TMS320C64x/C64x+ DSP
CPU and Instruction Set

Reference Guide

I3 TExXAS

INSTRUMENTS

Literature Number: SPRU732J
July 2010

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

l '{EXAS

NSTRUMENTS
Contents
=T =T = 15
1 0T LU 1 o T 17
11 TMS320 DSP Family OVEIVIEW . .uiuueeissisatssssiatesasssssss s st sass et s i ssasstanssansssannesnnsisnns 18
1.2 TMS320C6000 DSP FamMily OVEIVIEW .uueuussssussinuseiassesistssssssseiasssassssassssassiansssansssaneransisns 18
1.3 TMS320C64x DSP Features and OPLiONS ..ueuiiueeseirinssesiaisnsssiainnssssainnesssaasnrsssaannesiaassnesisanns 20
1.4 TMS320CH4AX/COAX+ DSP ArChItECIUIE 1. neieeiii ittt e et e e s reasnee e ssaanne e ssaannressaannnessaannnerrannns 21
1.4.1 Central Processing Unit (CPU) ...uuiiiuiiiiseiiiiiieiiississs s s s s sasesansssas 23
O [1 (=3 = LAY =T 0 o 23
1.4.3 Memory and Peripheral OptioNSuiueeiieeiiiriirir s s ras s aaannnas 23
2 CPU Data Paths and CONrOlieieiiiiiiier et e e e e s e et e s s s e e e e s eeaeaeananenennns 25
21 0T [Tox 1T 26
2.2 General-Purpose ReEgISIEr FilES ...uiiiiiiieiiiiii i siiie s s i e ss s e s saaneeessaanneessaannnessannnneesannnnes 26
23 U g0 T = 0 £ 29
2.4 Register File CroSs Pathseeiiiiiiiiiiiii i e r e e s s s s s n e s s s na e s sannnenss 30
25 Memory, Load, and StOre Pathis ...iieeiiiiii it is e s e s se s e s s e an e s e 31
2.6 == WA [0 LTSS = 11 31
2.7 (7= 1L 1= T o 31
2.7.1 Special Timing CoNSIAEratiONS ..uuviiiiiseeeieeiieeersasanneessaannressaanneesseansnesssssnneesssssneesessnnnes 33
2.8 (7] 10T 0] (= g 1= 34
2.8.1 Register Addresses for Accessing the Control REJISLErScvviiieieiiiiiiriiiiii i 35
2.8.2 Pipeline/Timing of CoNtrol REQISIEr ACCESSES . uurrrriinrrerraanteesraanseessesnsnesssssnneesssssnresessnnnes 35
2.8.3 Addressing Mode RegiSter (AMR) .uuiuueirutirseiiteiseris s s saars i 36
2.8.4 Control Status RegQiSter (CSR) ..uuuiiiiiiieiiiiieiriite it raare s rrasae st saaaae s saaaan s s aaanreesaannes 38
2.8.5 Galois Field Polynomial Generator Function Register (GFPGFR)cciiiiiiiiiiiiiiiiiineennnineess 40
2.8.6 Interrupt Clear RegiSter (ICR) 1uuuuuseiiuseiteiseisiseisae st sa s s e s ra s s ransaanes 41
2.8.7 Interrupt Enable RegiSter (IER)ciiiuueeiiiiiiie it ssaatse s raaae s s ssaaa e s ssainnn s ssaannesanannnes 42
2.8.8 Interrupt Flag RegIStEr (IFR) ..uuueeeiiiieeseeiinteeseasnneessaanneessaanseesssasnnesssssnnnessssnnneesssnnnes 43
2.8.9 Interrupt Return Pointer Register (IRP) ..uuuiiiisiiiiiiiiiii s s s nia s annes 43
2.8.10 Interrupt Set RegiSter (ISR) ..uuueeiiiiiii it s e s s s e s s aa s e s s s aan e e annnes 44
2.8.11 Interrupt Service Table Pointer Register (ISTP) .uuiiiiiiiiiiii i iae s sssinsessaaanneesanannes 45
2.8.12 Nonmaskable Interrupt (NMI) Return Pointer Register (NRP)oviviiiiiiiiiiiiiiniievnnes 45
2.8.13 E1 Phase Program Counter (PCEL)uuiiiieeiiiiiiiieiiiiitesiaastesiaaassssssaanssssssannnsssaannnes 46
2.9 Control RegiSter File EXIENSIONS ...uiiiiiiietesiieanteessaanneessasnnessaasnneessasnnressesanneessssnneessssnnnesssnnns 46
2.9.1 Debug Interrupt Enable Register (DIER) ...uuiiiueiriuiiiiiiieiii i rnsssisssss s sansasanns 47
2.9.2 DSP Core Number Register (DNUM) .. .uuiiiiiiiiiiiiite s iaass s ssass s ssainas s sssanns s ssannsessannns 48
2.9.3 Exception Clear REQISEr (ECR) .uuviiiiireetiiiieessaianressssanneessaanneessannneesssssnnesssssnneessssnnnes 48
2.9.4 Exception Flag Register (EFR) ..uuuiiieiiiiiiiriii s sin s s s s s nes 49
2.9.5 GMPY Polynomial—A Side RegiSter (GPLYA) ..ottt it sssiasssssaiansssannnes 50
2.9.6 GMPY Polynomial—B Side RegiSter (GPLYB) ..cvviiitierieiaeresisannresseannnesssssnneessssnnneessssnnees 50
2.9.7 Internal Exception Report Register (IERR) ..viuueiiiiiiiiiiii i annes 51
2.9.8 SPLOOP Inner Loop Count REGISEr (ILC) 1uuuuereirintiiiriitsesiaassesssassssisainsssssaannresaaannnes 52
2.9.9 Interrupt Task State REGIStEr (ITSR) tuuuueeiiiiieeseiiinreessaanreessaanseessaanseesssssnnesssssnnresesnnnnes 52
2.9.10 NMI/Exception Task State RegiSter (NTSR) ..uueuviutiriuririseiiineiirinerneisississsirsrassaanns 53
2.9.11 Restricted Entry Point RegiSter (REP) ...ciiiiiiiiiiiiiii i s rriss s s nns s ssnane s sannnnes 53
2.9.12 SPLOOP Reload Inner Loop Count Register (RILC) .vvviiiiiiieiiiiiiessiiinnessssnnneessasnnnessannnnees 54
SPRU732J-July 2010 Contents 3

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS
INSTRUMENTS
www.ti.com
2.9.13 Saturation Status RegIStEr (SSR) .uuiuueiruuiiriteiiteiiie i sisats i 54
2.9.14 Time Stamp Counter Registers (TSCL and TSCH) ..uvuiiiiiiiiiiiiiini i aeasnes 55
2.9.15 Task State RegiSter (TSR) .uuuuuuuetiiiieteiiiiteesraitresraastessaassestsaassesssaisnssssaannsessannnes 57
T AU o 0 T ST = PP 59
3.1 Instruction Operation and EXecution NOtAtIONSueiiueeiiusiiiiriirire i rar e aanreras 60
3.2 Instruction Syntax and OPcOde NOLALIONSeeeiiieteeiriitee i raiire s saaine s saaanressaanressrannneessn 62
3.2 1 32-Bit OPCOUE MAPS +tetiunreetrinnnnessansnnessessnneessaanneessasnneessesnnsessesnnnesssssnneessssnnnessssnnes 63
3.2.2 16-Bit OPCOUE MBPS tuuteuuteiunnerseisnessss e ssar s ssas s sasassaassaa e sasrssasssareranesanns 63
3.3 3= = Y] 0] £ 64
3.4 L 1111 I @] o 1T - o] o 1 65
3.4.1 Example Parallel COOEuuiiiuiiisiiiiite it s s e s e 67
3.4.2 Branching Into the Middle of an EXeCUte PACKELueiiiiiiiiiiiiiiie i i r e eannnes 67
35 (70 g o 11 0T aF= U @] o =T - {0 g 1= 68
3.6 ST RS NS I =T -1 1T 68
3.7 RESOUICE CONSIIAINTS . uuuteiiisteeiraaeessa e te e st s et s aaa s e e st a s s e s saaan e st aaan e s s aaannesssannnnsssannnnnsss 69
3.7.1 Constraints on Instructions Using the Same Functional Unitcccvviiiiiiniiiiiiiiiennnnnnnes 69
3.7.2 Constraints on the Same Functional Unit Writing in the Same Instruction Cyclec.ccevvuen. 69
3.7.3 Constraints on Cross Paths (1X @nd 2X) ..uiveeeeiiiiiiiiiiiis i isane s ssainss s saaansssaaannns 69
3.7.4 Cross Path StallS ..uueiueisiisiiiiserir e 70
3.7.5 Constraints 0N LOAdS and StOMES ...uiiueeriutsiiunirssissrisseiase it iaissansssareraeasanns 71
3.7.6 Constraints on LoNg (40-Bit) DAta ...uvuueeiiiiiieiiiiieisiise s raisss s rraae s ssaiass s s aaaanns 71
3.7.7 Constraints 0N ReQISIEr REAUS ...vvviiiiiieeiiiiieesiiieesaanreessaanseessaanneessasnnnessesnnneesssnnnes 72
3.7.8 CoNstraints 0N REGISIEr WIILES .uuuutiiueeiiieiiterisri s ra s ss e ra s aanes 72
3.7.9 Constraints 0N AMR WIIEES ..uuuueiiiiiiite it s rr s se s s aa e st saaaa s s s saannnssasannntesaannns 73
3.7.10 Constraints 0N MUIICYCIE NOPS ...uiiiiiieiiiii i s aanree st aanneessaannressaannnessaannneessannnes 73
3.7.11 Constraints on UNitleSS INSIIUCHIONS 1.uuiueiiiisiiite i rs s naneens 73
3.8 o (o 1TSS] o Y/ Yo 1= 76
3.8.1 Linear AddreSSing MOOE ...uueeiiiieieesiiiieessaineessaaaneesssaanneessaanseessaanneessssnnnesssssnnessssnnnes 76
3.8.2 Circular AJAresSSing MOOE ...uiuueirseiieiiite i saar s r s s r e aanns 77
3.8.3 Syntax for Load/Store AAdress GEeNErationivvieeeeerriiuirerriiesesiaaieesiaaissssaaannresaaannnes 79
3.9 Compact Instructions 0N the CBAX+ CPU ..iiiiiiiiiiiiii i rare s ssasee st saanne e s saannneeaananneesaannnes 80
3.9.1 Compact INSIIUCHION OVEIVIEW . uuuuussiuseiassiunesassssass s sassssaasssase s ssasstannesarnssanns 80
ST 7 o (= o L= Yo o I e g | 81
3.9.3 Processing Of FEICh PaCKES ..uiuieeiiiiie i seainteessaanneessaanseessaanneessaannnessassnneessnnnnes 85
3.9.4 Execute Packet RESIICHONS t.uueiuseiieiiiteiiriisae st s s s s s s e aanes 85
3.9.5 Available ComMpPact INSIIUCLIONS ...ueiieeiiiiiee s s e s raaaa e s sraaa e s saannnssaaannrssaannnnes 85
B 700 0 1 5 ¢ £ Tox 1 o T @0 43 o T= L1 o1 1 /2 86
R 04 I O [TS 10T 10T o I DT o o L 87
T o T=1 T PP 509
4.1 Pipeling OpPeration OVEIVIEW ...uuiiiusesiisaeeessaaeressaastesssastestsaassestaasssesssaannsssssannsssssasnnnesss 510
O N o S 511
Nt I T o o To [N 512
G B (=T o U 513
4.1.4 Pipeline Operation SUMMAIYeeuuserseerssisueesrtesasnerasessisssass st rassanssaissanrsiannasins 514
4.2 Pipeline Execution Of INStrUCHION TYPES .uuuuuiiiiiiiiteiiiitte e saaare s ssaase s saaanne s saaanrssaaanressaannnnessn 518
4.2.1 Single-CyCle INSrUCHIONS .. uuusetiisetetisieesisaissesssaisre s saaa s ssaaats et saaasessssansnestsannressnns 519
4.2.2 Two-Cycle Instructions and .M Unit Nonmultiply Operationsccevviiiiriieiiiriiieninieina, 520
e B (o] 1= |] 0T (0] LN 521
4.2.4 Extended MUMiply INSTIUCHONS +.uuuuuseiiieesiriiesisaie e srsiare s ss e s s saannee s saassesaaannssannns 523
S S o T To I [1] 1 0 1o T N 524
T = - 1 Tod o T 1 £ 1 0T (o g N 525
4.3 Performance CONSIAEIAtIONS ...ueiiiuueeiissieesraia s e s sraate st saasse st aa e s s saanrsssaannnsssannnnnsss 527
4.3.1 Pipeline Operation With Multiple Execute Packets in a Fetch Packetcccvviiiiiiiiiiinnnnnnnns 527
Contents SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS
INSTRUMENTS
www.ti.com
4.3.2 MUIICYCIE NOPS ittt ittt e s st s s e s s e st n e s n s a e n e aaaes 529
G T B |V =Y T 3 VA @0 1S3 To [T = o] o N 530
4.4 CB4xX+ DSP DifferENCES wiuuuiiitiiiitiiiii i i s 531
5 L= U 0 =P 533
51 L0 = T 534
5.1.1 Types of Interrupts and SigNals USEdiiiueiiiiiiiiiiiiiies i sais s s ssaaaanreaaanns 534
5.1.2 Interrupt Service Table (IST) tiuiueeeiieiiiesseianreessaaneeessaanneessaannnessasnnesssssnnressesnnnesssnnnes 536
5.1.3 Summary of Interrupt Control REGISIEIS ...uuiieiiiieiiiii i anes 540
5.2 Globally Enabling and Disabling INterTUPLS ...uueeseiiiiie i irs i rr e s r s s s s sanae s s saananesaans 540
5.3 (Lo AV o (U= TR a1 =Y € (U]) A o] 1 o 543
5.3.1 Enabling and Disabling INTEITUDPLS . .ueiuueiretirieiiseiiririe s e s s raneaanns 543
TR S = 1 (1 L3 0) T 1 (= U o) £ 543
5.3.3 Setting and Clearing INtEITUPLS . .uueuieeieeesresieeessssneesseanneesssansnesssasnneessssnnnesssssnneessnnnnes 544
5.3.4 Returning From INtErruUPt SEIVICING +uuuueeruutirnrirneineerisss i ranne e s 544
5.4 Interrupt Detection and Processing 0N the CHAX CPUuiiiiiiiiiiiiiiiie i ssainr e ssaannneeas 545
5.4.1 Setting the Nonreset INterrupt FIag ...oeeeeiiiii i i i e e e s sesne e s sannnnessannnneesaannnes 545
5.4.2 Conditions for Processing a NONreset INTEITUPLueeiieerieiiririeii s raneaanes 546
5.4.3 Actions Taken During Nonreset INterrupt ProCESSING ..vvvuuerriiiieteriiiinesiaaineessaainnsssaaannns 547
5.4.4 Setting the RESET INEITUPT FIAQ «tuvtiriiitiitiiiitiiiiteie st raaesae st e esesassrassataanerneaneenns 547
5.4.5 Actions Taken During RESET INtEIrUPt PrOCESSING «vuueuurueruerurrneeraerneanrerneanraeaneanraeanennnns 548
55 Interrupt Detection and Processing on the CBAX+ CPUiiiiiiieiiiiiiiieeiiiiie s s sssinessaaannneeanas 548
5.5.1 Setting the Nonreset INterrupt FIag ...cueeeiiiii i i i resseee s seanee s sannnnesssannneesaannnes 548
5.5.2 Conditions for Processing a NONreset INTEIrUPL ...v.uueiieeiieiiririe i s raneeanes 549
5.5.3 Saving TSR Context in Nonreset INterrupt ProCeSSING «.vuuueieiiiietesiiiiresiaaieessainnnsaaaanns 551
5.5.4 Actions Taken During Nonreset INterrupt ProCESSING «vvvvveinererresneerisssneesssssnneessssnneessssnnnes 552
5.5.,5 Conditions for Processing a Nonmaskable INterruptooevviiiiiiiiiiiiiiiri s 552
5.5.6 Saving of Context in Nonmaskable Interrupt ProCeSSINgvvviiiiiiiiiiiiiiiiiiierniineennnnens 555
5.5.7 Actions Taken During Nonmaskable Interrupt ProCeSSiNgevvvverreiiiieeeriiiineesraninneesesnnnees 555
5.5.8 Setting the RESET INEITUPE FIAQ - euueueneeeeieineeraerneaeeaeseaeseseeneaersaneaernsansanreanennans 555
5.5.9 Actions Taken During RESET INtErrupt ProCESSING +euuviureererieranerneiansaneenssanersesansanssnesanenns 556
5.6 Performance CONSIAEIAtIONS ...uuiussiueisirstitiserr st e s raranas 557
5.6.1 General PerfOrmManCe ...uuueiieeiiieiiiri s r st 557
G o= 1 1= T) =T = ot 1o) o 557
5.7 Programming CONSIOEIAtiONS . .ueeiiiieeesesianeeessaaneeessannneessaannnessassnnesssasnneessssnnnessesnnnessssnnnenss 557
5.7.1 Single AsSSIgNMENt ProgramImMing . ..euueesssssusessusersseermssssinessssiannsrasssissssinsianneraisainns 557
T 7 N (=1 (=0 T =T (1]) 558
5.7.3 Manual Interrupt Processing (POING) ..ueeeieiieieiiiiieeisisesssasntesssasnneessasnneessasnnneessnnnnes 560
ST [T 01 561
5.8 Differences Between C64x and C64x+ CPU INTEITUPLS ..uueisiiiiieieeiiiiie s ssriianressannsasssannnnenss 562
6 (01375 O o U o do7=] o] o o F= T PP 563
6.1 L0 = T 564
6.1.1 Types of Exceptions and SigNals USEdcc.eeiiiiiiiiiiiiiiii i s e araane s saannnesaannss 564
6.1.2 EXCEPLION SEIVICE VECION tuuiiuuussesiiiunnesssnnressaistessaastesssasssestssassnssassnnssssssnnsesssnnnes 565
6.1.3 Summary of Exception Control REGISIEIS ..uuviuiiiiieiiieiiiii i ranes 565
6.2 D e CoT=7 o] (o] o T @0 11 o] 567
6.2.1 Enabling and Disabling External EXCEPLIONSuuiiiuereiiiiniesiriisnesisaisssiasinesssaiinnsessannnes 567
Lo = o] T TN (o =T o) o gL 567
6.2.3 EXCeption EVENt CONEXE SAVING «eeiiuueeeiiiineesaaanressaaantesssaantesssaannnessaaannsssaannneessannnes 567
6.2.4 Returning From EXCEpPLioN SErVICING ..uueeeissuereiriintneiriintsssiaissessssiinnssssiisnssssainnrsssannnns 568
6.3 Exception Detection and PrOCESSING ..uuuuteiiueeruteiiseirseissssateraterassssiarsasesaiessasssanreransaannnss 569
6.3.1 Setting the Exception Pending FlIagcvveeiiieiiiiiiiiiiii s e ans 569
6.3.2 Conditions for Processing an External EXCEPLONeeiiiieiesiiiisresiiiinseisiisesissiinnssasannns 569
6.3.3 Actions Taken During External Exception (EXCEP) ProCeSSING «..uvvviueerinrisinririeeininerinnieinnss 572
SPRU732J-July 2010 Contents 5

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS
INSTRUMENTS
www.ti.com
LT J S N1 (=T I =t =] o o] L 572
6.4 Performance CONSIAEIAtIONSiiieieiiiiie it era e s s st e et s anee e s saann e s s aanressaannnssaannnnessn 572
6.4.1 General PerfOrmManCeuueiiiiuieeiiiiieiiiii s r e s sr it e st s s e s saa e st aaann e s aaannnes 572
L T =] T TN |] =T =T {0 572
6.5 (S eTe | e=TaaTgalTaTo @ o] Yo =T = 110] o 1 575
6.5.1 INterNal EXCEPLIONS 1uuuuuutetiiaeeeisaeeesssnre s ssaatae s saaaaee s saaane et asasanesasannrsssannnnsssannnes 575
6.5.2 Internal Exception Report Register (IERR) ..uvuuiiiiiiiiiiiiiiiise i risssisr s nansraneannns 575
LR TR TS T 1 L= L S (o =T o] (0] 576
Software Pipelined LOop (SPLOOP) BUFfEI ...t e e e 577
7.1 Y047 2= U= d1 o T=] 1111 T P 578
7.2 SOftWAre PIPEIINING w ettt 578
7.3 1= 12011 o] o T) 579
7.4 SPLOOP HardWare SUPPOI «uuuuueeesssasseessasnneesessnneesssannsesssannnesssesnneesssssnnessessnnesssssnnnesssnnnes 579
A 0 T 1 Yo o N 2 U 3 =T 579
7.4.2 Loop Buffer Count RegISter (LBC) ...uuuueiiiiiiieiiiiiiiiseiiaitss s saaasssssaiass s ssannessaannneessannnes 579
7.4.3 Inner Loop Count REGISTEr (ILC) .uvviiiiueeeiseieeessasnresssannnesssannneessasnnnessssnnnesssssnneessennnes 579
7.4.4 Reload Inner Loop Count ReQISter (RILC) .uuuiuurirseiieeiiniiiireriseiiissasssinss e snnssannesannss 580

7.4.5 Task State Register (TSR), Interrupt Task State Register (ITSR), and

NMI/Exception Task State RegiSter (NTSR) ...vveiiiiiiesiiiieessasineessaasnneessaannressennnressennnes 580
7.5 SPLOOP-Related INSIIUCHIONS 1uutiuuseisseesate it ss s s s s s raae s n s saaesanr e saneanans 580
7.5.1 SPLOOP, SPLOOPD, and SPLOOPW INSIIUCHIONS ...ueiuserusisinssieinsssssissrsesinsanernnsanesens 580
7.5.2 SPKERNEL and SPKERNELR INStrUCHONS +.uviusiissiueiisirniisinseiesnsssinsssaesisssneransnnesanas 581
7.5.3 SPMASK and SPMASKR INSIIUCHONS .u.uuuiiiussiiieiistinissisisssiseiasssassssisssssssansesanessness 582
7.6 21 T (oS IO 10] v 4]][583
7.6.1 Some Points About the Basic SPLOOP EXample ...eieiiiiiiiriiiieesisiineesssineesssnnnnesssannnes 584
7.6.2 Same Example Using the SPLOOPW INSIIUCHON ..uuiueiiisiiiiieiiiieiiierissisisssisssnnnesaneannnss 585
7.6.3 Some Points About the SPLOOPW EXamPIeoiiiiiiiiiiieiiiiies i isiias e ssnianssnnannns 586
7.7 [Yo 0 =10 1T (P 586
7.7.1 Software Pipeline Execution From the Loop BUffericveeiiiiiiiiiiiiiiiiiii e 587
7.7.2 Stage Boundary TerminOlOgYeeieeuueeeissineeerriinteeiranntessiaassssssaannesasainnsssaannnesssannnes 587
5 T W To o I =101 =T @ 0 T= = L1 o] PP 588
7.8 [T o110 T = 11 =T 0 590
7.8.1 Prolog, Kernel, and Epilog EXECUtiON PatternSceeiiiiieieriiiiiesiiiin s ssaannneesaannnes 590
7.8.2 Early-EXit EXECULION Patfernueeiiiiieiiiii e sseiee s s saneeessanneesssannesssannnnessannnneessnnnnes 591
7.8.3 Reload EXECULION PAEIN . uuuiuusiseiieerstsssessse st sia s sas s s s s ssaaesanesannasanns 592
7.9 Loop Buffer Control Using the Unconditional SPLOOP(D) INStIUCLION ...ueeiiiiiieiiiiiiiiiiiiieeesniiannens 594
7.9.1 Initial Termination Condition Test and ILC DECrEMENt ...uuvserriisirseiirirseriiner e 594
7.9.2 Stage Boundary Termination Condition Test and ILC DeCrementccevvveririeeiiirernneerinnirnss 594
7.9.3 Using SPLOOPD for Loops with Known Minimum Iteration COUNtSccevviiiiieriiiiineiinineess 595
7.9.4 Program Memory Fetch Enable Delay DUring ERilOg ..vvvveieereiiiiieieriiiiesiiainneessannneesasnnnnes 596
7.9.5 Stage Boundary and SPKERNEL(R) POSItION ..uvvuuiiiiiiiiiiiiiii i nseenanesaaes 596
AN ST W Yo I =01 =1 gl =1 o T T 596
7.9.7 Restrictions on AccessiNg ILC and RILCuuiiiiiiii i sssnressesnresssanneesaaannnesannnnnes 600
7.10 Loop Buffer Control Using the SPLOOPW INSIUCHON ..uuiuusiiseiiissiiseiinerissisisnssiss s ransssinsssns 600
7.10.1 Initial Termination Condition Using the SPLOOPW CoNnditionevviiiiiieiiiiiiieiiiiiineinninness 601
7.10.2 Stage Boundary Termination Condition Using the SPLOOPW Conditionccevvviiiinneniinnnes 601
7.10.3 Interrupting the Loop Buffer When Using SPLOOPWuiiiiiiiiiiiiiiiiinisne e snaeannes 601

7.10.4 Under-Execution of Early Stages of SPLOOPW When Termination Condition Becomes True
WHhilE INTEITUPT DIaiNINgG «eeuiieeeseieiteessannteessassneessaaneesssssnneesassnneessasnnnessssnnnesssnnnnenss 602
7.11 Using the SPMASK INSIIUCHION 4 uuuuutiussisesasssssts s sssssssssaass s ssasssssssass s s sassssanrssansianns 602
7.11.1 Using SPMASK to Merge Setup Code EXampPleeeiiiiiiiiiiiiiieeiiiieeisiiesssaananssanannns 603
7.11.2 Some Points About the SPMASK to Merge Setup Code EXamplecovieeiiiiiinreriiinnneniennnes 604
7.11.3 Using SPMASK to Merge Reset Code EXampleivveeiiiiiiiiiiiiiiiini s nsnennes 605
7.11.4 Some Points About the SPMASK to Merge Reset Code EXamplecccevviiiiiiiiiiiinnninninnss 606
Contents SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS
INSTRUMENTS
www.ti.com
7.11.5 Returning from an INEITUPE .. .ueineeiiir s e s s s s a e s r e s e e nnns 606
7.12 Program Memory FetCh CONIOluuiuseiiseiiiiie i r s eaaaes 606
7.12.1 Program Memory Fetch Disable ...ic.ueeiiiiiiiiii i s s s 607
7.12.2 Program Memory FetCh ENADIEcueiiieiiiiiiiiii i e e e 607
00 T | 01T 00 £ 607
7.13.1 Interrupting the LOOP BUfer . ..uuueiiiieiiiii i s r e aanees 607
7.13.2 Returning to an SPLOOP(D/W) After an INterrupt ...vueerieeiiie it rieisiessnesrareraneaaness 608
45 TR T o= o o) 608
7.13.4 Branch to Interrupt, Pipe-DOWN SEQUENCEeiiiiietiiiiiiieeiriinisssranssesisiissssssainnsssaainnns 608
7.13.5 Return from Interrupt, Pipe-Up SEQUENCE ...uuiiiuiiiiiiiiiitiiir it it ransisisrssnsesanesannaainnss 608
7.13.6 Disabling Interrupts During Loop Buffer Operationcccevviiiisiiiiiiieeiiiiieeiaaaineesaannness 608
7.14 BranCh INSIUCHONS w..uuiistiiiseiiisiiiteii i et e e r e s r e a s s s aanenanes 609
7.15 Instruction Resource Conflicts and SPMASK OpPerationuveueivieriiisiineriiririeineairanerns 609
7.15.1 Program Memory and Loop Buffer Resource ConfliCtScviiiiiiiiiiiiiiiiiiii i ennaee s 610
7.15.2 Restrictions on Stall Detection Within SPLOOP Operationcceesivvissssissiseeismiinneiiiinnns 610
7.16 Restrictions on Cross Path STallSuvueviiiiiiiiiiii i e 610
7.17 Restrictions on AMR-Related StallSueiiueeiisiiriiiiiii i 610
7.18 Restrictions on Instructions Placed in the Loop BUfer ...uvieiiiiiiiiii e e 611
8 CBAXF CPU PriVilEg e tuiuiitiiiiiiii ittt st e a et a e s et e e e e e eaaanaaa 613
8.1 L0 = T 614
8.2 (T o1 U o T 1Y o T[T 614
8.2.1 Privilege Mode After RSB ..iiiuiiiiiiiie it i ssasnteessaanteessaanneessaannessasanneessannnressannnes 614
8.2.2 EXecution MOOE TranSItiONS ..ueuuuseruserssssssisuseiasnesassssiarssasssanssansssassssasssannesansssinns 614
S 20 TS T U o 1= V7= 1/ 0T [615
S0 S O 1= 1V o[615
8.3 Interrupts and EXCeption HaNAIiNG «...eevueeiieiiieii i r s e s s s e nes 616
8.3.1 Inhibiting INterrupts iN USEr MOOEuuueiiiiiiiiiiiiiite i sr s s sraate s ssannn e s sanns 616
8.3.2 Privilege and INtEITUPES . .uueeriiieesteeieeeseasnnressaannresssannnesssannneessasnneessssnnnessssnnneessnnnnes 616
8.3.3 Privilege and EXCEPLIONS . .uuuiuutiruseiseeiissessrerseisss s sians s ssne st 616
8.3.4 Privilege and Memory ProteCHONeeeiiiiieeiiiiiesraate s ssare s ssase s saaannsssaaannssaaannnes 616
8.4 (©] 0 T=T= 11T S35 G =11 N 617
8.4.1 Entering User Mode from SUperviSor MOOEvvieeiiiesiineriteinisieinsesis e ssnesanes 617
8.4.2 Entering Supervisor Mode from USEr MOOEviiiiiiiiiiiiiieiiiiie i asiine e saaannnessanns 617
9 (01575 @ 1 =l UIVLN (0] ¢ [Tl @] o 1=1 &= L (o] 4 =T PPN 619
9.1 SYNChroNiZation PriMItIVESueiee i e s e r s s e e e e s e s e s aneanaes 620
9.1.1 Introduction t0 AtOMIC OPEIAtIONSuueeeireeeiaaaaneeeraaanrressaannsesraannnestaannnessaannnessaannness 620
9.1.2 Other MemOory OPEratiONS ..uiuuuseeissuueessrsnreessansssessaasssestaasnesssasnnssssaanressassnnesssannns 620
9.2 AtOMIC OPErations INSIIUCHIONS . .uuuustise it r e s e s s eraa e aan e saneenas 621
9.2.1 LL INSIIUCTION uttuuteisttsstssasesssesasae s s s e s s ae s s s s s s s e s s s et e e s e s s a s s s a e sa it e ran e e snes 621
LS8 T I [11 11 o1 1o o 621
L0220 T 1V I [1 o 1T 621
9.2.4 Valid Sequences of LL, SL, and CMTL INStIUCHONS ...viirueiiiiiiiieeiiiiene s inaaeessannnessnnnness 621
9.3 EXAMIPIES O USE 1iiiiiiiii it it r st e s s s et r e 622
9.3.1 SPIN LOCK EXAMPIE 1uueiitiiiteiie it e e s e s e e e e s a s e 622
9.3.2 Shared Accumulator or Counter EXampleiveeiiieiiiiiiiii i 622
9.3.3 Compare and SWap EXAmMPIEeuiiiueeiiiiieiiiis i ais s 623
A INSTrUCtioN ComMPaAtibDiliTy oot e r e 625
B Mapping Between Instruction and Functional Unitccooininiiiiiiii e eeens 631
C .D Unit InStructions and OPCOAE MaPS ..cuiuiuiuinieieie it et e e e e e e e e e eeenenanens 637
Cl1 Instructions Executing in the .D Functional UNitooieiiiiiiiiii i s r e s rannnee s 638
C.2 Opcode Map Symbols and MEaANINGS ...ueeiieiinterriiineeseaanneessaannresseannnesssasnneessessnnessssanneessennnes 638
O T o T @] o Yoo o[- Y =T o1 639
SPRU732J-July 2010 Contents 7

