be written to conform to a required level of interruptibility
while still protecting segments of code that cannot be interrupted safely. Nonconforming behavior may be
detected at the system level, and control can be taken from the User mode program by asserting the
EXCEP input to the CPU.

8.3.2 Privilege and Interrupts

When an interrupt occurs, the interrupted execution mode and other key information is saved in the
interrupt task state register (ITSR). The CXM bit in the task state register (TSR) is set to indicate that the
current execution mode is Supervisor mode. Explicit (MVC) writes to TSR are completed before being
saving to ITSR.

The interrupt handler begins executing at the address formed by adding the offset for the particular
interrupt event to the value of the interrupt service table pointer register (ISTP). The return from interrupt
(B IRP) instruction restores the saved values from ITSR into TSR, causing execution to resume in the
execution mode of the interrupted program.

The transition to the restored execution mode is coincident to the execution of the return branch target.
Execution of instructions in the delay slot of the branch are in Supervisor mode.

8.3.3 Privilege and Exceptions

When an exception occurs, the interrupted execution mode and other key information is saved in the
NMI/exception task state register (NTSR). The CXM bit the task state register (TSR) is set to indicate that
the current execution mode is Supervisor mode. Explicit (MVC) writes to TSR are completed before saved
to ITSR.

The exception handler begins executing at the address formed by adding the offset for the exception/NMI
event to the value of the interrupt service table pointer register (ISTP). The return from exception (B NRP)
instruction restores the saved values from NTSR into TSR.

8.3.4 Privilege and Memory Protection

The data and program memory interfaces at the boundary of the CPU include signals indicating the
execution mode in which an access was initiated. This information can be used at the system level to
raise an exception in the event of an access rights violation.

616 C64x+ CPU Privilege SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Operating System Entry

8.4 Operating System Entry

A protected interface is needed so that User mode code can safely enter the operating system to request
service.

There is one potential problem with allowing direct calling into the operating system: the caller can chose
where to enter the OS and, if allowed to choose any OS location to enter, can:

• bypass operand checking by OS routines
• access undocumented interfaces
• defeat protection
• corrupt OS data structures by bypassing consistency checks or locking

In short, allowing unrestricted entry into an OS is a very bad idea. Instead, you need to give a very
controlled way of entering the operating system and switching from User mode to Supervisor mode. The
mechanism chosen is essentially an exception, where the handler decodes the requested operation and
dispatches to a Supervisor mode routine that validates the arguments and services the request.

8.4.1 Entering User Mode from Supervisor Mode

There are two reasons that the CPU might need to enter User mode while operating in Supervisor mode:

• To spawn a User mode task
• To return to User mode after an interrupt or exception3

Both cases are handled by one of two related procedures:

• Place the address in NRP, ensure that the NTSR.CXM bit is set to 1, and execute a B NRP instruction
to force a context switch to the User mode task.

• Place the desired address in IRP, ensure that the ITSR.CXM bit is set to 1, and execute a B IRP
instruction to force a context switch to the User mode task.

When returning from an interrupt or exception, the IRP or NRP should already have the correct return
address and the ITSR.CXM or NTSR.CXM bit should already be set to 1.

When spawning a user mode task, the appropriate CXM bit and the IRP or NRP will need to be initialized
explicitely with the entry point address of the User mode task. In addition, the restricted entry point
address register (REP) should be loaded with the desired return address that the User mode task will use
when it terminates.

8.4.2 Entering Supervisor Mode from User Mode

The operating mode will change from User mode to Supervisor mode in the following cases:

• While processing any interrupt
• While processing an exception

The User mode task can force a change to Supervisor mode by forcing an exception by executing either
an SWE or SWENR instruction.

The SWE and SWENR instructions both force a software exception. The SWE instruction is used when a
return from the exception back to the point of the exception is desired. The SWENR instruction is used
when a return to the User mode routine is not desired.

OS entry and switching from User to Supervisor mode is accomplished by forcing a software exception
using either the SWE or SWENR instructions. See Section 6.5.3 for information about software
exceptions.

617SPRU732J–July 2010 C64x+ CPU Privilege

Copyright © 2010, Texas Instruments Incorporated

Operating System Entry www.ti.com

Execution of an SWE instruction results in an exception being taken before the next execute packet is
processed. The return pointer stored in the nonmaskable interrupt return pointer register (NRP) points to
this unprocessed packet. The value of the task state register (TSR) is copied to the NMI/exception task
state register (NTSR) at the end of the cycle containing the SWE instruction, and the interrupt/exception
default value is written to TSR. The SWE instruction should not be placed in the delay slots of a branch
since all instructions behind the SWE instruction in the pipe are annulled. All writes to registers in the pipe
from instructions executed before and in parallel with the SWE instruction will complete before execution
of the exception service routine, therefore, the instructions prior to the SWE will complete (along with all
their delay slots) before the instructions after the SWE.

If the SWE instruction is executed while in User mode, the mode is changed to Supervisor mode as part of
the exception servicing process. The TSR is copied to NTSR, the return address is placed in the NRP
register, and a transfer of control is forced to the NMI/Exception vector pointed to by current value of the
ISTP. Any code necessary to interpret a User mode request should reside in the exception service routine.
After processing the request the exception handler will return control to the user task by executing a
B NRP command.

The SWENR instruction can also be used to terminate a user mode task. The SWENR instruction is
similar to the SWE instruction except that no provision is made for returning to the user mode task and the
transfer of control is to the address pointed to by REP instead of the NMI/exception vector. The supervisor
mode should have earlier placed the correct address in REP.

618 C64x+ CPU Privilege SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

Chapter 9
SPRU732J–July 2010

C64x+ CPU Atomic Operations

This chapter describes the instruction and signal additions to the C64x+ CPU enabling atomic operations
used in synchronization methods.

The C64x CPU does not support atomic operations. This chapter applies only to the C64x+ CPU.

NOTE: The atomic operations are not supported on all C64x+ devices, see your device-specific
data manual for more information.

Topic ... Page

9.1 Synchronization Primitives ... 620
9.2 Atomic Operations Instructions ... 621
9.3 Examples of Use .. 622

619SPRU732J–July 2010 C64x+ CPU Atomic Operations

Copyright © 2010, Texas Instruments Incorporated

Synchronization Primitives www.ti.com

9.1 Synchronization Primitives

This section describes synchronization primitives. These are needed for reliable, high-performance
synchronization between multiple processors and can also be important for multitasking on a
uniprocessor.

9.1.1 Introduction to Atomic Operations

A synchronization primitive needs to have a few important properties. Often these properties are
implemented at least partly in the memory system rather than in the processor. The critical properties are:
• Not blocking. Each access must complete in bounded time, no matter what the other processors are

doing. This must be true even if one of the processors is performing the synchronization operations in
strange orders or fails to ever complete a series of primitives.

• Indivisible access. A synchronization variable must be updated by only one process at a time and
immediately visible to all.

• Powerful. It is advantageous to have synchronization operations that are more powerful than lock.
Other atomic operations can be constructed by locking a variable then implementing the more complex
operation under that lock. This approach leads to low performance as the critical section is longer and
so more contention is to be expected. In the case where there is no contention, this approach is also
slower as there are more operations whether contended or not. Other operations desired include
atomic counters, atomic list insertion, and atomic buffer insertion. These operations are used frequently
by OS and multiprocessor application code.

• Low Latency. If there are no other processors contending for a shared resource, a processor should be
able to access it with low latency.

• Fair. All processors contending for a resource should get fair access to it. This may be
first-come-first-served, or it may be equal probability of being next. Bad behavior of this sort results in
starvation or gross under- or over-representation of some processor in the pattern of resource grant.

• Low Storage Overhead. Support for shared access should be small and have constant size or at worst
linear size with the number of processors (or processes) supported.

• Low Traffic. There should be little system bus (interconnect) traffic when accessing shared resources
and especially in contending for resources. It is often the case that otherwise sensible shared access
synchronization has very high system bus traffic when there is contention over a shared variable.

• Implementation Choices. There should be several implementations possible at varying cost and
performance. Often, the higher cost and higher performance implementations make more sense for
systems with higher numbers of processors.

• Scalability. The throughput should increase as processors are added. And the latency and bus
(interconnect) traffic should not rise too quickly as a practical number of processors are added.

• No/Low Impact to Interrupt or Process Switch. Does not delay or complicate interrupt handling or
process switches. In particular, does not add registers to process state or require hardware or software
manipulation of GIE and related bits.

9.1.2 Other Memory Operations

The aligned load and store instructions in the C6000 architecture all perform atomic load or store
operations on memory. That is, the load from memory or store to memory cannot be subdivided into
smaller operations in any way that is detectable by any program. However, those operations are not
sufficient to construct reliable synchronization operations using memory variables when a
read-modify-write update process is used in the case of multiprocessor or multiple processes might be
modifying the same memory location.

By comparison, the LL, SL, and CMTL instructions can be used to atomically update a word of memory.
To update, the value must be read, altered and written, without any intervening write by any other task or
processor. This is accomplished by monitoring the location and only updating it if it has not been altered.

620 C64x+ CPU Atomic Operations SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Atomic Operations Instructions

9.2 Atomic Operations Instructions

The atomic memory access instructions are:

• LL (Load Linked). Read a location and begin monitoring it
• SL (Store Linked). Buffer data for a linked location.
• CMTL (Commit Linked Stores). Stores previously-buffered data into a linked location, if it has not been

altered since linked.

Only the .D2 unit can perform a synchronization primitive. The .D1 unit may be used for load, store,
arithmetic or logical operations when the .D2 unit is performing a synchronization primitive.

Only one of the LL, SL, or CMTL instructions may be in any one execution packet.

9.2.1 LL Instruction

The LL instruction is coded as:
LL (.unit) *baseR, dst

The LL instruction reads a word of memory and prepares to execute an SL instruction. The LL instruction
reads a word from memory just as an LDW instruction does; however, as a side effect, a link valid flag is
set true and the address is monitored. If any other process stores to that address, the link valid flag is
cleared. The link valid flag is also cleared if the SL instruction is executed with a different address.

9.2.2 SL Instruction

The SL instruction is coded as:
SL (.unit) src, *baseR

The SL instruction buffers a word to be stored to memory by the CMTL instruction. It does not commit the
change.

If the address of the SL instruction does not match the effective address of the most recent LL instruction,
the link valid flag is cleared.

9.2.3 CMTL Instruction

The CMTL instruction is coded as:
CMTL (.unit) *baseR, dst

The CMTL instruction reads the value of the link valid flag. If the link valid flag is true, the data buffered by
the SL instruction is written to memory.

9.2.4 Valid Sequences of LL, SL, and CMTL Instructions

Because the behavior of the LL, SL, and CMTL instructions are fully defined, they can be executed in any
order; however, unless the instruction sequence has an LL followed by an SL without an intervening
CMTL, the SL data cannot be committed. And unless the LL, SL instruction pair is followed by a CMTL
without any intervening LL, the SL data cannot be committed.

An LL instruction may be executed at any time and always begins a new instruction sequence, so any
sequence that contains the subsequence of LL, SL, CMTL can succeed.

621SPRU732J–July 2010 C64x+ CPU Atomic Operations

Copyright © 2010, Texas Instruments Incorporated

Examples of Use www.ti.com

9.3 Examples of Use

This section shows examples of using the C64x+ CPU synchronization instructions. The instructions can
be used to construct a number of common and useful synchronization operations.

9.3.1 Spin Lock Example

Start with a common spin lock shown in Example 9-1. The lock is free, if the lock location contains zero;
otherwise, the lock location is set to nonzero value.

Example 9-1. Spin Lock

spin_lock: ; here with lock address in A8 and lock value in A9
LL *A8, A1 ; load−linked, lock location
NOP 4

[A1] B spin_lock ; if not zero, locked, so spin until I see it unlocked
|| [!A1] SL A9, *A8 ; store A9 into the lock
[!A1] CMTL *A8, A1 ; commit the store − no need to be in BR delay

NOP 4
[!A1] B spin_lock ; commit failed, so try again here when have the lock
...
unlock: ; here with lock address in A8

MVK 0, A7 ; zero out A7
STW A7, *A8 ; zero the lock

9.3.2 Shared Accumulator or Counter Example

Example 9-2 shows the use of a shared accumulator or counter to perform synchronization. A shared
accumulator contains a sum of values for two or more concurrent processes. A process wishing to update
the accumulator reads it with the LL instruction, computes a new value by adding its increment to the
accumulator, sends the updated value with the SL instruction, and commits the value with the CMTL
instruction. If the commit fails, the update must be retried.

Example 9-2. Shared Counter

shared_ctr: ; here with counter address in A8
; and increment value in A9

LL *A8, A6 ; load−linked, lock location
NOP 4
ADD A6,A9,A6 ; compute the incremented value
SL A6, *A8 ; new value to store back
CMTL *A8, A1 ; commit the store
NOP 4

[!A1] B shared_ctr ; commit failed so try again

622 C64x+ CPU Atomic Operations SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Examples of Use

9.3.3 Compare and Swap Example

Example 9-3 shows the use of a shared variable in memory to perform synchronization. A shared variable
contains an expected value (or not) for two or more concurrent processes. A process wishing to update
the variable reads it with the LL instruction, and returns a FALSE value if the value does not match the
expected value. If the variable contains the expected value, the process sends an updated value with the
SL instruction, and commits the value with the CMTL instruction. If the commit fails, the test and update
must be retried.

Example 9-3. Compare and Swap

cas: ; here with address in A8
; old (expected) value in A9
; and new (update) value in A10

LL *A8, A6 ; load−linked, lock location
NOP 4
CMPEQ A6, A9, A2 ; compare with expected value

[!A2] B return_FALSE ; fail because not equal to old
[A2] SL A10, *A8 ; update value to store

NOP 4
CMTL *A8,A1 ; Commit the stored value

[!A1] BNOP cas, 5 ; commit failed so try again

623SPRU732J–July 2010 C64x+ CPU Atomic Operations

Copyright © 2010, Texas Instruments Incorporated

624 C64x+ CPU Atomic Operations SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

Appendix A
SPRU732J–July 2010

Instruction Compatibility

The C62x, C64x, and C64x+ DSPs share an instruction set. All of the instructions valid for the C62x DSP
are also valid for the C64x and C64x+ DSPs. The C64x DSP adds functionality to the C62x DSP with
some unique instructions. Table A-1 lists the instructions that are common to the C62x, C64x, and
C64x+ DSPs.