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

C.4 16-Bit Opcode Maps

.L Unit Instructions and Opcode Maps
D.1 Instructions Executing in the .L Functional Unit
D.2 Opcode Map Symbols and Meanings
D.3 32-Bit Opcode Maps
D.4 16-Bit Opcode Maps

.M Unit Instructions and Opcode Maps
E.l Instructions Executing in the .M Functional Unit
E.2 Opcode Map Symbols and Meanings
E.3 32-Bit Opcode Maps
E.4 16-Bit Opcode Maps

.S Unit Instructions and Opcode Maps
F.1 Instructions Executing in the .S Functional Unit
F.2 Opcode Map Symbols and Meanings
F.3 32-Bit Opcode Maps
F.4 16-Bit Opcode Maps

.D, .L, or .S Unit Opcode Maps
G.1 Opcode Map Symbols and Meanings
G.2 32-Bit Opcode Maps
G.3 16-Bit Opcode Maps

No Unit Specified Instructions and Opcode Maps
H.1 Instructions Executing With No Unit Specified
H.2 Opcode Map Symbols and Meanings
H.3 32-Bit Opcode Maps
H.4 16-Bit Opcode Maps

Revision History

Contents

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

I3 TEXAS
INSTRUMENTS
www.ti.com
List of Figures

1-1. TMS320C64X DSP BIOCK Diagram . ..ussussssussssussssssssissssssssssesssssasssrasserassssisstasesannerareannians 21
1-2. TMS320C64x+ DSP BIOCK DIiAGIam «uuuuuuueseiisutssssasnssssaisssssssissnssssissnssssannnssssaannsessansnsssisnnns 22
F I O o O I -1 = B - {1 27
2-2. Storage Scheme for 40-Bit Data in @ ReIStEr Pail ...uvueiiisiiiisiiiisiiiriririsi s asnns 28
2-3. Addressing Mode RegiSter (AMR) .. .uuueiiiiieeeiriiessriitre s sasree s saisse s saaiar s asasn s 36
2-4. Control Status RegISIEr (CSR) .t uuuuttiuseiiteiiutesite ettt ra s s st ss e ssiassanesannens 38
2-5. PWRD Field of Control Status RegiSter (CSR) ..uuuuttiiueiissiiseriatsiiseisisisiss i rnasssassisissaaneranens 38
2-6. Galois Field Polynomial Generator Function Register (GFPGFR)iiviiiiiiiiiiiiiiiiirniinninaeeeens 40
2-7. Interrupt Clear REGISIEr (ICR) ..t uutt ittt st st e et sa s st s taae s s e s sanssannsianness 41
2-8. Interrupt Enable ReQISIEr (IER) ...t it isaaat e s sra e et s e e e s saan e s s saann e e saannnnessaannnessns 42
2-9. Interrupt Flag ReGISIEr (IFR) 1.uuueeiiieteiiiiieiriite s rsiste s ssase s tsaisae st sain e s s s aan e s ssannesssannnnenss 43
2-10. Interrupt Return Pointer RegIStEr (IRP)uiiieeiiieiiieri s rrr s raaesnnns 43
2-11. Interrupt Set REGISIEr (ISR) «uuutiiustiiseiiseiaserite st s e s e s sa s aa e aannens 44
2-12. Interrupt Service Table Pointer RegiSter (ISTP) .uuuuereiiiiitiiiiiieeiiiiis s s i as i rraannreaas 45
2-13. NMI Return Pointer RegISter (NRP)uuuutiieeiiieisieeratssias s saasssaar s raas s s ssassan s sanessanns 45
2-14. E1 Phase Program COUNEr (PCEL) ...uueiiiieeiiiittesraateessaassesssaannesssaannsesaaannsessaannsesssannsessss 46
2-15. Debug Interrupt Enable Register (DIER) ...uuuueiiiiiiiiiiiii i s s s s s aan e aas a7
2-16. DSP Core Number Register (DNUM) .. uuuuutiiueiiteiaeeristssssssssssiessasss s sassssisssasssannesansssanns 48
2-17. Exception Flag RegISter (EFR) ...t eirat e s saaase s ssa e s s sa s s e s saanr e s saannnaessannnnessn 49
2-18. GMPY Polynomial A-Side RegiSter (GPLYA) . ..uiieiiiiiiiteeisitseiriites s sasiasssasasnnssssaannssssas 50
2-19. GMPY Polynomial B-Side (GPLYB) .uuuuuutiiteiiteiiuteristisssssssiasssastssass s saisssasssannsransssnnns 50
2-20. Internal Exception Report RegiSter (IERR)cieiiiiiiiiiie i s e e s a s s s s anr e s ssanne e s saannneess 51
2-21. Inner Loop Count REGISLEr (ILC) wuuuuuueesiiiuueeisnnnesssinsssssassssssanssssssasssnssssssnnssssannnesssannnnsssns 52
2-22. Interrupt Task State ReiStEr (ITSR)..uue sttt s rar s raaesanns 52
2-23. NMI/Exception Task State RegiSter (NTSR) ...uuuiuteiiueirinsiiiierisiisisisaseaesasssiarsaanesanens 53
2-24. Reload Inner Loop Count RegISter (RILC) vuuuueiiiieteiiiiintesisissssssaisssssaiinsssssasnssssannnssssaannnsssns 54
2-25. Saturation Status REGISLEr (SSR) .uueuutirutiretiiteiari i ar s 54
2-26. Time Stamp Counter Register - LOW Half (TSCL) ... uuueiiiiiiiiiiaia it raaiae e asaians s ssannnesssannneeens 55
2-27. Time Stamp Counter Register - High Half (TSCH) ...vviiiiiiiiiiiiiiiiii i i s naen e e 55
2-28. Task State RegISIEr (TSR) «uuuuutruttiueiieeiresits it sa st e e e s sanasianness 57
3-1. Basic Format of @ FetCh PacCKetuiueiiieiiiiiiii i s s e 65
3-2. Examples of the Detectability of Write Conflicts by the Assembler.......cooeviiiiiiiiiiiii e 72
3-3. Compact INStruction Header FOIMALuuueireeiiteiierite s st s s s sa s s sanr s raaesanes 81
3-4. Layout Field in Compact Header WOIdeiiiiiiie it iaate e sraaae s san s s ssaan e s s sannneeasannnnessn 81
3-5. Expansion Field in Compact Header WOIdcuviieeieiiiiiiesiiiiesisaississinsssssinnsssssannnssssannnnssss 82
3-6. P-bits Field in Compact Header WOrduiveeiiiiiiiiiiirit s rs s s s s san s raaesnnns 84
O 0 T= [T TSI = o = 510
4-2. Fetch Phases Of the PIpeliNe ... eeiiiieii i et r s s anannes 511
4-3. Decode Phases of the Pipeline ...u..eeiiiiiiiii i e s e 512
4-4. Execute Phases Of the Pipeline ... e s a e e annns 513
T 0 T= [T T o F=] 514
4-6. Pipeline Operation: One Execute Packet per FetCh PacKet......vviiireiiiiieeiiiiieersieeneinnneennnnees 514
4-7. Pipeline Phases BlOCK Diagramueeiiiieeiiaaineesaaiteessaanss s saans e s saananessaannsssaannnesssannnsss 516
4-8. Single-Cycle INSrUCtION PRASES ..uuiiiiuiesiiiieiiiiiersiitressaatae s saass et ssaan s asaaresssaannressannnes 519
4-9. Single-Cycle Instruction Execution BIOCK DIiagramvueeviussiiieiniiieiieississnassninessiessaneenas 519
4-10. TWO-CYCle INSITUCHION PRaSESttt iiiiiei it r it r st e s et e e s raaasn et saannn e s saannessannnneesaannnns 520
4-11. Single 16 x 16 Multiply Instruction Execution BIOCK Diagram......oveeeeiiiiuiieiiiiisesiiiinssisiiersisninness 520
SPRU732J-July 2010 List of Figures 9

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS
INSTRUMENTS
www.ti.com
4-12. Store INSIrUCHION PRaSEs ... uuiiiiistiieiiie e s e r s s r s e sa e s sa s e s n s e aaannnns 521
4-13. Store Instruction Execution BIOCK Diagramv.seisssiissesisserisisississsnsesasssiasssasssasssasssanneias 521
4-14. Extended Multiply INStrUCHION PhaSES ...uuuiiiiieiiiii s raie st as i saann e ssannes 523
4-15. Extended Multiply Instruction Execution BIOCK Diagramo.eeveeeirieiinieiiieiieisississnnneiaeesaneeas 523
4-16. LOAd INSIIUCHION PRASES 11uueiistsiseirssisassase it rasssss e sas s saar et saa s ssasesaneraseeaannsras 524
4-17. Load Instruction Execution BIOCK DIagrameeeisiieeeiisiinseisiissnsisaisssssisssssssssinnssssaannsessannnes 524
4-18. Branch INStrUCHON PhasSEsuuiiiiieiiiiiiitire it s n e e s s s s s sa e e s e e saneeaas 525
4-19. Branch Instruction Execution BIOCK Diagramcuuieeeeiiiiiteiiiane s iaane s saainne s ssaanneessannnseasaannes 526
4-20. Pipeline Operation: Fetch Packets With Different Numbers of Execute PacketS.........coveeviiiiinnniininnns 528
4-21. Multicycle NOP in @n EXECULE PaCKe. . .uuiuutiiieiiiiie it r s e s r s ras e s saneeaas 529
4-22. Branching and MUILICYCIE NOPS ...t e e e e s s r e s arann e s aaann e e aaannns 530
4-23. Pipeline Phases Used DUring MemOrY ACCESSES ..uuuuuerurrunrrerrannnnsiransssesimsisnssissinnesssisnnressainnns 530
4-24. Program and Data Memory StallSu.ueeivieeiiteiieriri s 531
Lo I [01 1= (U] 0 RS- YTt 1= o[536
5-2. Interrupt Service FEtCh PacCKet ...uuueeeiiiiiiii i st rr e s s s e s s s rannnenas 537
5-3. Interrupt Service Table With Branch to Additional Interrupt Service Code Located Outside the IST......... 538
5-4. Nonreset Interrupt Detection and Processing: Pipeline Operationcccvvviiiieiiiiiaeriiieiiaanneess 546
5-5. RESET Interrupt Detection and Processing: Pipeline OpPerationoeveeeveeeruerarssnernssneernrsnnsanesness 547
5-6. C64x+ Nonreset Interrupt Detection and Processing: Pipeline Operationccvvvuviiiiiiiiiiiinneinns 550
5-7. C64x+ Return from Interrupt Execution and Processing: Pipeline Operation..........coveeiviiiiiineiiinnnnenns 551
5-8. C64x+ CPU Nonmaskable Interrupt Detection and Processing: Pipeline Operationcccevvviiinnnnnn. 553
5-9. C64x+ CPU Return from Nonmaskable Interrupt Execution and Processing: Pipeline Operation............ 554
5-10. RESET Interrupt Detection and Processing: Pipeline Operationo.vveieiererenerieineaeraeaeaesaeanss 556
6-1. Interrupt Service Table With Branch to Additional Exception Service Code Located Outside the IST 566
6-2. External Exception (EXCEP) Detection and Processing: Pipeline Operation.........cevvvevvininineinneeinnes 570
6-3. Return from Exception Processing: Pipeline OPeration.cuvveeeeeiiiiinnriiaiieeraaineessaannsesiaannnesss 571
6-4. NMI Exception Detection and Processing: Pipeline Operationcuiviieeiiiiireiriiieriiinesiaanness 573
6-5. Double Exception Detection and Processing: Pipeline Operation........ccvvviiviiiniieinieiii i 574
7-1. Software Pipelined EXECULION FIOWuiiiseiiiiiiir i s s r e anaes 578
7-2. General Prolog, Kernel, and Epilog EXecution Patternc.eeuviiieieiiiiiiiie i sssiinessnnnnnnees 591
7-3. Single Kernel Stage EXECULION Patternueiiseirietiieiiite i rias s satssaasesna s sansaanes 591
7-4. Early-EXit EXECULION Patlerncoii ittt et e s s e s s s e e s saann e s ss i n e e ssannne s saannnenss 592
7-5. Single Loop Iteration EXECULION PatterN ...u....eseiiiiiteiiiisesiriiees s sssinrsssaisre s saansessaannesss 592
7-6. Reload EXECULION Paltlerm . .uu st irteisae st ss s s et ae s e s sa s s s e s tae s san e s sannsraneannns 593
7-7. Reload Early-EXit EXECULION PAEIM ...iiieeeiiiiiteiiaiateessaaate e ssaanae s s saannne s ssannnesaaanressaannnaessn 593
7-8. Instruction FIow USING Rel0Adii.uueeiiiiiiiiii i s s s s s s s s s s annaenas 599
7-9. Instruction Flow for strepy() Of NUIl SErNG ueevueeiiiiiir i s rae s 602
C-1. 1 0r 2 Sources INSrUCION FOMMIAL .uuuuusuiussesseiieeiasserane i r s s s sar e e sannerans 639
C-2. Extended .D Unit 1 or 2 Sources INStruction FOrMat.....cvvieeiiieiiiiiiiiiiiiiiiiiiiisaaeiaaes 639
C-3. ADDAB/ADDAH/ADDAW Long-Immediate OpPerationsuevveeriussiiuesrissirissiiissiainerisssirsrnneianes 640
C-4. Linked WOrd OPEratiONseeeesisesesssaanneessaansessaaansesssaanntessaannsessaaastesssaannessssannnessssnnnss 640
C-5. LOAd/StOre BaSIC OPEIatiONS . .uusuisuussessssusnnssssnnesssasnssssanssssssaassnessaasnssssssnnsessasnnnessasnnesss 640
C-6. Load/Store Long-Immediate OPErationNsSueiueeiiussrseerssisersiseiaeerassssisssrrss s rasssanrsraneianes 640
C-7. Load/Store Doubleword INStruCtioN FOIMAL +...uuiiussirseiineiiesi s r s sareranes 640
C-8. Load/Store Nonaligned Doubleword INStruction FOMMALevviiiuuseiiiiiiiiii i ranneeeas 640
(O R B To 3 B £ (1 o1 o T o 1 T L 641
C-10. DOFfADW INStrUCION FOMMAL ... uuistisesstesaseesate s ra e s s s e s s s s s s aa s s ra e s et s s aaneaanes 641
C-11. Dind INSTIUCHION FOMMAL +1uutiseiinsiisseiiterissisisnsrse e rassesiane s s sasssaanssaseesansssinesaansranns 642
C-12. DIiNADW INSEIUCHON FOMMIAT ... uuttatsiseirtesaseesssssaesssessa s saase e s s aae s sa s s sassan s sansssannssansannns 643
10 List of Figures SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS

INSTRUMENTS

www.ti.com
(O T I 1 o Yol [1S3 8 ot T o I 0 0 T L 643
C-14. DINCDW INSEUCHON FOIMAL ...ttt it e et e e s e e s rsaae e s sa s e s ssa s e s ssann e e s sannnessaannnesss 644
C-15. DdecC INSIUCHION FOIMAT. .t stesissiaeee st s st e st saaae et saaaae st ssaan s s ssannssssannrsssannnnesss 644
C-16. DAEeCDW INSIIUCHION FOMMAL .. ueeettieeessesaneeesssaneeesssanneessaanneessaannnessasnnnessasanneessannnnnssannnnnsss 645
(O I 1] 1 [1S3 £ (1 X T o I 0 0 T 645
C-18. DX20P INStrUCHON FOIMMAL 1. seeeisiiee it s e s s s e et sr e e s as e e s s s s e s s s nn s s saannnesss 645
C-19. DX5 INSIIUCTION FOMMIAL .. ttetteeeesseeeeeeseaanneessaaneeessaannnessaanneessaannnessaannneessaanneessaannnessannnnesss 646
(O T)Y o I8 4 F1 1 0T 1o o T o T o - 646
C-21. DXL INSIIUCHION FOMIAL . uttttisaeeisssaessssasessssasesssaaaae s saaaae et saaaan st ssaaanssssannnsssannnessannnnnsss 646
(O T o o [1S1 1 0 Tox 1T o o 4 - 647
D-1. 1 0r 2 Sources INSIrUCHION FOMMAL ...ttt e s e e s saate st saan e e s saann e s aaanneessannneensnn 651
D-2. UNary INSIIUCHION FOMMIAt. ... useet it sssatsessatee s saaaaee s ssaaaa e s ss s e s ssaan e e s s s an s e st sannaessannnnnsss 651
D-3. 1 or 2 Sources, Nonconditional INStrUCtiON FOrMat.vveeeiieeiiiiirrreerreneiirrrreeeernnnnarrsrreernnnnnnnnns 651
[S e B |] 0o (o o T o T o - 652
D-5. L3i INSIIUCLION FOMMIAL 4 tutisteeisieeeisssaee s st e s s asse s s saaa s e st s aase st aa s e s s s sann s s s ssann e e ssannnnnnsns 652
D-6. Ltbd INStrUCHION FOIMAL. .. eeee s ieeeeee e e ssaaaeee s saannne s saannnessaasnneesaannnesssannnenssannnnnssannnnnsss 653
[R R o [1] 10 o o = 653
D-8. LX5 INSIIUCLION FOMMIAL 4 uuisaeetinseeessaate s ssates s saasee s ssasaae s ssaaae s ssann e s s saannn e s ssannnnsssannnnnsss 654
[R e {ol [1S3 (B Tt 1o) o N o - L P 654
[O R I ol [=3 (B Td o) o N 0 T 655
D-11. LXL INSEIUCLION FOMIALE 4 uuinsaeeeinaenesssasesssaasee s sasseesssasane s saassae s saaannsssaannnesssannnnsssannnnnsss 655
E-1. Extended M-Unit with COmMpPOUNd OpPEratioNSueiueerutersrerneiriee s i raarsraessanns 659
E-2. Extended .M-Unit Unary INStrUCtION FOMMALueeeeiiiiiee it rriee s s e iane s ss e s e ssane e s sannnnaeess 659
E-3. Extended .M Unit 1 or 2 Sources, Nonconditional InStruction FOrmMatuvvviieiiiiiiiiiiniirrnierinsieenns 659
E-4. MPY INStUCHON FOIMAL .. ieetiieite e eee s e eeeaanee e ssaannne s saannnessaannnessaannneessaannressaannnnnsaannnnnsns 659
E-5. M3 INSIUCHON FOIMMAL ...ttt ittt e ee e s s e e s ss e an e s saan e s s aan e e s s s annn s s sannnnessannnnnsss 660
F-1. 1 0r 2 Sources INSIrUCHION FOMMAL .. .uueiieesiisiitessiitre s ssastesssase s tssissssssannssssaannssssannnnensas 663
F-2. ADDK INStrUCHON FOMMIAL 1. uueeesiseeeessssneeesaanneessaanneessaannnessaannnessaasnnnessasnnnesssannnnnssannnnnsss 663
F-3. ADDKPC INStUCHON FOIMMAL. ...ttt tiiiieteaaaiate s ss e e s saaae et sa s e s saann e s s aaann e e s saannnassaannnnnssn 663
F-4. Extended .S Unit 1 or 2 Sources INStruCtion FOMMAt ..uuuuuseiiiiieeiiiiieesisaieresssiaresssaaarsessannnnenss 664
F-5. Branch Using a Displacement INStruCtioN FOIMALuueiiutiiisririeisiesiissrinerisisinssasssanesaessanns 664
F-6. Branch Using a Register INStruCtion FOIMALuuuiisiiiiee it iaa e s e s ssinre s ssanna e s sannness 664
F-7. Branch Using a Pointer INStruCtion FOIMALvvuuureiiiiineiiiiee i issirsssaisrssssinnnssssannnnesss 664
F-8. BDEC/BPOS INStrUCHON FOMIAL «.uuueeetisseeeessaaneeessaannnesssasnnessaasnneesaasnnnesssaannnessannnnnssennnnnsss 664
F-9. Branch Using a Displacement with NOP INStruction FOrMat........uviiiiieiiiiiiiiiiiii i eennnneens 664
F-10. Branch Using a Register with NOP INStruCtion FOrMALvviiiiuiseiiiiiieiiiiieisiiirssssinrsessannnnenss 664
F-11. Call Nonconditional, Immediate with Implied NOP 5 Instruction FOrmatcccevviiiirerriinnnerrannnnesns 664
F-12. Move Constant INStrUCHION FOMMAL.t st e s raaae e s sa e an e s ssaann e e s sannreesaannnarssn 665
F-13. Extended .S Unit 1 or 2 Sources, Nonconditional INStruction FOrmMat...uuvieeiiiiiiiiiisiiiresisrenierernnisenes 665
F-14. Unary INSIUCHON FOMMAL. .. uutiuseiueeistenstesse e saass s s e s e s e s sr s s sa s e sa e s s ann s sa s s n e sanesanns 665
LI T o 1= (o @ o T= = 11T L 665
F-16. SDS7 INSIIUCHON FOMMIAt. st iiiaeeeissieee s e s ss e e s s s aaa et sa e e s saa i a e s s saaan s s s sannnssssannnnnsss 666
L] o 10 < 3 1) 0 Tox 1 o TN o ' - 666
F-18. SCS10 INSIUCHION FOMMAL .. uueeee i eee et e e e ee e s s s aaae e s saaaan e s saanne s s s nn e e s sannn e s ssannnasssannnnnssn 666
F-19. SDS7C INSIUCHION FOMMAL 1 uuustetisseeeirsaee e ssaate e s s aae et ss e e s sraaa e s ssaaa e e s s nn e s s sannn et sannnnnsss 667
F-20. SbUBC INStIUCTION FOIMMAL ... ueeet i ee st s s aaeee s saannee s saaanne s saanneesaasnnnessaannnensaannnnnssannnnnsss 667
L R S 1 T 1 11 1 0T 1o g T o 4 4= | 667
S 1C T [T3 {B ot o) 0] 02T 668
F-23. SMVK8 INSIrUCHION FOMMIAt. ... ueeetiieieessesee s ssaanee e ssaannee s saannnessaannnessaannnessaannnensaannnnnssannnnnsss 668

SPRU732J-July 2010 List of Figures 11

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS
INSTRUMENTS
www.ti.com
F-24. SShS INStrUCTON FOMMIAt. .. eeet s ee e seeees e ee e ssaaane e s saannne s saannnessaannneessaannnessaannnnnssannnnnsss 669
F-25. S2Sh INSIIUCTION FOMMIAL. .. eeeei ittt e e e a e e e s are et sa e e et saaan e s saa s e s s saann e e s saannnesssannnnnssn 669
F-26. SC5 INSIIUCHION FOMMIAL 4 tuiiseesiisiee e ses e e s st e et s s aae et ss e e s ss e e s saaann e s s s ann e st sannnessannnnnsss 670
F-27. S2eXt INStIUCHON FOMMALt ... eeeeiieeee s see e seaaneee s saannee s s sannne et saannessaasnnnessasnnnesssannnnnseannnnnnsnn 670
g TSy 07 o o 1151 1 0 ox 1T o o T 0 1 671
F-29. SX5 INSIIUCHION FOMMAL 4 auisees it sesate e ss e e s s s aae et s s aae s ts s aa e s ssaaa e e s s s aann e s s s annn e s sannnnnsss 671
F-30. SXL INSIrUCHON FOMMIAL +eiteeeiseseeeeeesanee e ssasneee s saannne s saannnessaannnesaasnnnessaannnnessannnnnssannnnnsss 672
[3 I S o TN 1S3 1 0T o T o 4 4= | 672
G-1. LSDMVLO INStrUCHION FOMMAL . .. uustiiseeeiisiaeeessateessaatse s saaaae et ssasae st asaanssssaaanesssannnnsssannnnnsss 675
G-2. LSDMVIT INSIIUCION FOMMIAL .. .uteeisieeesseseeeeesesaaee e sssannee s saanne e s saannnessaannnessasanneesaannnnessannnnnnss 675
LT R S B)t Ko [1S3 1 U T o o - | 676
G-4. LSDXL INSIUCHON FOIMAT .. seeeiiiieeeiisiiateers it s s e e s saaaae et sa e e s asaan s s ssaan e s ssannnessannnnesss 677
H-1. DINT and RINT, SWE and SWENR INStruction FOIMatuveeuiiiirireeressiiiiresseernnnnnsssrrersennnnnnnns 681
H-2. IDLE and NOP INStrUCHON FOIMMALciiettiiiiitteeraatee s eraate s s saase s ssaane s s ssann s s saanneesaannnnensnn 681
H-3. Loop Buffer, Nonconditional INStruction FOIrMALeviiiuiueiiiiieeiiiiiiriis i srirn e rannaeenss 681
H-4. Loop Buffer INStruCtioN FOIMALuiueiitiieiie i st s e s s s r s s r e rane e snns 681
[S T U] o I [1S3 (0T o o] - 681
L LG U]][| g [S (1 od T o 0 0T 682
H-7. USPK INSEIUCHION FOMMAE. ettt esae e s e s s s s e e s e e s e s s e s s a e ta e e s n s s n e s a e asanes 682
H-8. USPM INSIrUCHON FOIMAL eeet it iii et er e e s s ae e s ss e e s saa s e e s aann e s ssannn e s sannnaessannnessn 682
L S TR UL o o N T3 £ BTt o o 0 4= 683
12 List of Figures SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS
INSTRUMENTS
www.ti.com
List of Tables
1-1. Typical Applications for the TMS320 DSPS .. .uuuiiuiiiitiiieiii i aaneenas 19
2-1. A0-Bit/64-Bit REQISIEI Palil'S .uuuseiiiieiiiiieeisii s s ra et sa s st asaan e s asann s ssannnnesias 28
2-2. Functional Units and Operations Performedovuviiiiiiiiiii i s s asnes 29
P2 T /[o 0] o R g 0 01T T 31
2-4. MOAUIO 5 ArtAMETIC 1 uveiiisei i e 32
2-5. Modulo Arithmetic fOr FIEld GF(22) ..uuueeieiieieeit s reaerae e e e e e e s e saera e e saeaneeseansananeanennannanens 33
B ST @70 i o] I =T L] 1= =N 34
2-7. Addressing Mode Register (AMR) Field DeSCrPONS ...uuuetsiiiietssiiiitesisiiinsssssisessssinnnrsssaannnesas 36
2-8. BIOCK Size CalCUIAtIONS ... vttt vttt et r e e er e 37
2-9. Control Status Register (CSR) Field DeSCHPLONS . .uuiiueiristirisrirseiaiseiasssirerissisisraisssanreraesainns 38
2-10. Galois Field Polynomial Generator Function Register (GFPGFR) Field DescriptionS........vvvvvieeiiiinnnenns 40
2-11. Interrupt Clear Register (ICR) Field DESCIIPLONS 1.uvtiuueiieeiieeriteiiesriassiss i raarssaasssiassaanesannens 41
2-12. Interrupt Enable Register (IER) Field DESCIPUONS .. .uteuiiuetesiiiieeiaaineessaaneesaaannreessannneessaanneeess 42
2-13. Interrupt Flag Register (IFR) Field DeSCHPLIONSuuuetetiiittesisiinesissisaessssiaessssaanrsessannnsessaansnesss 43
2-14. Interrupt Set Register (ISR) Field DeSCrPtONS ...ttt aanes 44
2-15. Interrupt Service Table Pointer Register (ISTP) Field DeSCHPLONS ...vvveiiisiririiiiiirisianrraneenines 45
2-16. Control Register File EXtensions (CHAX+ DSP) 1.uuuuueiiiiiiiiiiiiireiiiiitesiraisss s iasinrsssaannnessas 46
2-17. Debug Interrupt Enable Register (DIER) Field DeSCrPtiONS ..vuuivieeiiieeiiiiiieriisisrsias i ranesninnes a7
2-18. Exception Flag Register (EFR) Field DeSCIPLONS . ..eieiieitesiiiniesiaainessaainsesaaannressaannnessaaanreeess 49
2-19. Internal Exception Report Register (IERR) Field DeSCriptionsuveiiiiieeiiiiiieiiiiinnesininnnseisannnness 51
2-20. Interrupt Task State Register (ITSR) Field DeSCHPLONS «..uuviieriiiteiiieriririsrriee e sanees 52
2-21. NMI/Exception Task State Register (NTSR) Field DeSCriptioNS. .. .cueiieiriuiirisiiiiseiiiieiirraneianes 53
2-22. Saturation Status Register Field DeSCIPLIONS . .vuuuuueteiiiistesiriesiraiesssairssssiasrsssraanrressaansnesss 54
2-23. Task State Register (TSR) Field DeSCrPLONS ..uuuttiiueiiiesiierie s raasraasssias s ranens 57
3-1. Instruction Operation and EXeCUtion NOTAtIONSueieiiiiiee i iraie e aa e sraianr e rrannr e s rannneeess 60
3-2. Instruction Syntax and OPCOde NOLALIONS . ..uueeeiiuuunrerriitresiaaresiraisrestsainresaainrsssaannrssssannrnssss 62
3-3. Delay Slot and Functional UNit LAENCY «..uueivueeiteiieinisirsnseiasesasss s sssssssssansssansssanesannnss 64
3-4. Registers That Can Be Tested by Conditional Operationscceeeeiiiiiieeiiiii i rraarrerraansaeess 68
3-5. Indirect Address Generation for LOad/StOreuviiiriiiiiiiisiiiisiiiiiiiiiiissis s 79
3-6. Address Generator Options fOr LOAA/STONE ...uuuuiusiiiseiiiteiie i s sareraneens 79
B N ©1 7 G OF = U I = (o] = o] = 1Y/ 01 80
3-8. Layout Field Description in Compact Instruction Packet Headerocovviiiiiiiiiiiiiiiiiiiiennieeeeas 81
3-9. Expansion Field Description in Compact Instruction Packet Header.......cccvvviiiiiiiiiiiiiiiie e innaeeenns 82
3-10. LD/ST Data Size SelECHON . uuuuetisteiistiristrae it sa s s e et r e raaeaanns 83
3-11. P-bits Field Description in Compact Instruction Packet Header.........vvviieiiiiiiiiiiiiiiiiiii e riianeens 84
3-12. Available Compact INSHUCHONS ..uuiiseiiieiie i e r e s et s s e s s e raa e aaanes 85
3-13. Relationships Between Operands, Operand Size, Functional Units, and Opfields for Example Instruction
A 89
3-14. Program Counter Values for Branch Using a Displacement EXampleccvviiiiiiiiiiiiiiiiniiinieins 133
3-15. Program Counter Values for Branch Using a Register EXamplecooeiiiiiiiiiiiiiiiiiiine e inaaeeens 135
3-16. Program Counter Values for B IRP INStruction EXampleoviieieiiiiiieiiiiiiiiii i nnnnnees 137
3-17. Program Counter Values for B NRP Instruction EXamplecvviiiiiiiiiiiiiii i esineanaes 139
3-18. Data Types Supported by LDB(U) INSEIUCHON ueeeeiiiiiee e iaie e raaiee s rsniane s ssananee s sannne s sannneeess 240
3-19. Data Types Supported by LDB(U) Instruction (15-Bit OffSet) ...vveueseiiiiiiiiiiiiiiiiiiirrii e siaeeeas 243
3-20. Data Types Supported by LDH(U) INStIUCHON ..uuuuuiiisiiiiieiiiinie s issssiss s snsssissssiassanssnnes 249
3-21. Data Types Supported by LDH(U) Instruction (15-Bit OffSet)uueiiiiiiiiiiiiiiii s aaeeeas 251
3-22. Register Addresses for Accessing the Control REQISTEIS ...uuviiiieseiiiiiieiiiiiirrii i raaanenss 330
SPRU732J-July 2010 List of Tables 13