Table A-1. Instruction Compatibility Between C62x, C64x, and C64x+ DSPs

Instruction C62x DSP C64x DSP C64x+ DSP

ABS ✓ ✓ ✓
ABS2 ✓ ✓
ADD ✓ ✓ ✓ (1)

ADDAB ✓ ✓ ✓
ADDAD ✓ ✓
ADDAH ✓ ✓ ✓
ADDAW ✓ ✓ ✓ (1)

ADDK ✓ ✓ ✓ (1)

ADDKPC ✓ ✓
ADDSUB ✓
ADDSUB2 ✓
ADDU ✓ ✓ ✓
ADD2 ✓ ✓ ✓
ADD4 ✓ ✓
AND ✓ ✓ ✓ (1)

ANDN ✓ ✓
AVG2 ✓ ✓
AVGU4 ✓ ✓
B displacement ✓ ✓ ✓
B register ✓ ✓ ✓
B IRP ✓ ✓ ✓
B NRP ✓ ✓ ✓
BDEC ✓ ✓
BITC4 ✓ ✓
BITR ✓ ✓
BNOP displacement ✓ ✓ (1)

BNOP register ✓ ✓
BPOS ✓ ✓
CALLP ✓ (1)

CLR ✓ ✓ ✓ (1)

CMPEQ ✓ ✓ ✓ (1)

CMPEQ2 ✓ ✓
CMPEQ4 ✓ ✓
CMPGT ✓ ✓ ✓ (1)

(1) Instruction also available in compact form, see Section 3.9.

625SPRU732J–July 2010 Instruction Compatibility

Copyright © 2010, Texas Instruments Incorporated

Appendix A www.ti.com

Table A-1. Instruction Compatibility Between C62x, C64x, and C64x+ DSPs (continued)

Instruction C62x DSP C64x DSP C64x+ DSP

CMPGT2 ✓ ✓
CMPGTU ✓ ✓ ✓ (1)

CMPGTU4 ✓ ✓
CMPLT ✓ ✓ ✓ (1)

CMPLT2 ✓ ✓
CMPLTU ✓ ✓ ✓ (1)

CMPLTU4 ✓ ✓
CMPY ✓
CMPYR ✓
CMPYR1 ✓
CMTL ✓
DDOTP4 ✓
DDOTPH2 ✓
DDOTPH2R ✓
DDOTPL2 ✓
DDOTPL2R ✓
DEAL ✓ ✓
DINT ✓
DMV ✓
DOTP2 ✓ ✓
DOTPN2 ✓ ✓
DOTPNRSU2 ✓ ✓
DOTPNRUS2 ✓ ✓
DOTPRSU2 ✓ ✓
DOTPRUS2 ✓ ✓
DOTPSU4 ✓ ✓
DOTPUS4 ✓ ✓
DOTPU4 ✓ ✓
DPACK2 ✓
DPACKX2 ✓
EXT ✓ ✓ ✓ (2)

EXTU ✓ ✓ ✓ (2)

GMPY ✓
GMPY4 ✓ ✓
IDLE ✓ ✓ ✓
LDB ✓ ✓ ✓ (2)

LDB (15-bit offset) ✓ ✓ ✓ (2)

LDBU ✓ ✓ ✓ (2)

LDBU (15-bit offset) ✓ ✓ ✓
LDDW ✓ ✓ (2)

LDH ✓ ✓ ✓ (2)

LDH (15-bit offset) ✓ ✓ ✓
LDHU ✓ ✓ ✓ (2)

LDHU (15-bit offset) ✓ ✓ ✓
LDNDW ✓ ✓ (2)

LDNW ✓ ✓ (2)

(2) Instruction also available in compact form, see Section 3.9.

626 Instruction Compatibility SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Appendix A

Table A-1. Instruction Compatibility Between C62x, C64x, and C64x+ DSPs (continued)

Instruction C62x DSP C64x DSP C64x+ DSP

LDW ✓ ✓ ✓ (2)

LDW (15-bit offset) ✓ ✓ ✓
LL ✓
LMBD ✓ ✓ ✓
MAX2 ✓ ✓
MAXU4 ✓ ✓
MIN2 ✓ ✓
MINU4 ✓ ✓
MPY ✓ ✓ ✓ (2)

MPYH ✓ ✓ ✓ (2)

MPYHI ✓ ✓
MPYHIR ✓ ✓
MPYHL ✓ ✓ ✓ (2)

MPYHLU ✓ ✓ ✓
MPYHSLU ✓ ✓ ✓
MPYHSU ✓ ✓ ✓
MPYHU ✓ ✓ ✓
MPYHULS ✓ ✓ ✓
MPYHUS ✓ ✓ ✓
MPYIH ✓ ✓
MPYIHR ✓ ✓
MPYIL ✓ ✓
MPYILR ✓ ✓
MPYLH ✓ ✓ ✓ (3)

MPYLHU ✓ ✓ ✓
MPYLI ✓ ✓
MPYLIR ✓ ✓
MPYLSHU ✓ ✓ ✓
MPYLUHS ✓ ✓ ✓
MPYSU ✓ ✓ ✓
MPYSU4 ✓ ✓
MPYU ✓ ✓ ✓
MPYU4 ✓ ✓
MPYUS ✓ ✓ ✓
MPYUS4 ✓ ✓
MPY2 ✓ ✓
MPY2IR ✓
MPY32 (32-bit result) ✓
MPY32 (64-bit result) ✓
MPY32SU ✓
MPY32U ✓
MPY32US ✓
MV ✓ ✓ ✓ (3)

MVC ✓ ✓ ✓ (3)

MVD ✓ ✓
MVK ✓ ✓ ✓ (3)

(3) Instruction also available in compact form, see Section 3.9.

627SPRU732J–July 2010 Instruction Compatibility

Copyright © 2010, Texas Instruments Incorporated

Appendix A www.ti.com

Table A-1. Instruction Compatibility Between C62x, C64x, and C64x+ DSPs (continued)

Instruction C62x DSP C64x DSP C64x+ DSP

MVKH ✓ ✓ ✓
MVKL ✓ ✓ ✓
MVKLH ✓ ✓ ✓
NEG ✓ ✓ ✓ (3)

NOP ✓ ✓ ✓ (3)

NORM ✓ ✓ ✓
NOT ✓ ✓ ✓
OR ✓ ✓ ✓ (3)

PACK2 ✓ ✓
PACKH2 ✓ ✓
PACKH4 ✓ ✓
PACKHL2 ✓ ✓
PACKLH2 ✓ ✓
PACKL4 ✓ ✓
RINT ✓
ROTL ✓ ✓
RPACK2 ✓
SADD ✓ ✓ ✓ (4)

SADD2 ✓ ✓
SADDSUB ✓
SADDSUB2 ✓
SADDSU2 ✓ ✓
SADDUS2 ✓ ✓
SADDU4 ✓ ✓
SAT ✓ ✓ ✓
SET ✓ ✓ ✓ (4)

SHFL ✓ ✓
SHFL3 ✓
SHL ✓ ✓ ✓ (4)

SHLMB ✓ ✓
SHR ✓ ✓ ✓ (4)

SHR2 ✓ ✓
SHRMB ✓ ✓
SHRU ✓ ✓ ✓ (4)

SHRU2 ✓ ✓
SL ✓
SMPY ✓ ✓ ✓ (4)

SMPYH ✓ ✓ ✓ (4)

SMPYHL ✓ ✓ ✓ (4)

SMPYLH ✓ ✓ ✓ (4)

SMPY2 ✓ ✓
SMPY32 ✓
SPACK2 ✓ ✓
SPACKU4 ✓ ✓
SPKERNEL ✓ (4)

SPKERNELR ✓

(4) Instruction also available in compact form, see Section 3.9.

628 Instruction Compatibility SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Appendix A

Table A-1. Instruction Compatibility Between C62x, C64x, and C64x+ DSPs (continued)

Instruction C62x DSP C64x DSP C64x+ DSP

SPLOOP ✓ (4)

SPLOOPD ✓ (4)

SPLOOPW ✓
SPMASK ✓ (4)

SPMASKR ✓ (4)

SSHL ✓ ✓ ✓ (4)

SSHVL ✓ ✓
SSHVR ✓ ✓
SSUB ✓ ✓ ✓ (4)

SSUB2 ✓
STB ✓ ✓ ✓ (4)

STB (15-bit offset) ✓ ✓ ✓
STDW ✓ ✓ (4)

STH ✓ ✓ ✓ (4)

STH (15-bit offset) ✓ ✓ ✓
STNDW ✓ ✓ (5)

STNW ✓ ✓ (5)

STW ✓ ✓ ✓ (5)

STW (15-bit offset) ✓ ✓ ✓ (5)

SUB ✓ ✓ ✓ (5)

SUBAB ✓ ✓ ✓
SUBABS4 ✓ ✓
SUBAH ✓ ✓ ✓
SUBAW ✓ ✓ ✓ (5)

SUBC ✓ ✓ ✓
SUBU ✓ ✓ ✓
SUB2 ✓ ✓ ✓
SUB4 ✓ ✓
SWAP2 ✓ ✓
SWAP4 ✓ ✓
SWE ✓
SWENR ✓
UNPKHU4 ✓ ✓
UNPKLU4 ✓ ✓
XOR ✓ ✓ ✓ (5)

XORMPY ✓
XPND2 ✓ ✓
XPND4 ✓ ✓
ZERO ✓ ✓ ✓

(5) Instruction also available in compact form, see Section 3.9.

629SPRU732J–July 2010 Instruction Compatibility

Copyright © 2010, Texas Instruments Incorporated

630 Instruction Compatibility SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

Appendix B
SPRU732J–July 2010

Mapping Between Instruction and Functional Unit

Table B-1 lists the instructions that execute on each functional unit.

Table B-1. Instruction to Functional Unit Mapping

Functional Unit

Instruction .L Unit .M Unit .S Unit .D Unit

ABS ✓
ABS2 ✓
ADD ✓ ✓ ✓
ADDAB ✓
ADDAD ✓
ADDAH ✓
ADDAW ✓
ADDK ✓
ADDKPC ✓ (1)

ADDSUB (2) ✓
ADDSUB2 (2) ✓
ADDU ✓
ADD2 ✓ ✓ ✓
ADD4 ✓
AND ✓ ✓ ✓
ANDN ✓ ✓ ✓
AVG2 ✓
AVGU4 ✓
B displacement ✓
B register ✓ (1)

B IRP ✓ (1)

B NRP ✓ (1)

BDEC ✓
BITC4 ✓
BITR ✓
BNOP displacement ✓
BNOP register ✓
BPOS ✓
CALLP (2) ✓
CLR ✓
CMPEQ ✓
CMPEQ2 ✓
CMPEQ4 ✓
CMPGT ✓
CMPGT2 ✓

(1) S2 only
(2) C64x+ CPU-specific instruction

631SPRU732J–July 2010 Mapping Between Instruction and Functional Unit

Copyright © 2010, Texas Instruments Incorporated

Appendix B www.ti.com

Table B-1. Instruction to Functional Unit Mapping (continued)

Functional Unit

Instruction .L Unit .M Unit .S Unit .D Unit

CMPGTU ✓
CMPGTU4 ✓
CMPLT ✓
CMPLT2 ✓
CMPLTU ✓
CMPLTU4 ✓
CMPY (2) ✓
CMPYR (2) ✓
CMPYR1 (2) ✓
CMTL (2) ✓ (3)

DDOTP4 (2) ✓
DDOTPH2 (2) ✓
DDOTPH2R (2) ✓
DDOTPL2 (2) ✓
DDOTPL2R (4) ✓
DEAL ✓
DINT (4) No unit

DMV (4) ✓
DOTP2 ✓
DOTPN2 ✓
DOTPNRSU2 ✓
DOTPNRUS2 ✓
DOTPRSU2 ✓
DOTPRUS2 ✓
DOTPSU4 ✓
DOTPUS4 ✓
DOTPU4 ✓
DPACK2 (4) ✓
DPACKX2 (4) ✓
EXT ✓
EXTU ✓
GMPY (4) ✓
GMPY4 ✓
IDLE No unit

LDB ✓
LDB (15-bit offset) ✓ (5)

LDBU ✓
LDBU (15-bit offset) ✓ (5)

LDDW ✓
LDH ✓
LDH (15-bit offset) ✓ (5)

LDHU ✓
LDHU (15-bit offset) ✓ (5)

LDNDW ✓

(3) D2 only
(4) C64x+ CPU-specific instruction
(5) D2 only

632 Mapping Between Instruction and Functional Unit SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Appendix B

Table B-1. Instruction to Functional Unit Mapping (continued)

Functional Unit

Instruction .L Unit .M Unit .S Unit .D Unit

LDNW ✓
LDW ✓
LDW (15-bit offset) ✓ (5)

LL (4) ✓ (5)

LMBD ✓
MAX2 ✓ ✓ (4)

MAXU4 ✓
MIN2 ✓ ✓ (4)

MINU4 ✓
MPY ✓
MPYH ✓
MPYHI ✓
MPYHIR ✓
MPYHL ✓
MPYHLU ✓
MPYHSLU ✓
MPYHSU ✓
MPYHU ✓
MPYHULS ✓
MPYHUS ✓
MPYIH ✓
MPYIHR ✓
MPYIL ✓
MPYILR ✓
MPYLH ✓
MPYLHU ✓
MPYLI ✓
MPYLIR ✓
MPYLSHU ✓
MPYLUHS ✓
MPYSU ✓
MPYSU4 ✓
MPYU ✓
MPYU4 ✓
MPYUS ✓
MPYUS4 ✓
MPY2 ✓
MPY2IR (6) ✓
MPY32 (32-bit result) (6) ✓
MPY32 (64-bit result) (6) ✓
MPY32SU (6) ✓
MPY32U (6) ✓
MPY32US (6) ✓
MV ✓ ✓ ✓
MVC ✓ (7)

(6) C64x+ CPU-specific instruction
(7) S2 only

633SPRU732J–July 2010 Mapping Between Instruction and Functional Unit

Copyright © 2010, Texas Instruments Incorporated

Appendix B www.ti.com

Table B-1. Instruction to Functional Unit Mapping (continued)

Functional Unit

Instruction .L Unit .M Unit .S Unit .D Unit

MVD ✓
MVK ✓ ✓ ✓
MVKH ✓
MVKL ✓
MVKLH ✓
NEG ✓ ✓
NOP No unit

NORM ✓
NOT ✓ ✓ ✓
OR ✓ ✓ ✓
PACK2 ✓ ✓
PACKH2 ✓ ✓
PACKH4 ✓
PACKHL2 ✓ ✓
PACKLH2 ✓ ✓
PACKL4 ✓
RINT (8) No unit

ROTL ✓
RPACK2 (8) ✓
SADD ✓ ✓
SADD2 ✓
SADDSUB (8) ✓
SADDSUB2 (8) ✓
SADDSU2 ✓
SADDUS2 ✓
SADDU4 ✓
SAT ✓
SET ✓
SHFL ✓
SHFL3 (8) ✓
SHL ✓
SHLMB ✓ ✓
SHR ✓
SHR2 ✓
SHRMB ✓ ✓
SHRU ✓
SHRU2 ✓
SL (8) ✓ (9)

SMPY ✓
SMPYH ✓
SMPYHL ✓
SMPYLH ✓
SMPY2 ✓
SMPY32 (8) ✓
SPACK2 ✓

(8) C64x+ CPU-specific instruction
(9) D2 only

634 Mapping Between Instruction and Functional Unit SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Appendix B

Table B-1. Instruction to Functional Unit Mapping (continued)

Functional Unit

Instruction .L Unit .M Unit .S Unit .D Unit

SPACKU4 ✓
SPKERNEL (8) No unit

SPKERNELR (8) No unit

SPLOOP (8) No unit

SPLOOPD (8) No unit

SPLOOPW (8) No unit

SPMASK (8) No unit

SPMASKR (8) No unit

SSHL ✓
SSHVL ✓
SSHVR ✓
SSUB ✓
SSUB2 (8) ✓
STB ✓
STB (15-bit offset) ✓ (9)

STDW ✓
STH ✓
STH (15-bit offset) ✓ (10)

STNDW ✓
STNW ✓
STW ✓
STW (15-bit offset) ✓ (10)

SUB ✓ ✓ ✓
SUBAB ✓
SUBABS4 ✓
SUBAH ✓
SUBAW ✓
SUBC ✓
SUBU ✓
SUB2 ✓ ✓ ✓
SUB4 ✓
SWAP2 ✓ ✓
SWAP4 ✓
SWE (11) No unit

SWENR (11) No unit

UNPKHU4 ✓ ✓
UNPKLU4 ✓ ✓
XOR ✓ ✓ ✓
XORMPY (11) ✓
XPND2 ✓
XPND4 ✓
ZERO ✓ ✓ ✓

(10) D2 only
(11) C64x+ CPU-specific instruction

635SPRU732J–July 2010 Mapping Between Instruction and Functional Unit

Copyright © 2010, Texas Instruments Incorporated

Appendix B www.ti.com

636 Mapping Between Instruction and Functional Unit SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

Appendix C
SPRU732J–July 2010

.D Unit Instructions and Opcode Maps

This appendix lists the instructions that execute in the .D functional unit and illustrates the opcode maps
for these instructions.

Topic ... Page

C.1 Instructions Executing in the .D Functional Unit .. 638
C.2 Opcode Map Symbols and Meanings ... 638
C.3 32-Bit Opcode Maps ... 639
C.4 16-Bit Opcode Maps ... 641

637SPRU732J–July 2010 .D Unit Instructions and Opcode Maps

Copyright © 2010, Texas Instruments Incorporated

Instructions Executing in the .D Functional Unit www.ti.com

C.1 Instructions Executing in the .D Functional Unit

Table C-1 lists the instructions that execute in the .D functional unit.

Table C-1. Instructions Executing in the .D Functional Unit

Instruction Format Instruction Format

ADD Figure C-1, Figure C-2 LL (1) Figure C-4

ADDAB Figure C-1, Figure C-3 MV Figure C-1, Figure C-2

ADDAD Figure C-1 MVK Figure C-1

ADDAH Figure C-1, Figure C-3 NOT Figure C-2

ADDAW Figure C-1, Figure C-3 OR Figure C-2

ADD2 Figure C-2 SL (1) Figure C-4

AND Figure C-2 STB Figure C-5

ANDN Figure C-2 STB (15-bit offset) (1) Figure C-6

CMTL (1) Figure C-4 STDW Figure C-7

LDB Figure C-5 STH Figure C-5

LDB (15-bit offset) (1) Figure C-6 STH (15-bit offset) (1) Figure C-6

LDBU Figure C-5 STNDW Figure C-8

LDBU (15-bit offset) (1) Figure C-6 STNW Figure C-5

LDDW Figure C-7 STW Figure C-5

LDH Figure C-5 STW (15-bit offset) (1) Figure C-6

LDH (15-bit offset) (1) Figure C-6 SUB Figure C-1, Figure C-2

LDHU Figure C-5 SUBAB Figure C-1

LDHU (15-bit offset) (1) Figure C-6 SUBAH Figure C-1

LDNDW Figure C-8 SUBAW Figure C-1

LDNW Figure C-5 SUB2 Figure C-2

LDW Figure C-5 XOR Figure C-2

LDW (15-bit offset) (1) Figure C-6 ZERO Figure C-1, Figure C-2
(1) D2 only

C.2 Opcode Map Symbols and Meanings

Table C-2 lists the symbols and meanings used in the opcode maps.

Table C-2. .D Unit Opcode Map Symbol Definitions

Symbol Meaning

baseR base address register

creg 3-bit field specifying a conditional register

dst destination. For compact instructions, dst is coded as an offset from either A16 or B16 depending on the
value of the t bit.

dw doubleword; 0 = word, 1 = doubleword

ld/st load or store; 0 = store, 1 = load

mode addressing mode, see Table C-3

na nonaligned; 0 = aligned, 1 = nonaligned

offsetR register offset

op opfield; field within opcode that specifies a unique instruction

p parallel execution; 0 = next instruction is not executed in parallel, 1 = next instruction is executed in parallel

ptr offset from either A4-A7 or B4-B7 depending on the value of the s bit. The ptr field is the 2 least-significant
bits of the src2 (baseR) field—bit 2 of register address is forced to 1.

r LDDW/LDNDW/LDNW instruction

638 .D Unit Instructions and Opcode Maps SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com 32-Bit Opcode Maps

Table C-2. .D Unit Opcode Map Symbol Definitions (continued)

Symbol Meaning

s side A or B for destination; 0 = side A, 1 = side B. For compact instructions, side of base address (ptr)
register; 0 = side A, 1 = side B.

src source. For compact instructions, src is coded as an offset from either A16 or B16 depending on the value of
the t bit.

src1 source 1

src2 source 2

sz data size select; 0 = primary size, 1 = secondary size (see Section 3.9.2.2)

t side of source/destination (src/dst) register; 0 = side A, 1 = side B

ucstn bit n of the unsigned constant field

x cross path for src2; 0 = do not use cross path, 1 = use cross path

y .D1 or .D2 unit; 0 = .D1 unit, 1 = .D2 unit

z test for equality with zero or nonzero

Table C-3. Address Generator Options for Load/Store

mode Field Syntax Modification Performed

0 0 0 0 *-R[ucst5] Negative offset

0 0 0 1 *+R[ucst5] Positive offset

0 1 0 0 *-R[offsetR] Negative offset

0 1 0 1 *+R[offsetR] Positive offset

1 0 0 0 *- -R[ucst5] Predecrement

1 0 0 1 *++R[ucst5] Preincrement

1 0 1 0 *R- -[ucst5] Postdecrement

1 0 1 1 *R++[ucst5] Postincrement

1 1 0 0 *--R[offsetR] Predecrement

1 1 0 1 *++R[offsetR] Preincrement

1 1 1 0 *R- -[offsetR] Postdecrement

1 1 1 1 *R++[offsetR] Postincrement

C.3 32-Bit Opcode Maps

The C64x CPU and C64x+ CPU 32-bit opcodes used in the .D unit are mapped in the following figures.

Figure C-1. 1 or 2 Sources Instruction Format
31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 src1 op 1 0 0 0 0 s p

3 1 5 5 5 6 1 1

Figure C-2. Extended .D Unit 1 or 2 Sources Instruction Format
31 29 28 27 23 22 18 17 13 12 11 10 9 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 op 1 1 0 0 s p

3 1 5 5 5 1 4 1 1

639SPRU732J–July 2010 .D Unit Instructions and Opcode Maps

Copyright © 2010, Texas Instruments Incorporated

32-Bit Opcode Maps www.ti.com

Figure C-3. ADDAB/ADDAH/ADDAW Long-Immediate Operations
31 30 29 28 27 23 22 8 7 6 4 3 2 1 0

0 0 0 1 dst offsetR y op 1 1 s p

5 15 1 3 1 1

Figure C-4. Linked Word Operations
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

creg z src/dst baseR 0 0 0 0 0 0 0 1 op 1 0 0 0 0 1 p

3 1 5 5 3 1

Figure C-5. Load/Store Basic Operations
31 29 28 27 23 22 18 17 13 12 9 8 7 6 4 3 2 1 0

creg z src/dst baseR offsetR mode r y op 0 1 s p

3 1 5 5 5 4 1 1 3 1 1

Figure C-6. Load/Store Long-Immediate Operations
31 29 28 27 23 22 8 7 6 4 3 2 1 0

creg z src/dst offsetR y op 1 1 s p

3 1 5 15 1 3 1 1

Figure C-7. Load/Store Doubleword Instruction Format
31 29 28 27 23 22 18 17 13 12 9 8 7 6 4 3 2 1 0

creg z src/dst baseR offsetR mode 1 y op 0 1 s p

3 1 5 5 5 4 1 3 1 1

Figure C-8. Load/Store Nonaligned Doubleword Instruction Format
31 29 28 27 24 23 22 18 17 13 12 9 8 7 6 4 3 2 1 0

creg z src/dst sc baseR offsetR mode 1 y op 0 1 s p

3 1 4 1 5 5 4 1 3 1 1

640 .D Unit Instructions and Opcode Maps SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com 16-Bit Opcode Maps

C.4 16-Bit Opcode Maps

The C64x+ CPU 16-bit opcodes used in the .D unit for compact instructions are mapped in the following
figures. See Section 3.9 for more information about compact instructions.

Figure C-9. Doff4 Instruction Format
15 13 12 11 10 9 8 7 6 4 3 2 1 0

ucst2-0 t ucst3 0 sz ptr src/dst ld/st 1 0 s

3 1 1 1 2 3 1 1

DSZ sz ld/st Mnemonic

0 x x 0 0 STW (.unit) src, *ptr[ucst4]

0 x x 0 1 LDW (.unit) *ptr[ucst4], dst

0 0 0 1 0 STB (.unit) src, *ptr[ucst4]

0 0 0 1 1 LDBU (.unit) *ptr[ucst4], dst

0 0 1 1 0 STB (.unit) src, *ptr[ucst4]

0 0 1 1 1 LDB (.unit) *ptr[ucst4], dst

0 1 0 1 0 STH (.unit) src, *ptr[ucst4]

0 1 0 1 1 LDHU (.unit) *ptr[ucst4], dst

0 1 1 1 0 STH (.unit) src, *ptr[ucst4]

0 1 1 1 1 LDH (.unit) *ptr[ucst4], dst

1 0 0 1 0 STW (.unit) src, *ptr[ucst4]

1 0 0 1 1 LDW (.unit) *ptr[ucst4], dst

1 0 1 1 0 STB (.unit) src, *ptr[ucst4]

1 0 1 1 1 LDB (.unit) *ptr[ucst4], dst

1 1 0 1 0 STNW (.unit) src, *ptr[ucst4]

1 1 0 1 1 LDNW (.unit) *ptr[ucst4], dst

1 1 1 1 0 STH (.unit) src, *ptr[ucst4]

1 1 1 1 1 LDH (.unit) *ptr[ucst4], dst

Figure C-10. Doff4DW Instruction Format
15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ucst2-0 t ucst3 0 sz ptr src/dst na ld/st 1 0 s

3 1 1 1 2 2 1 1 1

NOTE: src/dst register address formed from op6:op5:0 (even registers)

DSZ sz ld/st na Mnemonic

1 x x 0 0 0 STDW (.unit) src, *ptr[ucst4]

1 x x 0 1 0 LDDW (.unit) *ptr[ucst4], dst

1 x x 0 0 1 STNDW (.unit) src, *ptr[ucst4] (ucst4 unscaled only)

1 x x 0 1 1 LDNDW (.unit) *ptr[ucst4], dst (ucst4 unscaled only)

641SPRU732J–July 2010 .D Unit Instructions and Opcode Maps

Copyright © 2010, Texas Instruments Incorporated

16-Bit Opcode Maps www.ti.com

Figure C-11. Dind Instruction Format
15 13 12 11 10 9 8 7 6 4 3 2 1 0

src1 t 0 1 sz ptr src/dst ld/st 1 0 s

3 1 1 2 3 1 1

Opcode map field used... For operand type...

src1 sint

DSZ sz ld/st Mnemonic

0 x x 0 0 STW (.unit) src, *ptr[src1]

0 x x 0 1 LDW (.unit) *ptr[src1], dst

0 0 0 1 0 STB (.unit) src, *ptr[src1]

0 0 0 1 1 LDBU (.unit) *ptr[src1], dst

0 0 1 1 0 STB (.unit) src, *ptr[src1]

0 0 1 1 1 LDB (.unit) *ptr[src1], dst

0 1 0 1 0 STH (.unit) src, *ptr[src1]

0 1 0 1 1 LDHU (.unit) *ptr[src1], dst

0 1 1 1 0 STH (.unit) src, *ptr[src1]

0 1 1 1 1 LDH (.unit) *ptr[src1], dst

1 0 0 1 0 STW (.unit) src, *ptr[src1]

1 0 0 1 1 LDW (.unit) *ptr[src1], dst

1 0 1 1 0 STB (.unit) src, *ptr[src1]

1 0 1 1 1 LDB (.unit) *ptr[src1], dst

1 1 0 1 0 STNW (.unit) src, *ptr[src1]

1 1 0 1 1 LDNW (.unit) *ptr[src1], dst

1 1 1 1 0 STH (.unit) src, *ptr[src1]

1 1 1 1 1 LDH (.unit) *ptr[src1], dst

642 .D Unit Instructions and Opcode Maps SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com 16-Bit Opcode Maps

Figure C-12. DindDW Instruction Format
15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

src1 t 0 1 sz ptr src/dst na ld/st 1 0 s

3 1 1 2 2 1 1 1

NOTE: src/dst register address formed from op6:op5:0 (even registers)

Opcode map field used... For operand type...