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS
INSTRUMENTS
www.ti.com
3-23. Field Allocation in StG/CYC FIeld ...ueeuueiiitir i e e 424
3-24. Bit Allocations to Stage and Cycle in Stg/CYC Field ...uvuueiiieiiiiiiiiir i 424
4-1. Operations Occurring During Pipeling PhaSeSivieiiiiiiiiiiiiiiii i s s ssninnn e snanns 515
4-2. Execution Stage Length Description for Each INStrucCtion TYPE ...evveiiiiiiiiiieiiiiriiii s neenaneeas 518
4-3. Single-Cycle INStrUCtION EXECULION . uuuuusiisterseisssissssiissssassssissssissssse s et s ssinssanseins 519
4-4. Multiply INSTFUCHION EXECULION . uuutstiisseeiisiaeesssiateessasssessasssesssasssesssasanssasannssssasnnnsssannnns 520
4-5. Store INStrUCHION EXECULION 1 uuuuuttistississssite st e st s s s s st e e s s st s e s e s s n s ss s s san e sannaaanneras 521
4-6. Extended Multiply INStrUCtION EXECULION ...t st e s e s saaae e s asanne s saanneesaanns 523
4-7 Load INStruCtion EXECULION. 1 .uuttisttiisiiitii i s i a e e e ans 524
4-8. Branch INStrUCtION EXECULION 1. uuutiustesistiistsste it esassssas e sassra s s s s s s s e s san s s ra s san e sanesanneras 525
4-9. Program Memory Accesses Versus Data LOAd ACCESSES tuuriiireirieriiiseiiineiiisistisissiaieiaiesinneas 531
Lo O 101 0= 1] 10 111 535
S 101 1= (0T 01 a @] o] I (T L] 1= £ 540
5-3. TSR Field Behavior When an Interrupt is Takenvveeiiiiiiiiiiii i e 552
5-4. TSR Field Behavior When an NMI INterrupt iS Taken...oo.uesiiiiiieeiiiii i i s ssnnneeeas 555
5-5. Differences Between C64x and CH4X+ CPU INtEITUPLS . .uiuueeiiueeriutsiintinisrisinssaseiaeesansssinssannsinnes 562
6-1. Exception-Related CONtrol REGISEIS e eiiiite e rs et e raaae s s saann e s saanr e s saannreesaannaessn 565
6-2. NTSR Field Behavior When an EXCeption iS TaKeNuvuuuisiiiiiieeiiiie s sniesssiisnssssinnnssssannnesss 568
6-3. TSR Field Behavior When an Exception is Taken (EXC = 0).u.uuiiiuueiiuiirinririnriniieianneisssiresnneinnes 571
7-1. SPLOOP INStruction FIOW fOr @Nd ..vuuuseiuseiissisissrse it ssra s s saae s s sasenanes 584
7-2. SPLOOPW INSruction FIOW fOr .uuuiiusiiiiteiiiiiiiiiiiniisis s s sassa s s saasssiasssasenanns 585
7-3. Software Pipeline Instruction Flow Using the Loop BUffer.......cceviiiiiiiiiiiiiiiiii i i 587
7-4. SPLOOPD Minimum LOOP IEIratiONS 1.uuuiuuseiiseisssisseiaeesassssisns s ssssssasssaanssassssassssinssannsranes 595
7-5. SPLOORP Instruction Flow for First Three CyYCIeS Of ..vviiiiuiiiiiiiiiiiiii i i s rnaaeee s 604
7-6. SPLOOP INSrUCHON FIOW fOF .uuatiiisiiiteiie e et e e s s s s e e s s s n s rneanaes 606
A-1. Instruction Compatibility Between C62X, C64X, and COHAX+ DSPSueiiiiiiiiiiiiiireeiiiinesiraaneeaanns 625
B-1. Instruction to Functional Unit Mapping «....eeeeiesueeesiristnsiraieesiaissssisaisnssssainsressaannrssssannsnssss 631
C-1. Instructions Executing in the .D FUNCtioNal UNitoiieiiniieiiiiii s e s s s rae s 638
C-2. .D Unit Opcode Map Symbol DefinitionS.eeiii i r e s e s s ar e e rannaeeas 638
C-3. Address Generator Options fOr LOAA/StOre. . ..uuuuueseiriieesiiisesiaiiss s saaier s ssaiansessaasressaannesss 639
D-1. Instructions Executing in the .L FUNCtoNal UNit......ooueiiieiiiieiiiini s e snae e 650
D-2. .L Unit Opcode Map Symbol DefinitioNS .uuuvssiruseiieeiisinierissi i sar e raeesanns 651
E-1. Instructions Executing in the .M Functional Unit........ooeiueeiiiiieeiiiii i s snnnaenas 658
E-2 .M Unit Opcode Map Symbol DefinitioNS ...vueeiiieiiiiiii i aes 659
F-1. Instructions Executing in the .S FUNCtional UNituveeiiiiniiiiiii i nnes 662
F-2. .S Unit Opcode Map Symbol DefiNitioNSeeeiiiiesiiiiiee i i s s i r s rannaeess 663
G-1. .D,.L, and .S Units Opcode Map Symbol DefinitioNSvvueeiieeiiieiiiriirinie s risssinrsrnasanaes 674
H-1. Instructions Executing With No Unit SPecifiedcvvieiiiiiiiiiiiii i ae 680
H-2. No Unit Specified Instructions Opcode Map Symbol Definitionscovveiiiiiieiiiiiiiiiiieiiaees 680
I-1. DocumMENt REVISION HiSTOMY 1. uuatiistintir s s s r e s s n e s s s s e e e e nnes 685
14 List of Tables SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Preface
I, —{IE)S(’?IgUMENTS SPRU732J—July 2010

Read This First

About This Manual

The TMS320C6000™ digital signal processor (DSP) platform is part of the TMS320™ DSP family. The
TMS320C62x™ DSP generation and the TMS320C64x™ DSP generation comprise fixed-point devices in
the C6000™ DSP platform, and the TMS320C67x™ DSP generation comprises floating-point devices in
the C6000 DSP platform. The C62x™ and C64x™ DSPs are code-compatible.

The TMS320C64x+™ DSP is an enhancement of the C64x DSP with added functionality and an
expanded instruction set. This document describes the CPU architecture, pipeline, instruction set, and
interrupts of the C64x and C64x+ DSPs.

Notational Conventions

This document uses the following conventions.
» Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP
and C64x+ CPU, respectively.

» Hexadecimal numbers are shown with the suffix h. For example, the following number is 40
hexadecimal (decimal 64): 40h.

Related Documentation From Texas Instruments

The following documents describe the C6000 devices and related support tools. Copies of these
documents are available on the Internet at www.ti.com. Tip: Enter the literature number in the search box
provided at www.ti.com.

The current documentation that describes the C6000 devices, related peripherals, and other technical
collateral, is available in the C6000 DSP product folder at: www.ti.com/c6000.

SPRU190 — TMS320C6000 DSP Peripherals Overview Reference Guide. Provides an overview and
briefly describes the peripherals available on the TMS320C6000 family of digital signal processors
(DSPs).

SPRU395 — TMS320C64x Technical Overview. Provides an introduction to the TMS320C64x digital
signal processors (DSPs) of the TMS320C6000 DSP family.

SPRU656 — TMS320C6000 DSP Cache User's Guide. Explains the fundamentals of memory caches
and describes how the two-level cache-based internal memory architecture in the
TMS320C621x/C671x/C64x digital signal processors (DSPs) of the TMS320C6000 DSP family can
be efficiently used in DSP applications. Shows how to maintain coherence with external memory,
how to use DMA to reduce memory latencies, and how to optimize your code to improve cache
efficiency. The internal memory architecture in the C621x/C671x/C64x DSPs is organized in a
two-level hierarchy consisting of a dedicated program cache (L1P) and a dedicated data cache
(L1D) on the first level. Accesses by the CPU to the these first level caches can complete without
CPU pipeline stalls. If the data requested by the CPU is not contained in cache, it is fetched from
the next lower memory level, L2 or external memory.

SPRUB862 — TMS320C64x+ DSP Cache User's Guide. Explains the fundamentals of memory caches
and describes how the two-level cache-based internal memory architecture in the TMS320C64x+
digital signal processor (DSP) of the TMS320C6000 DSP family can be efficiently used in DSP
applications. Shows how to maintain coherence with external memory, how to use DMA to reduce
memory latencies, and how to optimize your code to improve cache efficiency. The internal memory

SPRU732J-July 2010 Read This First 15

Copyright © 2010, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/c6000
http://www.ti.com/lit/pdf/spru190
http://www.ti.com/lit/pdf/spru395
http://www.ti.com/lit/pdf/spru656
http://www.ti.com/lit/pdf/spru862

13 TEXAS
INSTRUMENTS

Related Documentation From Texas Instruments www.ti.com

architecture in the C64x+ DSP is organized in a two-level hierarchy consisting of a dedicated
program cache (L1P) and a dedicated data cache (L1D) on the first level. Accesses by the CPU to
the these first level caches can complete without CPU pipeline stalls. If the data requested by the
CPU is not contained in cache, it is fetched from the next lower memory level, L2 or external
memory.

SPRU871 — TMS320C64x+ DSP Megamodule Reference Guide. Describes the TMS320C64x+ digital
signal processor (DSP) megamodule. Included is a discussion on the internal direct memory access
(IDMA) controller, the interrupt controller, the power-down controller, memory protection, bandwidth
management, and the memory and cache.

SPRAA84 — TMS320C64x to TMS320C64x+ CPU Migration Guide. Describes migrating from the
Texas Instruments TMS320C64x digital signal processor (DSP) to the TMS320C64x+ DSP. The
objective of this document is to indicate differences between the two cores. Functionality in the
devices that is identical is not included.

SPRU186 — TMS320C6000 Assembly Language Tools User's Guide. Describes the assembly
language tools (assembler, linker, and other tools used to develop assembly language code),
assembler directives, macros, common object file format, and symbolic debugging directives for the
TMS320C6000 platform of devices (including the C64x+ and C67x+ generations).

SPRU187 — TMS320C6000 Optimizing Compiler User's Guide. Describes the TMS320C6000 C
compiler and the assembly optimizer. This C compiler accepts ANSI standard C source code and
produces assembly language source code for the TMS320C6000 platform of devices (including the
C64x+ and C67x+ generations). The assembly optimizer helps you optimize your assembly code.

SPRU198 — TMS320C6000 Programmer's Guide. Reference for programming the TMS320C6000
digital signal processors (DSPs). Before you use this manual, you should install your code
generation and debugging tools. Includes a brief description of the C6000 DSP architecture and
code development flow, includes C code examples and discusses optimization methods for the C
code, describes the structure of assembly code and includes examples and discusses optimizations
for the assembly code, and describes programming considerations for the C64x DSP.

TMS320C6000, TMS320, TMS320C62x, TMS320C64x, C6000, TMS320C67x%, C62x, C64X, VelociTl, XDS510, XDS560, TMS320C2000,
TMS320C5000 are trademarks of Texas Instruments.
Windows is a registered trademark of Microsoft Corporation.

16

Read This First SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spru871
http://www.ti.com/lit/pdf/spraa84
http://www.ti.com/lit/pdf/spru186
http://www.ti.com/lit/pdf/spru187
http://www.ti.com/lit/pdf/spru198

Chapter 1
/| —{IE)S(’?IgUMENTS SPRU732J—July 2010
Introduction

The TMS320C6000™ digital signal processor (DSP) platform is part of the TMS320™ DSP family. The

TMS320C62x™ DSP generation and the TMS320C64x™ DSP generation comprise fixed-point devices in
the C6000™ DSP platform, and the TMS320C67x™ DSP generation comprises floating-point devices in

the C6000 DSP platform. The C62x™ and C64x™ DSPs are code-compatible. All three DSP generations

use the VelociTI™ architecture, a high-performance, advanced very long instruction word (VLIW)
architecture, making these DSPs excellent choices for multichannel and multifunction applications.

The TMS320C64x+™ DSP is an enhancement of the C64x DSP with added functionality and an
expanded instruction set.

Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and

C64x+ CPU, respectively.

Topic Page

1.1 TMS320 DSP Family OVEIVIEW ...cuieieiiieieieueueuenaneeie it aeaeeeaenen e e e aeaeaeasaenenananrnaens 18

1.2 TMS320C6000 DSP Family OVEIVIEWcucuiuiuinieieieieieieeeeneneaieieieaeaeesensnsesarenens 18

1.3 TMS320C64x DSP Features and OPtiONSceiiieieiniieitieieeieat e et eeeneneeaeaaanenes 20

1.4 TMS320C64X/CH4Ax+ DSP ArChItECIUIE ..ovuiuieiiiieiiiiiii i e e a e 21
SPRU732J-July 2010 Introduction 17

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

TMS320 DSP Family Overview www.ti.com

1.1

1.2

TMS320 DSP Family Overview

The TMS320™ DSP family consists of fixed-point, floating-point, and multiprocessor digital signal
processors (DSPs). TMS320™ DSPs have an architecture designed specifically for real-time signal
processing.

Table 1-1 lists some typical applications for the TMS320™ family of DSPs. The TMS320™ DSPs offer
adaptable approaches to traditional signal-processing problems. They also support complex applications
that often require multiple operations to be performed simultaneously.

TMS320C6000 DSP Family Overview

With a performance of up to 8000 million instructions per second (MIPS) and an efficient C compiler, the
TMS320C6000 DSPs give system architects unlimited possibilities to differentiate their products. High
performance, ease of use, and affordable pricing make the C6000 generation the ideal solution for
multichannel, multifunction applications, such as:

* Pooled modems

» Wireless local loop base stations

* Remote access servers (RAS)

» Digital subscriber loop (DSL) systems

» Cable modems

» Multichannel telephony systems

The C6000 generation is also an ideal solution for exciting new applications; for example:
* Personalized home security with face and hand/fingerprint recognition

» Advanced cruise control with global positioning systems (GPS) navigation and accident avoidance
* Remote medical diagnostics

» Beam-forming base stations

» Virtual reality 3-D graphics

» Speech recognition

* Audio

* Radar

e Atmospheric modeling

» Finite element analysis

» Imaging (examples: fingerprint recognition, ultrasound, and MRI)

18

Introduction SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

TMS320C6000 DSP Family Overview

Table 1-1. Typical Applications for the TMS320 DSPs

Automotive

Consumer

Control

Adaptive ride control
Antiskid brakes
Cellular telephones
Digital radios
Engine control
Global positioning
Navigation

Vibration analysis
Voice commands

Digital radios/TVs

Educational toys

Music synthesizers

Pagers

Power tools

Radar detectors

Solid-state answering machines

Disk drive control
Engine control
Laser printer control
Motor control
Robotics control
Servo control

General-Purpose

Graphics/Imaging

Industrial

Adaptive filtering
Convolution

Correlation

Digital filtering

Fast Fourier transforms
Hilbert transforms

3-D transformations
Animation/digital maps
Homomorphic processing

Image compression/transmission
Image enhancement

Pattern recognition

Numeric control
Power-line monitoring
Robotics

Security access

Waveform generation Robot vision
Windowing Workstations
Instrumentation Medical Military

Digital filtering
Function generation
Pattern matching
Phase-locked loops
Seismic processing
Spectrum analysis
Transient analysis

Diagnostic equipment
Fetal monitoring
Hearing aids

Patient monitoring
Prosthetics
Ultrasound equipment

Image processing

Missile guidance
Navigation

Radar processing

Radio frequency modems
Secure communications
Sonar processing

Telecommunications

Voice/Speech

1200- to 56 600-bps modems
Adaptive equalizers

ADPCM transcoders

Base stations

Cellular telephones

Channel multiplexing

Data encryption

Digital PBXs

Digital speech interpolation (DSI)
DTMF encoding/decoding
Echo cancellation

Faxing

Future terminals

Line repeaters

Personal communications systems (PCS)
Personal digital assistants (PDA)
Speaker phones

Spread spectrum communications

Digital subscriber loop (xDSL)

Video conferencing

X.25 packet switching

Speaker verification
Speech enhancement
Speech recognition
Speech synthesis
Speech vocoding
Text-to-speech

Voice mail

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Introduction

19

13 TEXAS

INSTRUMENTS
TMS320C64x DSP Features and Options www.ti.com
1.3 TMS320C64x DSP Features and Options
The C6000 devices execute up to eight 32-bit instructions per cycle. The C64x CPU consists of 64
general-purpose 32-bit registers and eight functional units. These eight functional units contain:
* Two multipliers
* Six ALUs
The C6000 generation has a complete set of optimized development tools, including an efficient
C compiler, an assembly optimizer for simplified assembly-language programming and scheduling, and a
Windows® operating system-based debugger interface for visibility into source code execution
characteristics. A hardware emulation board, compatible with the TI XDS510™ and XDS560™ emulator
interface, is also available. This tool complies with IEEE Standard 1149.1-1990, IEEE Standard Test
Access Port and Boundary-Scan Architecture.
Features of the C6000 devices include:
e Advanced VLIW CPU with eight functional units, including two multipliers and six arithmetic units
— Executes up to eight instructions per cycle for up to ten times the performance of typical DSPs
— Allows designers to develop highly effective RISC-like code for fast development time
e Instruction packing
— Gives code size equivalence for eight instructions executed serially or in parallel
— Reduces code size, program fetches, and power consumption
» Conditional execution of most instructions
— Reduces costly branching
— Increases parallelism for higher sustained performance
» Efficient code execution on independent functional units
— Industry's most efficient C compiler on DSP benchmark suite
— Industry's first assembly optimizer for fast development and improved parallelization
e 8/16/32-hit data support, providing efficient memory support for a variety of applications
» 40-bit arithmetic options add extra precision for vocoders and other computationally intensive
applications
» Saturation and normalization provide support for key arithmetic operations
» Field manipulation and instruction extract, set, clear, and bit counting support common operation found
in control and data manipulation applications.
The C64x and C64x+ devices include these additional features:
» Each multiplier can perform two 16 x 16-bit or four 8 x 8 bit multiplies every clock cycle.
* Quad 8-bit and dual 16-bit instruction set extensions with data flow support
» Support for non-aligned 32-bit (word) and 64-bit (double word) memory accesses
» Special communication-specific instructions have been added to address common operations in
error-correcting codes.
» Bit count and rotate hardware extends support for bit-level algorithms.
In addition to the features of the C64x device, the C64x+ devices include these additional features:
» Compact instructions: Common instructions (AND, ADD, LD, MPY) have 16-bit versions to reduce
code size.
» Protected mode operation: A two-level system of privileged program execution to support higher
capability operating systems and system features such as memory protection.
» Exceptions support for error detection and program redirection to provide robust code execution
» Hardware support for modulo loop operation to reduce code size
» Each multiplier can perform 32 x 32 bit multiplies
» Additional instructions to support complex multiplies allowing up to eight 16-bit multiply/add/subtracts
per clock cycle
20 Introduction SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

I

TEXAS
INSTRUMENTS

www.ti.com TMS320C64x/C64x+ DSP Architecture

The VelociTl architecture of the C6000 platform of devices make them the first off-the-shelf DSPs to use
advanced VLIW to achieve high performance through increased instruction-level parallelism. A traditional
VLIW architecture consists of multiple execution units running in parallel, performing multiple instructions
during a single clock cycle. Parallelism is the key to extremely high performance, taking these DSPs well
beyond the performance capabilities of traditional superscalar designs. VelociTl is a highly deterministic
architecture, having few restrictions on how or when instructions are fetched, executed, or stored. It is this
architectural flexibility that is key to the breakthrough efficiency levels of the TMS320C6000 Optimizing
compiler. VelociTl's advanced features include:

» Instruction packing: reduced code size

» Allinstructions can operate conditionally: flexibility of code
« Variable-width instructions: flexibility of data types

» Fully pipelined branches: zero-overhead branching.

1.4 TMS320C64x/C64x+ DSP Architecture
Figure 1-1 is the block diagram for the C64x DSP. Figure 1-2 is the block diagram for the C64x+ DSP.
The C6000 devices come with program memory, which, on some devices, can be used as a program
cache. The devices also have varying sizes of data memory. Peripherals such as a direct memory access
(DMA) controller, power-down logic, and external memory interface (EMIF) usually come with the CPU,
while peripherals such as serial ports and host ports are on only certain devices. Check the data sheet for
your device to determine the specific peripheral configurations you have.
Figure 1-1. TMS320C64x DSP Block Diagram
Program cache/program memory
32-bit address
256-bit data
C6000 CPU
Power Program fetch
down Instruction dispatch (See Note) antrol
registers
Instruction decode
PN EDMA, Data path A Data path B Cont.rol <
EMIF | RegisterfleA | | RegisterfieB | logic
¢ N Test
Emulation
[L1 |.s1]|m1]D1] [D2|m2].s2].L2 | w——
Additional
peripherals:
Data cache/data memory ﬁmlers,
32-bit address serlaetsorts,
8-, 16-, 32-, 64-bit data '
Note: The instruction dispatch unit has advanced instruction packing.
SPRU732J-July 2010 Introduction 21

Copyright © 2010, Texas Instruments Incorporated

TMS320C64x/C64x+ DSP Architecture

I

TEXAS
INSTRUMENTS

www.ti.com

Figure 1-2. TMS320C64x+ DSP Block Diagram

L1P Cache/SRAM
A
= Program Memory Controller (PMC)
Unified :
L2) Memory <—>| IDMA I Instruction Fetch
gache/ Controller | I SPLOOP Buffer
RAM
(umc) 16/32-Bit Instruction Dispatch
Instruction Decode
Data Path A Data Path B
.L1]|.S1|.M1]|.D1|||.D2|.M2| .S2]| .L2
A
| Register File A | | Register File B |
External 1[1[
Memory v
Controller Interrupt
(EMC) = Data Memory & Exception
< Controller Controller
_ N (DMmC) Power
b Control
A A A A A A A A
L1D Cache/SRAM

22

Introduction

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

I

WWW.1i

TEXAS
INSTRUMENTS

i.com TMS320C64x/C64x+ DSP Architecture

14.1

1.4.2

143

Central Processing Unit (CPU)

The C64x CPU, in Figure 1-1, contains:

» Program fetch unit

* Instruction dispatch unit, advanced instruction packing

* Instruction decode unit

» Two data paths, each with four functional units

* 64 32-bit registers

» Control registers

» Control logic

» Test, emulation, and interrupt logic

The program fetch, instruction dispatch, and instruction decode units can deliver up to eight 32-bit
instructions to the functional units every CPU clock cycle. The processing of instructions occurs in each of
the two data paths (A and B), each of which contains four functional units (.L, .S, .M, and .D) and 32 32-bit
general-purpose registers. The data paths are described in more detail in Chapter 2. A control register file
provides the means to configure and control various processor operations. To understand how instructions
are fetched, dispatched, decoded, and executed in the data path, see Chapter 4.

The 64x+ CPU, in Figure 1-2 , contains:

e Program fetch unit

» 16/32 bit instruction dispatch unit, advanced instruction packing

* Instruction decode unit

* Two data paths, each with four functional units

* 64 32-bit registers

e Control registers

e Control logic

» Test, emulation, and interrupt logic

* Internal DMA (IDMA) for transfers between internal memories

The program fetch, instruction dispatch, and instruction decode units can deliver up to eight 32-bit
instructions to the functional units every CPU clock cycle. The processing of instructions occurs in each of
the two data paths (A and B), each of which contains four functional units (.L, .S, .M, and .D) and 32 32-bit
general-purpose registers. The data paths are described in more detail in Chapter 2. A control register file

provides the means to configure and control various processor operations. To understand how instructions
are fetched, dispatched, decoded, and executed in the data path, see Chapter 4.

Internal Memory

The C64x and C64x+ DSP have a 32-bit, byte-addressable address space. Internal (on-chip) memory is
organized in separate data and program spaces. When off-chip memory is used, these spaces are unified
on most devices to a single memory space via the external memory interface (EMIF).

The C64x DSP has two 64-bit internal ports to access internal data memory. The C64x DSP has a single
internal port to access internal program memory, with an instruction-fetch width of 256 bits.

The 64x+ DSP has a 256-hit read-only port to access internal program memory and two 256-bit ports
(read and write) to access internal data memory.

Memory and Peripheral Options

A variety of memory and peripheral options are available for the C6000 platform:
e Large on-chip RAM, up to 7M bits

* Program cache

» 2-level caches

SPRU732J-July 2010 Introduction 23

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

TMS320C64x/C64x+ DSP Architecture www.ti.com

32-bit external memory interface (EMIF) supports SDRAM, SBSRAM, SRAM, and other asynchronous
memories for a broad range of external memory requirements and maximum system performance.

The enhanced direct memory access (EDMA) controller transfers data between address ranges in the
memory map without intervention by the CPU. The EDMA has 16 programmable channels, as well as
a RAM space to hold multiple configurations for future transfers.

The Ethernet Media Access Controller (EMAC) and Physical layer (PHY) device Management Data
Input/Output (MDIO) module interfaces to the DSP through a custom interface that allows efficient data
transmission and reception.

The host port interface (HPI) is a parallel port through which a host processor can directly access the
CPU memory space. The host device functions as a master to the interface, which increases ease of
access. The host and CPU can exchange information via internal or external memory. The host also
has direct access to memory-mapped peripherals. Connectivity to the CPU memory space is provided
through the EDMA controller.

The inter-integrated circuit (I2C) module provides an interface between a C64x/C64x+ DSP and I°C
compatible devices connected by way of the 1°C serial bus.

The multichannel audio serial port (McASP) functions as a general-purpose audio serial port optimized
for the needs of multichannel audio applications. The McASP is intended to be flexible so that it may
connect gluelessly to audio analog-to-digital converters (ADC), digital-to-analog converters (DAC),
codec, digital audio interface receiver (DIR) and S/PDIF transmit physical layer components.

The multichannel buffered serial port (McBSP) is based on the standard serial port interface found on
the TMS320C2000™ and TMS320C5000™ devices. In addition, the port can buffer serial samples in
memory automatically with the aid of the EDMA controller. It also has multichannel capability
compatible with the T1, E1, SCSA, and MVIP networking standards.

The peripheral component interconnect (PCI) port supports connection fo the C64x/C64x+ DSP to a
PCI host via the integrated PCI master/slave bus interface.

Timers in the C6000 devices are two 32-bit general-purpose timers used for these functions:

Time events

Count events

Generate pulses

Interrupt the CPU

Send synchronization events to the DMA/EDMA controller.

Power-down logic allows reduced clocking to reduce power consumption. Most of the operating power
of CMOS logic dissipates during circuit switching from one logic state to another. By preventing some
or all of the chip's logic from switching, you can realize significant power savings without losing any
data or operational context.

Channel decoding of high bit-rate data channels found in third generation (3G) cellular standards
requires decoding of turbo-encoded data. The turbo-decoder coprocessor (TCP) in the C6000 DSP is
designed to perform this operation for IS2000 and 3GPP wireless standards.