src1 sint

DSZ sz ld/st na Mnemonic

1 x x 0 0 0 STDW (.unit) src, *ptr[src1]

1 x x 0 1 0 LDDW (.unit) *ptr[src1], dst

1 x x 0 0 1 STNDW (.unit) src, *ptr[src1] (src1 unscaled only)

1 x x 0 1 1 LDNDW (.unit) *ptr[src1], dst (src1 unscaled only)

Figure C-13. Dinc Instruction Format
15 14 13 12 11 10 9 8 7 6 4 3 2 1 0

0 0 ucst0 t 1 1 sz ptr src/dst ld/st 1 0 s

1 1 1 2 3 1 1

NOTE: ucst2 = ucst0 + 1

DSZ sz ld/st Mnemonic

0 x x 0 0 STW (.unit) src, *ptr[ucst2]++

0 x x 0 1 LDW (.unit) *ptr[ucst2]++, dst

0 0 0 1 0 STB (.unit) src, *ptr[ucst2]++

0 0 0 1 1 LDBU (.unit) *ptr[ucst2]++, dst

0 0 1 1 0 STB (.unit) src, *ptr[ucst2]++

0 0 1 1 1 LDB (.unit) *ptr[ucst2]++, dst

0 1 0 1 0 STH (.unit) src, *ptr[ucst2]++

0 1 0 1 1 LDHU (.unit) *ptr[ucst2]++, dst

0 1 1 1 0 STH (.unit) src, *ptr[ucst2]++

0 1 1 1 1 LDH (.unit) *ptr[ucst2]++, dst

1 0 0 1 0 STW (.unit) src, *ptr[ucst2]++

1 0 0 1 1 LDW (.unit) *ptr[ucst2]++, dst

1 0 1 1 0 STB (.unit) src, *ptr[ucst2]++

1 0 1 1 1 LDB (.unit) *ptr[ucst2]++, dst

1 1 0 1 0 STNW (.unit) src, *ptr[ucst2]++

1 1 0 1 1 LDNW (.unit) *ptr[ucst2]++, dst

1 1 1 1 0 STH (.unit) src, *ptr[ucst2]++

1 1 1 1 1 LDH (.unit) *ptr[ucst2]++, dst

643SPRU732J–July 2010 .D Unit Instructions and Opcode Maps

Copyright © 2010, Texas Instruments Incorporated

16-Bit Opcode Maps www.ti.com

Figure C-14. DincDW Instruction Format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 ucst0 t 1 1 sz ptr src/dst na ld/st 1 0 s

1 1 1 2 2 1 1 1

NOTES:

1. ucst2 = ucst0 + 1
2. src/dst register address formed from op6:op5:0 (even registers)

DSZ sz ld/st na Mnemonic

1 x x 0 0 0 STDW (.unit) src, *ptr[ucst2]++

1 x x 0 1 0 LDDW (.unit) *ptr[ucst2]++, dst

1 x x 0 0 1 STNDW (.unit) src, *ptr[ucst2]++ (ucst2 scaled only)

1 x x 0 1 1 LDNDW (.unit) *ptr[ucst2]++, dst (ucst2 scaled only)

Figure C-15. Ddec Instruction Format
15 14 13 12 11 10 9 8 7 6 4 3 2 1 0

0 1 ucst0 t 1 1 sz ptr src/dst ld/st 1 0 s

1 1 1 2 3 1 1

NOTE: ucst2 = ucst0 + 1

DSZ sz ld/st Mnemonic

0 x x 0 0 STW (.unit) src, *--ptr[ucst2]

0 x x 0 1 LDW (.unit) *--ptr[ucst2], dst

0 0 0 1 0 STB (.unit) src, *--ptr[ucst2]

0 0 0 1 1 LDBU (.unit) *--ptr[ucst2], dst

0 0 1 1 0 STB (.unit) src, *--ptr[ucst2]

0 0 1 1 1 LDB (.unit) *--ptr[ucst2], dst

0 1 0 1 0 STH (.unit) src, *--ptr[ucst2]

0 1 0 1 1 LDHU (.unit) *--ptr[ucst2], dst

0 1 1 1 0 STH (.unit) src, *--ptr[ucst2]

0 1 1 1 1 LDH (.unit) *--ptr[ucst2], dst

1 0 0 1 0 STW (.unit) src, *--ptr[ucst2]

1 0 0 1 1 LDW (.unit) *--ptr[ucst2], dst

1 0 1 1 0 STB (.unit) src, *--ptr[ucst2]

1 0 1 1 1 LDB (.unit) *--ptr[ucst2], dst

1 1 0 1 0 STNW (.unit) src, *--ptr[ucst2]

1 1 0 1 1 LDNW (.unit) *--ptr[ucst2], dst

1 1 1 1 0 STH (.unit) src, *--ptr[ucst2]

1 1 1 1 1 LDH (.unit) *--ptr[ucst2], dst

644 .D Unit Instructions and Opcode Maps SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com 16-Bit Opcode Maps

Figure C-16. DdecDW Instruction Format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 ucst0 t 1 1 sz ptr src/dst na ld/st 1 0 s

1 1 1 2 2 1 1 1

NOTES:

1. ucst2 = ucst0 + 1
2. src/dst register address formed from op6:op5:0 (even registers)

DSZ sz ld/st na Mnemonic

1 x x 0 0 0 STDW (.unit) src, *--ptr[ucst2]

1 x x 0 1 0 LDDW (.unit) *--ptr[ucst2], dst

1 x x 0 0 1 STNDW (.unit) src, *--ptr[ucst2] (ucst2 scaled only)

1 x x 0 1 1 LDNDW (.unit) *--ptr[ucst2], dst (ucst2 scaled only)

Figure C-17. Dstk Instruction Format
15 14 13 12 11 10 9 7 6 4 3 2 1 0

1 ucst1-0 t 1 1 ucst4-2 src/dst ld/st 1 0 s

2 1 3 3 1 1

NOTE: ptr = B15, s = 1

ld/st Mnemonic

0 STW (.unit) src,*B15[ucst5]

1 LDW (.unit)*B15[ucst5], dst

Figure C-18. Dx2op Instruction Format
15 13 12 11 10 9 7 6 5 4 3 2 1 0

src1/dst x op 0 src2 0 1 1 0 1 1 s

3 1 1 3 1

Opcode map field used... For operand type...

src1/dst sint

src2 xsint

op Mnemonic

0 ADD (.unit) src1, src2, dst (src1 = dst)

1 SUB (.unit) src1, src2, dst (src1 = dst, dst = src1 - src2

645SPRU732J–July 2010 .D Unit Instructions and Opcode Maps

Copyright © 2010, Texas Instruments Incorporated

16-Bit Opcode Maps www.ti.com

Figure C-19. Dx5 Instruction Format
15 13 12 11 10 9 7 6 5 4 3 2 1 0

ucst2-0 ucst4-3 1 dst 0 1 1 0 1 1 s

3 2 3 1

NOTE: src2 = B15

Opcode map field used... For operand type...

dst sint

Mnemonic

ADDAW (.unit)B15, ucst5, dst

Figure C-20. Dx5p Instruction Format
15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ucst2-0 0 1 1 ucst4-3 op 1 1 1 0 1 1 1

3 2 1 s = 1

NOTE: src2 = dst = B15

op Mnemonic

0 ADDAW (.unit)B15, ucst5, B15

1 SUBAW (.unit)B15, ucst5, B15

Figure C-21. Dx1 Instruction Format
15 13 12 11 10 9 7 6 5 4 3 2 1 0

op 1 1 0 src2/dst 1 1 1 0 1 1 s

3 3 1

Opcode map field used... For operand type...

src2/dst sint

op Mnemonic

0 0 0 see LSDx1, Figure G-4

0 0 1 see LSDx1, Figure G-4

0 1 0 Reserved

0 1 1 SUB (.unit) src2, 1, dst (src2 = dst, dst = src2 - 1)

1 0 0 Reserved

1 0 1 see LSDx1, Figure G-4

1 1 0 Reserved

1 1 1 see LSDx1, Figure G-4

646 .D Unit Instructions and Opcode Maps SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com 16-Bit Opcode Maps

Figure C-22. Dpp Instruction Format
15 14 13 12 11 10 7 6 5 4 3 2 1 0

dw dl/st ucst0 t 0 src/dst 1 1 1 0 1 1 1

1 1 1 1 4

NOTES:

1. ptr = B15
2. ucst2 = ucst0 + 1
3. src/dst is from A0-A15, B0-B15
4. RS header bit is ignored

dw ld/st Mnemonic

0 0 STW (.unit) src,*B15--[ucst2]

0 1 LDW (.unit)*++B15[ucst2], dst

1 0 STDW (.unit) src,*B15--[ucst2]

1 1 LDDW (.unit)*++B15[ucst2], dst

t src/dst Source/Destination t src/dst Source/Destination

0 0000 A0 1 0000 B0

0 0001 A1 1 0001 B1

0 0010 A2 1 0010 B2

0 0011 A3 1 0011 B3

0 0100 A4 1 0100 B4

0 0101 A5 1 0101 B5

0 0110 A6 1 0110 B6

0 0111 A7 1 0111 B7

0 1000 A8 1 1000 B8

0 1001 A9 1 1001 B9

0 1010 A10 1 1010 B10

0 1011 A11 1 1011 B11

0 1100 A12 1 1100 B12

0 1101 A13 1 1101 B13

0 1110 A14 1 1110 B14

0 1111 A15 1 1111 B15

647SPRU732J–July 2010 .D Unit Instructions and Opcode Maps

Copyright © 2010, Texas Instruments Incorporated

648 .D Unit Instructions and Opcode Maps SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

Appendix D
SPRU732J–July 2010

.L Unit Instructions and Opcode Maps

This appendix lists the instructions that execute in the .L functional unit and illustrates the opcode maps
for these instructions.

Topic ... Page

D.1 Instructions Executing in the .L Functional Unit .. 650
D.2 Opcode Map Symbols and Meanings ... 651
D.3 32-Bit Opcode Maps ... 651
D.4 16-Bit Opcode Maps ... 652

649SPRU732J–July 2010 .L Unit Instructions and Opcode Maps

Copyright © 2010, Texas Instruments Incorporated

Instructions Executing in the .L Functional Unit www.ti.com

D.1 Instructions Executing in the .L Functional Unit

Table D-1 lists the instructions that execute in the .L functional unit.

Table D-1. Instructions Executing in the .L Functional Unit

Instruction Format Instruction Format

ABS Figure D-1 PACK2 Figure D-1

ABS2 Figure D-2 PACKH2 Figure D-1

ADD Figure D-1 PACKH4 Figure D-1

ADDSUB (1) Figure D-3 PACKHL2 Figure D-1

ADDSUB2 (1) Figure D-3 PACKLH2 Figure D-1

ADDU Figure D-1 PACKL4 Figure D-1

ADD2 Figure D-1 SADD Figure D-1

ADD4 Figure D-1 SADDSUB (1) Figure D-3

AND Figure D-1 SADDSUB2 (1) Figure D-3

ANDN Figure D-1 SAT Figure D-1

CMPEQ Figure D-1 SHFL3 (1) Figure D-3

CMPGT Figure D-1 SHLMB Figure D-1

CMPGTU Figure D-1 SHRMB Figure D-1

CMPLT Figure D-1 SSUB Figure D-1

CMPLTU Figure D-1 SSUB2 (1) Figure D-1

DPACK2 (1) Figure D-3 SUB Figure D-1

DPACKX2 (1) Figure D-3 SUBABS4 Figure D-1

LMBD Figure D-1 SUBC Figure D-1

MAX2 Figure D-1 SUBU Figure D-1

MAXU4 Figure D-1 SUB2 Figure D-1

MIN2 Figure D-1 SUB4 Figure D-1

MINU4 Figure D-1 SWAP2 Figure D-1

MV Figure D-1 SWAP4 Figure D-2

MVK Figure D-2 UNPKHU4 Figure D-2

NEG Figure D-1 UNPKLU4 Figure D-2

NORM Figure D-1 XOR Figure D-1

NOT Figure D-1 ZERO Figure D-1

OR Figure D-1
(1) C64x+ DSP-specific instruction

650 .L Unit Instructions and Opcode Maps SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Opcode Map Symbols and Meanings

D.2 Opcode Map Symbols and Meanings

Table D-2 lists the symbols and meanings used in the opcode maps.

Table D-2. .L Unit Opcode Map Symbol Definitions

Symbol Meaning

creg 3-bit field specifying a conditional register

cstn n-bit constant field

dst destination

op opfield; field within opcode that specifies a unique instruction

opn bit n of the opfield

p parallel execution; 0 = next instruction is not executed in parallel, 1 = next instruction is executed in parallel

s side A or B for destination; 0 = side A, 1 = side B

scstn bit n of the signed constant field

sn sign

src1 source 1

src2 source 2

ucstn n-bit unsigned constant field

x cross path for src2; 0 = do not use cross path, 1 = use cross path

z test for equality with zero or nonzero

D.3 32-Bit Opcode Maps

The C64x CPU and C64x+ CPU 32-bit opcodes used in the .L unit are mapped in the following figures.

Figure D-1. 1 or 2 Sources Instruction Format
31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Figure D-2. Unary Instruction Format
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 op x 0 0 1 1 0 1 0 1 1 0 s p

3 1 5 5 5 1 1 1

Figure D-3. 1 or 2 Sources, Nonconditional Instruction Format
31 30 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

0 0 0 1 dst src2 src1 x op 1 1 0 s p

5 5 5 1 7 1 1

651SPRU732J–July 2010 .L Unit Instructions and Opcode Maps

Copyright © 2010, Texas Instruments Incorporated

16-Bit Opcode Maps www.ti.com

D.4 16-Bit Opcode Maps

The C64x+ CPU 16-bit opcodes used in the .L unit for compact instructions are mapped in the following
figures. See Section 3.9 for more information about compact instructions.

Figure D-4. L3 Instruction Format
15 13 12 11 10 9 7 6 4 3 2 1 0

src1 x op 0 src2 dst 0 0 0 s

3 1 1 3 3 1

Opcode map field used... For operand type...

src1 sint

src2 xsint

dst sint

op SAT Mnemonic

0 0 ADD (.unit) src1, src2, dst

0 1 SADD (.unit) src1, src2, dst

1 0 SUB (.unit) src1, src2, dst (dst = src1 - src2)

1 1 SSUB (.unit) src1, src2, dst (dst = src1 - src2)

Figure D-5. L3i Instruction Format
15 13 12 11 10 9 7 6 4 3 2 1 0

cst3 x sn 1 src2 dst 0 0 0 s

3 1 1 3 3 1

Opcode map field used... For operand type...

src2 xsint

32-Bit Opcode cst Equivalent 32-Bit Opcode cst Equivalent

sn cst3 scst5 Decimal Value sn cst3 scst5 Decimal Value

0 000 01000 8 1 000 11000 -8

0 001 00001 1 1 001 11001 -7

0 010 00010 2 1 010 11010 -6

0 011 00011 3 1 011 11011 -5

0 100 00100 4 1 100 11100 -4

0 101 00101 5 1 101 11101 -3

0 110 00110 6 1 110 11110 -2

0 111 00111 7 1 111 11111 -1

Mnemonic

ADD (.unit) scst5, src2, dst

652 .L Unit Instructions and Opcode Maps SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com 16-Bit Opcode Maps

Figure D-6. Ltbd Instruction Format
15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

x 0 src2 1 0 0 s

1 3 1

Opcode map field used... For operand type...

src2 xsint

Figure D-7. L2c Instruction Format
15 13 12 11 10 9 7 6 5 4 3 2 1 0

src1 x op2 1 src2 op1-0 dst 1 0 0 s

3 1 1 3 2 1 1

NOTE: dst = A0, A1 or B0, B1 as selected by dst and s

Opcode map field used... For operand type...

src1 sint

src2 xsint

op Mnemonic

0 0 0 AND (.unit) src1, src2, dst

0 0 1 OR (.unit) src1, src2, dst

0 1 0 XOR (.unit) src1, src2, dst

0 1 1 CMPEQ (.unit) src1, src2, dst

1 0 0 CMPLT (.unit) src1, src2, dst (dst = src1 < src2 , signed compare)

1 0 1 CMPGT (.unit) src1, src2, dst (dst = src1 > src2 , signed compare)

1 1 0 CMPLTU (.unit) src1, src2, dst (dst = src1 < src2 , unsigned compare)

1 1 1 CMPGTU (.unit) src1, src2, dst (dst = src1 > src2 , unsigned compare)

653SPRU732J–July 2010 .L Unit Instructions and Opcode Maps

Copyright © 2010, Texas Instruments Incorporated

16-Bit Opcode Maps www.ti.com

Figure D-8. Lx5 Instruction Format
15 13 12 11 10 9 7 6 5 4 3 2 1 0

scst2-0 scst4-3 1 dst 0 1 0 0 1 1 s

3 2 3 1

Opcode map field used... For operand type...

dst sint

Mnemonic

MVK (.unit) scst5, dst

Figure D-9. Lx3c Instruction Format
15 13 12 11 10 9 7 6 5 4 3 2 1 0

ucst3 0 dst 0 src2 0 1 0 0 1 1 s

3 1 3 1

NOTE: dst = A0, A1 or B0, B1 as selected by dst and s

Opcode map field used... For operand type...

src2 sint

Mnemonic

CMPEQ (.unit) ucst3, src2, dst

654 .L Unit Instructions and Opcode Maps SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com 16-Bit Opcode Maps

Figure D-10. Lx1c Instruction Format
15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

op ucst1 1 dst 0 src2 0 1 0 0 1 1 s

2 1 1 3 1

NOTE: dst = A0, A1 or B0, B1 as selected by dst and s

Opcode map field used... For operand type...

src2 sint

op Mnemonic

0 0 CMPLT (.unit) ucst1, src2, dst (dst = ucst1 < src2 , signed compare)

0 1 CMPGT (.unit) ucst1, src2, dst (dst = ucst1 > src2 , signed compare)

1 0 CMPLTU (.unit) ucst1, src2, dst (dst = ucst1 < src2 , unsigned compare)

1 1 CMPGTU (.unit) ucst1, src2, dst (dst = ucst1 > src2 , unsigned compare)

Figure D-11. Lx1 Instruction Format
15 13 12 11 10 9 7 6 5 4 3 2 1 0

op 1 1 0 src2/dst 1 1 0 0 1 1 s

3 3 1

op Mnemonic

0 0 0 see LSDx1, Figure G-4

0 0 1 see LSDx1, Figure G-4

0 1 0 SUB (.unit)0, src2, dst (src2 = dst; dst = 0 - src2)

0 1 1 ADD (.unit)-1, src2, dst (src2 = dst)

1 0 0 Reserved

1 0 1 see LSDx1, Figure G-4

1 1 0 Reserved

1 1 1 see LSDx1, Figure G-4

655SPRU732J–July 2010 .L Unit Instructions and Opcode Maps

Copyright © 2010, Texas Instruments Incorporated

656 .L Unit Instructions and Opcode Maps SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

Appendix E
SPRU732J–July 2010

.M Unit Instructions and Opcode Maps

This appendix lists the instructions that execute in the .M functional unit and illustrates the opcode maps
for these instructions.

Topic ... Page

E.1 Instructions Executing in the .M Functional Unit ... 658
E.2 Opcode Map Symbols and Meanings ... 659
E.3 32-Bit Opcode Maps ... 659
E.4 16-Bit Opcode Maps ... 660

657SPRU732J–July 2010 .M Unit Instructions and Opcode Maps

Copyright © 2010, Texas Instruments Incorporated

Instructions Executing in the .M Functional Unit www.ti.com

E.1 Instructions Executing in the .M Functional Unit

Table E-1 lists the instructions that execute in the .M functional unit.

Table E-1. Instructions Executing in the .M Functional Unit

Instruction Format Instruction Format

AVG2 Figure E-1 MPYIHR Figure E-1

AVGU4 Figure E-1 MPYIL Figure E-1

BITC4 Figure E-2 MPYILR Figure E-1

BITR Figure E-2 MPYLH Figure E-4

CMPY (1) Figure E-3 MPYLHU Figure E-4

CMPYR (1) Figure E-3 MPYLI Figure E-1

CMPYR1 (1) Figure E-3 MPYLIR Figure E-1

DDOTP4 (1) Figure E-3 MPYLSHU Figure E-4

DDOTPH2 (1) Figure E-3 MPYLUHS Figure E-4

DDOTPH2R (1) Figure E-3 MPYSU Figure E-4

DDOTPL2 (1) Figure E-3 MPYSU4 Figure E-1

DDOTPL2R (1) Figure E-3 MPYU Figure E-4

DEAL Figure E-2 MPYU4 Figure E-1

DOTP2 Figure E-1 MPYUS Figure E-4

DOTPN2 Figure E-1 MPYUS4 Figure E-1

DOTPNRSU2 Figure E-1 MPY2 Figure E-1

DOTPNRUS2 Figure E-1 MPY2IR (1) Figure E-1

DOTPRSU2 Figure E-1 MPY32 (32-bit result) (1) Figure E-4

DOTPRUS2 Figure E-1 MPY32 (64-bit result) (1) Figure E-4

DOTPSU4 Figure E-1 MPY32SU (1) Figure E-4

DOTPUS4 Figure E-1 MPY32U (1) Figure E-1

DOTPU4 Figure E-1 MPY32US (1) Figure E-1

GMPY (1) Figure E-3 MVD Figure E-2

GMPY4 Figure E-1 ROTL Figure E-1

MPY Figure E-4 SHFL Figure E-2

MPYH Figure E-4 SMPY Figure E-4

MPYHI Figure E-1 SMPYH Figure E-4

MPYHIR Figure E-1 SMPYHL Figure E-4

MPYHL Figure E-4 SMPYLH Figure E-4

MPYHLU Figure E-4 SMPY2 Figure E-1

MPYHSLU Figure E-4 SMPY32 (1) Figure E-3

MPYHSU Figure E-4 SSHVL Figure E-1

MPYHU Figure E-4 SSHVR Figure E-1

MPYHULS Figure E-4 XORMPY (1) Figure E-3

MPYHUS Figure E-4 XPND2 Figure E-2

MPYIH Figure E-1 XPND4 Figure E-2
(1) C64x+ DSP-specific instruction

658 .M Unit Instructions and Opcode Maps SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Opcode Map Symbols and Meanings

E.2 Opcode Map Symbols and Meanings

Table E-2 lists the symbols and meanings used in the opcode maps.

Table E-2. .M Unit Opcode Map Symbol Definitions

Symbol Meaning

creg 3-bit field specifying a conditional register

dst destination

op opfield; field within opcode that specifies a unique instruction

p parallel execution; 0 = next instruction is not executed in parallel, 1 = next instruction is executed in parallel

s side A or B for destination; 0 = side A, 1 = side B

src1 source 1

src2 source 2

x cross path for src2; 0 = do not use cross path, 1 = use cross path

z test for equality with zero or nonzero

E.3 32-Bit Opcode Maps

The C64x CPU and C64x+ CPU 32-bit opcodes used in the .M unit are mapped in the following figures.

Figure E-1. Extended M-Unit with Compound Operations
31 29 28 27 23 22 18 17 13 12 11 10 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 op 1 1 0 0 s p

3 1 5 5 5 1 5 1 1

Figure E-2. Extended .M-Unit Unary Instruction Format
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 op x 0 0 0 0 1 1 1 1 0 0 s p

3 1 5 5 5 1 1 1

Figure E-3. Extended .M Unit 1 or 2 Sources, Nonconditional Instruction Format
31 30 29 28 27 23 22 18 17 13 12 11 10 6 5 4 3 2 1 0

0 0 0 1 dst src2 src1 x 0 op 1 1 0 0 s p

5 5 5 1 5 1 1

Figure E-4. MPY Instruction Format
31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x op 0 0 0 0 0 s p

3 1 5 5 5 1 5 1 1

659SPRU732J–July 2010 .M Unit Instructions and Opcode Maps

Copyright © 2010, Texas Instruments Incorporated

16-Bit Opcode Maps www.ti.com

E.4 16-Bit Opcode Maps

The C64x+ CPU 16-bit opcodes used in the .M unit for compact instructions are mapped in the following
figure. See Section 3.9 for more information about compact instructions.

Figure E-5. M3 Instruction Format
15 13 12 11 10 9 7 6 5 4 3 2 1 0

src1 x dst src2 op 1 1 1 1 s

3 1 2 3 2 1

NOTE: RS = 0: dst from [A0, A2, A4, A6], [B0, B2, B4, B6]; RS = 1: dst from [A16, A18, A20, A22], [B16, B18, B20, B22]

Opcode map field used... For operand type...

src1 sint

dst sint

src2 xsint

SAT op Mnemonic

0 0 0 MPY (.unit) src1, src2, dst

0 0 1 MPYH (.unit) src1, src2, dst

0 1 0 MPYLH (.unit) src1, src2, dst

0 1 1 MPYHL (.unit) src1, src2, dst

1 0 0 SMPY (.unit) src1, src2, dst

1 0 1 SMPYH (.unit) src1, src2, dst

1 1 0 SMPYLH (.unit) src1, src2, dst

1 1 1 SMPYHL (.unit) src1, src2, dst

660 .M Unit Instructions and Opcode Maps SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

Appendix F
SPRU732J–July 2010

.S Unit Instructions and Opcode Maps

This appendix lists the instructions that execute in the .S functional unit and illustrates the opcode maps
for these instructions.

Topic ... Page

F.1 Instructions Executing in the .S Functional Unit .. 662
F.2 Opcode Map Symbols and Meanings ... 663
F.3 32-Bit Opcode Maps ... 663
F.4 16-Bit Opcode Maps ... 666

661SPRU732J–July 2010 .S Unit Instructions and Opcode Maps

Copyright © 2010, Texas Instruments Incorporated

Instructions Executing in the .S Functional Unit www.ti.com

F.1 Instructions Executing in the .S Functional Unit

Table F-1 lists the instructions that execute in the .S functional unit.

Table F-1. Instructions Executing in the .S Functional Unit

Instruction Format Instruction Format

ADD Figure F-1 MVKLH Figure F-12

ADDK Figure F-2 NEG Figure F-1

ADDKPC (1) Figure F-3 NOT Figure F-1

ADD2 Figure F-1 OR Figure F-1

AND Figure F-1 PACK2 Figure F-4

ANDN Figure F-4 PACKH2 Figure F-1

B displacement Figure F-5 PACKHL2 Figure F-1

B register (1) Figure F-6 PACKLH2 Figure F-1

B IRP (1) Figure F-7 RPACK2 (2) Figure F-13

B NRP (1) Figure F-7 SADD Figure F-1

BDEC Figure F-8 SADD2 Figure F-4

BNOP displacement Figure F-9 SADDSU2 Figure F-4

BNOP register Figure F-10 SADDUS2 Figure F-4

BPOS Figure F-8 SADDU4 Figure F-4

CALLP (2) Figure F-11 SET Figure F-1, Figure F-15

CLR Figure F-1, Figure F-15 SHL Figure F-1

CMPEQ2 Figure F-1 SHLMB Figure F-4

CMPEQ4 Figure F-1 SHR Figure F-1

CMPGT2 Figure F-1 SHR2 Figure F-4

CMPGTU4 Figure F-1 SHRMB Figure F-4

CMPLT2 Figure F-1 SHRU Figure F-1

CMPLTU4 Figure F-1 SHRU2 Figure F-4

DMV (2) Figure F-4 SPACK2 Figure F-4

EXT Figure F-1, Figure F-15 SPACKU4 Figure F-4

EXTU Figure F-1, Figure F-15 SSHL Figure F-1

MAX2 (2) Figure F-4 SUB Figure F-1

MIN2 (2) Figure F-4 SUB2 Figure F-1

MV Figure F-1 SWAP2 Figure F-1

MVC (1) Figure F-1 UNPKHU4 Figure F-14

MVK Figure F-12 UNPKLU4 Figure F-14

MVKH Figure F-12 XOR Figure F-1

MVKL Figure F-12 ZERO Figure F-1
(1) S2 only
(2) C64x+ DSP-specific instruction

662 .S Unit Instructions and Opcode Maps SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Opcode Map Symbols and Meanings

F.2 Opcode Map Symbols and Meanings

Table F-2 lists the symbols and meanings used in the opcode maps.

Table F-2. .S Unit Opcode Map Symbol Definitions

Symbol Meaning

creg 3-bit field specifying a conditional register

csta constant a

cstb constant b

cstn n-bit constant field

dst destination

h MVK, MVKH/MVKLH, or MVKL instruction

N3 3-bit field

op opfield; field within opcode that specifies a unique instruction

p parallel execution; 0 = next instruction is not executed in parallel, 1 = next instruction is executed in parallel

s side A or B for destination; 0 = side A, 1 = side B

scstn n-bit signed constant field

src1 source 1

src2 source 2

ucstn n-bit unsigned constant field

ucstn bit n of the unsigned constant field

x cross path for src2; 0 = do not use cross path, 1 = use cross path

z test for equality with zero or nonzero

F.3 32-Bit Opcode Maps

The C64x CPU and C64x+ CPU 32-bit opcodes used in the .S unit are mapped in the following figures.