Channel decoding of voice and low bit-rate data channels found in third generation (3G) cellular
standards requires decoding of convolutional encoded data. The Viterbi-decoder coprocessor (VCP) in
the C6000 DSP is designed to perform this operation for 1IS2000 and 3GPP wireless standards.

The universal test and operations PHY interface for asynchronous transfer mode [ATM] (UTOPIA) is
an ATM controller (ATMC) slave device that interfaces to a master ATM controller. The UTOPIA port
conforms to the ATM Forum standard specification af-phy-0039.000. Specifically, this interface
supports the UTOPIA Level 2 interface that allows 8-bit slave operation up to 50 MHz for both transmit
and receive operations.

For an overview of the peripherals available on the C6000 DSP, refer to the TM320C6000 DSP
Peripherals Overview Reference Guide (SPRU190) or to your device-specific data manual.

24 Introduction SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spru190

. Chapter 2
I3 TEXAS SPRU732J—July 2010

INSTRUMENTS
CPU Data Paths and Control

This chapter focuses on the CPU, providing information about the data paths and control registers. The
two register files and the data cross paths are described.

Topic Page
P22 S | 1o o [[1 o 26
2.2 General-Purpose ReGISIEr FIlEScuiuiiuieii it ettt e e e e eenenns 26
P22 N o o 1 o = 0 P 29
2.4 Register File Cross Patnsc.ieiiiiiiiiii e e e e e aas 30
2.5 Memory, Load, and Store Paths ... e 31
2.6 Data Address Paths ... 31
2 A - 1o S =1 o 31
P2 S B oY o o B =T o] €= 1 = 34
2.9 Control Register File EXTENSIONScuiuiuiuinieieieieieiieeeneeee e e e eeaenenen e seaeeaenenes 46

SPRU732J-July 2010 CPU Data Paths and Control 25

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
Introduction www.ti.com
2.1 Introduction
The components of the data path for the CPU are shown in Figure 2-1. These components consist of:
» Two general-purpose register files (A and B)
» Eight functional units (.L1, .L2, .S1, .S2, .M1, .M2, .D1, and .D2)
» Two load-from-memory data paths (LD1 and LD2)
e Two store-to-memory data paths (ST1 and ST2)
e Two data address paths (DAL and DA2)
» Two register file data cross paths (1X and 2X)
2.2 General-Purpose Register Files
There are two general-purpose register files (A and B) in the CPU data paths. Each of these files contains
32 32-bit registers (A0—A31 for file A and BO—B31 for file B), as shown in Table 2-1. The general-purpose
registers can be used for data, data address pointers, or condition registers.
The DSP general-purpose register files support data ranging in size from packed 8-bit through 64-bit
fixed-point data. Values larger than 32 bits, such as 40-bit and 64-bit quantities, are stored in register
pairs. The 32 LSBs of data are placed in an even-numbered register and the remaining 8 or 32 MSBs in
the next upper register (that is always an odd-numbered register). Packed data types store either four 8-bit
values or two 16-bit values in a single 32-bit register, or four 16-bit values in a 64-bit register pair.
There are 32 valid register pairs for 40-bit and 64-bit data in the DSP cores. In assembly language syntax,
a colon between the register names denotes the register pair, and the odd-numbered register is specified
first.
Figure 2-2 shows the register storage scheme for 40-bit long data. Operations requiring a long input
ignore the 24 MSBs of the odd-numbered register. Operations producing a long result zero-fill the 24
MSBs of the odd-numbered register. The even-numbered register is encoded in the opcode.
26 CPU Data Paths and Control SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com General-Purpose Register Files
Figure 2-1. CPU Data Paths
srcl M Odd E\{en
register register
AN file A
5 ’ (A1, A3 (A0, A2,
L1 st oy
N A5..A31) A4...A0)
odd dst »
See note 4
even dst »
long src < 8
ST1b ¢ 32 MSB
32LSB
ST1a <«
long src |« 8
even dst >
dd dst | Seenote 4
Data path A s1° g
srcl ¢
src2 {
<
o 3] s
S >
< 32
M srcl [
<—o0
src2
LD1b 32 MSB < S See note 3
LD1a 32 LSB >
dst >
DA1 .D1 srct [¢ -
src2 : 2%
L <
[
1x Even
register
DA2 src2 O.dd f.c‘: B
D2 < register e
. srcl ¢ file B (B0, B2,
dst > (B1, B3, B4...B30)
LD2a 32LSB > B5...B31)
LD2b 32 MSB >
src2
< See note 3
-M2 srcl |4
dst1 32] Seenote 2
32
dst2 ${ Seenote 1
src2 {
srcl |«
82 odd dst >
S te 4
Data path B even dst - . ee note
long src |« i
ST2a < 32 MSB
ST2b ¢ 32LSB
8
long src |«
even dst »
ad dst % See note 4
|p Cddds >
src2
‘_
srcl
] Control
Register
1. On .M unit, dst2 is 32 MSB.
2. On .M unit, dst1 is 32 MSB.
3. On C64x CPU .M unit, src2 is 32 bits; on C64x+ CPU .M unit, src2 is 64 bits.
4. On .Land .S units, odd dst connects to odd register files and even dst connects to even register files.

SPRU732J-July 2010 CPU Data Paths and Control 27

Copyright © 2010, Texas Instruments Incorporated

General-Purpose Register Files

13 TEXAS
INSTRUMENTS

www.ti.com

Table 2-1. 40-Bit/64-Bit Register Pairs

Register Files

A B
A1:A0 B1:BO
A3:A2 B3:B2
A5:A4 B5:B4
AT:A6 B7:B6
A9:A8 B9:B8

A11:A10 B11:B10
Al13:A12 B13:B12
Al15:Al14 B15:B14
Al7:Al6 B17:B16
A19:A18 B19:B18
A21:A20 B21:B20
A23:A22 B23:B22
A25:A24 B25:B24
A27:A26 B27:B26
A29:A28 B29:B28
A31:A30 B31:B30

Figure 2-2. Storage Scheme for 40-Bit Data in a Register Pair

31 Odd register 8 7 0 31 Even register 0
Ignoreed | i
|
Read from registers l :
39 | 32 31 0l
! 40-bit data
|
Write to registers i :
Odd register 39 32 31 Even register 0 :

Zero filled

! 40-bit data

28 CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

I

www.ti.com

TEXAS

INSTRUMENTS

Functional Units

2.3 Functional Units
The eight functional units in the C6000 data paths can be divided into two groups of four; each functional
unit in one data path is almost identical to the corresponding unit in the other data path. The functional
units are described in Table 2-2.
In addition to performing all of the TMS320C62x DSP instructions, the C64x and C64x+ DSP also
contains many 8-bit to 16-bit extensions to the instruction set. For example, the MPYU4 instruction
performs four 8 x 8 unsigned multiplies with a single instruction on an .M unit. The ADD4 instruction
performs four 8-bit additions with a single instruction on an .L unit.
Most data lines in the CPU support 32-bit operands, and some support long (40-bit) and doubleword
(64-bit) operands. Each functional unit has its own 32-bit write port, so all eight units can be used in
parallel every cycle, into a general-purpose register file (refer to Figure 2-1). All units ending in 1 (for
example, .L1) write to register file A, and all units ending in 2 write to register file B. Each functional unit
has two 32-bit read ports for source operands srcl and src2. Four units (.L1, .L2, .S1, and .S2) have an
extra 8-bit-wide port for 40-bit long writes, as well as an 8-bit input for 40-bit long reads. Since each DSP
multiplier can return up to a 64-bit result, an extra write port has been added from the multipliers to the
register file.
See Appendix B for a list of the instructions that execute on each functional unit.
Table 2-2. Functional Units and Operations Performed
Functional Unit Fixed-Point Operations
.Lunit (.L1, .L2) 32/40-bit arithmetic and compare operations
32-hit logical operations
Leftmost 1 or 0 counting for 32 bits
Normalization count for 32 and 40 bits
Byte shifts
Data packing/unpacking
5-bit constant generation
Dual 16-bit arithmetic operations
Quad 8-bit arithmetic operations
Dual 16-bit minimum/maximum operations
Quad 8-bit minimum/maximum operations
.S unit (.S1, .S2) 32-bit arithmetic operations
32/40-bit shifts and 32-bit bit-field operations
32-hit logical operations
Branches
Constant generation
Register transfers to/from control register file (.S2 only)
Byte shifts
Data packing/unpacking
Dual 16-bit compare operations
Quad 8-bit compare operations
Dual 16-bit shift operations
Dual 16-bit saturated arithmetic operations
Quad 8-bit saturated arithmetic operations
SPRU732J-July 2010 CPU Data Paths and Control 29

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Register File Cross Paths www.ti.com

24

Table 2-2. Functional Units and Operations Performed (continued)

Functional Unit Fixed-Point Operations
M unit (.M1, .M2) 32 x 32-bit multiply operations
16 x 16-bit multiply operations

16 x 32-bit multiply operations

Quad 8 x 8-bit multiply operations

Dual 16 x 16-bit multiply operations

Dual 16 x 16-bit multiply with add/subtract operations
Quad 8 x 8-bit multiply with add operation

Bit expansion

Bit interleaving/de-interleaving

Variable shift operations

Rotation

Galois Field Multiply

.D unit (.D1, .D2) 32-bit add, subtract, linear and circular address calculation
Loads and stores with 5-bit constant offset

Loads and stores with 15-bit constant offset (.D2 only)
Load and store doublewords with 5-bit constant

Load and store nonaligned words and doublewords

5-bit constant generation

32-bit logical operations

Register File Cross Paths

Each functional unit reads directly from and writes directly to the register file within its own data path. That
is, the .L1, .S1, .D1, and .M1 units write to register file A and the .L2, .S2, .D2, and .M2 units write to
register file B. The register files are connected to the opposite-side register file's functional units via the 1X
and 2X cross paths. These cross paths allow functional units from one data path to access a 32-bit
operand from the opposite side register file. The 1X cross path allows the functional units of data path A to
read their source from register file B, and the 2X cross path allows the functional units of data path B to
read their source from register file A.

On the DSP, all eight of the functional units have access to the register file on the opposite side, via a
cross path. The src2 inputs of .M1, .M2, .S1, .S2, .D1, and .D2 units are selectable between the cross
path and the same-side register file. In the case of .L1 and .L2, both srcl and src2 inputs are selectable
between the cross path and the same-side register file.

Only two cross paths, 1X and 2X, exist in the C6000 architecture. Thus, the limit is one source read from
each data path’s opposite register file per cycle, or a total of two cross path source reads per cycle. In the
DSP, two units on a side may read the same cross path source simultaneously.

On the DSP, a delay clock cycle is introduced whenever an instruction attempts to read a register via a
cross path that was updated in the previous cycle. This is known as a cross path stall. This stall is inserted
automatically by the hardware, no NOP instruction is needed. It should be noted that no stall is introduced
if the register being read is the destination for data placed by an LDx instruction. For more information see
Section 3.7.4. Techniques for avoiding this stall are discussed in the TMS320C6000 Programmers Guide

(SPRU198).

30

CPU Data Paths and Control SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spru198

13 TEXAS
INSTRUMENTS

www.ti.com Memory, Load, and Store Paths

2.5 Memory, Load, and Store Paths

The DSP supports doubleword loads and stores. There are four 32-bit paths for loading data from memory
to the register file. For side A, LD1a is the load path for the 32 LSBs and LD1b is the load path for the 32
MSBs. For side B, LD2a is the load path for the 32 LSBs and LD2b is the load path for the 32 MSBs.
There are also four 32-bit paths for storing register values to memory from each register file. For side A,
STla is the write path for the 32 LSBs and ST1b is the write path for the 32 MSBs. For side B, ST2a is
the write path for the 32 LSBs and ST2b is the write path for the 32 MSBs.

On the C6000 architecture, some of the ports for long and doubleword operands are shared between
functional units. This places a constraint on which long or doubleword operations can be scheduled on a
data path in the same execute packet. See Section 3.7.6.

2.6 Data Address Paths

The data address paths (DA1 and DA2) are each connected to the .D units in both data paths. This allows
data addresses generated by any one path to access data to or from any register.

The DAL and DA2 resources and their associated data paths are specified as T1 and T2, respectively. T1
consists of the DA1 address path and the LD1 and ST1 data paths. For the DSP, LD1 is comprised of
LD1la and LD1b to support 64-bit loads; ST1 is comprised of ST1la and ST1b to support 64-bit stores.
Similarly, T2 consists of the DA2 address path and the LD2 and ST2 data paths. For the DSP, LD2 is
comprised of LD2a and LD2b to support 64-bit loads; ST2 is comprised of ST2a and ST2b to support
64-bit stores.

The T1 and T2 designations appear in the functional unit fields for load and store instructions. For
example, the following load instruction uses the .D1 unit to generate the address but is using the LD2 path
resource from DA2 to place the data in the B register file. The use of the DA2 resource is indicated with
the T2 designation.

LDW . D1T2 *AQ[3], Bl

2.7 Galois Field

Modern digital communication systems typically make use of error correction coding schemes to improve
system performance under imperfect channel conditions. The scheme most commonly used is the
Reed-Solomon code, due to its robustness against burst errors and its relative ease of implementation.

The DSP contains Galois field multiply hardware that is used for Reed-Solomon encode and decode
functions. To understand the relevance of the Galois field multiply hardware, it is necessary to first define
some mathematical terms.

Two kinds of number systems that are common in algorithm development are integers and real humbers.
For integers, addition, subtraction, and multiplication operations can be performed. Division can also be
performed, if a nonzero remainder is allowed. For real numbers, all four of these operations can be
performed, even if there is a nonzero remainder for division operations.

Real numbers can belong to a mathematical structure called a field. A field consists of a set of data
elements along with addition, subtraction, multiplication, and division. A field of integers can also be
created if modulo arithmetic is performed.

An example is doing arithmetic using integers modulo 2. Perform the operations using normal integer
arithmetic and then take the result modulo 2. Table 2-3 illustrates addition, subtraction, and multiplication

modulo 2.
Table 2-3. Modulo 2 Arithmetic
Addition Subtraction Multiplication
+ 0 1 0 1 X 0 1
0 0 1 0 0 1 0 0 0
1 1 0 1 1 0 1 0 1
SPRU732J-July 2010 CPU Data Paths and Control 31

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Galois Field www.ti.com

Note that addition and subtraction results are the same, and in fact are equivalent to the XOR
(exclusive-OR) operation in binary. Also, the multiplication result is equal to the AND operation in binary.
These properties are unique to modulo 2 arithmetic, but modulo 2 arithmetic is used extensively in error
correction coding. Another more general property is that division by any nonzero element is now defined.
Division can always be performed, if every element other than zero has a multiplicative inverse:

xxxl=1

Another example, arithmetic modulo 5, illustrates this concept more clearly. The addition, subtraction, and
multiplication tables are given in Table 2-4.

Table 2-4. Modulo 5 Arithmetic

Addition Subtraction Multiplication
+ 0 1 2 3 4 - 0 1 2 3 4 x 0 1 2 3 4
0 0 1 2 3 4 0 0 4 3 2 1 0 0 0 0 0 0
1 1 2 3 4 0 1 1 0 4 3 2 1 0 1 2 3 4
2 2 3 4 0 1 2 2 1 0 4 3 2 0 2 4 1 3
3 3 4 0 1 2 3 3 2 1 0 4 3 0 3 1 4 2
4 4 0 1 2 3 4 4 3 2 1 0 4 0 4 3 2 1

In the rows of the multiplication table, element 1 appears in every nonzero row and column. Every nonzero
element can be multiplied by at least one other element for a result equal to 1. Therefore, division always
works and arithmetic over integers modulo 5 forms a field. Fields generated in this manner are called finite
fields or Galois fields and are written as GF(X), such as GF(2) or GF(5). They only work when the
arithmetic performed is modulo a prime number.

Galois fields can also be formed where the elements are vectors instead of integers if polynomials are
used. Finite fields, therefore, can be found with a number of elements equal to any power of a prime
number. Typically, we are interested in implementing error correction coding systems using binary
arithmetic. All of the fields that are dealt with in Reed Solomon coding systems are of the form GF(2™).
This allows performing addition using XORs on the coefficients of the vectors, and multiplication using a
combination of ANDs and XORs.

A final example considers the field GF(22), which has 8 elements. This can be generated by arithmetic
modulo the (irreducible) polynomial P(x) = x* + x + 1. Elements of this field look like vectors of three bits.
Table 2-5 shows the addition and multiplication tables for field GF(23).

Note that the value 1 (001) appears in every nonzero row of the multiplication table, which indicates that
this is a valid field.

The channel error can now be modeled as a vector of bits, with a one in every bit position that an error
has occurred, and a zero where no error has occurred. Once the error vector has been determined, it can
be subtracted from the received message to determine the correct code word.

The Galois field multiply hardware on the DSP is named GMPY4. The GMPY4 instruction performs four
parallel operations on 8-bit packed data on the .M unit. The Galois field multiplier can be programmed to
perform all Galois multiplies for fields of the form GF(2™), where m can range between 1 and 8 using any
generator polynomial. The field size and the polynomial generator are controlled by the Galois field
polynomial generator function register (GFPGFR).

In addition to the GMPY4 instruction available on the C64x DSP, the C64x+ DSP has the GMPY
instruction that uses either the GPLYA or GPLYB control register as a source for the polynomial
(depending on whether the A or B side functional unit is used) and produces a 32-bit result.

The GFPGFR, shown in Figure 2-6 and described in Table 2-10, contains the Galois field polynomial
generator and the field size control bits. These bits control the operation of the GMPY4 instruction.
GFPGFR can only be set via the MVC instruction. The default function after reset for the GMPY4
instruction is field size = 7h and polynomial = 1Dh.

32

CPU Data Paths and Control SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS

www.ti.com

Galois Field

2.7.1 Special Timing Considerations

If the next execute packet after an MVC instruction that changes the GFPGFR value contains a GMPY4
instruction, then the GMPY4 is controlled by the newly loaded GFPGFR value.

Table 2-5. Modulo Arithmetic for Field GF(2°)

Addition

+ 000 001 010 011 100 101 110 111
000 000 001 010 011 100 101 110 111
001 001 000 011 010 101 100 111 110
010 010 011 000 001 110 111 100 101
011 011 010 001 000 111 110 101 100
100 100 101 110 111 000 001 010 011
101 101 100 111 110 001 000 011 010
110 110 111 100 101 010 011 000 001
111 111 110 101 100 011 010 001 000

Multiplication

X 000 001 010 011 100 101 110 111
000 000 000 000 000 000 000 000 000
001 000 001 010 011 100 101 110 111
010 000 010 100 110 011 001 111 101
011 000 011 110 101 111 100 001 010
100 000 100 011 111 110 010 101 001
101 000 101 001 100 010 111 011 110
110 000 110 111 001 101 011 010 100
111 000 111 101 010 001 110 100 011

SPRU732J-July 2010 CPU Data Paths and Control 33

Copyright © 2010, Texas Instruments Incorporated

Control Register File

I

TEXAS

INSTRUMENTS

www.ti.com

2.8 Control Register File
Table 2-6 lists the control registers contained in the control register file.

Table 2-6. Control Registers

Acronym Register Name Section

AMR Addressing mode register Section 2.8.3
CSR Control status register Section 2.8.4
GFPGFR Galois field multiply control register Section 2.8.5
ICR Interrupt clear register Section 2.8.6
IER Interrupt enable register Section 2.8.7
IFR Interrupt flag register Section 2.8.8
IRP Interrupt return pointer register Section 2.8.9
ISR Interrupt set register Section 2.8.10
ISTP Interrupt service table pointer register Section 2.8.11
NRP Nonmaskable interrupt return pointer register Section 2.8.12
PCE1 Program counter, E1 phase Section 2.8.13

Control Register File Extensions (C64x+ DSP)

DIER Debug interrupt enable register Section 2.9.1
DNUM DSP core number register Section 2.9.2
ECR Exception clear register Section 2.9.3
EFR Exception flag register Section 2.9.4
GPLYA GMPY A-side polynomial register Section 2.9.5
GPLYB GMPY B-side polynomial register Section 2.9.6
IERR Internal exception report register Section 2.9.7
ILC Inner loop count register Section 2.9.8
ITSR Interrupt task state register Section 2.9.9
NTSR NMI/Exception task state register Section 2.9.10
REP Restricted entry point address register Section 2.9.11
RILC Reload inner loop count register Section 2.9.12
SSR Saturation status register Section 2.9.13
TSCH Time-stamp counter (high 32) register Section 2.9.14
TSCL Time-stamp counter (low 32) register Section 2.9.14
TSR Task state register Section 2.9.15

34

CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

I

TEXAS

INSTRUMENTS

www.ti.com Control Register File

28.1

2.8.2

Register Addresses for Accessing the Control Registers

Table 3-22 lists the register addresses for accessing the control register file. One unit (.S2) can read from
and write to the control register file. Each control register is accessed by the MVC instruction. See the
MVC instruction description (see MVC) for information on how to use this instruction.

Additionally, some of the control register bits are specially accessed in other ways. For example, arrival of
a maskable interrupt on an external interrupt pin, INTm, triggers the setting of flag bit IFRm. Subsequently,
when that interrupt is processed, this triggers the clearing of IFRm and the clearing of the global interrupt
enable bit, GIE. Finally, when that interrupt processing is complete, the B IRP instruction in the interrupt
service routine restores the pre-interrupt value of the GIE. Similarly, saturating instructions like SADD set
the SAT (saturation) bit in the control status register (CSR).

On the C64x+ CPU, access to some of the registers is restricted when in User mode. See Chapter 8 for
more information.

Pipeline/Timing of Control Register Accesses

All MVC instructions are single-cycle instructions that complete their access of the explicitly named
registers in the E1 pipeline phase. This is true whether MVC is moving a general register to a control
register, or conversely. In all cases, the source register content is read, moved through the .S2 unit, and
written to the destination register in the E1 pipeline phase.

Pipeline Stage E1l

Read src2
Written dst
Unit in use .S2

Even though MVC modifies the particular target control register in a single cycle, it can take extra clocks
to complete modification of the non-explicitly named register. For example, the MVC cannot modify bits in
the IFR directly. Instead, MVC can only write 1's into the ISR or the ICR to specify setting or clearing,
respectively, of the IFR bits. MVC completes this ISR/ICR write in a single (E1) cycle but the modification
of the IFR bits occurs one clock later. For more information on the manipulation of ISR, ICR, and IFR, see
Section 2.8.10, Section 2.8.6, and Section 2.8.8 .

Saturating instructions, such as SADD, set the saturation flag bit (SAT) in CSR indirectly. As a result,
several of these instructions update the SAT bit one full clock cycle after their primary results are written to
the register file. For example, the SMPY instruction writes its result at the end of pipeline stage E2; its
primary result is available after one delay slot. In contrast, the SAT bit in CSR is updated one cycle later
than the result is written; this update occurs after two delay slots. (For the specific behavior of an
instruction, refer to the description of that individual instruction).

The B IRP and B NRP instructions directly update the GIE and NMIE bits, respectively. Because these
branches directly modify CSR and IER, respectively, there are no delay slots between when the branch is
issued and when the control register updates take effect.

SPRU732J-July 2010 CPU Data Paths and Control 35

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Control Register File www.ti.com

2.8.3

Addressing Mode Register (AMR)

For each of the eight registers (A4-A7, B4-B7) that can perform linear or circular addressing, the
addressing mode register (AMR) specifies the addressing mode. A 2-bit field for each register selects the
address modification mode: linear (the default) or circular mode. With circular addressing, the field also
specifies which BK (block size) field to use for a circular buffer. In addition, the buffer must be aligned on a
byte boundary equal to the block size. The mode select fields and block size fields are shown in

Figure 2-3 and described in Table 2-7.

Figure 2-3. Addressing Mode Register (AMR)

31 26 25 21 20 16
] Reserved [BK1 | BKO \
R-0 RIW-0 RIW-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| B7 MODE B6 MODE B5 MODE | B4 MODE A7MODE | A6MODE | A5MODE A4 MODE |
RIW-0 RIW-0 RIW-0 RIW-0 RIW-0 RIW-0 RIW-0 RIW-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2-7. Addressing Mode Register (AMR) Field Descriptions

Bit Field Value |Description
31-26 | Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
25-21 | BK1 0-1Fh | Block size field 1. A 5-bit value used in calculating block sizes for circular addressing. Table 2-8 shows
block size calculations for all 32 possibilities.
Block size (in bytes) = 289 | where N is the 5-bit value in BK1
20-16 | BKO 0-1Fh | Block size field 0. A 5-bit value used in calculating block sizes for circular addressing. Table 2-8 shows
block size calculations for all 32 possibilities.
Block size (in bytes) = 2™ | where N is the 5-bit value in BKO
15-14 | B7 MODE 0-3h | Address mode selection for register file B7.
0 Linear modification (default at reset)
1h Circular addressing using the BKO field
2h Circular addressing using the BK1 field
3h Reserved
13-12 | B6 MODE 0-3h | Address mode selection for register file B6.
0 Linear modification (default at reset)
1h Circular addressing using the BKO field
2h Circular addressing using the BK1 field
3h Reserved
11-10 |B5 MODE 0-3h | Address mode selection for register file B5.
0 Linear modification (default at reset)
1h Circular addressing using the BKO field
2h Circular addressing using the BK1 field
3h Reserved
9-8 B4 MODE 0-3h | Address mode selection for register file B4.
0 Linear modification (default at reset)
1h Circular addressing using the BKO field
2h Circular addressing using the BK1 field
3h Reserved
7-6 | A7 MODE 0-3h | Address mode selection for register file A7.
0 Linear modification (default at reset)
1h Circular addressing using the BKO field
2h Circular addressing using the BK1 field
3h Reserved
36 CPU Data Paths and Control SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File

Table 2-7. Addressing Mode Register (AMR) Field Descriptions (continued)

Bit Field Value | Description
5-4 | A6 MODE 0-3h | Address mode selection for register file A6.
0 Linear modification (default at reset)

1h Circular addressing using the BKO field

2h Circular addressing using the BK1 field

3h Reserved

3-2 A5 MODE 0-3h | Address mode selection for register file a5.
0 Linear modification (default at reset)

1h Circular addressing using the BKO field

2h Circular addressing using the BK1 field

3h Reserved

1-0 | A4 MODE 0-3h | Address mode selection for register file A4.
0 Linear modification (default at reset)

1h Circular addressing using the BKO field
2h Circular addressing using the BK1 field

3h Reserved

Table 2-8. Block Size Calculations

BKn Value Block Size BKn Value Block Size
00000 2 10000 131072
00001 4 10001 262144
00010 8 10010 524 288
00011 16 10011 1048576
00100 32 10100 2097 152
00101 64 10101 4194 304
00110 128 10110 8388 608
00111 256 10111 16 777 216
01000 512 11000 33554432
01001 1024 11001 67 108 864
01010 2048 11010 134217728
01011 4096 11011 268 435 456
01100 8192 11100 536 870912
01101 16 384 11101 1073741824
01110 32768 11110 2147 483 648
01111 65 536 11111 4294 967 296

SPRU732J-July 2010 CPU Data Paths and Control 37

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Control Register File www.ti.com

2.8.4 Control Status Register (CSR)

The control status register (CSR) contains control and status bits. The CSR is shown in Figure 2-4 and
described in Table 2-9. For the PWRD, EN, PCC, and DCC fields, see the device-specific datasheet to
see if it supports the options that these fields control. The PCC and DCC fields are ignored on the
C64x+ CPU.

The power-down modes and their wake-up methods are programmed by the PWRD field (bits 15-10) of
CSR. The PWRD field of CSR is shown in Figure 2-5. When writing to CSR, all bits of the PWRD field
should be configured at the same time. A logic 0 should be used when writing to the reserved bit (bit 15)
of the PWRD field.

The PWRD, PCC, DCC, and PGIE fields cannot be written in User mode. The PCC and DCC fields can
only be modified in Supervisor mode. See Chapter 8 for more information.

Figure 2-4. Control Status Register (CSR)

31 24 23 16
\ CPU ID | REVISION ID |
R-x® R-x®
15 10 9 8 7 5 4 2 1 0
] PWRD SAT [EN | PCC DCC PGIE | GIE |
RISW-0 RIWC-0 R-x RISW-0 RISW-0 RISW-0 R/W-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; SW = Writeable by the MVC instruction only in
supervisor mode; WC = Bit is cleared on write; -n = value after reset; -x = value is indeterminate after reset

@ See the device-specific datasheet for the default value of this field.

Figure 2-5. PWRD Field of Control Status Register (CSR)

15 14 13 12 11 10
Reserved Enabled or nonenabled interrupt wake ‘ Enabled interrupt wake | PD3 | PD2 PD1
R/SW-0 R/SW-0 R/SW-0 R/SW-0 R/SW-0 R/SW-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset; SW = Writeable by the MVC
instruction only in supervisor mode; -n = value after reset

Table 2-9. Control Status Register (CSR) Field Descriptions

Bit Field Value Description
31-24 |CPUID 0-FFh Identifies the CPU of the device. Not writable by the MVC instruction.
0-Bh Reserved
Ch C64x CPU

Dh-Fh Reserved
10h C64x+ CPU
11h-FFh | Reserved

23-16 | REVISION ID 0-FFh Identifies silicon revision of the CPU. For the most current silicon revision information, see the
device-specific datasheet. Not writable by the MVC instruction.

38 CPU Data Paths and Control SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File

Table 2-9. Control Status Register (CSR) Field Descriptions (continued)

Bit Field Value Description
15-10 | PWRD 0-3Fh Power-down mode field. See Figure 2-5. Writable by the MVC instruction only in Supervisor
mode.
0 No power-down.
1h-8h Reserved
9h Power-down mode PD1; wake by an enabled interrupt.
Ah-10h Reserved
11h Power-down mode PD1; wake by an enabled or nonenabled interrupt.
12h-19h | Reserved
1Ah Power-down mode PD2; wake by a device reset.
1Bh Reserved
1Ch Power-down mode PD3; wake by a device reset.
1D-3Fh Reserved
9 SAT Saturate bit. Can be cleared only by the MVC instruction and can be set only by a functional

unit. The set by a functional unit has priority over a clear (by the MVC instruction), if they occur
on the same cycle. The SAT bit is set one full cycle (one delay slot) after a saturate occurs. The
SAT bit will not be modified by a conditional instruction whose condition is false.

No functional units generated saturated results.

1 One or more functional units performed an arithmetic operation which resulted in saturation.
8 EN Endian mode. Not writable by the MVC instruction.
0 Big endian
1 Little endian
7-5 PCC 0-7h Program cache control mode. This field is ignored on the C64x+ CPU. Writable by the MVC

instruction only in Supervisor mode; not writable in User mode. See the TMS320C64x DSP
Two-Level Internal Memory Reference Guide (SPRU610).

0 Direct-mapped cache enabled
1h Reserved
2h Direct-mapped cache enabled
3h-7h Reserved
4-2 DCC 0-7h Data cache control mode. This field is ignored on the C64x+ CPU. Writable by the MVC

instruction only in Supervisor mode; not writable in User mode. See the TMS320C64x DSP
Two-Level Internal Memory Reference Guide (SPRU610).

0 2-way cache enabled
1h Reserved
2h 2-way cache enabled
3h-7h Reserved
1 PGIE Previous GIE (global interrupt enable). This bit contains a copy of the GIE bit at the point when

interrupt is taken. It is physically the same bit as GIE bit in the interrupt task state register
(ITSR). Writeable by the MVC instruction only in Supervisor mode; not writable in User mode.

Interrupts will be disabled after return from interrupt.
1 Interrupts will be enabled after return from interrupt.

0 GIE Global interrupt enable. Physically the same bit as GIE bit in the task state register (TSR).
Writable by the MVC instruction in Supervisor and User mode. See Section 5.2 for details on
how the GIE bit affects interruptibility.

Disables all interrupts, except the reset interrupt and NMI (nonmaskable interrupt).
1 Enables all interrupts.

SPRU732J-July 2010 CPU Data Paths and Control 39

Copyright © 2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spru610
http://www.ti.com/lit/pdf/spru610

13 TEXAS
INSTRUMENTS

Control Register File www.ti.com

2.8.5 Galois Field Polynomial Generator Function Register (GFPGFR)

The Galois field polynomial generator function register (GFPGFR) controls the field size and the Galois
field polynomial generator of the Galois field multiply hardware. The GFPGFR is shown in Figure 2-6 and
described in Table 2-10. The Galois field is described in Section 2.7.

Figure 2-6. Galois Field Polynomial Generator Function Register (GFPGFR)

31 27 26 24 23 16
\ Reserved \ SIZE \ Reserved \
R-0 R/W-7h R-0
15 8 7 0
‘ Reserved ‘ POLY ‘
R-0 R/W-1Dh

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2-10. Galois Field Polynomial Generator Function Register (GFPGFR) Field Descriptions

Bit Field Value | Description
31-27 | Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
26-24 | SIZE 0-7h | Field size.
23-8 | Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
7-0 POLY 0-FFh | Polynomial generator.
40 CPU Data Paths and Control SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

Control Register File

2.8.6 Interrupt Clear Register (ICR)

The interrupt clear register (ICR) allows you to manually clear the maskable interrupts (INT15-INT4) in the
interrupt flag register (IFR). Writing a 1 to any of the bits in ICR causes the corresponding interrupt flag
(IFn) to be cleared in IFR. Writing a 0 to any bit in ICR has no effect. Incoming interrupts have priority and
override any write to ICR. You cannot set any bit in ICR to affect NMI or reset. The ISR is shown in
Figure 2-7 and described in Table 2-11. See Chapter 5 for more information on interrupts.

NOTE: Any write to ICR (by the MVC instruction) effectively has one delay slot because the results
cannot be read (by the MVC instruction) in IFR until two cycles after the write to ICR.

Any write to ICR is ignored by a simultaneous write to the same bit in the interrupt set
register (ISR).

Figure 2-7. Interrupt Clear Register (ICR)

31 16
’ Reserved ‘
R-0
15 14 13 12 11 10 9 8 7 6 5 4 3 0
ic15 | 1c14 [ic13 [ici2 | icit [icio | ico | ic8 [ic7 | ice | ics | ica | Reserved
W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 R-0
LEGEND: R = Read only; W = Writeable by the MVC instruction; -n = value after reset
Table 2-11. Interrupt Clear Register (ICR) Field Descriptions
Bit Field Value | Description
31-16 | Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
15-4 |ICn Interrupt clear.
Corresponding interrupt flag (IFn) in IFR is not cleared.
Corresponding interrupt flag (IFn) in IFR is cleared.
3-0 Reserved Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
CPU Data Paths and Control 41

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

I

Control Register File

TEXAS

INSTRUMENTS

www.ti.com

2.8.7 |Interrupt Enable Register (IER)

The interrupt enable register (IER) enables and disables individual interrupts. The IER is shown in

Figure 2-8 and described in Table 2-12.

The IER is not accessible in User mode. See Section 8.2.4.1 for more information. See Chapter 5 for

more information on interrupts.

Figure 2-8. Interrupt Enable Register (IER)

31 16
‘ Reserved ‘
R-0
15 14 12 11 10 9 8 7 6 5 4 3 2 1 0
| E15 | 1E14 [1E13 [1E12 | 1E11 [E10 | 1EQ | IE8 [1IE7 | 1IE6 | IES | IE4 | Reserved |[NMIE| 1 |
RW-0 RW-0 RMW-0 RMW-0 RW-O RW-0 RMW-0 RW-0 RW-0 RMW-0 RMW-0 RW-0 R-0 RW-0 R-1

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2-12. Interrupt Enable Register (IER) Field Descriptions

Bit Field Value | Description
31-16 | Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
15-4 |IEn Interrupt enable. An interrupt triggers interrupt processing only if the corresponding bit is set to 1.
Interrupt is disabled.
Interrupt is enabled.
3-2 Reserved Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
1 NMIE Nonmaskable interrupt enable. An interrupt triggers interrupt processing only if the bit is set to 1.
The NMIE bit is cleared at reset. After reset, you must set the NMIE bit to enable the NMI and to allow
INT15-INT4 to be enabled by the GIE bit in CSR and the corresponding IER bit. You cannot manually
clear the NMIE bit; a write of O has no effect. The NMIE bit is also cleared by the occurrence of an NMI.
All nonreset interrupts are disabled.
All nonreset interrupts are enabled. The NMIE bit is set only by completing a B NRP instruction or by a
write of 1 to the NMIE bit.
0 1 1 Reset interrupt enable. You cannot disable the reset interrupt.
42 CPU Data Paths and Control SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File

2.8.8 Interrupt Flag Register (IFR)

The interrupt flag register (IFR) contains the status of INT4-INT15 and NMI interrupt. Each corresponding
bit in the IFR is set to 1 when that interrupt occurs; otherwise, the bits are cleared to 0. If you want to
check the status of interrupts, use the MVC instruction to read the IFR. (See the MVC instruction
description (see MVC) for information on how to use this instruction.) The IFR is shown in Figure 2-9 and
described in Table 2-13. See Chapter 5 for more information on interrupts.

Figure 2-9. Interrupt Flag Register (IFR)

31 16
‘ Reserved ‘
R-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| iF15 | IF14 [k23 | k12 | k11 | F1o | F9 | iF8 [IF7 | IF6 | IF5 | IF4 | Reseved | NMIF| 0 |
RO RO RO RO RO RO RO RO RO RO RO RO R-0 RO R0

LEGEND: R = Readable by the MVC instruction; -n = value after reset

Table 2-13. Interrupt Flag Register (IFR) Field Descriptions

Bit Field Value | Description
31-16 | Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
15-4 | IFn Interrupt flag. Indicates the status of the corresponding maskable interrupt. An interrupt flag may be

manually set by setting the corresponding bit (ISn) in the interrupt set register (ISR) or manually cleared
by setting the corresponding bit (ICn) in the interrupt clear register (ICR).

Interrupt has not occurred.
Interrupt has occurred.

3-2 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
1 NMIF Nonmaskable interrupt flag.
0 Interrupt has not occurred.

Interrupt has occurred.

0 0 0 Reset interrupt flag.

2.8.9 Interrupt Return Pointer Register (IRP)

The interrupt return pointer register (IRP) contains the return pointer that directs the CPU to the proper
location to continue program execution after processing a maskable interrupt. A branch using the address
in IRP (B IRP) in your interrupt service routine returns to the program flow when interrupt servicing is
complete. The IRP is shown in Figure 2-10.

The IRP contains the 32-bit address of the first execute packet in the program flow that was not executed
because of a maskable interrupt. Although you can write a value to IRP, any subsequent interrupt
processing may overwrite that value.

See Chapter 5 for more information on interrupts.

Figure 2-10. Interrupt Return Pointer Register (IRP)
31 0
IRP
R/W-x
LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -x = value is indeterminate after reset

SPRU732J-July 2010 CPU Data Paths and Control 43

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Control Register File www.ti.com

2.8.10 Interrupt Set Register (ISR)

The interrupt set register (ISR) allows you to manually set the maskable interrupts (INT15-INT4) in the
interrupt flag register (IFR). Writing a 1 to any of the bits in ISR causes the corresponding interrupt flag
(IFn) to be set in IFR. Writing a 0 to any bit in ISR has no effect. You cannot set any bit in ISR to affect
NMI or reset. The ISR is shown in Figure 2-11 and described in Table 2-14. See Chapter 5 for more
information on interrupts.

NOTE: Any write to ISR (by the MVC instruction) effectively has one delay slot because the results
cannot be read (by the MVC instruction) in IFR until two cycles after the write to ISR.

Any write to the interrupt clear register (ICR) is ignored by a simultaneous write to the same

bit in ISR.
Figure 2-11. Interrupt Set Register (ISR)
31 16
’ Reserved ‘
R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 0
| 1515 | 1s14 | 1s13 | 1s12 | 1s11 [is10 | 1s9 | 1s8 [is7 | 1s6 | 1s5 | is4 | Reserved |
WO WO W0 W-0 W0 W0 W0 W0 W0 W0 W0 WO R-0

LEGEND: R = Read only; W = Writeable by the MVC instruction; -n = value after reset

Table 2-14. Interrupt Set Register (ISR) Field Descriptions

Bit Field Value | Description
31-16 | Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
15-4 |ISn Interrupt set.

Corresponding interrupt flag (IFn) in IFR is not set.
Corresponding interrupt flag (IFn) in IFR is set.

3-0 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.

44 CPU Data Paths and Control SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File
2.8.11 Interrupt Service Table Pointer Register (ISTP)

The interrupt service table pointer register (ISTP) is used to locate the interrupt service routine (ISR). The
ISTB field identifies the base portion of the address of the interrupt service table (IST) and the HPEINT
field identifies the specific interrupt and locates the specific fetch packet within the IST. The ISTP is shown
in Figure 2-12 and described in Table 2-15. See Section 5.1.2.2 for a discussion of the use of the ISTP.

The ISTP is not accessible in User mode. See Section 8.2.4.1 for more information. See Chapter 5 for
more information on interrupts.

Figure 2-12. Interrupt Service Table Pointer Register (ISTP)

31 16
] ISTB \
RIW-S
15 10 9 5 4 3 2 1 0
\ ISTB HPEINT | o] o | o | o | o |
RIW-S R-0 RO RO RO RO RO

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset; S = See the device-specific
data manual for the default value of this field after reset

Table 2-15. Interrupt Service Table Pointer Register (ISTP) Field Descriptions

Bit Field Value Description

31-10 |ISTB 0-3F FFFFh Interrupt service table base portion of the IST address. This field is cleared to a device-specific
default value on reset; therefore, upon startup the IST must reside at this specific address. See
the device-specific data manual for more information. After reset, you can relocate the IST by
writing a new value to ISTB. If relocated, the first ISFP (corresponding to RESET) is never
executed via interrupt processing, because reset clears the ISTB to its default value. See
Example 5-1.

9-5 HPEINT 0-1Fh Highest priority enabled interrupt that is currently pending. This field indicates the number
(related bit position in the IFR) of the highest priority interrupt (as defined in Table 5-1) that is
enabled by its bit in the IER. Thus, the ISTP can be used for manual branches to the highest
priority enabled interrupt. If no interrupt is pending and enabled, HPEINT contains the value 0.
The corresponding interrupt need not be enabled by NMIE (unless it is NMI) or by GIE.

4-0 |0 0 Cleared to 0 (fetch packets must be aligned on 8-word (32-byte) boundaries).

2.8.12 Nonmaskable Interrupt (NMI) Return Pointer Register (NRP)

The NMI return pointer register (NRP) contains the return pointer that directs the CPU to the proper
location to continue program execution after NMI processing. A branch using the address in NRP (B NRP)
in your interrupt service routine returns to the program flow when NMI servicing is complete. The NRP is
shown in Figure 2-13.

The NRP contains the 32-bit address of the first execute packet in the program flow that was not executed
because of a nonmaskable interrupt. Although you can write a value to NRP, any subsequent interrupt
processing may overwrite that value.

See Chapter 5 for more information on interrupts. See Chapter 6 for more information on exceptions.

Figure 2-13. NMI Return Pointer Register (NRP)
31 0
NRP
R/W-x
LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -x = value is indeterminate after reset

SPRU732J-July 2010 CPU Data Paths and Control 45

Copyright © 2010, Texas Instruments Incorporated

Control Register File Extensions

I

TEXAS

INSTRUMENTS

www.ti.com

2.8.13 E1 Phase Progra

m Counter (PCE1)

The E1 phase program counter (PCE1), shown in Figure 2-14, contains the 32-bit address of the fetch

packet in the E1 pipeli

31

ne phase.

Figure 2-14. E1 Phase Program Counter (PCE1)

PCE1

LEGEND: R = Readable by the MVC instruction; -x = value is indeterminate after reset

2.9 Control Register Fi

Table 2-16 lists the additional control registers in the C64x+ DSP.

R-x

le Extensions

Table 2-16. Control Register File Extensions (C64x+ DSP)

Acronym Register Name Section
DIER Debug interrupt enable register Section 2.9.1
DNUM DSP core number register Section 2.9.2
ECR Exception clear register Section 2.9.3
EFR Exception flag register Section 2.9.4
GPLYA GMPY polynomial for A side register Section 2.9.5
GPLYB GMPY polynomial for B side register Section 2.9.6
IERR Internal exception report register Section 2.9.7
ILC Inner loop count register Section 2.9.8
ITSR Interrupt task state register Section 2.9.9
NTSR NMI/Exception task state register Section 2.9.10
REP Restricted entry point register Section 2.9.11
RILC Reload inner loop count register Section 2.9.12
SSR Saturation status register Section 2.9.13
TSCH Time stamp counter register—high half of 64 bit Section 2.9.14
TSCL Time stamp counter register—low half of 64 bit Section 2.9.14
TSR Task state register Section 2.9.15

46 CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File Extensions

2.9.1 Debug Interrupt Enable Register (DIER)

The debug interrupt enable register (DIER) is used to designate which interrupts and exceptions are
treated as high-priority interrupts when operating in real-time emulation mode. The DIER is shown in
Figure 2-15 and described in Table 2-17.

Figure 2-15. Debug Interrupt Enable Register (DIER)

31 30 29 16
| NMI_| EXCEP | Reserved |
RW-0 R/W-0 R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[INT15 [INT14 [INT23 [INT22 [INT22 [INT20 | INTQ [INT8 [INT7 | INT6 | INTS | INT4 | Reserved | WSEL | Rsvd |
RW-0 RW-0 RMW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RMW-0 RW-0 R/MW-0 R-0 RIW-0 R/W-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2-17. Debug Interrupt Enable Register (DIER) Field Descriptions

Bit Field Value | Description
31 NMI Nonmaskable interrupt (NMI).
1 Designate NMI as high-priority interrupt.
30 EXCEP Maskable external exception (EXCEP).
Designate EXCEP as high-priority interrupt.
29-16 | Reserved 0 Reserved
15 INT15 Maskable interrupt 15 (INT15).
1 Designate INT15 as high-priority interrupt.
14 INT14 Maskable interrupt 14 (INT14).
1 Designate INT14 as high-priority interrupt.
13 INT13 Maskable interrupt 13 (INT13).
1 Designate INT13 as high-priority interrupt.
12 INT12 Maskable interrupt 12 (INT12).
1 Designate INT12 as high-priority interrupt.
11 INT11 Maskable interrupt 11 (INT11).
1 Designate INT11 as high-priority interrupt.
10 INT10 Maskable interrupt 10 (INT10).
1 Designate INT10 as high-priority interrupt.
9 INT9 Maskable interrupt 9 (INT9).
1 Designate INT9 as high-priority interrupt.
8 INT8 Maskable interrupt 8 (INT8).
1 Designate INT8 as high-priority interrupt.
7 INT7 Maskable interrupt 7 (INT7).
1 Designate INT7 as high-priority interrupt.
6 INT6 Maskable interrupt 6 (INT6).
1 Designate INT6 as high-priority interrupt.
5 INT5 Maskable interrupt 5 (INT5).
1 Designate INT5 as high-priority interrupt.
4 INT4 Maskable interrupt 4 (INT4).
Designate INT4 as high-priority interrupt.
3-2 Reserved 0 Reserved
1 WSEL Write control select. This bit must be cleared to 0 to modify bits 31-2.
Bits 31-2 can be modified.
0 Reserved 0 Reserved
SPRU732J-July 2010 CPU Data Paths and Control 47

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Control Register File Extensions www.ti.com

2.9.2 DSP Core Number Register (DNUM)

Multiple C64x+ CPUs may be used in a system. The DSP core number register (DNUM), provides an
identifier to shared resources in the system which identifies which C64x+ CPU is accessing those
resources. The contents of this register are set to a specific value (depending on the device) at reset. See
your device-specific data manual for the reset value of this register. The DNUM is shown in Figure 2-16.

Figure 2-16. DSP Core Number Register (DNUM)
31 16
\ Reserved
R-0

15 8 7 0
’ Reserved DSP number ‘
R-0 R-S

LEGEND: R = Readable by the MVC instruction; -n = value after reset; S = See the device-specific data manual for the default value of this
field after reset

2.9.3 Exception Clear Register (ECR)

The exception clear register (ECR) is used to clear individual bits in the exception flag register (EFR).
Writing a 1 to any bit in ECR clears the corresponding bit in EFR.

The ECR is not accessible in User mode. See Section 8.2.4.1 for more information. See Chapter 6 for
more information on exceptions.

48 CPU Data Paths and Control SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS

www.ti.com

Control Register File Extensions

2.9.4 Exception Flag Register (EFR)

The exception flag register (EFR) contains bits that indicate which exceptions have been detected.
Clearing the EFR bits is done by writing a 1 to the corresponding bit position in the exception clear register
(ECR). Writing a 0 to the bits in this register has no effect. The EFR is shown in Figure 2-17 and
described in Table 2-18.

The EFR is not accessible in User mode. See Section 8.2.4.1 for more information. See Chapter 6 for

more information on exceptions.

Figure 2-17. Exception Flag Register (EFR)

31 30
[NXF | ExF | Reserved \
RIW-0 R/W-0 R-0
15 2 1
\ Reserved | IXF [sxF |
R-0 RIW-0 R/W-0

LEGEND: R = Readable by the MVC EFR instruction only in Supervisor mode; W = Clearable by the MVC ECR instruction only in
Supervisor mode; -n = value after reset

Table 2-18. Exception Flag Register (EFR) Field Descriptions

Bit

Field

Value

Description

31

NXF

NMI exception flag.
NMI exception has not been detected.
NMI exception has been detected.

30

EXF

EXCEP flag.
Exception has not been detected.
Exception has been detected.

29-2

Reserved

Reserved. Read as 0.

IXF

Internal exception flag.
Internal exception has not been detected.
Internal exception has been detected.

SXF

Software exception flag (set by SWE or SWENR instructions).
Software exception has not been detected.
Software exception has been detected.

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

CPU Data Paths and Control

49

13 TEXAS
INSTRUMENTS

Control Register File Extensions www.ti.com

2.9.5 GMPY Polynomial—A Side Register (GPLYA)

The GMPY instruction (see GMPY) uses the 32-bit polynomial in the GMPY polynomial—A side register
(GPLYA), Figure 2-18, when the instruction is executed on the M1 unit.

Figure 2-18. GMPY Polynomial A-Side Register (GPLYA)
31 0
32-bit polynomial
R/W-0
LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

2.9.6 GMPY Polynomial—B Side Register (GPLYB)

The GMPY instruction (see GMPY) uses the 32-bit polynomial in the GMPY polynomial—B side register
(GPLYB), Figure 2-19, when the instruction is executed on the M2 unit.

Figure 2-19. GMPY Polynomial B-Side (GPLYB)
31 0
32-bit polynomial
R/W-0
LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

50 CPU Data Paths and Control SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File Extensions

2.9.7 Internal Exception Report Register (IERR)

The internal exception report register (IERR) contains flags that indicate the cause of the internal
exception. In the case of simultaneous internal exceptions, the same flag may be set by different
exception sources. In this case, it may not be possible to determine the exact causes of the individual
exceptions. The IERR is shown in Figure 2-20 and described in Table 2-19.

The IERR is not accessible in User mode. See Section 8.2.4.1 for more information. See Chapter 6 for
more information on exceptions.

Figure 2-20. Internal Exception Report Register (IERR)

31 16
’ Reserved ‘
R-0
15 9 8 7 6 5 4 3 2 1 0
\ Reserved | mMsx | Bx | PRX | RAX | Rex | opx | EPX | FPX | IFX |
R0 RW-0 RW-0 RW-0 RMW-0 RW-0 RW-0 RMW-0 RW-0 R/MW-0

LEGEND: R = Readable by the MVC instruction only in Supervisor mode; W = Writeable by the MVC instruction only in Supervisor mode;
-n = value after reset

Table 2-19. Internal Exception Report Register (IERR) Field Descriptions

Bit Field Value | Description
31-9 | Reserved 0 Reserved. Read as 0.
8 MSX Missed stall exception

Missed stall exception is not the cause.
Missed stall exception is the cause.

7 LBX SPLOOP buffer exception

SPLOOP buffer exception is not the cause.

SPLOOP buffer exception is the cause.

6 PRX Privilege exception
Privilege exception is not the cause.
Privilege exception is the cause.

5 RAX Resource access exception
Resource access exception is not the cause.
Resource access exception is the cause.

4 RCX Resource conflict exception
Resource conflict exception is not the cause.
Resource conflict exception is the cause.

3 OPX Opcode exception
Opcode exception is not the cause.
Opcode exception is the cause.

2 EPX Execute packet exception
Execute packet exception is not the cause.
Execute packet exception is the cause.

1 FPX Fetch packet exception
Fetch packet exception is not the cause.
Fetch packer exception is the cause.

0 IFX Instruction fetch exception
Instruction fetch exception is not the cause.
Instruction fetch exception is the cause.

SPRU732J-July 2010 CPU Data Paths and Control 51

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

Control Register File Extensions

INSTRUMENTS

www.ti.com

2.9.8 SPLOOP Inner Loop Count Register (ILC)

The SPLOOP or SPLOOPD instructions use the SPLOOP inner loop count register (ILC), Figure 2-21, as
the count of the number of iterations left to perform. The ILC content is decremented at each stage

boundary until the ILC content reaches 0.

Figure 2-21. Inner Loop Count Register (ILC)
31

32-bit inner loop count

R/W-0
LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

2.9.9 Interrupt Task State Register (ITSR)

The interrupt task state register (ITSR) is used to store the contents of the task state register (TSR) in the

event of an interrupt. The ITSR is shown in Figure 2-22 and described in Table 2-20. For
descriptions, see Section 2.9.15.

The GIE bit in ITSR is physically the same bit as the PGIE bit in CSR.
The ITSR is not accessible in User mode. See Section 8.2.4.1 for more information.

Figure 2-22. Interrupt Task State Register (ITSR)

detailed bit

31 16
’ Reserved ‘
R-0
15 14 13 11 10 9 8 7 6 5 4 3 2 1 0
| B | spPx| Reserved | ExXC | INT [Rsvd | oxM | Rsvd |DBGM | XEN | GEE | SGIE | GIE |
RIW-0 R/W-0 R0 RW-0 RW-0 R-0 R/W-0 RO RW-0 RMW-0 RW-0 RW-0 R/MW-0

LEGEND: R = Readable by the MVC instruction only in Supervisor mode; W = Writeable by the MVC instruction only in Supervisor mode;

-n = value after reset

Table 2-20. Interrupt Task State Register (ITSR) Field Descriptions

Bit Field Description
31-16 | Reserved Reserved. Read as 0.
15 1B Interrupt occurred while interrupts were blocked.
14 SPLX Interrupt occurred during an SPLOOP.
13-11 |Reserved Reserved. Read as 0.
10 EXC Contains EXC bit value in TSR at point of interrupt.
9 INT Contains INT bit value in TSR at point of interrupt.
8 Reserved Reserved. Read as 0.
7-6 CXM Contains CXM bit value in TSR at point of interrupt.
5 Reserved Reserved. Read as 0.
4 DBGM Contains DBGM bit value in TSR at point of interrupt.
3 XEN Contains XEN bit value in TSR at point of interrupt.
2 GEE Contains GEE bit value in TSR at point of interrupt.
1 SGIE Contains SGIE bit value in TSR at point of interrupt.
0 GIE Contains GIE bit value in TSR at point of interrupt.

52 CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File Extensions

2.9.10 NMI/Exception Task State Register (NTSR)

The NMI/exception task state register (NTSR) is used to store the contents of the task state register (TSR)
and the conditions under which an exception occurred in the event of a nonmaskable interrupt (NMI) or an
exception. The NTSR is shown in Figure 2-23 and described in Table 2-21. For detailed bit descriptions
(except for the HWE bit), see Section 2.9.15. The HWE bit is set by taking a hardware exception (NMI,
EXCEP, or internal) and is cleared by either SWE or SWENR instructions.

The NTSR is not accessible in User mode. See Section 8.2.4.1 for more information.

Figure 2-23. NMI/Exception Task State Register (NTSR)

31 17 16
’ Reserved | HWE ‘
R-0 RIW-0

15 14 13 11 10 9 8 7 6 5 4 3 2 1 0
| B | spPx| Reserved | EXC | INT [Rsvd | oxM | Rsvd |DBGM | XEN | GEE | SGIE | GIE |
RIW-0 R/W-0 R0 RW-0 RW-0 R-0 RIW-0 RO RW-0 RMW-0 RMW-0 RW-0 R/MW-0

LEGEND: R = Readable by the MVC instruction only in Supervisor mode; W = Writeable by the MVC instruction only in Supervisor mode;
-n = value after reset

Table 2-21. NMI/Exception Task State Register (NTSR) Field Descriptions

Bit Field Description
31-17 | Reserved Reserved. Read as 0.
16 HWE Hardware exception taken (NMI, EXCEP, or internal).
15 1B Exception occurred while interrupts were blocked.
14 SPLX Exception occurred during an SPLOOP.
13-11 |Reserved Reserved. Read as 0.
10 EXC Contains EXC bit value in TSR at point exception taken.
9 INT Contains INT bit value in TSR at point exception taken.
8 Reserved Reserved. Read as 0.
7-6 CXM Contains CXM bit value in TSR at point exception taken.
5 Reserved Reserved. Read as 0.
4 DBGM Contains DBGM bit value in TSR at point exception taken.
3 XEN Contains XEN bit value in TSR at point exception taken.
2 GEE Contains GEE bit value in TSR at point exception taken.
1 SGIE Contains SGIE bit value in TSR at point exception taken.
0 GIE Contains GIE bit value in TSR at point exception taken.

2.9.11 Restricted Entry Point Register (REP)

The restricted entry point register (REP) is used by the SWENR instruction as the target of the change of
control when an SWENR instruction is issued. The contents of REP should be preinitialized by the
processor in Supervisor mode before any SWENR instruction is issued. See Section 8.2.4.1 for more
information. REP cannot be modified in User mode.

SPRU732J-July 2010 CPU Data Paths and Control 53

Copyright © 2010, Texas Instruments Incorporated

Control Register File Extensions

13 TEXAS
INSTRUMENTS

www.ti.com

2.9.12 SPLOOP Reload Inner Loop Count Register (RILC)

Predicated SPLOOP or SPLOOPD instructions used in conjunction with a SPMASKR or SPKERNELR
instruction use the SPLOOP reload inner loop count register (RILC), Figure 2-24, as the iteration count
value to be written to the SPLOOP inner loop count register (ILC) in the cycle before the reload operation
begins. See Chapter 7 for more information.

31

Figure 2-24. Reload Inner Loop Count Register (RILC)

32-bit inner loop count reload

R/W-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

2.9.13 Saturation Status Register (SSR)

The saturation status register (SSR) provides saturation flags for each functional unit, making it possible
for the program to distinguish between saturations caused by different instructions in the same execute
packet. There is no direct connection to the SAT bit in the control status register (CSR); writes to the SAT
bit have no effect on SSR and writes to SSR have no effect on the SAT bit. Care must be taken when
restoring SSR and the SAT bit when returning from a context switch. Since the SAT bit cannot be written
to a value of 1 using the MVC instruction, restoring the SAT bit to a 1 must be done by executing an
instruction that results in saturation. The saturating instruction would affect SSR; therefore, SSR must be
restored after the SAT bit has been restored. The SSR is shown in Figure 2-25 and described in

Table 2-22.

Instructions resulting in saturation set the appropriate unit flag in SSR in the cycle following the writing of

the result to the register file. The setting of the flag from a functional unit takes precedence over a write to
the bit from an MVC instruction. If no functional unit saturation has occurred, the flags may be setto 0 or 1
by the MVC instruction, unlike the SAT bit in CSR.

The bits in SSR can be set by the MVC instruction or by a saturation in the associated functional unit. The
bits are cleared only by a reset or by the MVC instruction. The bits are not cleared by the occurrence of a
nonsaturating instruction.

Figure 2-25. Saturation Status Register (SSR)

31 16
’ Reserved ‘
R-0
15 5 4 3 2 1 0
\ Reserved M2 [w1 | s2 [st | 2 | 11|
R-0 RW-0 RMW-0 RW-0 RW-0 RW-0 RW-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2-22. Saturation Status Register Field Descriptions

Bit Field Value | Description
31-6 |Reserved 0 Reserved. Read as 0.
5 M2 M2 unit.
Saturation did not occur on M2 unit.
Saturation occurred on M2 unit.
4 M1 M1 unit.
Saturation did not occur on M1 unit.
Saturation occurred on M1 unit.