Figure F-1. 1 or 2 Sources Instruction Format
31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x op 1 0 0 0 s p

3 1 5 5 5 1 6 1 1

Figure F-2. ADDK Instruction Format
31 29 28 27 23 22 7 6 5 4 3 2 1 0

creg z dst cst16 1 0 1 0 0 s p

3 1 5 16 1 1

Figure F-3. ADDKPC Instruction Format
31 29 28 27 23 22 16 15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src1 src2 0 0 0 0 1 0 1 1 0 0 0 s p

3 1 5 7 3 1 1

663SPRU732J–July 2010 .S Unit Instructions and Opcode Maps

Copyright © 2010, Texas Instruments Incorporated

32-Bit Opcode Maps www.ti.com

Figure F-4. Extended .S Unit 1 or 2 Sources Instruction Format
31 29 28 27 23 22 18 17 13 12 11 10 9 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 op 1 1 0 0 s p

3 1 5 5 5 1 4 1 1

Figure F-5. Branch Using a Displacement Instruction Format
31 29 28 27 7 6 5 4 3 2 1 0

creg z cst21 0 0 1 0 0 s p

3 1 21 1 1

Figure F-6. Branch Using a Register Instruction Format
31 29 28 27 26 25 24 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z 0 0 0 0 0 src2 0 0 0 0 0 x 0 0 1 1 0 1 1 0 0 0 s p

3 1 5 1 1 1

Figure F-7. Branch Using a Pointer Instruction Format
31 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z 0 0 0 0 0 0 0 op 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 p

3 1 3 1

Figure F-8. BDEC/BPOS Instruction Format
31 29 28 27 23 22 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src n 0 0 0 0 0 0 1 0 0 0 s p

3 1 5 10 1 1 1

Figure F-9. Branch Using a Displacement with NOP Instruction Format
31 29 28 27 16 15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z src2 src1 0 0 0 0 1 0 0 1 0 0 0 s p

3 1 12 3 1 1

Figure F-10. Branch Using a Register with NOP Instruction Format
31 29 28 27 26 25 24 23 22 18 17 16 15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z 0 0 0 0 1 src2 0 0 src1 x 0 0 1 1 0 1 1 0 0 0 1 p

3 1 5 3 1 1

Figure F-11. Call Nonconditional, Immediate with Implied NOP 5 Instruction Format
31 30 29 28 27 7 6 5 4 3 2 1 0

0 0 0 1 cst21 0 0 1 0 0 s p

21 1 1

664 .S Unit Instructions and Opcode Maps SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com 32-Bit Opcode Maps

Figure F-12. Move Constant Instruction Format
31 29 28 27 23 22 7 6 5 4 3 2 1 0

creg z dst cst16 h 1 0 1 0 s p

3 1 5 16 1 1 1

Figure F-13. Extended .S Unit 1 or 2 Sources, Nonconditional Instruction Format
31 30 29 28 27 23 22 18 17 13 12 11 10 9 6 5 4 3 2 1 0

0 0 0 1 dst src2 src1 x 1 1 op 1 1 0 0 s p

5 5 5 1 4 1 1

Figure F-14. Unary Instruction Format
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 op x 1 1 1 1 0 0 1 0 0 0 s p

3 1 5 5 5 1 1 1

Figure F-15. Field Operations
31 29 28 27 23 22 18 17 13 12 8 7 6 5 4 3 2 1 0

creg z dst src2 csta cstb op 0 0 1 0 s p

3 1 5 5 5 5 2 1 1

665SPRU732J–July 2010 .S Unit Instructions and Opcode Maps

Copyright © 2010, Texas Instruments Incorporated

16-Bit Opcode Maps www.ti.com

F.4 16-Bit Opcode Maps

The C64x+ CPU 16-bit opcodes used in the .S unit for compact instructions are mapped in the following
figures. See Section 3.9 for more information about compact instructions.

Figure F-16. Sbs7 Instruction Format
15 13 12 6 5 4 3 2 1 0

N3 scst7 0 0 1 0 1 s

3 7 1

NOTE: N3 = 0, 1, 2, 3, 4, or 5

BR Mnemonic

1 BNOP (.unit) scst7, N3

Figure F-17. Sbu8 Instruction Format
15 14 13 6 5 4 3 2 1 0

1 1 ucst8 0 0 1 0 1 s

8 1

BR Mnemonic

1 BNOP (.unit) ucst8, 5

Figure F-18. Scs10 Instruction Format
15 6 5 4 3 2 1 0

scst10 0 1 1 0 1 s

10 1

NOTE: NextPC > B3, A3

BR Mnemonic

1 CALLP (.unit) scst10, 5

666 .S Unit Instructions and Opcode Maps SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com 16-Bit Opcode Maps

Figure F-19. Sbs7c Instruction Format
15 13 12 6 5 4 3 2 1 0

N3 scst7 1 z 1 0 1 s

3 7 1 1

NOTE: N3 = 0, 1, 2, 3, 4, or 5

BR s z Mnemonic

1 0 0 [A0] BNOP .S1 scst7, N3

1 0 1 [!A0] BNOP .S1 scst7, N3

1 1 0 [B0] BNOP .S2 scst7, N3

1 1 1 [!B0] BNOP .S2 scst7, N3

Figure F-20. Sbu8c Instruction Format
15 14 13 6 5 4 3 2 1 0

1 1 ucst8 1 z 1 0 1 s

8 1 1

BR s z Mnemonic

1 0 0 [A0] BNOP .S1 ucst8, 5

1 0 1 [!A0] BNOP .S1 ucst8, 5

1 1 0 [B0] BNOP .S2 ucst8, 5

1 1 1 [!B0] BNOP .S2 ucst8, 5

Figure F-21. S3 Instruction Format
15 13 12 11 10 9 7 6 4 3 2 1 0

src1 x op 0 src2 dst 1 0 1 s

3 1 1 3 3 1

Opcode map field used... For operand type...

src1 sint

src2 xsint

dst sint

BR SAT op Mnemonic

0 0 0 ADD (.unit) src1, src2, dst

0 1 0 SADD (.unit) src1, src2, dst

0 x 1 SUB (.unit) src1, src2, dst (dst = src1 - src2)

667SPRU732J–July 2010 .S Unit Instructions and Opcode Maps

Copyright © 2010, Texas Instruments Incorporated

16-Bit Opcode Maps www.ti.com

Figure F-22. S3i Instruction Format
15 13 12 11 10 9 7 6 4 3 2 1 0

cst3 x op 1 src2 dst 1 0 1 s

3 1 1 3 3 1

Opcode map field used... For operand type...

src2 xsint

32-Bit Opcode cst Translation

cst3 ucst5 Decimal Value

000 10000 16

001 00001 1

010 00010 2

011 00011 3

100 00100 4

101 00101 5

110 00110 6

111 01000 8

BR op Mnemonic

0 0 SHL (.unit) src2, ucst5, dst

0 1 SHR (.unit) src2, ucst5, dst

Figure F-23. Smvk8 Instruction Format
15 13 12 11 10 9 7 6 5 4 3 2 1 0

ucst2-0 ucst4-3 ucst7 dst ucst6-5 1 0 0 1 s

3 2 1 3 2 1

Opcode map field used... For operand type...

dst sint

Mnemonic

MVK (.unit) ucst8, dst

668 .S Unit Instructions and Opcode Maps SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com 16-Bit Opcode Maps

Figure F-24. Ssh5 Instruction Format
15 13 12 11 10 9 7 6 5 4 3 2 1 0

ucst2-0 ucst4-3 1 src2/dst op 0 0 0 1 s

3 2 3 2 1

NOTE: x = 0, src and dst on the same side.

Opcode map field used... For operand type...

src2/dst sint

SAT op Mnemonic

x 0 0 SHL (.unit) src2, ucst5, dst (src2 = dst)

x 0 1 SHR (.unit) src2, ucst5, dst (src2 = dst)

0 1 0 SHRU (.unit) src2, ucst5, dst (src2 = dst)

1 1 0 SSHL (.unit) src2, ucst5, dst (src2 = dst)

x 1 1 see S2sh, Figure F-25

Figure F-25. S2sh Instruction Format
15 13 12 11 10 9 7 6 5 4 3 2 1 0

src1 op 1 src2/dst 1 1 0 0 0 1 s

3 2 3 1

NOTE: x = 0, src and dst on the same side.

Opcode map field used... For operand type...

src2/dst sint

op Mnemonic

0 0 SHL (.unit) src2, src1, dst (src2 = dst, dst = src2 << src1)

0 1 SHR (.unit) src2, src1, dst (src2 = dst, dst = src2 >> src1)

1 0 SHRU (.unit) src2, src1, dst (src2 = dst, dst = src2 << src1)

1 1 SSHL (.unit) src2, src1, dst (src2 = dst, dst = src2 sshl src1)

669SPRU732J–July 2010 .S Unit Instructions and Opcode Maps

Copyright © 2010, Texas Instruments Incorporated

16-Bit Opcode Maps www.ti.com

Figure F-26. Sc5 Instruction Format
15 13 12 11 10 9 7 6 5 4 3 2 1 0

ucst2-0 ucst4-3 0 src2/dst op 0 0 0 1 s

3 2 3 2 1

NOTES:

1. x = 0, src and dst on the same side
2. s = 0, dst = A0; s = 1, dst= B0

Opcode map field used... For operand type...

src2/dst sint

op Mnemonic

0 0 EXTU (.unit) src2, ucst5,31, A0/B0

0 1 SET (.unit) src2, ucst5, ucst5, dst (src = dst, ucst5 = ucst5)

1 0 CLR (.unit) src2, ucst5, ucst5, dst (src = dst, ucst5 = ucst5)

1 1 see S2ext, Figure F-27

Figure F-27. S2ext Instruction Format
15 13 12 11 10 9 7 6 5 4 3 2 1 0

dst op 0 src2 1 1 0 0 0 1 s

3 2 3 1

NOTE: x = 0, src and dst on the same side.

Opcode map field used... For operand type...

dst sint

src2 sint

op Mnemonic

0 0 EXT (.unit) src,16, 16, dst

0 1 EXT (.unit) src,24, 24, dst

1 0 EXTU (.unit) src,16, 16, dst

1 1 EXTU (.unit) src,24, 24, dst

670 .S Unit Instructions and Opcode Maps SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com 16-Bit Opcode Maps

Figure F-28. Sx2op Instruction Format
15 13 12 11 10 9 7 6 5 4 3 2 1 0

src1/dst x op 0 src2 0 1 0 1 1 1 s

3 1 1 3 1

Opcode map field used... For operand type...

src1/dst sint

src2 xsint

op Mnemonic

0 ADD (.unit) src1, src2, dst (src1 = dst)

1 SUB (.unit) src1, src2, dst (src1 = dst, dst = src1 - src2)

Figure F-29. Sx5 Instruction Format
15 13 12 11 10 9 7 6 5 4 3 2 1 0

ucst2-0 ucst4-3 1 src2/dst 0 1 0 1 1 1 s

3 2 3 1

Opcode map field used... For operand type...

src2/dst sint

Mnemonic

ADDK (.unit) ucst5, dst

671SPRU732J–July 2010 .S Unit Instructions and Opcode Maps

Copyright © 2010, Texas Instruments Incorporated

16-Bit Opcode Maps www.ti.com

Figure F-30. Sx1 Instruction Format
15 13 12 11 10 9 7 6 5 4 3 2 1 0

op 1 1 0 src2/dst 1 1 0 1 1 1 s

3 3 1

Opcode map field used... For operand type...

src2/dst sint

op Mnemonic

0 0 0 see LSDx1, Figure G-4

0 0 1 see LSDx1, Figure G-4

0 1 0 SUB (.unit)0, src2, dst (src2 = dst, dst = 0 - src2)

0 1 1 ADD (.unit)-1, src2, dst (src2 = dst)

1 0 0 Reserved

1 0 1 see LSDx1, Figure G-4

1 1 0 MVC (.unit) src, ILC (s = 1)

1 1 1 see LSDx1, Figure G-4

Figure F-31. Sx1b Instruction Format
15 13 12 11 10 7 6 5 4 3 2 1 0

N3 0 0 src2 1 1 0 1 1 1 s

3 4 1

NOTE: src2 from B0-B15

Opcode map field used... For operand type...

src2 uint

Mnemonic

BNOP (.unit) src2, N3

672 .S Unit Instructions and Opcode Maps SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

Appendix G
SPRU732J–July 2010

.D, .L, or .S Unit Opcode Maps

This appendix illustrates the opcode maps that execute in the .D, .L, or .S functional units.

For a list of the instructions that execute in the .D functional unit, see Appendix C. For a list of the
instructions that execute in the .L functional unit, see Appendix D. For a list of the instructions that execute
in the .S functional unit, see Appendix F.

Topic ... Page

G.1 Opcode Map Symbols and Meanings ... 674
G.2 32-Bit Opcode Maps ... 674
G.3 16-Bit Opcode Maps ... 675

673SPRU732J–July 2010 .D, .L, or .S Unit Opcode Maps

Copyright © 2010, Texas Instruments Incorporated

Opcode Map Symbols and Meanings www.ti.com

G.1 Opcode Map Symbols and Meanings

Table G-1 lists the symbols and meanings used in the opcode maps.

Table G-1. .D, .L, and .S Units Opcode Map Symbol Definitions

Symbol Meaning

CC

dst destination

dstms

op opfield; field within opcode that specifies a unique instruction

s side A or B for destination; 0 = side A, 1 = side B

src source

src2 source 2

srcms

ucstn n-bit unsigned constant field

unit unit decode

x cross path for src2; 0 = do not use cross path, 1 = use cross path

G.2 32-Bit Opcode Maps

For the C64x CPU and C64x+ CPU 32-bit opcodes used in the .D functional unit, see Appendix C. For the
C64x CPU and C64x+ CPU 32-bit opcodes used in the .L functional unit, see Appendix D. For the C64x
CPU and C64x+ CPU 32-bit opcodes used in the .S functional unit, see Appendix F.