54

CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File Extensions

Table 2-22. Saturation Status Register Field Descriptions (continued)

Bit Field Value | Description
3 S2 S2 unit.
Saturation did not occur on S2 unit.
1 Saturation occurred on S2 unit.
2 S1 S1 unit.
Saturation did not occur on S1 unit.
1 Saturation occurred on S1 unit.
1 L2 L2 unit.
Saturation did not occur on L2 unit.
1 Saturation occurred on L2 unit.
0 L1 L1 unit.

Saturation did not occur on L1 unit.

1 Saturation occurred on L1 unit.

2.9.14 Time Stamp Counter Registers (TSCL and TSCH)

The C64x+ CPU contains a free running 64-bit counter that advances each CPU clock under normal
operation. The counter is accessed as two 32-bit read-only control registers, TSCL (Figure 2-26) and
TSCH (Figure 2-27).

Figure 2-26. Time Stamp Counter Register - Low Half (TSCL)
31 0
CPU clock count (32 LSBs of 64-bit value)
R-0
LEGEND: R = Readable by the MVC instruction; -n = value after reset

Figure 2-27. Time Stamp Counter Register - High Half (TSCH)
31 0
CPU clock count (32 MSBs of 64-bit value)
R-0
LEGEND: R = Readable by the MVC instruction; -n = value after reset

SPRU732J-July 2010 CPU Data Paths and Control 55

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Control Register File Extensions www.ti.com

2.9.14.1 Initialization

The counter is cleared to 0 after reset, and counting is disabled.

2.9.14.2 Enabling Counting

The counter is enabled by writing to TSCL. The value written is ignored. Counting begins in the cycle after
the MVC instruction executes. If executed with the count disabled, the following code sequence shows the
timing of the count starting (assuming no stalls occur in the three cycles shown).

M/C BO, TSCL ; Start TSC
MVC TSCL, BO ; BO 0
WC TSCL, B1 ; Bl 1

2.9.143 Disabling Counting
Once enabled, counting cannot be disabled under program control. Counting is disabled in the following
cases:
» After exiting the reset state.
* When the CPU is fully powered down.

2.9.14.4 Reading the Counter

Reading the full 64-bit count takes two sequential MVC instructions. A read from TSCL causes the upper
32 bits of the count to be copied into TSCH. In normal operation, only this snapshot of the upper half of
the 64-bit count is available to the programmer. The value read will always be the value copied at the
cycle of the last MVC TSCL, reg instruction. If it is read with no TSCL reads having taken place since
reset, then the reset value of 0 is read.

CAUTION

Reading TSCL in the cycle before a cross path stall may give an inaccurate
value in TSCH.

When reading the full 64-bit value, it must be ensured that no interrupts are serviced between the two
MVC instructions if an ISR is allowed to make use of the time stamp counter. There is no way for an ISR
to restore the previous value of TSCH (snapshot) if it reads TSCL, since a new snapshot is performed.

Two methods for reading the 64-bit count value in an uninterruptible manner are shown in Example 2-1
and Example 2-2. Example 2-1 uses the fact that interrupts are automatically disabled in the delay slots of
a branch to prevent an interrupt from happening between the TSCL read and the TSCH read.

Example 2-2 accomplishes the same task by explicitly disabling interrupts.

Example 2-1. Code to Read the 64-Bit TSC Value in Branch Delay Slot

BNOP TSC _Read_Done, 3
MC TSCL, BO ; Read the low half first; high half copied to TSCH
wC TSCH, B1 ; Read the snapshot of the high half

TSC_Read_Done:

Example 2-2. Code to Read the 64-Bit TSC Value Using DINT/RINT

DI NT

| wC TSCL, BO ; Read the low half first; high half copied to TSCH
RI NT

| wC TSCH, B1 ; Read the snapshot of the high half

TSC_Read_Done:

56 CPU Data Paths and Control SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File Extensions

2.9.15 Task State Register (TSR)

The task state register (TSR) contains all of the status bits that determine or indicate the current execution
environment. TSR is saved in the event of an interrupt or exception to the ITSR or NTSR, respectively. All
bits are readable by the MVC instruction. The TSR is shown in Figure 2-28 and described in Table 2-23.
The SGIE bit in TSR is used by the DINT and RINT instructions to globally disable and reenable
interrupts.

The GIE and SGIE bits may be written in both User mode and Supervisor mode. The remaining bits all
have restrictions on how they are written. See Section 8.2.4.2 for more information.

The GIE bit in TSR is physically the same bit as the GIE bit in CSR. It is retained in CSR for compatibility
reasons, but placed in TSR so that it will be copied in the event of either an exception or an interrupt.

Figure 2-28. Task State Register (TSR)

31 16
‘ Reserved ‘
R-0
15 14 13 11 10 9 8 7 6 5 4 3 2 1 0
| B | sPLx | Reserved | EXC | INT [Rswd | cxM | Rsvd [DBGM | XEN | GEE [SGIE | GIE |
RO RO R-0 RICO RO RO RIW-0 RO RW-0 RMW-0 RSO RW-0 R/MW-0

LEGEND: R = Readable by the MVC instruction; W = Writeable in Supervisor mode; C = Clearable in Supervisor mode; S = Can be set in
Supervisor mode; -n = value after reset

Table 2-23. Task State Register (TSR) Field Descriptions

Bit Field Value | Description
31-16 | Reserved 0 Reserved. Read as 0.
15 1B Interrupts blocked. Not writable by the MVC instruction; set only by hardware.
0 Interrupts not blocked in previous cycle (interruptible point).

Interrupts were blocked in previous cycle.

14 SPLX SPLOOP executing. Not writable by the MVC instruction; set only by hardware.
0 Not currently executing SPLOOP

Currently executing SPLOOP

13-11 | Reserved 0 Reserved. Read as 0.

10 EXC Exception processing. Clearable by the MVC instruction in Supervisor mode. Not clearable by the MVC
instruction in User mode.

Not currently processing an exception.
Currently processing an exception.

9 INT Interrupt processing. Not writable by the MVC instruction.
Not currently processing an interrupt.
Currently processing an interrupt.

8 Reserved 0 Reserved. Read as 0.

7-6 CXM 0-3h | Current execution mode. Not writable by the MVC instruction; these bits reflect the current execution
mode of the execute pipeline. CXM is set to 1 when you begin executing the first instruction in User
mode. See Chapter 8 for more information.

0 Supervisor mode
1h User mode
2h-3h | Reserved (an attempt to set these values is ignored)

Reserved 0 Reserved. Read as 0.

DBGM Emulator debug mask. Writable in Supervisor and User mode. Writable by emulator.
Enables emulator capabilities.

Disables emulator capabilities.

SPRU732J-July 2010 CPU Data Paths and Control 57

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
Control Register File Extensions www.ti.com
Table 2-23. Task State Register (TSR) Field Descriptions (continued)
Bit Field Value | Description
3 XEN Maskable exception enable. Writable only in Supervisor mode.
Disables all maskable exceptions.
Enables all maskable exceptions.
2 GEE Global exception enable. Can be set to 1 only in Supervisor mode. Once set, cannot be cleared except
by reset.
Disables all exceptions except the reset interrupt.
Enables all exceptions.
1 SGIE Saved global interrupt enable. Contains previous state of GIE bit after execution of a DINT instruction.

Writable in Supervisor and User mode.
Global interrupts remain disabled by the RINT instruction.
Global interrupts are enabled by the RINT instruction.

0 GIE Global interrupt enable. Same physical bit as the GIE bit in the control status register (CSR). Writable in
Supervisor and User mode. See Section 5.2 for details on how the GIE bit affects interruptibility.

Disables all interrupts except the reset interrupt and NMI (nonmaskable interrupt).

Enables all interrupts.

58 CPU Data Paths and Control SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

. Chapter 3
I3 TEXAS SPRU732J—July 2010

INSTRUMENTS

Instruction Set

This chapter describes the assembly language instructions of the TMS320C64x DSP and TMS320C64x+
DSP . Also described are parallel operations, conditional operations, resource constraints, and addressing
modes.

The C64x and C64x+ DSP uses all of the instructions available to the TMS320C62x DSP, but it also uses
other instructions that are specific to the C64x and C64x+ DSP. These specific instructions include 8-bit
and 16-bit extensions, nonaligned word loads and stores, data packing/unpacking operations.

Topic Page
3.1 Instruction Operation and Execution NOtatioNScoeiiiiiiiiiiiiiiiiiiiieieeeeeeeeees 60
3.2 Instruction Syntax and Opcode NOtAtiIONSc.iuiuiiieiniiiiieiiiieii e ieae e e eneaeaans 62
R T I 1= =] () £ PP 64
I e L=V =] @ 0T =T = o) g 65
3.5 ConditioNal OPEratiONSeieieieiu et ittt eeen e e e e e e e eaenen e e e e aeaeeenenanaens 68
3.6 SPMASKEA OPEIatiONS uiuieieieieiiuiueuenenieieieieeeeaeaes s e e e e eeaenenenaa e e reaeaeaeaenanss 68
3.7 RESOUICE CONSIIAINTS uiuiuieititieiiiuiuia ettt e e e ea e ra e e e s e eaeasararereseeenenenanns 69
3.8 AdAreSSIiNG MOOES uiuiiiiiitiiiii ittt ettt et a et et a et a s 76
3.9 Compact Instructions on the CB4AX+ CPUiuiiiiiiiiiiiiiii et 80
3.10 Instruction CompatiDilityccocieiiiii e 86
1 5 R 1 1= 1 O o o TN I L= o g o 0 PP 87

SPRU732J-July 2010 Instruction Set 59

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
Instruction Operation and Execution Notations www.ti.com
3.1 Instruction Operation and Execution Notations
Table 3-1 explains the symbols used in the instruction descriptions.
Table 3-1. Instruction Operation and Execution Notations
Symbol Meaning
abs(x) Absolute value of x
and Bitwise AND
-a Perform 2s-complement subtraction using the addressing mode defined by the AMR
+a Perform 2s-complement addition using the addressing mode defined by the AMR
b, Select bit i of source/destination b
bit_count Count the number of bits that are 1 in a specified byte
bit_reverse Reverse the order of bits in a 32-bit register
byte0 8-bit value in the least-significant byte position in 32-bit register (bits 0-7)
bytel 8-bit value in the next to least-significant byte position in 32-bit register (bits 8-15)
byte2 8-bit value in the next to most-significant byte position in 32-bit register (bits 16-23)
byte3 8-bit value in the most-significant byte position in 32-bit register (bits 24-31)
bv2 Bit vector of two flags for s2 or u2 data type
bv4 Bit vector of four flags for s4 or u4 data type
by , Selection of bits y through z of bit string b
cond Check for either creg equal to 0 or creg not equal to 0
creg 3-bit field specifying a conditional register, see Section 3.5
cstn n-bit constant field (for example, cst5)
dint 64-bit integer value (two registers)
dst_e Isb32 of 64-hit dst (placed in even-numbered register of a 64-bit register pair)
dst_h msb8 of 40-bit dst (placed in odd-numbered register of 64-bit register pair)
dst_| Isb32 of 40-hit dst (placed in even-numbered register of a 64-bit register pair)
dst o mshb32 of 64-bit dst (placed in odd-numbered register of 64-bit register pair)
dws4 Four packed signed 16-bit integers in a 64-bit register pair
dwu4 Four packed unsigned 16-bit integers in a 64-hit register pair
gmpy Galois Field Multiply
i2 Two packed 16-hit integers in a single 32-bit register
i4 Four packed 8-bit integers in a single 32-bit register
int 32-bit integer value
ImbO(x) Leftmost 0 bit search of x
Imb1(x) Leftmost 1 bit search of x
long 40-bit integer value
Isbn or LSBn n least-significant bits (for example, Isb16)
msbn or MSBn n most-significant bits (for example, msh16)
nop No operation
norm(x) Leftmost nonredundant sign bit of x
not Bitwise logical complement
op Opfields
or Bitwise OR
R Any general-purpose register
ROTL Rotate left
sat Saturate
shyte0 Signed 8-bit value in the least-significant byte position in 32-bit register (bits 0-7)
shytel Signed 8-bit value in the next to least-significant byte position in 32-bit register (bits 8-15)
shyte2 Signed 8-bit value in the next to most-significant byte position in 32-bit register (bits 16-23)
shyte3 Signed 8-bit value in the most-significant byte position in 32-bit register (bits 24-31)
60 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

Instruction Operation and Execution Notations

Table 3-1. Instruction Operation and Execution Notations (continued)

Symbol Meaning

scstn n-bit signed constant field

se Sign-extend

sint Signed 32-bit integer value

slong Signed 40-bit integer value

sllong Signed 64-bit integer value

slsb16 Signed 16-bit integer value in lower half of 32-bit register
smsb16 Signed 16-bit integer value in upper half of 32-bit register

srcl_e or src2_e
srcl_h or src2_h
srcl_| or src2_|
srcl_o or src2_o
s2

s4

-S

+s

ubyteO

ubytel

ubyte2

ubyte3

ucstn

uint

ulong

ullong

ulsb16

umsb16

u2

ud

X clear b,e

x extl,r

X extu I,r

x setb,e

xint

xor

xsint

xslsb16
xsmsb16

Xs2

xs4

xuint

xulsb16
xumsb16

Xu2

xu4

N

+

++

X

Isb32 of 64-bit src (placed in even-numbered register of a 64-bit register pair)

msb8 of 40-bit src (placed in odd-numbered register of 64-bit register pair)

Isb32 of 40-bit src (placed in even-numbered register of a 64-bit register pair)

msb32 of 64-bit src (placed in odd-numbered register of 64-bit register pair)

Two packed signed 16-bit integers in a single 32-bit register

Four packed signed 8-bit integers in a single 32-bit register

Perform 2s-complement subtraction and saturate the result to the result size, if an overflow occurs
Perform 2s-complement addition and saturate the result to the result size, if an overflow occurs
Unsigned 8-bit value in the least-significant byte position in 32-bit register (bits 0-7)

Unsigned 8-bit value in the next to least-significant byte position in 32-bit register (bits 8-15)
Unsigned 8-bit value in the next to most-significant byte position in 32-bit register (bits 16-23)
Unsigned 8-bit value in the most-significant byte position in 32-bit register (bits 24-31)

n-bit unsigned constant field (for example, ucst5)

Unsigned 32-bit integer value

Unsigned 40-bit integer value

Unsigned 64-bit integer value

Unsigned 16-bit integer value in lower half of 32-bit register

Unsigned 16-bit integer value in upper half of 32-bit register

Two packed unsigned 16-bit integers in a single 32-bit register

Four packed unsigned 8-bit integers in a single 32-bit register

Clear a field in x, specified by b (beginning bit) and e (ending bit)

Extract and sign-extend a field in x, specified by | (shift left value) and r (shift right value)
Extract an unsigned field in x, specified by | (shift left value) and r (shift right value)

Set field in x to all 1s, specified by b (beginning bit) and e (ending bit)

32-bit integer value that can optionally use cross path

Bitwise exclusive-ORs

Signed 32-bit integer value that can optionally use cross path

Signed 16 LSB of register that can optionally use cross path

Signed 16 MSB of register that can optionally use cross path

Two packed signed 16-bit integers in a single 32-bit register that can optionally use cross path
Four packed signed 8-bit integers in a single 32-bit register that can optionally use cross path
Unsigned 32-bit integer value that can optionally use cross path

Unsigned 16 LSB of register that can optionally use cross path

Unsigned 16 MSB of register that can optionally use cross path

Two packed unsigned 16-bit integers in a single 32-bit register that can optionally use cross path
Four packed unsigned 8-bit integers in a single 32-bit register that can optionally use cross path
Assignment

Addition

Increment by 1

Multiplication

SPRU732J-July 2010

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

61

13 TEXAS

INSTRUMENTS
Instruction Syntax and Opcode Notations www.ti.com
Table 3-1. Instruction Operation and Execution Notations (continued)
Symbol Meaning
- Subtraction
== Equal to
> Greater than
>= Greater than or equal to
< Less than
<= Less than or equal to
<< Shift left
>> Shift right
>>s Shift right with sign extension
>>7 Shift right with a zero fill
~ Logical inverse
& Logical AND
3.2 Instruction Syntax and Opcode Notations
Table 3-2 explains the syntaxes and opcode fields used in the instruction descriptions.
Table 3-2. Instruction Syntax and Opcode Notations
Symbol Meaning
baseR base address register
creg 3-bit field specifying a conditional register, see Section 3.5
cst constant
csta constant a
cstb constant b
cstn n-bit constant field
dst destination
dw doubleword; 0 = word, 1 = doubleword
feyc SPLOOP fetch cycle
fstg SPLOOP fetch stage
h MVK or MVKH instruction
i, bit n of the constant ii
Id/st load or store; 0 = store, 1 = load
mode addressing mode, see Section 3.8
na nonaligned; O = aligned, 1 = nonaligned
N3 3-bit field
offsetR register offset
op opfield; field within opcode that specifies a unique instruction
op, bit n of the opfield
p parallel execution; O = next instruction is not executed in parallel, 1 = next instruction is executed in
parallel
ptr offset from either A4-A7 or B4-B7 depending on the value of the s bit. The ptr field is the 2
least-significant bits of the src2 (baseR) field—bit 2 of register address is forced to 1.
r LDDW/LDNDWY/LDNW instruction
rsv reserved
s side A or B for destination; O = side A, 1 = side B.
sc scaling mode; 0 = nonscaled, offsetR/ucst5 is not shifted; 1 = scaled, offsetR/ucst5 is shifted
scstn n-bit signed constant field
62 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Syntax and Opcode Notations
Table 3-2. Instruction Syntax and Opcode Notations (continued)
Symbol Meaning
scst, bit n of the signed constant field
sn sign
src source
srcl source 1
src2 source 2
stg, bit n of the constant stg
sz data size select; 0 = primary size, 1 = secondary size (see Section 3.9.2.2)
t side of source/destination (src/dst) register; 0 = side A, 1 = side B
ucstn n-bit unsigned constant field
ucst, bit n of the unsigned constant field
unit unit decode
X cross path for src2; 0 = do not use cross path, 1 = use cross path
y .D1 or .D2 unit; 0 = .D1 unit, 1 = .D2 unit
z test for equality with zero or nonzero

3.2.1 32-Bit Opcode Maps
The C64x CPU and C64x+ CPU 32-bit opcodes are mapped in Appendix C through Appendix H.

3.2.2 16-Bit Opcode Maps

The C64x+ CPU 16-hit opcodes used for compact instructions are mapped in Appendix C through
Appendix H. See Section 3.9 for more information about compact instructions.

SPRU732J-July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

63

13 TEXAS
INSTRUMENTS

Delay Slots www.ti.com

3.3 Delay Slots

The execution of the additional instructions can be defined in terms of delay slots. The number of delay
slots is equivalent to the number of additional cycles required after the source operands are read for the
result to be available for reading. For a single-cycle type instruction (such as CMPGT2), source operands
read in cycle i produce a result that can be read in cycle i + 1. For a 2-cycle instruction (such as AVGU4),
source operands read in cycle i produce a result that can be read in cycle i + 2. For a four-cycle instruction
(such as DOTP2), source operands read in cycle i produce a result that can be read in cycle i + 4.

Table 3-3 shows the number of delay slots associated with each type of instruction.

Delay slots are equivalent to an execution or result latency. All of the instructions in the C64x and C64x+
DSP have a functional unit latency of 1. This means that a new instruction can be started on the functional
unit each cycle. Single-cycle throughput is another term for single-cycle functional unit latency.

Table 3-3. Delay Slot and Functional Unit Latency

Functional Unit Read Write Branch
Instruction Type Delay Slots Latency Cycles @ Cycles @ Taken @
NOP (no operation) 0 1
Store 0 1 i i
Single cycle 0 1 i i
Two cycle 1 1 i i+1
Multiply (16 x 16) 1 1 i i+1
Four cycle 3 1 i i+3
Load 4 1 i i,i+4®@
Branch 5 1 i® i+5

@ Cycle i is in the E1 pipeline phase.
@ For loads, any address modification happens in cycle i. The loaded data is written into the register file in cycle i + 4.
® The branch to label, branch to IRP, and branch to NRP instructions do not read any general-purpose registers.

64 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Parallel Operations

3.4 Parallel Operations

Instructions are always fetched eight words at a time. This constitutes a fetch packet. On the C64x CPU
this will always be eight instructions. On the C64x+ CPU, this may be as many as 14 instructions due to
the existence of compact instructions in a header based fetch packet. The basic format of a fetch packet is
shown in Figure 3-1. Fetch packets are aligned on 256-bit (8-word) boundaries.

Figure 3-1. Basic Format of a Fetch Packet

31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0
PP PP PP PP 1P PP PP PP
Instruction Instruction Instruction Instruction Instruction Instruction Instruction Instruction
A B C D E F G H
LSBs of
the byte 00000b 00100b 01000b 01100b 10000b 10100b 11000b 11100b
address

The C64x+ CPU supports compact 16-bit instructions. Unlike the normal 32-bit instructions, the p-bit
information for compact instructions is not contained within the instruction opcode. Instead, the p-bit is
contained within the p-bits field within the fetch packet header. See Section 3.9 for more information.

The execution of the individual noncompact instructions is partially controlled by a bit in each instruction,
the p-bit. The p-bit (bit 0) determines whether the instruction executes in parallel with another instruction.
The p-bits are scanned from left to right (lower to higher address). If the p-bit of instruction | is 1, then
instruction | + 1 is to be executed in parallel with (in the same cycle as) instruction I. If the p-bit of
instruction | is 0, then instruction | + 1 is executed in the cycle after instruction I. All instructions executing
in parallel constitute an execute packet. An execute packet can contain up to eight instructions. Each
instruction in an execute packet must use a different functional unit.

On the CPU, the execute packet can cross fetch packet boundaries, but will be limited to no more than
eight instructions in a fetch packet. The last instruction in an execute packet will be marked with its p-bit
cleared to zero. There are three types of p-bit patterns for fetch packets. These three p-bit patterns result
in the following execution sequences for the eight instructions:

* Fully serial
e Fully parallel
e Partially serial

Example 3-1 through Example 3-3 show the conversion of a p-bit sequence into a cycle-by-cycle
execution stream of instructions.

SPRU732J-July 2010 Instruction Set 65

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
Parallel Operations www.ti.com
Example 3-1. Fully Serial p-Bit Pattern in a Fetch Packet
The eight instructions are executed sequentially.
This p-bit pattern:
31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0
10 10 10 10 10 10 10 10

Instruction Instruction Instruction Instruction Instruction Instruction Instruction Instruction
A B C D E F G H

results in this execution sequence:

Cycle/Execute Packet Instructions
1 A

© N o N W N
I G MM mOOw

Example 3-2. Fully Parallel p-Bit Pattern in a Fetch Packet

All eight instructions are executed in parallel.
This p-bit pattern:

31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0
11 i1| i1| 11 11 11 11 11
| | | | | | |

Instruction Instruction Instruction Instruction Instruction Instruction Instruction Instruction
A B C D E F G H

results in this execution sequence:

Cycle/Execute
Packet Instructions
1 A B C D E F G H
66 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Parallel Operations

Example 3-3. Partially Serial p-Bit Pattern in a Fetch Packet

This p-bit pattern:

31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0
io io 51 51 io 51 11 io

Instruction Instruction Instruction Instruction Instruction Instruction Instruction Instruction
A B C D E F G H

results in this execution sequence:

Cycle/Execute Packet Instructions
1 A
2 B
3 C D E
4 F G H

3.4.1 Example Parallel Code

The vertical bars || signify that an instruction is to execute in parallel with the previous instruction. The
code for the fetch packet in Example 3-3 would be represented as this:
instruction A

instruction B
instruction

instruction
instruction

mooO

instruction
instruction
instruction

Ieom

3.4.2 Branching Into the Middle of an Execute Packet

If a branch into the middle of an execute packet occurs, all instructions at lower addresses are ignored. In
Example 3-3, if a branch to the address containing instruction D occurs, then only D and E execute. Even
though instruction C is in the same execute packet, it is ignored. Instructions A and B are also ignored
because they are in earlier execute packets. If your result depends on executing A, B, or C, the branch to
the middle of the execute packet will produce an erroneous result.

SPRU732J-July 2010 Instruction Set 67

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
Conditional Operations www.ti.com
3.5 Conditional Operations
Most instructions can be conditional. The condition is controlled by a 3-bit opcode field (creg) that
specifies the condition register tested, and a 1-bit field (z) that specifies a test for zero or nonzero. The
four MSBs of every opcode are creg and z. The specified condition register is tested at the beginning of
the E1 pipeline stage for all instructions. For more information on the pipeline, see Chapter 4. If z = 1, the
test is for equality with zero; if z = 0, the test is for nonzero. The case of creg = 0 and z = 0 is treated as
always true to allow instructions to be executed unconditionally. The creg field is encoded in the
instruction opcode as shown in Table 3-4.
Compact (16-bit) instructions on the C64x+ DSP do not contain a creg field and always execute
unconditionally. See Section 3.9 for more information.
Table 3-4. Registers That Can Be Tested by Conditional Operations
Specified creg z
Conditional
Register Bit: 31 30 29 28
Unconditional 0 0 0 0
Reserved 0 0 0 1
BO 0 0 1 z
B1 0 1 0 z
B2 0 1 1 z
Al 1 0 0 z
A2 1 0 1 z
A0 1 1 0 z
Reserved 1 1 1 x®
@ x can be any value.
Conditional instructions are represented in code by using square brackets, [], surrounding the condition
register name. The following execute packet contains two ADD instructions in parallel. The first ADD is
conditional on BO being nonzero. The second ADD is conditional on BO being zero. The character !
indicates the inverse of the condition.
[BO] ADD L Al, A2, A3
[[!BO] ADD L2 B1, B2, B3
The above instructions are mutually exclusive, only one will execute. If they are scheduled in parallel,
mutually exclusive instructions are constrained as described in Section 3.7. If mutually exclusive
instructions share any resources as described in Section 3.7, they cannot be scheduled in parallel (put in
the same execute packet), even though only one will execute.
The act of making an instruction conditional is often called predication and the conditional register is often
called the predication register.
3.6 SPMASKed Operations
On the C64x+ CPU, the SPMASK and SPMASKR instructions can be used to inhibit the execution of
instructions from the SPLOOP buffer. The selection of which instruction to inhibit can be specified by the
SPMASK or SPMASKR instruction argument or can be marked by the addition of a caret () next to the
parallel code marker as shown below:
SPMVASK
||~ LDW .DL *A0, Al ; This instruction is SPMASKed
||~ LDW . D2 *B0, B1 ;This instruction is SPMASKed
| MPY .ML A3, A4, A5 ; This instruction is Not SPMASKed
See Chapter 7 for more information.
68 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

I

WWW.1i

TEXAS
INSTRUMENTS

i.com Resource Constraints

3.7

3.7.1

3.7.2

3.7.3

Resource Constraints

No two instructions within the same execute packet can use the same resources. Also, no two instructions
can write to the same register during the same cycle. The following sections describe how an instruction
can use each of the resources.

Constraints on Instructions Using the Same Functional Unit
Two instructions using the same functional unit cannot be issued in the same execute packet.

The following execute packet is invalid:

ADD . S1 A0, Al, A2 ;.S1 is used for
|] SHR .S1 A3, 15, M ;...both instructions

The following execute packet is valid:

ADD . L1 A0, Al, A2 ; Two different functional
|] SHR .S1 A3, 15, A4 ;...units are used

Constraints on the Same Functional Unit Writing in the Same Instruction Cycle

The .M unit has two 32-bit write ports; so the results of a 4-cycle 32-bit instruction and a 2-cycle 32-hit
instruction operating on the same .M unit can write their results on the same instruction cycle. Any other
combination of parallel writes on the .M unit will result in a conflict. On the C64x+ DSP this will result in an
exception.

On the C64x DSP and C64x+ DSP , this will result in erroneous values being written to the destination
registers.

For example, the following sequence is valid and results in both A2 and A5 being written by the .M1 unit
on the same cycle.

DOTP2 . ML A0, A1, A2 ;This instruction has 3 delay slots

NOP

AVGE2 . ML A4, A5 ; This instruction has 1 delay slot

NOP ;Both A2 and A5 get written on this cycle

The following sequence is invalid. The attempt to write 96 bits of output through 64-bits of write port will
fail.

SWPY2 .M A5, A6, A9: A8 ;This instruction has 3 delay slots; but generates a 64 bit
resul t

NOP

MPY ML AL, A2, A3 ; This instruction has 1 del ay sl ot
NOP

Constraints on Cross Paths (1X and 2X)

Up to two units (.S, .L, .D, or .M unit) per data path, per execute packet, can read a source operand from
its opposite register file via the cross paths (1X and 2X) provided that each unit is reading the same
operand.

For example, the .S1 unit can read both its operands from the A register file; or it can read an operand
from the B register file using the 1X cross path and the other from the A register file. The use of a cross
path is denoted by an X following the functional unit name in the instruction syntax (as in S1X).

The following execute packet is invalid because the 1X cross path is being used for two different B
register operands:

M .S1X BO, A0 ; Invalid. Instructions are using the 1X cross path
|] M .L1X Bl, Al ; with different B registers

SPRU732J-July 2010 Instruction Set 69

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Resource Constraints www.ti.com

3.74

The following execute packet is valid because all uses of the 1X cross path are for the same B register
operand, and all uses of the 2X cross path are for the same A register operand:
ADD . L1X AO,B1,Al ; Instructions use the 1X with Bl

|] SUB .S1X A2,B1, A2 ; 1X cross paths using Bl

[| AND .D1 A4, Al A3 ;

[| MPY .ML A6, Al A4 ;

|| ADD .L2 BO,B4,B2 ;

|| SUB .S2X B4, A4,B3 ; 2X cross paths using A4

|| AND .D2X B5, A4, B4 ; 2X cross paths using A4

|| MPY .M2 BS6,B4,B5 ;

The following execute packet is invalid because more than two functional units use the same cross path
operand:

MV .L2X A0, BO ; 1st cross path nove
|] MV .S2X A0, Bl ; 2nd cross path nove
|| MV .D2X A0, B2 ; 3rd cross path nove

The operand comes from a register file opposite of the destination, if the x bit in the instruction field is set.

Cross Path Stalls

The DSP introduces a delay clock cycle whenever an instruction attempts to read a register via a cross
path that was updated in the previous cycle. This is known as a cross path stall. This stall is inserted
automatically by the hardware, no NOP instruction is needed. It should be noted that no stall is introduced
if the register being read has data placed by a load instruction, or if an instruction reads a result one cycle
after the result is generated.

Here are some examples:

ADD .S1 A0, A0, Al ; / Stall is introduced; Al is updated
; 1 cycle before it is used as a

ADD .S2X Al, BO, BL ; \ cross path source

ADD .Sl A0, A0, Al ; / No stall is introduced; A0 not updated
; 1 cycle before it is used as a cross
ADD .S2X A0, BO, BL ; \ path source

LDW .D1 *++A0[1], AL ; / No stall is introduced; Al is the |oad
; destination

NOP 4 ; NOP 4 represents 4 instructions to
ADD .S2X Al, BO, Bl ; \ be executed between the |oad and add.
LDW .D1 *++A0[1], Al ; / Stall is introduced; AO is updated
ADD .S2X A0, BO, Bl ; 1 cycle before it is used as a

; \ cross path source

It is possible to avoid the cross path stall by scheduling an instruction that reads an operand via the cross
path at least one cycle after the operand is updated. With appropriate scheduling, the DSP can provide
one cross path operand per data path per cycle with no stalls. In many cases, the TMS320C6000
Optimizing Compiler and Assembly Optimizer automatically perform this scheduling.

70

Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

I

TEXAS
INSTRUMENTS

www.ti.com Resource Constraints

3.7.5 Constraints on Loads and Stores

The data address paths named DALl and DA2 are each connected to the .D units in both data paths. Load
and store instructions can use an address pointer from one register file while loading to or storing from the
other register file. Two load and store instructions using a destination/source from the same register file
cannot be issued in the same execute packet. The address register must be on the same side as the .D
unit used.

The DAL and DA2 resources and their associated data paths are specified as T1 and T2, respectively. T1
consists of the DAL address path and the LD1 and ST1 data paths. LD1 is comprised of LD1a and LD1b
to support 64-bit loads; ST1 is comprised of ST1a and ST1b to support 64-bit stores. Similarly, T2 consists
of the DA2 address path and the LD2 and ST2 data paths. LD2 is comprised of LD2a and LD2b to support
64-bit loads; ST2 is comprised of ST2a and ST2b to support 64-bit stores. The T1 and T2 designations
appear in the functional unit fields for load and store instructions.

The DSP can access words and doublewords at any byte boundary using nonaligned loads and stores. As
a result, word and doubleword data does not need alignment to 32-bit or 64-bit boundaries. No other
memory access may be used in parallel with a nonaligned memory access. The other .D unit can be used
in parallel, as long as it is not performing a memory access.

The following execute packet is invalid:;
LDNW . D2T2 *B2[B12],B13 ; \ Two nenory operations,
|| LDB . D1T1 *A2, Al4 ; | one non-aligned

The following execute packet is valid:
LDNW . D2T2 *B2[B12], A13 ; \ One non-aligned nenory
; operati on,
|| ADD .Dix Al2, B13, Al4 ; one non-nenory .D unit
;| operation

3.7.6 Constraints on Long (40-Bit) Data
Both the C62x and C67x device families had constraints on the number of simultaneous reads and writes
of 40-bit data due to shared data paths.
The C64x and C64x+ CPU maintain separate datapaths to each functional unit, so these constraints are
removed.
The following, for example, is valid:
DDOTPL2 . ML AlL: AO, A2, AS: A4
|| DDOTPL2 .M B1: BO, B2, B5: B4
|| STDW . D1 A9: A8, * AB
|| STDW . D2 BO: B8, *B6
|| suB L1 A25: A24, A20, A31: A30
|| suB L2 B25: B24, B20, B31: B30
|| SHL .s1 All: A10, 5, A13: A12
|| SH .82 B11: B10, 8, B13: B12
SPRU732J-July 2010 Instruction Set 71

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
Resource Constraints www.ti.com
3.7.7 Constraints on Register Reads
More than four reads of the same register cannot occur on the same cycle. Conditional registers are not
included in this count.
The following execute packets are invalid:
wPY . ML Al, Al, AA ; five reads of register Al
|| ADD .L1 Al, Al, A5
[| SuB .DL Al, A2, A3
MPY . ML Al, Al, AA ; five reads of register Al
[| ADD .L1 Al, Al, A5
|| SUB .D2x Al, B2, B3
The following execute packet is valid:
MPY ML Al, Al, A4 ; only four reads of Al
|| [Al] ADD .L1 A0, Al, A5
[SUB .D1 Al, A2, A3
3.7.8 Constraints on Register Writes
Two instructions cannot write to the same register on the same cycle. Two instructions with the same
destination can be scheduled in parallel as long as they do not write to the destination register on the
same cycle. For example, an MPY issued on cycle | followed by an ADD on cycle | + 1 cannot write to the
same register because both instructions write a result on cycle | + 1. Therefore, the following code
sequence is invalid unless a branch occurs after the MPY, causing the ADD not to be issued.
MPY . ML A0, Al, A2
ADD .L1 A4, A5, A2
However, this code sequence is valid:
MPY ML A0, Al, A2
[ADD .L1 A4, A5, A2
Figure 3-2 shows different multiple-write conflicts. For example, ADD and SUB in execute packet L1 write
to the same register. This conflict is easily detectable.
MPY in packet L2 and ADD in packet L3 might both write to B2 simultaneously; however, if a branch
instruction causes the execute packet after L2 to be something other than L3, a conflict would not occur.
Thus, the potential conflict in L2 and L3 might not be detected by the assembler. The instructions in L4 do
not constitute a write conflict because they are mutually exclusive. In contrast, because the instructions in
L5 may or may not be mutually exclusive, the assembler cannot determine a conflict. If the pipeline does
receive commands to perform multiple writes to the same register, the result is undefined.
Figure 3-2. Examples of the Detectability of Write Conflicts by the Assembler
L1: ADD .L2 BS5, B6, B7 ; \ detectable, conflict
[SUB .S2 B8, B9, BY 0
L2: MPY . M2 BO, B1, B2 ; \ not detectable
L3: ADD .L2 B3, B4,B2 0
L4: [tBO] ADD .L2 B5,B6,B7 ; \ detectable, no conflict
|| [BO] SUB .S2 B8, B9, B7 0
L5: [tB1] ADD .L2 B5,B6,B7 ; \ not detectable
|| [BO] SUB .S2 B8, B9, B7 0
72 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Resource Constraints

3.7.9 Constraints on AMR Writes

A write to the addressing mode register (AMR) using the MVC instruction that is immediately followed by a
LD, ST, ADDA, or SUBA instruction causes a 1 cycle stall, if the LD, ST, ADDA, or SUBA instruction
uses the A4-A7 or B4-B7 registers for addressing.

3.7.10 Constraints on Multicycle NOPs

Two instructions that generate multicycle NOPs cannot share the same execute packet. Instructions that
generate a multicycle NOP are:

e NOP n (where n>1)

 IDLE

» BNORP target, n (for all values of n, regardless of predication)

» ADDKPC label, reg, n (for all values of n, regardless of predication)

3.7.11 Constraints on Unitless Instructions

3.7.11.1 SPLOOP Restrictions

The NOP, NOP n, and BNOP instructions are the only unitless instructions allowed to be used in an
SPLOOP(D/W) body. The assembler disallows the use of any other unitless instruction in the loop body.

See Chapter 7 for more information.

3.7.11.2 BNOP <disp>,n

A BNORP instruction cannot be placed in parallel with the following instructions if the BNOP has a non-zero

NOP count:
« ADDKPC
e CALLP

e NOPnN

3.7.11.3 DINT

A DINT instruction cannot be placed in parallel with the following instructions:
* MVCreg, TSR
e MVCreg, CSR

* BIRP

« BNRP

» IDLE

* NOPnN (fn>1)
* RINT

« SPKERNEL(R)
« SPLOOP(D/W)
« SPMASK(R)

. SWE

- SWENR

A DINT instruction can be placed in parallel with the NOP instruction.

SPRU732J-July 2010 Instruction Set 73

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Resource Constraints www.ti.com

3.7.11.4 IDLE

An IDLE instruction cannot be placed in parallel with the following instructions:
 DINT

e NOPnN (ifn>1)

* RINT

* SPKERNEL(R)

* SPLOOP(D/W)

» SPMASK(R)

« SWE

+ SWENR

An IDLE instruction can be placed in parallel with the NOP instruction.

3.7.11.5 NOPn

A NOP n (with n > 1) instruction cannot be placed in parallel with other multicycle NOP counts (ADDKPC,
BNOP, CALLP) with the exception of another NOP n where the NOP count is the same. A NOP n (with
n > 1) instruction cannot be placed in parallel with the following instructions:

« DINT
. IDLE

« RINT

« SPKERNEL(R)
« SPLOOP(D/W)
« SPMASK(R)

. SWE

- SWENR

3.7.11.6 RINT

A RINT instruction cannot be placed in parallel with the following instructions:
* MVCreg, TSR
* MVCreg, CSR
* BIRP

« BNRP

* DINT

 IDLE

* NOPnN (fn>1)
* SPKERNEL(R)
* SPLOOP(D/W)
* SPMASK(R)

* SWE

e SWENR

A RINT instruction can be placed in parallel with the NOP instruction.

3.7.11.7 SPKERNEL(R)

An SPKERNEL(R) instruction cannot be placed in parallel with the following instructions:
* DINT

* IDLE

e NOPnN (ifn>1)

* RINT

* SPLOOP(D/W)

74 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Resource Constraints

« SPMASK(R)
. SWE
« SWENR

An SPKERNEL(R) instruction can be placed in parallel with the NOP instruction.

3.7.11.8 SPLOOP(D/W)

An SPLOOP(D/W) instruction cannot be placed in parallel with the following instructions:
* DINT

+ IDLE

e NOPnN(ifn>1)

* RINT

* SPKERNEL(R)

* SPMASK(R)

+ SWE

+ SWENR

An SPLOOP(D/W) instruction can be placed in parallel with the NOP instruction:

3.7.11.9 SPMASK(R)

An SPMASK(R) instruction cannot be placed in parallel with the following instructions:
* DINT

« |IDLE

* NOPnN (fn>1)

* RINT

 SPLOOP(D/W)

* SPKERNEL(R)

« SWE

e SWENR

An SPMASK(R) instruction can be placed in parallel with the NOP instruction.

3.7.11.10 SWE

An SWE instruction cannot be placed in parallel with the following instructions:
e DINT

 IDLE

e NOPnN(ifn>1)

* RINT

* SPLOOP(D/W)

 SPKERNEL(R)

* SWENR

An SWE instruction can be placed in parallel with the NOP instruction.

3.7.11.11 SWENR

An SWENR instruction cannot be placed in parallel with the following instructions:
* DINT

 IDLE

e NOPnN(ifn>1)

* RINT

* SPLOOP(D/W)

SPRU732J-July 2010 Instruction Set 75

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Addressing Modes www.ti.com

3.8

« SPKERNEL(R)
. SWE

An SWENR instruction can be placed in parallel with the NOP instruction.

Addressing Modes

The addressing modes on the DSP are linear, circular using BKO, and circular using BK1. The addressing
mode is specified by the addressing mode register (AMR), described in Section 2.8.3.

All registers can perform linear addressing. Only eight registers can perform circular addressing: A4-A7
are used by the .D1 unit, and B4-B7 are used by the .D2 unit. No other units can perform circular
addressing. LDB(U)/LDH(U)/LDW, STB/STH/STW, LDNDW, LDNW, STNDW, STNW, LDDW, STDW,
ADDAB/ADDAH/ADDAW/ADDAD, and SUBAB/SUBAH/SUBAW instructions all use AMR to determine
what type of address calculations are performed for these registers. There is no SUBAD instruction.

3.8.1 Linear Addressing Mode

3.8.1.1 LD and ST Instructions

For load and store instructions, linear mode simply shifts the offsetR/cst operand to the left by 3, 2, 1, or O
for doubleword, word, halfword, or byte access, respectively; and then performs an add or a subtract to
baseR (depending on the operation specified). The LDNDW and STNDW instructions also support
nonscaled offsets. In nonscaled mode, the offsetR/cst is not shifted before adding or subtracting from the
baseR.

For the preincrement, predecrement, positive offset, and negative offset address generation options, the
result of the calculation is the address to be accessed in memory. For postincrement or postdecrement
addressing, the value of baseR before the addition or subtraction is the address to be accessed from
memory.

3.8.1.2 ADDA and SUBA Instructions

For integer addition and subtraction instructions, linear mode simply shifts the srcl/cst operand to the left
by 3, 2, 1, or 0 for doubleword, word, halfword, or byte data sizes, respectively, and then performs the add
or subtract specified.

76

Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Addressing Modes
3.8.2 Circular Addressing Mode
The BKO and BK1 fields in AMR specify the block sizes for circular addressing, see Section 2.8.3.

3.8.2.1 LD and ST Instructions

As with linear address arithmetic, offsetR/cst is shifted left by 3, 2, 1, or 0 according to the data size, and
is then added to or subtracted from baseR to produce the final address. Circular addressing modifies this
slightly by only allowing bits N through 0 of the result to be updated, leaving bits 31 through N + 1
unchanged after address arithmetic. The resulting address is bounded to 2™ * ¥ range, regardless of the
size of the offsetR/cst.

The circular buffer size in AMR is not scaled; for example, a block-size of 8 is 8 bytes, not 8 times the data
size (byte, halfword, word). So, to perform circular addressing on an array of 8 words, a size of 32 should
be specified, or N = 4. Example 3-4 shows an LDW performed with register A4 in circular mode and

BKO = 4, so the buffer size is 32 bytes, 16 halfwords, or 8 words. The value in AMR for this example is
0004 0001h.

Example 3-4. LDW Instruction in Circular Mode

LDW . DL *++A4[9], AL
Before LDW 1 cycle after LDW @ 5 cycles after LDW
A4 0000 0100h A4 0000 0104h A4 0000 0104h
Al XXXX XXXXh Al XXXX XXXXh Al 1234 5678h
mem 104h 1234 5678h mem 104h 1234 5678h mem 104h 1234 5678h

@ Note: 9h words is 24h bytes. 24h bytes is 4 bytes beyond the 32-byte (20h) boundary 100h-11Fh; thus, it is wrapped around to
(124h - 20h = 104h).

3.8.2.2 ADDA and SUBA Instructions

As with linear address arithmetic, offsetR/cst is shifted left by 3, 2, 1, or 0 according to the data size, and
is then added to or subtracted from baseR to produce the final address. Circular addressing modifies this
slightly by only allowing bits N through 0 of the result to be updated, leaving bits 31 through N + 1
unchanged after address arithmetic. The resulting address is bounded to 2™ * Y range, regardless of the
size of the offsetR/cst.

The circular buffer size in AMR is not scaled; for example, a block size of 8 is 8 bytes, not 8 times the data
size (byte, halfword, word). So, to perform circular addressing on an array of 8 words, a size of 32 should
be specified, or N = 4. Example 3-5 shows an ADDAH performed with register A4 in circular mode and
BKO = 4, so the buffer size is 32 bytes, 16 halfwords, or 8 words. The value in AMR for this example is
0004 0001h.

Example 3-5. ADDAH Instruction in Circular Mode

ADDAH . D1 Ad, AL, A4
Before ADDAH 1 cycle after ADDAH @
A4 0000 0100h A4 0000 0106h
Al 0000 0013h Al 0000 0013h

@ Note: 13h halfwords is 26h bytes. 26h bytes is 6 bytes beyond the 32-byte (20h) boundary 100h-11Fh; thus, it is wrapped
around to (126h - 20h = 106h).

SPRU732J-July 2010 Instruction Set 77

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Addressing Modes www.ti.com

3.8.2.3 Circular Addressing Considerations with Nonaligned Memory

Circular addressing may be used with nonaligned accesses. When circular addressing is enabled, address
updates and memory accesses occur in the same manner as for the equivalent sequence of byte
accesses.

On the C64x CPU, the only restriction is that the circular buffer size be at least as large as the data size
being accessed. Nonaligned access to circular buffers that are smaller than the data being read will cause
undefined results.

On the C64x+ CPU, the circular buffer size must be at least 32 bytes. Nonaligned access to circular
buffers that are smaller than 32 bytes will cause undefined results.

Nonaligned accesses to a circular buffer apply the circular addressing calculation to logically adjacent
memory addresses. The result is that nonaligned accesses near the boundary of a circular buffer will
correctly read data from both ends of the circular buffer, thus seamlessly causing the circular buffer to
“wrap around” at the edges.

Consider, for example, a circular buffer size of 16 bytes. A circular buffer of this size at location 20h, would
look like this in physical memory:

PN
X 0
X ©
X > B
X @ B~
X 0O =
x| O
X m
X M -
QO N
T RN
o NN
o w N
® AN
- N
Q| o N
>N N
— o N
— o N
x> N
— N
EREQINN]
S ON
omnmN
T MmN
X O w
X B oW
X N W
X W W
X MW
X g w
X o w
X N W
X 00 w

The effect of circular buffering is to make it so that memory accesses and address updates in the 20h-2Fh
range stay completely inside this range. Effectively, the memory map behaves in this manner:

> NN
— 0 N
— © N
~ >N

2
B
|

30N

2
D
n

o mN
®» O N
TRk, N
o NN
o w N
O AN
- g N
> NN
— 0 N
~ >N

2
B
|

T TN
Q o N
—_— o N
3 0N
S O N
o m N
T TN
®» o N
O R, DN
O N DN
o W N
o b~ N
- O1 N
Q o N
SN N
- 00 N

Example 3-6 shows an LDNW performed with register A4 in circular mode and BKO = 4, so the buffer size
is 32 bytes, 16 halfwords, or 8 words. The value in AMR for this example is 0004 0001h. The buffer starts
at address 0020h and ends at 0040h. The register A4 is initialized to the address 003Ah.

Example 3-6. LDNW in Circular Mode

LDNW . DL *++A4[2], AL
Before LDNW 1 cycle after LDNW @ 5 cycles after LDNW
A4 0000 003Ah A4 0000 0022h A4 0000 0022h
Al XXXX XXXXh Al XXXX XXXXh Al 5678 9ABCh
mem 0022h 5678 9ABCh mem 0022h 5678 9ABCh mem 0022h 5678 9ABCh

@ Note: 2h words is 8h bytes. 8h bytes is 2 bytes beyond the 32-byte (20h) boundary starting at address 003Ah; thus, it is
wrapped around to 0022h (003Ah + 8h = 0022h).

78 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Addressing Modes

3.8.3 Syntax for Load/Store Address Generation

The DSP has a load/store architecture, which means that the only way to access data in memory is with a
load or store instruction. Table 3-5 shows the syntax of an indirect address to a memory location.
Sometimes a large offset is required for a load/store. In this case, you can use the B14 or B15 register as
the base register, and use a 15-bit constant (ucstl15) as the offset.

Table 3-6 describes the addressing generator options. The memory address is formed from a base
address register (baseR) and an optional offset that is either a register (offsetR) or a 5-bit unsigned
constant (ucstb).

Table 3-5. Indirect Address Generation for Load/Store

Preincrement or Postincrement or
No Modification of Predecrement of Postdecrement of
Addressing Type Address Register Address Register Address Register
Register indirect *R *++R *R++
* R *R- -
Register relative *+R[ucstb] *++R[ucst5] *R++[ucst5]
*-R[ucst5] *- -R[ucst5] *R- -[ucst5]
Register relative with *+B14/B15[ucst15] not supported not supported
15-bit constant offset
Base + index *+R[offsetR] *++R[offsetR] *R++[offsetR]
*-R[offsetR] *- -R[offsetR] *R- -[offsetR]
Table 3-6. Address Generator Options for Load/Store
Mode Field Syntax Modification Performed
0 0 0 0 *-R[ucst5] Negative offset
0 0 0 1 *+R[ucst5] Positive offset
0 1 0 0 *-R[offsetR] Negative offset
0 1 0 1 *+RJ[offsetR] Positive offset
1 0 0 0 *- -R[ucst5] Predecrement
1 0 0 1 *++R[ucstb] Preincrement
1 0 1 0 *R- -[ucst5] Postdecrement
1 0 1 1 *R++[ucstb] Postincrement
1 1 0 0 *--R[offsetR] Predecrement
1 1 0 1 *++R[offsetR] Preincrement
1 1 1 0 *R- -[offsetR] Postdecrement
1 1 1 1 *R++[offsetR] Postincrement
SPRU732J-July 2010 Instruction Set 79

Copyright © 2010, Texas Instruments Incorporated

Compact Instructions on the C64x+ CPU

13 TEXAS
INSTRUMENTS

www.ti.com

3.9 Compact Instructions on the C64x+ CPU
The C64x+ CPU supports a header based set of 16-bit-wide compact instructions in addition to the normal
32-bit wide instructions. The C64x CPU does not support compact instructions.
3.9.1 Compact Instruction Overview
The availability of compact instructions is enabled by the replacement of the eighth word of a fetch packet
with a 32-bit header word. The header word describes which of the other seven words of the fetch packet
contain compact instructions, which of the compact instructions in the fetch packet operate in parallel, and
also contains some decoding information which supplements the information contained in the 16-bit
compact opcode. Table 3-7 compares the standard fetch packet with a header-based fetch packet
containing compact instructions.
Table 3-7. C64x+ CPU Fetch Packet Types
Standard C6000 Fetch Packet Header-Based Fetch Packet
Word Word
0 32-bit opcode 0 16-bit opcode 16-bit opcode
1 32-bit opcode 1 32-bit opcode
2 32-bit opcode 2 16-bit opcode 16-bit opcode
3 32-bit opcode 3 32-bit opcode
4 32-bit opcode 4 16-bit opcode 16-bit opcode
5 32-bit opcode 5 32-bit opcode
6 32-bit opcode 6 16-bit opcode 16-bit opcode
7 32-bit opcode 7 Header
Within the other seven words of the fetch packet, each word may be composed of a single 32-bit opcode
or two 16-bit opcodes. The header word specifies which words contain compact opcodes and which
contain 32-bit opcodes.
The compiler will automatically code instructions as 16-bit compact instructions when possible.
There are a number of restrictions to the use of compact instructions:
* No dedicated predication field
» 3-bit register address field
* Very limited 3 operand instructions
» Subset of 32-bit instructions
80 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

www.ti.com

INSTRUMENTS

Compact Instructions on the C64x+ CPU

3.9.2

Header Word Format
Figure 3-3 describes the format of the compact instruction header word.

Figure 3-3. Compact Instruction Header Format

31 30 29 28 27 21 20 14 13

’ 1 ’ 1 ’ 1 | 0 | Layout | Expansion ’ p-bits

7 7 14

Bits 27-21 (Layout field) indicate which words in the fetch packet contain 32-bit opcodes and which words

contain two 16-bit opcodes.

Bits 20-14 (Expansion field) contain information that contributes to the decoding of all compact
instructions in the fetch packet.

Bits 13-0 (p-bits field) specify which compact instructions are run in parallel.

3.9.2.1 Layout Field in Compact Header Word

Bits 27-21 of the compact instruction header contains the layout field. This field specifies which of the

other seven words in the current fetch packet contain 32-bit full-sized instructions and which words contain

two 16-bit compact instructions.
Figure 3-4 shows the layout field in the compact header word and Table 3-8 describes the bits.

Figure 3-4. Layout Field in Compact Header Word
27 26 25 24 23 22 21

L7 \ L6 \ L5 \ L4 \ L3 \ L2 \ L1

Table 3-8. Layout Field Description in Compact Instruction Packet Header

Bit Field Value | Description
27 L7 0 Seventh word of fetch packet contains a single 32-bit opcode.

1 Seventh word of fetch packet contains two 16-bit compact instructions.
26 L6 0 Sixth word of fetch packet contains a single 32-bit opcode.

1 Sixth word of fetch packet contains two 16-bit compact instructions.
25 L5 0 Fifth word of fetch packet contains a single 32-bit opcode.

1 Fifth word of fetch packet contains two 16-bit compact instructions.
24 L4 0 Fourth word of fetch packet contains a single 32-bit opcode.

1 Fourth word of fetch packet contains two 16-bit compact instructions.
23 L3 0 Third word of fetch packet contains a single 32-bit opcode.

1 Third word of fetch packet contains two 16-bit compact instructions.
22 L2 0 Second word of fetch packet contains a single 32-bit opcode.

1 Second word of fetch packet contains two 16-bit compact instructions.
21 L1 0 First word of fetch packet contains a single 32-bit opcode.

1 First word of fetch packet contains two 16-bit compact instructions.

SPRU732J-July 2010 Instruction Set 81

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Compact Instructions on the C64x+ CPU www.ti.com

3.9.2.2 Expansion Field in Compact Header Word

Bits 20-14 of the compact instruction header contains the opcode expansion field. This field specifies
properties that apply to all compact instructions contained in the current fetch packet.

Figure 3-5 shows the expansion field in the compact header word and Table 3-9 describes the bits.
Figure 3-5. Expansion Field in Compact Header Word

20 19 18 16 15 14
PROT \ RS \ DSZ \ BR \ SAT

Table 3-9. Expansion Field Description in Compact Instruction Packet Header

Bit Field Value |Description
20 PROT 0 Loads are nonprotected (NOPs must be explicit).
1 Loads are protected (4 NOP cycles added after every LD instruction).
19 RS 0 Instructions use low register set for data source and destination.
1 Instructions use high register set for data source and destination.
18-16 | DSz 0-7h Defines primary and secondary data size (see Table 3-10)
15 BR 0 Compact instructions in the S unit are not decoded as branches
1 Compact Instructions in the S unit are decoded as branches.
14 SAT 0 Compact instructions do not saturate.
1 Compact instructions saturate.

Bit 20 (PROT) selects between protected and nonprotected mode for all LD instructions within the fetch
packet. When PROT is 1, four cycles of NOP are added after each LD instruction within the fetch packet
whether the LD is in 16-bit compact format or 32-bit format.

Bit 19 (RS) specifies which register set is used by compact instructions within the fetch packet. The
register set defines which subset of 8 registers on each side are data registers. The 3-bit register field in
the compact opcode indicates which one of eight registers is used. When RS is 1, the high register set
(A16-A23 and B16-B23) is used; when RS is 0, the low register set (A0-A7 and B0-B7) is used.

Bits 18-16 (DSZ) determine the two data sizes available to the compact versions of the LD and ST
instructions in a fetch packet. Bit 18 determines the primary data size that is either word (W) or
doubleword (DW). In the case of DW, an opcode bit selects between aligned (DW) and nonaligned (NDW)
accesses. Bits 17 and 16 determine the secondary data size: byte unsigned (BU), byte (B), halfword
unsigned (HU), halfword (H), word (W), or nonaligned word (NW). Table 3-10 describes how the bits map
to data size.

Bit 15 (BR). When BR is 1, instructions in the S unit are decoded as branches.

Bit 14 (SAT). When SAT is 1, the ADD, SUB, SHL, MPY, MPYH, MPYLH, and MPYHL instructions are
decoded as SADD, SUBS, SSHL, SMPY, SMPYH, SMPYLH, and SMPYHL, respectively.

82 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

Compact Instructions on the C64x+ CPU

Table 3-10. LD/ST Data Size Selection

DSZ Bits

Primary Secondary

18 17 16 Data Size © Data Size @
0 0 0 w BU

0 0 1 w B

0 1 0 w HU

0 1 1 w H

1 0 0 DW/NDW w

1 0 1 DW/NDW B

1 1 0 DW/NDW NW

1 1 1 DW/NDW H

@ Primary data size is word W) or doubleword (DW). In the case of DW, aligned (DW) or nonaligned (NDW).
@ Secondary data size is byte unsigned (BU), byte (B), halfword unsigned (HU), halfword (H), word (W), or nonaligned word (NW).

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set 83

Compact Instructions on the C64x+ CPU

13 TEXAS
INSTRUMENTS

www.ti.com

3.9.2.3 P-bit Field in Compact Header Word

Unlike normal 32-bit instructions in which the p-bit filed in each opcode determines whether the instruction
executes in parallel with other instructions; the parallel/nonparallel execution information for compact
instructions is contained in the compact instruction header word.

Bits 13-0 of the compact instruction header contain the p-bit field. This field specifies which of the compact
instructions within the current fetch packet are executed in parallel. If the corresponding bit in the layout
field is O (indicating that the word is a noncompact instruction), then the bit in the p-bit field must be zero;
that is, 32-bit instructions within compact fetch packets use their own p-bit field internal to the 32-bit

opcode; therefore, the associated p-bit field in the header should always be zero.

Figure 3-6 shows the p-bits field in the compact header word and Table 3-11 describes the bits.

Figure 3-6. P-bits Field in Compact Header Word

13 12 11 10 9 8 7 6 5 4 3 2 1 0
Pi3 | P12 [Pir | Ppo [po | P8 | PT [Pe | Ps [P4 | P3| P2 | P1 PO
Table 3-11. P-bits Field Description in Compact Instruction Packet Header

Bit Field Value |Description

13 P13 0 Word 6 (16 most-significant bits) of fetch packet has parallel bit cleared.
1 Word 6 (16 most-significant bits) of fetch packet has parallel bit set.

12 P12 0 Word 6 (16 least-significant bits) of fetch packet has parallel bit cleared.
1 Word 6 (16 least-significant bits) of fetch packet has parallel bit set.

11 P11 0 Word 5 (16 most-significant bits) of fetch packet has parallel bit cleared.
1 Word 5 (16 most-significant bits) of fetch packet has parallel bit set.

10 P10 0 Word 5 (16 least-significant bits) of fetch packet has parallel bit cleared.
1 Word 5 (16 least-significant bits) of fetch packet has parallel bit set.

9 P9 0 Word 4 (16 most-significant bits) of fetch packet has parallel bit cleared.
1 Word 4 (16 most-significant bits) of fetch packet has parallel bit set.

8 P8 0 Word 4 (16 least-significant bits) of fetch packet has parallel bit cleared.
1 Word 4 (16 least-significant bits) of fetch packet has parallel bit set.