674 .D, .L, or .S Unit Opcode Maps SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com 16-Bit Opcode Maps

G.3 16-Bit Opcode Maps

The C64x+ CPU 16-bit opcodes used in the .D, .L, or .S units for compact instructions are mapped in
Figure G-1 through Figure G-4. See Section 3.9 for more information about compact instructions.

Figure G-1. LSDmvto Instruction Format
15 13 12 11 10 9 7 6 5 4 3 2 1 0

dst x srcms src2 0 0 unit 1 1 s

3 1 2 3 2 1

Opcode map field used... For operand type...

dst sint

src2 xsint

unit Mnemonic

0 0 MV (.Ln) src, dst

0 1 MV (.Sn) src, dst

1 0 MV (.Dn) src, dst

Figure G-2. LSDmvfr Instruction Format
15 13 12 11 10 9 7 6 5 4 3 2 1 0

dst x dstms src2 1 0 unit 1 1 s

3 1 2 3 2 1

Opcode map field used... For operand type...

dst sint

src2 xsint

unit Mnemonic

0 0 MV (.Ln) src, dst

0 1 MV (.Sn) src, dst

1 0 MV (.Dn) src, dst

675SPRU732J–July 2010 .D, .L, or .S Unit Opcode Maps

Copyright © 2010, Texas Instruments Incorporated

16-Bit Opcode Maps www.ti.com

Figure G-3. LSDx1c Instruction Format
15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

CC ucst1 0 1 0 dst 1 1 unit 1 1 s

2 1 3 2 1

Opcode map field used... For operand type...

dst sint

CC Mnemonic

0 0 [A0] MVK (.unit) ucst1, dst

0 1 [!A0] MVK (.unit) ucst1, dst

1 0 [B0] MVK (.unit) ucst1, dst

1 1 [!B0] MVK (.unit) ucst1, dst

CC unit Mnemonic

0 0 0 0 [A0] MVK (.Ln) ucst1, dst

0 1 [A0] MVK (.Sn) ucst1, dst

1 0 [A0] MVK (.Dn) ucst1, dst

CC unit Mnemonic

0 1 0 0 [!A0] MVK (.Ln) ucst1, dst

0 1 [!A0] MVK (.Sn) ucst1, dst

1 0 [!A0] MVK (.Dn) ucst1, dst

CC unit Mnemonic

1 0 0 0 [B0] MVK (.Ln) ucst1, dst

0 1 [B0] MVK (.Sn) ucst1, dst

1 0 [B0] MVK (.Dn) ucst1, dst

CC unit Mnemonic

1 1 0 0 [!B0] MVK (.Ln) ucst1, dst

0 1 [!B0] MVK (.Sn) ucst1, dst

1 0 [!B0] MVK (.Dn) ucst1, dst

676 .D, .L, or .S Unit Opcode Maps SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com 16-Bit Opcode Maps

Figure G-4. LSDx1 Instruction Format
15 13 12 11 10 9 7 6 5 4 3 2 1 0

op 1 1 0 src/dst 1 1 unit 1 1 s

3 3 2 1

Opcode map field used... For operand type...

src/dst sint

op Mnemonic

0 0 0 MVK (.unit)0, dst

0 0 1 MVK (.unit)1, dst

0 1 0 See Dx1, Figure C-21; Lx1, Figure D-11; and Sx1, Figure F-30

0 1 1 See Dx1, Figure C-21; Lx1, Figure D-11; and Sx1, Figure F-30

1 0 0 See Dx1, Figure C-21; Lx1, Figure D-11; and Sx1, Figure F-30

1 0 1 ADD (.unit) src, 1, dst (src = dst)

1 1 0 See Dx1, Figure C-21; Lx1, Figure D-11; and Sx1, Figure F-30

1 1 1 XOR (.unit) src, 1, dst (src = dst)

op unit Mnemonic

0 0 0 0 0 MVK (.Ln)0, dst

0 1 MVK (.Sn)0, dst

1 0 MVK (.Dn)0, dst

op unit Mnemonic

0 0 1 0 0 MVK (.Ln)1, dst

0 1 MVK (.Sn)1, dst

1 0 MVK (.Dn)1, dst

op unit Mnemonic

1 0 1 0 0 ADD (.Ln) src, 1, dst

0 1 ADD (.Sn) src, 1, dst

1 0 ADD (.Dn) src, 1, dst

op unit Mnemonic

1 1 1 0 0 XOR (.Ln) src, 1, dst

0 1 XOR (.Sn) src, 1, dst

1 0 XOR (.Dn) src, 1, dst

677SPRU732J–July 2010 .D, .L, or .S Unit Opcode Maps

Copyright © 2010, Texas Instruments Incorporated

678 .D, .L, or .S Unit Opcode Maps SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

Appendix H
SPRU732J–July 2010

No Unit Specified Instructions and Opcode Maps

This appendix lists the instructions that execute with no unit specified and illustrates the opcode maps for
these instructions.

For a list of the instructions that execute in the .D functional unit, see Appendix C. For a list of the
instructions that execute in the .L functional unit, see Appendix D. For a list of the instructions that execute
in the .M functional unit, see Appendix E. For a list of the instructions that execute in the .S functional unit,
see Appendix F.

Topic ... Page

H.1 Instructions Executing With No Unit Specified .. 680
H.2 Opcode Map Symbols and Meanings ... 680
H.3 32-Bit Opcode Maps ... 681
H.4 16-Bit Opcode Maps ... 681

679SPRU732J–July 2010 No Unit Specified Instructions and Opcode Maps

Copyright © 2010, Texas Instruments Incorporated

Instructions Executing With No Unit Specified www.ti.com

H.1 Instructions Executing With No Unit Specified

Table H-1 lists the instructions that execute with no unit specified.

Table H-1. Instructions Executing With No Unit
Specified

Instruction Format

DINT (1) Figure H-1

IDLE Figure H-2

NOP Figure H-2

RINT (1) Figure H-1

SPKERNEL (1) Figure H-3

SPKERNELR (1) Figure H-3

SPLOOP (1) Figure H-4

SPLOOPD (1) Figure H-4

SPLOOPW (1) Figure H-4

SPMASK (1) Figure H-3

SPMASKR (1) Figure H-3

SWE (1) Figure H-1

SWENR (1) Figure H-1
(1) C64x+ CPU-specific instruction

H.2 Opcode Map Symbols and Meanings

Table H-2 lists the symbols and meanings used in the opcode maps.

Table H-2. No Unit Specified Instructions Opcode Map Symbol Definitions

Symbol Meaning

creg 3-bit field specifying a conditional register

csta constant a

cstb constant b

cstn n-bit constant field

iin bit n of the constant ii

N3 3-bit field

op opfield; field within opcode that specifies a unique instruction

p parallel execution; 0 = next instruction is not executed in parallel, 1 = next instruction is executed in parallel

s side A or B for destination; 0 = side A, 1 = side B.

stgn bit n of the constant stg

z test for equality with zero or nonzero

680 No Unit Specified Instructions and Opcode Maps SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com 32-Bit Opcode Maps

H.3 32-Bit Opcode Maps

The C64x CPU and C64x+ CPU 32-bit opcodes used in the no unit instructions are mapped in the
following figures.

Figure H-1. DINT and RINT, SWE and SWENR Instruction Format
31 30 29 28 27 24 23 22 21 20 19 18 17 16 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 Reserved (0) 0 0 0 0 0 0 0 op 0 0 0 0 0 0 0 0 0 0 0 0 p

4 4 1

Figure H-2. IDLE and NOP Instruction Format
31 30 29 28 27 18 17 16 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 Reserved (0) 0 op 0 0 0 0 0 0 0 0 0 0 0 0 p

10 4 1

Figure H-3. Loop Buffer, Nonconditional Instruction Format
31 30 29 28 27 23 22 18 17 16 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 cstb csta 1 op 0 0 0 0 0 0 0 0 0 0 0 s p

5 5 4 1 1

Figure H-4. Loop Buffer Instruction Format
31 29 28 27 23 22 18 17 16 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z cstb csta 1 op 0 0 0 0 0 0 0 0 0 0 0 s p

3 1 5 5 4 1 1

H.4 16-Bit Opcode Maps

The C64x+ CPU 16-bit opcodes used in the no unit instructions for compact instructions are mapped in
the following figures. See Section 3.9 for more information about compact instructions.

Figure H-5. Uspl Instruction Format
15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

0 ii3 0 0 1 1 ii2-0 1 1 0 0 1 1 op

1 3 1

NOTE: Supports ii of 1-16

op Mnemonic

0 SPLOOP ii (ii = real ii - 1)

1 SPLOOPD ii

681SPRU732J–July 2010 No Unit Specified Instructions and Opcode Maps

Copyright © 2010, Texas Instruments Incorporated

16-Bit Opcode Maps www.ti.com

Figure H-6. Uspldr Instruction Format
15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

1 ii3 0 0 1 1 ii2-0 1 1 0 0 1 1 op

1 3 1

NOTE: Supports ii of 1-16

op Mnemonic

0 [A0] SPLOOPD ii (ii = real ii - 1)

1 [B0] SPLOOPD ii

Figure H-7. Uspk Instruction Format
15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

ii/stg4-3 0 1 1 1 ii/stg2-0 1 1 0 0 1 1 ii/stg5

2 3 1

Mnemonic

SPKERNEL ii/stage

Figure H-8. Uspm Instruction Format
a) SPMASK Instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D2 D1 1 0 1 1 S2 S1 L2 1 1 0 0 1 1 L1

1 1 1 1 1 1

NOTE: Supports masking of D1, D2, L1, L2, S1, and S2 instructions (not M1 or M2)

Mnemonic

SPMASK unitmask

b) SPMASKR Instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D2 D1 1 1 1 1 S2 S1 L2 1 1 0 0 1 1 L1

1 1 1 1 1 1

NOTE: Supports masking of D1, D2, L1, L2, S1, and S2 instructions (not M1 or M2)

Mnemonic

SPMASKR unitmask

682 No Unit Specified Instructions and Opcode Maps SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com 16-Bit Opcode Maps

Figure H-9. Unop Instruction Format
15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N3 0 1 1 0 0 0 1 1 0 1 1 1 0

3

Mnemonic

NOP N3

683SPRU732J–July 2010 No Unit Specified Instructions and Opcode Maps

Copyright © 2010, Texas Instruments Incorporated

684 No Unit Specified Instructions and Opcode Maps SPRU732J–July 2010

Copyright © 2010, Texas Instruments Incorporated

Appendix I
SPRU732J–July 2010

Revision History

Table I-1 lists the changes made since the previous version of this document.

Table I-1. Document Revision History

Reference Additions/Modifications/Deletions

Section 2.9.14.4 Added Caution.

SPACKU4 Changed figure.

685SPRU732J–July 2010 Revision History

Copyright © 2010, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DLP® Products www.dlp.com Communications and www.ti.com/communications
Telecom

DSP dsp.ti.com Computers and www.ti.com/computers
Peripherals

Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps

Interface interface.ti.com Energy www.ti.com/energy

Logic logic.ti.com Industrial www.ti.com/industrial

Power Mgmt power.ti.com Medical www.ti.com/medical

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Space, Avionics & www.ti.com/space-avionics-defense
Defense

RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video

Wireless www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/communications
http://dsp.ti.com
http://www.ti.com/computers
http://www.ti.com/clocks
http://www.ti.com/consumer-apps
http://interface.ti.com
http://www.ti.com/energy
http://logic.ti.com
http://www.ti.com/industrial
http://power.ti.com
http://www.ti.com/medical
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/space-avionics-defense
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless-apps

	Table of Contents
	Preface
	1 Introduction
	1.1 TMS320 DSP Family Overview
	1.2 TMS320C6000 DSP Family Overview
	1.3 TMS320C64x DSP Features and Options
	1.4  TMS320C64x/C64x+ DSP Architecture
	1.4.1 Central Processing Unit (CPU)
	1.4.2 Internal Memory
	1.4.3 Memory and Peripheral Options

	2 CPU Data Paths and Control
	2.1 Introduction
	2.2 General-Purpose Register Files
	2.3 Functional Units
	2.4 Register File Cross Paths
	2.5 Memory, Load, and Store Paths
	2.6 Data Address Paths
	2.7 Galois Field
	2.7.1 Special Timing Considerations

	2.8 Control Register File
	2.8.1 Register Addresses for Accessing the Control Registers
	2.8.2 Pipeline/Timing of Control Register Accesses
	2.8.3 Addressing Mode Register (AMR)
	2.8.4 Control Status Register (CSR)
	2.8.5 Galois Field Polynomial Generator Function Register (GFPGFR)
	2.8.6 Interrupt Clear Register (ICR)
	2.8.7 Interrupt Enable Register (IER)
	2.8.8 Interrupt Flag Register (IFR)
	2.8.9 Interrupt Return Pointer Register (IRP)
	2.8.10 Interrupt Set Register (ISR)
	2.8.11 Interrupt Service Table Pointer Register (ISTP)
	2.8.12 Nonmaskable Interrupt (NMI) Return Pointer Register (NRP)
	2.8.13 E1 Phase Program Counter (PCE1)

	2.9 Control Register File Extensions
	2.9.1 Debug Interrupt Enable Register (DIER)
	2.9.2 DSP Core Number Register (DNUM)
	2.9.3 Exception Clear Register (ECR)
	2.9.4 Exception Flag Register (EFR)
	2.9.5 GMPY Polynomial—A Side Register (GPLYA)
	2.9.6 GMPY Polynomial—B Side Register (GPLYB)
	2.9.7 Internal Exception Report Register (IERR)
	2.9.8 SPLOOP Inner Loop Count Register (ILC)
	2.9.9 Interrupt Task State Register (ITSR)
	2.9.10 NMI/Exception Task State Register (NTSR)
	2.9.11 Restricted Entry Point Register (REP)
	2.9.12 SPLOOP Reload Inner Loop Count Register (RILC)
	2.9.13 Saturation Status Register (SSR)
	2.9.14 Time Stamp Counter Registers (TSCL and TSCH)
	2.9.14.1  Initialization
	2.9.14.2  Enabling Counting
	2.9.14.3  Disabling Counting
	2.9.14.4  Reading the Counter

	2.9.15 Task State Register (TSR)

	3 Instruction Set
	3.1 Instruction Operation and Execution Notations
	3.2 Instruction Syntax and Opcode Notations
	3.2.1 32-Bit Opcode Maps
	3.2.2 16-Bit Opcode Maps

	3.3 Delay Slots
	3.4 Parallel Operations
	3.4.1 Example Parallel Code
	3.4.2 Branching Into the Middle of an Execute Packet

	3.5 Conditional Operations
	3.6 SPMASKed Operations
	3.7 Resource Constraints
	3.7.1 Constraints on Instructions Using the Same Functional Unit
	3.7.2 Constraints on the Same Functional Unit Writing in the Same Instruction Cycle
	3.7.3 Constraints on Cross Paths (1X and 2X)
	3.7.4 Cross Path Stalls
	3.7.5 Constraints on Loads and Stores
	3.7.6 Constraints on Long (40-Bit) Data
	3.7.7 Constraints on Register Reads
	3.7.8 Constraints on Register Writes
	3.7.9 Constraints on AMR Writes
	3.7.10 Constraints on Multicycle NOPs
	3.7.11 Constraints on Unitless Instructions
	3.7.11.1  SPLOOP Restrictions
	3.7.11.2  BNOP <disp>,n
	3.7.11.3  DINT
	3.7.11.4  IDLE
	3.7.11.5  NOP n
	3.7.11.6  RINT
	3.7.11.7  SPKERNEL(R)
	3.7.11.8  SPLOOP(D/W)
	3.7.11.9  SPMASK(R)
	3.7.11.10 SWE
	3.7.11.11 SWENR

	3.8 Addressing Modes
	3.8.1 Linear Addressing Mode
	3.8.1.1  LD and ST Instructions
	3.8.1.2  ADDA and SUBA Instructions

	3.8.2 Circular Addressing Mode
	3.8.2.1  LD and ST Instructions
	3.8.2.2  ADDA and SUBA Instructions
	3.8.2.3  Circular Addressing Considerations with Nonaligned Memory

	3.8.3 Syntax for Load/Store Address Generation

	3.9 Compact Instructions on the C64x+ CPU
	3.9.1 Compact Instruction Overview
	3.9.2 Header Word Format
	3.9.2.1  Layout Field in Compact Header Word
	3.9.2.2  Expansion Field in Compact Header Word
	3.9.2.3  P-bit Field in Compact Header Word

	3.9.3 Processing of Fetch Packets
	3.9.4 Execute Packet Restrictions
	3.9.5 Available Compact Instructions

	3.10 Instruction Compatibility
	3.11 Instruction Descriptions

	4 Pipeline
	4.1 Pipeline Operation Overview
	4.1.1 Fetch
	4.1.2 Decode
	4.1.3 Execute
	4.1.4 Pipeline Operation Summary

	4.2 Pipeline Execution of Instruction Types
	4.2.1 Single-Cycle Instructions
	4.2.2 Two-Cycle Instructions and .M Unit Nonmultiply Operations
	4.2.3 Store Instructions
	4.2.4 Extended Multiply Instructions
	4.2.5 Load Instructions
	4.2.6 Branch Instructions

	4.3 Performance Considerations
	4.3.1 Pipeline Operation With Multiple Execute Packets in a Fetch Packet
	4.3.2 Multicycle NOPs
	4.3.3 Memory Considerations

	4.4 C64x+ DSP Differences

	5 Interrupts
	5.1 Overview
	5.1.1 Types of Interrupts and Signals Used
	5.1.1.1  Reset (RESET)
	5.1.1.2  Nonmaskable Interrupt (NMI)
	5.1.1.3  Maskable Interrupts (INT4-INT15)

	5.1.2 Interrupt Service Table (IST)
	5.1.2.1  Interrupt Service Fetch Packet (ISFP)
	5.1.2.2  Interrupt Service Table Pointer (ISTP)

	5.1.3 Summary of Interrupt Control Registers

	5.2 Globally Enabling and Disabling Interrupts
	5.3 Individual Interrupt Control
	5.3.1 Enabling and Disabling Interrupts
	5.3.2 Status of Interrupts
	5.3.3 Setting and Clearing Interrupts
	5.3.4 Returning From Interrupt Servicing
	5.3.4.1  CPU State After RESET
	5.3.4.2  Returning From Nonmaskable Interrupts
	5.3.4.3  Returning From Maskable Interrupts

	5.4 Interrupt Detection and Processing on the C64x CPU
	5.4.1 Setting the Nonreset Interrupt Flag
	5.4.2 Conditions for Processing a Nonreset Interrupt
	5.4.3 Actions Taken During Nonreset Interrupt Processing
	5.4.4 Setting the RESET Interrupt Flag
	5.4.5 Actions Taken During RESET Interrupt Processing

	5.5 Interrupt Detection and Processing on the C64x+ CPU
	5.5.1 Setting the Nonreset Interrupt Flag
	5.5.1.1  Detection of Missed Interrupts

	5.5.2 Conditions for Processing a Nonreset Interrupt
	5.5.3 Saving TSR Context in Nonreset Interrupt Processing
	5.5.4 Actions Taken During Nonreset Interrupt Processing
	5.5.5 Conditions for Processing a Nonmaskable Interrupt
	5.5.6 Saving of Context in Nonmaskable Interrupt Processing
	5.5.7 Actions Taken During Nonmaskable Interrupt Processing
	5.5.8 Setting the RESET Interrupt Flag
	5.5.9 Actions Taken During RESET Interrupt Processing

	5.6 Performance Considerations
	5.6.1 General Performance
	5.6.2 Pipeline Interaction

	5.7 Programming Considerations
	5.7.1 Single Assignment Programming
	5.7.2 Nested Interrupts
	5.7.3 Manual Interrupt Processing (polling)
	5.7.4 Traps

	5.8 Differences Between C64x and C64x+ CPU Interrupts

	6 C64x+ CPU Exceptions
	6.1 Overview
	6.1.1 Types of Exceptions and Signals Used
	6.1.1.1  Reset (RESET)
	6.1.1.2  Nonmaskable Interrupt (NMI)
	6.1.1.3  Exception (EXCEP)
	6.1.1.4  Internal Exceptions
	6.1.1.5  Exception Acknowledgment

	6.1.2 Exception Service Vector
	6.1.3 Summary of Exception Control Registers

	6.2 Exception Control
	6.2.1 Enabling and Disabling External Exceptions
	6.2.2 Pending Exceptions
	6.2.3 Exception Event Context Saving
	6.2.4 Returning From Exception Servicing

	6.3 Exception Detection and Processing
	6.3.1 Setting the Exception Pending Flag
	6.3.2 Conditions for Processing an External Exception
	6.3.3 Actions Taken During External Exception (EXCEP) Processing
	6.3.4 Nested Exceptions

	6.4 Performance Considerations
	6.4.1 General Performance
	6.4.2 Pipeline Interaction

	6.5 Programming Considerations
	6.5.1 Internal Exceptions
	6.5.2 Internal Exception Report Register (IERR)
	6.5.3 Software Exception
	6.5.3.1  SWE Instruction
	6.5.3.2  SWENR Instruction

	7 Software Pipelined Loop (SPLOOP) Buffer
	7.1 Software Pipelining
	7.2 Software Pipelining
	7.3 Terminology
	7.4 SPLOOP Hardware Support
	7.4.1 Loop Buffer
	7.4.2 Loop Buffer Count Register (LBC)
	7.4.3 Inner Loop Count Register (ILC)
	7.4.4 Reload Inner Loop Count Register (RILC)
	7.4.5 Task State Register (TSR), Interrupt Task State Register (ITSR), and NMI/Exception Task State Register (NTSR)

	7.5 SPLOOP-Related Instructions
	7.5.1 SPLOOP, SPLOOPD, and SPLOOPW Instructions
	7.5.1.1  SPLOOP Instruction
	7.5.1.2  SPLOOPD Instruction
	7.5.1.3  SPLOOPW Instruction

	7.5.2 SPKERNEL and SPKERNELR Instructions
	7.5.2.1  SPKERNEL Instruction
	7.5.2.2  SPKERNELR Instruction

	7.5.3 SPMASK and SPMASKR Instructions

	7.6 Basic SPLOOP Example
	7.6.1 Some Points About the Basic SPLOOP Example
	7.6.2 Same Example Using the SPLOOPW Instruction
	7.6.3 Some Points About the SPLOOPW Example

	7.7 Loop Buffer
	7.7.1 Software Pipeline Execution From the Loop Buffer
	7.7.2 Stage Boundary Terminology
	7.7.3 Loop Buffer Operation
	7.7.3.1 Interrupt During SPLOOP Operation
	7.7.3.2  Loop Buffer Active or Idle
	7.7.3.3  Loading Instructions into the Loop Buffer
	7.7.3.4  Fetching (Dispatching) Instructions from the Loop Buffer
	7.7.3.5  Disabling (Draining) Instructions in the Loop Buffer
	7.7.3.6  Enabling (Reloading) Instructions in the Loop Buffer

	7.8 Execution Patterns
	7.8.1 Prolog, Kernel, and Epilog Execution Patterns
	7.8.2 Early-Exit Execution Pattern
	7.8.3 Reload Execution Pattern

	7.9 Loop Buffer Control Using the Unconditional SPLOOP(D) Instruction
	7.9.1 Initial Termination Condition Test and ILC Decrement
	7.9.2 Stage Boundary Termination Condition Test and ILC Decrement
	7.9.3 Using SPLOOPD for Loops with Known Minimum Iteration Counts
	7.9.4 Program Memory Fetch Enable Delay During Epilog
	7.9.5 Stage Boundary and SPKERNEL(R) Position
	7.9.6 Loop Buffer Reload
	7.9.6.1  Reload Start
	7.9.6.2  Resetting ILC With RILC
	7.9.6.3  Program Memory Fetch Disable During Reload
	7.9.6.4  Restrictions on Interruptible Loops that Reload
	7.9.6.5  Restrictions on Reload Enforced by the Assembler

	7.9.7 Restrictions on Accessing ILC and RILC

	7.10 Loop Buffer Control Using the SPLOOPW Instruction
	7.10.1 Initial Termination Condition Using the SPLOOPW Condition
	7.10.2 Stage Boundary Termination Condition Using the SPLOOPW Condition
	7.10.3 Interrupting the Loop Buffer When Using SPLOOPW
	7.10.4 Under-Execution of Early Stages of SPLOOPW When Termination Condition Becomes True While Interrupt Draining

	7.11 Using the SPMASK Instruction
	7.11.1 Using SPMASK to Merge Setup Code Example
	7.11.2 Some Points About the SPMASK to Merge Setup Code Example
	7.11.3 Using SPMASK to Merge Reset Code Example
	7.11.4 Some Points About the SPMASK to Merge Reset Code Example
	7.11.5 Returning from an Interrupt

	7.12 Program Memory Fetch Control
	7.12.1 Program Memory Fetch Disable
	7.12.2 Program Memory Fetch Enable

	7.13 Interrupts
	7.13.1 Interrupting the Loop Buffer
	7.13.2 Returning to an SPLOOP(D/W) After an Interrupt
	7.13.3 Exceptions
	7.13.4 Branch to Interrupt, Pipe-Down Sequence
	7.13.5 Return from Interrupt, Pipe-Up Sequence
	7.13.6 Disabling Interrupts During Loop Buffer Operation

	7.14 Branch Instructions
	7.15 Instruction Resource Conflicts and SPMASK Operation
	7.15.1 Program Memory and Loop Buffer Resource Conflicts
	7.15.2 Restrictions on Stall Detection Within SPLOOP Operation

	7.16 Restrictions on Cross Path Stalls
	7.17 Restrictions on AMR-Related Stalls
	7.18 Restrictions on Instructions Placed in the Loop Buffer

	8 C64x+ CPU Privilege
	8.1 Overview
	8.2 Execution Modes
	8.2.1 Privilege Mode After Reset
	8.2.2 Execution Mode Transitions
	8.2.3 Supervisor Mode
	8.2.4 User Mode
	8.2.4.1  Restricted Control Register Access in User Mode
	8.2.4.2  Partially Restricted Control Register Access in User Mode
	8.2.4.2.1 Restrictions on Using CSR in User Mode
	8.2.4.2.2 Restrictions on Using TSR in User Mode

	8.2.4.3  Restricted Instruction Execution in User Mode

	8.3 Interrupts and Exception Handling
	8.3.1 Inhibiting Interrupts in User Mode
	8.3.2 Privilege and Interrupts
	8.3.3 Privilege and Exceptions
	8.3.4 Privilege and Memory Protection

	8.4 Operating System Entry
	8.4.1 Entering User Mode from Supervisor Mode
	8.4.2 Entering Supervisor Mode from User Mode

	9 C64x+ CPU Atomic Operations
	9.1 Synchronization Primitives
	9.1.1 Introduction to Atomic Operations
	9.1.2 Other Memory Operations

	9.2 Atomic Operations Instructions
	9.2.1 LL Instruction
	9.2.2 SL Instruction
	9.2.3 CMTL Instruction
	9.2.4 Valid Sequences of LL, SL, and CMTL Instructions

	9.3 Examples of Use
	9.3.1 Spin Lock Example
	9.3.2 Shared Accumulator or Counter Example
	9.3.3 Compare and Swap Example

	A Instruction Compatibility
	B Mapping Between Instruction and Functional Unit
	C .D Unit Instructions and Opcode Maps
	C.1 Instructions Executing in the .D Functional Unit
	C.2 Opcode Map Symbols and Meanings
	C.3 32-Bit Opcode Maps
	C.4 16-Bit Opcode Maps

	D .L Unit Instructions and Opcode Maps
	D.1 Instructions Executing in the .L Functional Unit
	D.2 Opcode Map Symbols and Meanings
	D.3 32-Bit Opcode Maps
	D.4 16-Bit Opcode Maps

	E .M Unit Instructions and Opcode Maps
	E.1 Instructions Executing in the .M Functional Unit
	E.2 Opcode Map Symbols and Meanings
	E.3 32-Bit Opcode Maps
	E.4 16-Bit Opcode Maps

	F .S Unit Instructions and Opcode Maps
	F.1 Instructions Executing in the .S Functional Unit
	F.2 Opcode Map Symbols and Meanings
	F.3 32-Bit Opcode Maps
	F.4 16-Bit Opcode Maps

	G .D, .L, or .S Unit Opcode Maps
	G.1 Opcode Map Symbols and Meanings
	G.2 32-Bit Opcode Maps
	G.3 16-Bit Opcode Maps

	H No Unit Specified Instructions and Opcode Maps
	H.1 Instructions Executing With No Unit Specified
	H.2 Opcode Map Symbols and Meanings
	H.3 32-Bit Opcode Maps
	H.4 16-Bit Opcode Maps

	I Revision History