7 P7 0 Word 3 (16 most-significant bits) of fetch packet has parallel bit cleared.
1 Word 3 (16 most-significant bits) of fetch packet has parallel bit set.

6 P6 0 Word 3 (16 least-significant bits) of fetch packet has parallel bit cleared.
1 Word 3 (16 least-significant bits) of fetch packet has parallel bit set.

5 P5 0 Word 2 (16 most-significant bits) of fetch packet has parallel bit cleared.
1 Word 2 (16 most-significant bits) of fetch packet has parallel bit set.

4 P4 0 Word 2 (16 least-significant bits) of fetch packet has parallel bit cleared.
1 Word 2 (16 least-significant bits) of fetch packet has parallel bit set.

3 P3 0 Word 1 (16 most-significant bits) of fetch packet has parallel bit cleared.
1 Word 1 (16 most-significant bits) of fetch packet has parallel bit set.

2 P2 0 Word 1 (16 least-significant bits) of fetch packet has parallel bit cleared.
1 Word 1 (16 least-significant bits) of fetch packet has parallel bit set.

1 P1 0 Word 0 (16 most-significant bits) of fetch packet has parallel bit cleared.
1 Word 0 (16 most-significant bits) of fetch packet has parallel bit set.

0 PO 0 Word 0 (16 least-significant bits) of fetch packet has parallel bit cleared.
1 Word 0 (16 least-significant bits) of fetch packet has parallel bit set.

84

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com Compact Instructions on the C64x+ CPU

3.9.3 Processing of Fetch Packets

The header information is used to fully define the 32-bit version of the 16-bit instructions. In the case
where an execute packet crosses fetch packet boundaries, there are two headers in use simultaneously.
Each instruction uses the header information from its fetch packet header.

3.9.4 Execute Packet Restrictions

Execute packets that span fetch packet boundaries may not be the target of branches in the case where
one of the two fetch packets involved are header-based. The only exception to this is where an interrupt is
taken in the cycle before a spanning execute packet reaches E1. The target of the return may be a
normally disallowed target.

If the execute packet contains eight instructions, then neither of the two fetch packets may be
header-based.

3.9.5 Available Compact Instructions
Table 3-12 lists the available compact instructions and their functional unit.

Table 3-12. Available Compact Instructions

Instruction L Unit M Unit S Unit D Unit
ADD v v v
ADDAW v
ADDK v

AND v

BNOP displacement v

CALLP v

CLR v

CMPEQ
CMPGT
CMPGTU
CMPLT
CMPLTU
EXT v
EXTU v
LDB

LDBU

LDDW

LDH

LDHU

LDNDW

LDNW

LDW

LDW (15-bit offset)
MPY

MPYH

MPYHL

MPYLH

MV v v v
MvC v

MVK v v v
NEG v

NIENENENEN

NN NN SRS NEN

AN NN

SPRU732J-July 2010 Instruction Set 85

Copyright © 2010, Texas Instruments Incorporated

Instruction Compatibility

I

TEXAS
INSTRUMENTS

www.ti.com

Table 3-12. Available Compact Instructions (continued)

Instruction

L Unit M Unit

S Unit

D Unit

NOP

OR

SADD
SET

SHL

SHR
SHRU
SMPY
SMPYH
SMPYHL
SMPYLH
SPKERNEL
SPLOOP
SPLOOPD
SPMASK
SPMASKR
SSHL
SSUB
STB
STDW
STH
STNDW
STNW
STW

STW (15-bit offset)

SUB
SUBAW
XOR

No unit
v
v

IENENIEN

No unit
No unit
No unit
No unit
No unit

NN NENEN

NN N N SENENENEN

3.10 Instruction Compatibility

The C62x, C64x, and C64x+ DSPs share an instruction set. All of the instructions valid for the C62x DSP
are also valid for the C64x and C64x+ DSPs. The C64x/C64x+ DSP adds functionality to the C62x DSP
with some unique instructions. See Appendix A for a list of the instructions that are common to the C62x,

C64x, and C64x+ DSPs.

86 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com Instruction Descriptions

3.11 Instruction Descriptions
This section gives detailed information on the instruction set. Each instruction may present the following
information:
* Assembler syntax
* Functional units
e Compatibility
e Operands
* Opcode
» Description
» Execution
* Pipeline
e Instruction type
» Delay slots
* Functional Unit Latency
» Examples
The ADD instruction is used as an example to familiarize you with the way each instruction is described.

The example describes the kind of information you will find in each part of the individual instruction
description and where to obtain more information.

SPRU732J-July 2010 Instruction Set 87

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
Example — The way each instruction is described. www.ti.com
Example The way each instruction is described.
Syntax EXAMPLE (.unit) src, dst

.unit = .L1, .L2, .S1, .S2, .D1, .D2

src and dst indicate source and destination, respectively. The (.unit) dictates which
functional unit the instruction is mapped to (.L1, .L2, .S1, .S2, .M1, .M2, .D1, or .D2).

A table is provided for each instruction that gives the opcode map fields, units the
instruction is mapped to, types of operands, and the opcode.

The opcode shows the various fields that make up each instruction. These fields are
described in Table 3-2.

There are instructions that can be executed on more than one functional unit. Table 3-13
shows how this is documented for the ADD instruction. This instruction has three opcode
map fields: srcl, src2, and dst. In the fifth group, the operands have the types cst5,
long,and long for srcl, src2, and dst, respectively. The ordering of these fields implies
cst5 + long — long, where + represents the operation being performed by the ADD. This
operation can be done on .L1 or .L2 (both are specified in the unit column). The s in front
of each operand signifies that srcl (scst5), src2 (slong), and dst (slong) are all signed
values.

In the ninth group, srcl, src2, and dst are int, cst5, and int, respectively. The u in front of
the cst5 operand signifies that srcl (ucst5) is an unsigned value. Any operand that
begins with x can be read from a register file that is different from the destination register
file. The operand comes from the register file opposite the destination, if the x bit in the
instruction is set (shown in the opcode map).

Compatibility The C62x, C64x, and C64x+ DSPs share an instruction set. All of the instructions valid
for the C62x DSP are also valid for the C64x and C64x+ DSPs. This section identifies
which DSP family the instruction is valid.

Description Instruction execution and its effect on the rest of the processor or memory contents are
described. Any constraints on the operands imposed by the processor or the assembler
are discussed. The description parallels and supplements the information given by the
execution block.

Execution The execution describes the processing that takes place when the instruction is
executed. The symbols are defined in Table 3-1. For example:

Execution for .L1, .L2 and .S1, .S2 Opcodes

if (cond) srcl + src2 — dst
else nop

Execution for .D1, .D2 Opcodes

if (cond) src2 + srcl — dst
else nop

Pipeline This section contains a table that shows the sources read from, the destinations written
to, and the functional unit used during each execution cycle of the instruction.

Instruction Type This section gives the type of instruction. See Section 4.2 for information about the
pipeline execution of this type of instruction.

Delay Slots This section gives the number of delay slots the instruction takes to execute See
Section 3.3 for an explanation of delay slots.

88 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

Example — The way each instruction is described.

Functional Unit Latency This section gives the number of cycles that the functional unit is in use during the
execution of the instruction.

Example Examples of instruction execution. If applicable, register and memory values are given

before and after instruction execution.

Table 3-13. Relationships Between Operands, Operand Size, Functional Units,
and Opfields for Example Instruction (ADD)

Opcode map field used... For operand type... Unit Opfield
srcl sint L1, .L2 000 0011
src2 xsint

dst sint

srcl sint L1, .L2 0100011
src2 xsint

dst slong

srcl xsint L1, .L2 010 0001
src2 slong

dst slong

srcl scstb L1, L2 000 0010
src2 xsint

dst sint

srcl scstb L1, L2 010 0000
src2 slong

dst slong

srcl sint .81, .S2 000111
src2 xsint

dst sint

srcl scstb .S1, .82 000110
src2 xsint

dst sint

src2 sint .D1, .D2 01 0000
srcl sint

dst sint

src2 sint .D1, .D2 010010
srcl ucst5

dst sint

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

89

13 TEXAS

INSTRUMENTS
ABS — Absolute Value With Saturation www.ti.com
ABS Absolute Value With Saturation
Syntax ABS (.unit) src2, dst
or
ABS (.unit) src2_h:src2_l,dst_h:dst_|
unit =.L1 or .L2
Compatibility C62x, C64x, and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 16 15 14 13 12 11 5 4 3 2 1 0
’ creg |z| dst src2 |O‘O‘0’O’O|x| op |1|1‘0|s‘p‘
3 1 5 5 1 7 1 1
Opcode map field used... For operand type... Unit Opfield
src2 xsint L1, .L2 001 1010
dst sint
src2 slong L1, L2 011 1000
dst slong
Description The absolute value of src2 is placed in dst.

The absolute value of src2 when src2 is an sint is determined as follows:
1. If src2 > 0, then src2 — dst

2. If src2 < 0 and src2# -2%, then -src2 — dst

3. If src2 =-2% then 2% - 1 — dst

The absolute value of src2 when src2 is an slong is determined as follows:
1. If src2 > 0, then src2 — dst_h:dst_|

2. If src2 < 0 and src2# -2%, then -src2 — dst_h:dst_|

3. Ifsrc2 = -2%, then 2% - 1 — dst_h:dst_|

Execution
if (cond) abs(src2) — dst
else nop
Pipeline
Pipeline Stage E1l
Read src2
Written dst
Unit in use L
90 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com ABS — Absolute Value With Saturation
Instruction Type Single-cycle
Delay Slots 0
See Also ABS2
Examples Example 1
ABS . L1 Al, A5
Before instruction 1 cycle after instruction
Al \ 8000 4E3Dh | -2,147,463,619 Al \ 8000 4E3Dh \
A5 \ X3 Xxxxh | A5] 7FFF B1C3h \ 2,147,463,619
Example 2
ABS . L1 Al, A5
Before instruction 1 cycle after instruction
Al \ 3FF6 0010h | 1,073,086,480 Al \ 3FF6 0010h \
A5 \ xxxx xxxxh | A5 \ 3FF6 0010h \ 1,073,086,480
Example 3
ABS . L1 Al: AQ, A5: Ad
Before instruction 1 cycle after instruction
A0 \ FFFF FFFFh | 1,073,086,480 A0] FFFF FFFFh \ 1,073,086,480
Al \ 0000 00FFh | Al \ 0000 00FFh \
A4 ‘ XXXX XXXXh | A4 ’ 0000 0001h ‘
A5 \ 006 30xxxh | A5 \ 0000 0000h \
SPRU732J-July 2010 Instruction Set 91

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
ABS2 — Absolute Value With Saturation, Signed, Packed 16-Bit www.ti.com
ABS2 Absolute Value With Saturation, Signed, Packed 16-Bit
Syntax ABS2 (.unit) src2, dst
unit=.L1 or .L2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| creg | z] dst src2 loJol1]ofolx]o]of1][a]o]r]o]2]1]0]s]|p]
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 Xs2 L1, .L2
dst s2
Description The absolute values of the upper and lower halves of the src2 operand are placed in the
upper and lower halves of the dst.
31 16 15 0
‘ a_hi ‘ a_lo ‘ « src2
ABS2
! !
31 16 15 0
abs(a_hi) \ abs(a_lo) | dst

Specifically, this instruction performs the following steps for each halfword of src2, then
writes its result to the appropriate halfword of dst:

1. If the value is between 0 and 2*°, then value — dst
2. If the value is less than 0 and not equal to -2'°, then -value — dst
3. If the value is equal to -2%°, then 2'° -1 — dst

NOTE: This operation is performed on each 16-bit value separately. This
instruction does not affect the SAT bit in the CSR.

Execution
if (cond) {
abs(Isb16(src2)) — Isb16(dst)
abs(msb16(src2)) — msb16(dst)
}
else nop
92 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

ABS2 — Absolute Value With Saturation, Signed, Packed 16-Bit

Pipeline

Instruction Type
Delay Slots
See Also

Examples

Pipeline Stage El
Read src2
Written dst
Unit in use L

Single-cycle

0

ABS

Example 1

ABS2 . L1 AO, A2

Before instruction

1 cycle after instruction

AO | FF68 4E3Dh -152 20029 A0 | FF68 4E3Dh \
A2 | X0 xxxxh \ A2 | 0098 4E3Dh \ 152 20029
Example 2
ABS2 . L1 AQ, A2
Before instruction 1 cycle after instruction
AQ | 3FF6 F105h \ 16374 -3835 AQ | 3FF6 F105h \
A2 | XXX xxxxh \ A2 | 3FF6 OEFBh \ 16374 3835

SPRU732J-July 2010

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

93

13 TEXAS
INSTRUMENTS

ADD — Add Two Signed Integers Without Saturation www.ti.com

ADD Add Two Signed Integers Without Saturation

Syntax ADD (.unit) srcl, src2, dst
or
ADD (.L1 or .L2) srcl, src2_h:src2_|, dst_h:dst_|
or
ADD (.D1 or .D2) src2, srcl, dst (if the cross path form is not used)
or
ADD (.D1 or .D2) srcl, src2, dst (if the cross path form is used)
or
ADD (.D1 or .D2) src2, srcl, dst (if the cross path form is used with a constant)
unit = .D1, .D2, .L1, .L2, .S1, .S2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure
.L L3 Figure D-4
L3i Figure D-5
Lx1 Figure D-11
.S S3 Figure F-21
Sx2op Figure F-28
Sx1 Figure F-30
.D Dx2op Figure C-18
L .S, .D LSDx1 Figure G-4
94 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

ADD — Add Two Signed Integers Without Saturation

Opcode .L unit
31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0
’ creg |z| dst ’ src2 srcl |x| op |1|l‘0|s‘p‘
3 1 5 5 5 1 7 1 1
Opcode map field used... For operand type... Unit Opfield
srcl sint L1, L2 000 0011
src2 xsint
dst sint
srcl sint L1, L2 010 0011
src2 xsint
dst slong
srcl xsint L1, L2 010 0001
src2 slong
dst slong
srcl scsts L1, L2 000 0010
src2 xsint
dst sint
srcl scsts L1, L2 010 0000
src2 slong
dst slong
Opcode .S unit
31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0
\ creg |z| dst \ src2 srcl |x| op \1|0|0\0|s\p\
3 1 5 5 5 1 6 1 1
Opcode map field used... For operand type... Unit Opfield
srcl sint .81, .82 000111
src2 xsint
dst sint
srcl scst5 .S1, .82 00 0110
src2 xsint
dst sint
Description for .L1, .L2 and .S1, .S2 Opcodes src2 is added to srcl. The result is placed in dst.
Execution for .L1, .L2 and .S1, .S2 Opcodes
if (cond) srcl + src2 — dst
else nop
SPRU732J-July 2010 Instruction Set 95

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
ADD — Add Two Signed Integers Without Saturation www.ti.com
Opcode .D unit (if the cross path form is not used)
31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 O
’ creg |z| dst ’ src2 | srcl | op ’l’0|0|0‘0|s‘p‘
3 1 5 5 5 6 1 1
Opcode map field used... For operand type... Unit Opfield
src2 sint .D1, .D2 01 0000
srcl sint
dst sint
src2 sint .D1, .D2 010010
srcl ucst5
dst sint
Opcode .D unit (if the cross path form is used)
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
\ creg |z| dst \ src2 | srcl |x|l\0|1\0\1\0\1|1|0\0|s\p\
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl sint .D1, .D2
src2 xsint
dst sint
Opcode .D unit (if the cross path form is used with a constant)
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
’ creg |z| dst ’ src2 | srcl |x|1‘0|1‘0‘1’1’1|1|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl scstb .D1, .D2
src2 xsint
dst sint
Description for .D1, .D2 Opcodes srcl is added to src2. The result is placed in dst.
Execution for .D1, .D2 Opcodes
if (cond) src2 + srcl — dst
else nop
96 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS

www.ti.com

ADD — Add Two Signed Integers Without Saturation

Pipeline

Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .L,.S,or.D
Instruction Type Single-cycle
Delay Slots 0
See Also ADDU, ADD2, SADD
Examples Example 1
ADD . L2X Al, B1, B2
Before instruction 1 cycle after instruction
Al 0000 325Ah | 12,890 Al 0000 325Ah |
B1 | FFFF FF12h \ 238 B1 | FFFF FF12h \
B2 | xx000000ch | B2 | 0000 316Ch | 12,652
Example 2

ADD . L1 Al, A3: A2, A5: A4

Before instruction

Al 0000 325Ah 12,890

1 cycle after instruction

Al 0000 325Ah

A3:A2 \ 0000 00FFh \ FFFF FF12h 228® A3:A2 \ 0000 0OFFh] FFFF FF12h \
A5:A4 \ 0000 0000h] 0000 0000h] A5:A4 \ 0000 0000h] 0000 316Ch \ 12,6520
@ Signed 40-bit (long) integer
Example 3
ADD . L1 -13, AL, A6
Before instruction 1 cycle after instruction
Al 0000 325Ah 12,890 Al 0000 325Ah
A6 | 0 xxxxh \ A | 0000 324Dh \ 12,877
Example 4
ADD . DL AL, 26, A6
Before instruction 1 cycle after instruction
Al | 0000 325Ah \ 12,890 Al | 0000 325Ah \
A6 | xx000000ch | A6 0000 3274h | 12,916

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

97

13 TEXAS

INSTRUMENTS
ADD — Add Two Signed Integers Without Saturation www.ti.com
Example 5
ADD . D1 BO, 5, A2
Before instruction 1 cycle after instruction
BO 0000 0007h | BO 0000 0007h |
A2 | 0000 000h | A2 0000 000Ch |12
98 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

ADDAB — Add Using Byte Addressing Mode

ADDAB Add Using Byte Addressing Mode
Syntax ADDAB (.unit) src2, srcl, dst (C64x and C64x+ CPU)
or
ADDAB (.unit) B14/B15, ucst15, dst (C64x+ CPU)
unit = .D1 or .D2
Compatibility C62x, C64x, and C64x+ CPU
Opcode C64x and C64x+ CPU
31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0
’ creg |z| dst ’ src2 | srcl op ’l’0|0|0‘0|s‘p‘
3 1 5 5 5 6 1 1
Opcode map field used... For operand type... Unit Opfield
src2 sint .D1, .D2 11 0000
srcl sint
dst sint
src2 sint .D1, .D2 11 0010
srcl ucsts
dst sint
Description For the C64x and C64x+ CPU, srcl is added to src2 using the byte addressing mode
specified for src2. The addition defaults to linear mode. However, if src2 is one of A4-A7
or B4-B7, the mode can be changed to circular mode by writing the appropriate value to
the AMR (see Section 2.8.3).The result is placed in dst.
Execution
if (cond) src2 + srcl — dst
else nop
Pipeline

Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .D

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

99

13 TEXAS

INSTRUMENTS
ADDAB — Add Using Byte Addressing Mode www.ti.com
Opcode C64x+ CPU only
31 30 29 28 27 23 22 8 7 6 5 4 3 2 1 0
‘0‘0‘0|1| dst ucstl5 ‘y‘0‘1|1|1‘1|s‘p‘
5 15 1 1 1
Description For the C64x+ CPU, this instruction reads a register (baseR), B14 (y = 0) or B15 (y = 1),

and adds a 15-bit unsigned constant (ucst15) to it, writing the result to a register (dst).
This instruction is executed unconditionally, it cannot be predicated.

The offset, ucstl5, is added to baseR. The result of the calculation is written into dst.
The addressing arithmetic is always performed in linear mode.

The s bit determines the unit used (D1 or D2) and the file the destination is written to:
s = 0 indicates the unit is D1 and dst is in the A register file; and s = 1 indicates the unit
is D2 and dst is in the B register file.

Execution B14/B15 + ucstl5 — dst

Pipeline
Pipeline Stage E1l
Read B14/B15
Written dst
Unit in use .D

Instruction Type Single-cycle

Delay Slots 0

See Also ADDAD, ADDAH, ADDAW

Examples Example 1

ADDAB . D1 A4, A2, Ad

Before instruction @ 1 cycle after instruction
A2 | 0000 000Bh | A2 | 0000 000Bh |
A4 0000 0100h | A4 | 0000 0103h |
AMR 0002 0001h | AMR | 0002 0001h |

@ BKO = 2: block size = 8
A4 in circular addressing mode using BKO

Example 2
ADDAB . D1X B14, 42h, A4

Before instruction @ 1 cycle after instruction

B14 0020 1000h A4 0020 1042h

@ Using linear addressing.

100 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com ADDAB — Add Using Byte Addressing Mode
Example 3
ADDAB . D2 B14, 7FFFh, B4
Before instruction @ 1 cycle after instruction
B14 0010 0000h B4 0010 7FFFh

@ Using linear addressing.

SPRU732J-July 2010 Instruction Set 101

Copyright © 2010, Texas Instruments Incorporated

ADDAD — Add Using Doubleword Addressing Mode

13 TEXAS
INSTRUMENTS

www.ti.com

ADDAD Add Using Doubleword Addressing Mode
Syntax ADDAD (.unit) src2, srcl, dst
unit=. D1 or .D2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl op ‘1‘0|0|0‘0|s‘p‘
3 1 5 5 6 1 1
Opcode map field used... For operand type... Unit Opfield
src2 sint .D1, .D2 11 1100
srcl sint
dst sint
src2 sint .D1, .D2 111101
srcl ucsts
dst sint
Description srcl is added to src2 using the doubleword addressing mode specified for src2. The
addition defaults to linear mode. However, if src2 is one of A4-A7 or B4-B7, the mode
can be changed to circular mode by writing the appropriate value to the AMR (see
Section 2.8.3). srcl is left shifted by 3 due to doubleword data sizes. The result is placed
in dst.
NOTE: There is no SUBAD instruction.
Execution
if (cond) src2 + srcl <<3 — dst
else nop
Pipeline

Instruction Type
Delay Slots

See Also

Pipeline Stage El

Read srcl, src2

Written dst

Unit in use .D
Single-cycle

0
ADDAB, ADDAH, ADDAW

102 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com ADDAD — Add Using Doubleword Addressing Mode
Example ADDAD . D1 Al, A2, A3

Before instruction 1 cycle after instruction
Al \ 0000 1234h | 4660 Al] 0000 1234h \
A2 | 0000 0002h 2 A2 | 0000 0002h
A3 \ X0 xxxxh A3] 0000 1244h \ 4676

SPRU732J-July 2010 Instruction Set 103

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
ADDAH — Add Using Halfword Addressing Mode www.ti.com
ADDAH Add Using Halfword Addressing Mode
Syntax ADDAH (.unit) src2, srcl, dst (C64x and C64x+ CPU)
or
ADDAH (.unit) B14/B15, ucst15, dst (C64x+ CPU)
unit = .D1 or .D2
Compatibility C62x, C64x, and C64x+ CPU
Opcode C64x and C64x+ CPU
31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 O
’ creg |z| dst ’ src2 | srcl op ’l’0|0|0‘0|s‘p‘
3 1 5 5 5 6 1 1
Opcode map field used... For operand type... Unit Opfield
src2 sint .D1, .D2 11 0100
srcl sint
dst sint
src2 sint .D1, .D2 11 0110
srcl ucsts
dst sint
Description For the C64x and C64x+ CPU, srcl is added to src2 using the halfword addressing

mode specified for src2. The addition defaults to linear mode. However, if src2 is one of
A4-A7 or B4-B7, the mode can be changed to circular mode by writing the appropriate
value to the AMR (see Section 2.8.3). srcl is left shifted by 1. The result is placed in dst.

Execution
if (cond) src2 + srcl <<1 — dst
else nop
Pipeline
Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .D
104 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

ADDAH — Add Using Halfword Addressing Mode

Opcode

C64x+ CPU only

31 30 29 28 27 23 22 8 7 6 5 4 3 2 1 0
‘0‘0‘0|1| dst ucstl5 ‘y‘1‘0|1|1‘1|s‘p‘
15 1 1 1
Description For the C64x+ CPU, this instruction reads a register (baseR), B14 (y = 0) or B15 (y = 1),
and adds a scaled 15-bit unsigned constant (ucst15) to it, writing the result to a register
(dst). This instruction is executed unconditionally, it cannot be predicated.
The offset, ucstl5, is scaled by a left-shift of 1 and added to baseR. The result of the
calculation is written into dst. The addressing arithmetic is always performed in linear
mode.
The s bit determines the unit used (D1 or D2) and the file the destination is written to:
s = 0 indicates the unit is D1 and dst is in the A register file; and s = 1 indicates the unit
is D2 and dst is in the B register file.
Execution B14/B15 + (ucstl5 << 1) — dst
Pipeline
Pipeline Stage E1l
Read B14/B15
Written dst
Unit in use .D
Instruction Type Single-cycle
Delay Slots 0
See Also ADDAB, ADDAD, ADDAW
Examples Example 1
ADDAH . D1 A4, A2, Ad
Before instruction @ 1 cycle after instruction
A2 | 0000 000Bh | A2 | 0000 000Bh |
A4 | 0000 0100h | A4 | 0000 0106h |
AMR 0002 0001h | AMR | 0002 0001h
@ BKO = 2: block size = 8
A4 in circular addressing mode using BKO
Example 2
ADDAH . D1X B14, 42h, A4
Before instruction @ 1 cycle after instruction
B14 0020 1000h A4 0020 1084h

@ Using linear addressing.

SPRU732J-July 2010

Instruction Set 105

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
ADDAH — Add Using Halfword Addressing Mode www.ti.com
Example 3
ADDAH . D2 B14, 7FFFh, B4
Before instruction @ 1 cycle after instruction
B14 0010 0000h B4 0010 FFFEh
@ Using linear addressing.
106 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com ADDAW — Add Using Word Addressing Mode
ADDAW Add Using Word Addressing Mode
Syntax ADDAW (.unit) src2, srcl, dst (C64x and C64x+ CPU)
or
ADDAW (.unit) B14/B15, ucstl5, dst (C64x+ CPU)
unit = .D1 or .D2
Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure
.D Dx5 Figure C-19
Dx5p Figure C-20
Opcode C64x and C64x+ CPU
31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0
’ creg |z| dst ’ src2 | srcl op ’1’0|0|0‘0|s‘p‘
3 1 5 5 5 6 1 1
Opcode map field used... For operand type... Unit Opfield
src2 sint .D1, .D2 11 1000
srcl sint
dst sint
src2 sint .D1, .D2 11 1010
srcl ucst5
dst sint
Description For the C64x and C64x+ CPU, srcl is added to src2 using the word addressing mode

specified for src2. The addition defaults to linear mode. However, if src2 is one of A4-A7
or B4-B7, the mode can be changed to circular mode by writing the appropriate value to
the AMR (see Section 2.8.3). srcl is left shifted by 2. The result is placed in dst.

Execution
if (cond) src2 + srcl <<2 — dst
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use .D
SPRU732J-July 2010 Instruction Set 107

Copyright © 2010, Texas Instruments Incorporated

ADDAW — Add Using Word Addressing Mode

13 TEXAS
INSTRUMENTS

www.ti.com

Opcode C64x+ CPU only

31 30 29 28 27 23 22 8 7 6 5 4 3 2 1 0

[o]ofo]1] dst] ucst15 Iy[afJaf1]1]2]s]p]
5 15 1 11

Description For the C64x+ CPU, this instruction reads a register (baseR), B14 (y = 0) or B15 (y = 1),

and adds a scaled 15-bit unsigned constant (ucst15) to it, writing the result to a register
(dst). This instruction is executed unconditionally, it cannot be predicated.

The offset, ucstl5, is scaled by a left-shift of 2 and added to baseR. The result of the
calculation is written into dst. The addressing arithmetic is always performed in linear

mode.

The s bit determines the unit used (D1 or D2) and the file the destination is written to:
s = 0 indicates the unit is D1 and dst is in the A register file; and s = 1 indicates the unit

is D2 and dst is in the B register file.

Execution B14/B15 + (ucstl5 << 2) — dst

Pipeline
Pipeline Stage El
Read B14/B15
Written dst
Unit in use .D

Instruction Type Single-cycle

Delay Slots 0

See Also ADDAB, ADDAD, ADDAH

Examples Example 1

ADDAW . D1 A4, 2, Ad

Before instruction @

1 cycle after instruction

A4 | 0002 0000h | A4 | 0002 0000h |
AMR | 0002 0001h | AMR \ 0002 0001h \
@ BKO = 2: block size = 8
A4 in circular addressing mode using BKO

Example 2

ADDAW . D1X B14, 42h, Ad

Before instruction @ 1 cycle after instruction
B14 0020 1000h A4 0020 1108h

@ Using linear addressing.

108 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com ADDAW — Add Using Word Addressing Mode
Example 3
ADDAW . D2 B14, 7FFFh, B4
Before instruction @ 1 cycle after instruction
B14 0010 0000h B4 0011 FFFCh

@ Using linear addressing.

SPRU732J-July 2010 Instruction Set 109

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
ADDK — Add Signed 16-Bit Constant to Register www.ti.com
ADDK Add Signed 16-Bit Constant to Register
Syntax ADDK (.unit) cst, dst
unit = .S1 or .S2
Compatibility C62x, C64x, and C64x+ CPU
Compact Instruction Format
Unit Opcode Format Figure
.S Sx5 Figure F-29
Opcode
31 29 28 27 23 22 7 6 5 4 3 2 1 0
\ creg |z| dst cstl6 \1\0|1|0\0|s\p\
3 1 5 16 1 1
Opcode map field used... For operand type... Unit
cst1l6 scstl6 .S1, .52
dst uint
Description A 16-bit signed constant, cst16, is added to the dst register specified. The result is
placed in dst.
Execution
if (cond) cstl6 + dst — dst
else nop
Pipeline
Pipeline Stage E1l
Read cstl6
Written dst
Unit in use .S
Instruction Type Single-cycle
Delay Slots 0
Example ADDK . S1 15401, Al
Before instruction 1 cycle after instruction
Al 0021 37E1lh 2,176,993 Al 0021 740Ah 2,192,394
110 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

ADDKPC — Add Signed 7-Bit Constant to Program Counter

ADDKPC Add Signed 7-Bit Constant to Program Counter
Syntax ADDKPC (.unit) srcl, dst, src2
unit = .S2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 16 15 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst srcl src2 |0|0‘0|0‘1‘0‘1‘1|0|0‘0|s‘p‘
3 1 5 7 3 1 1
Opcode map field used... For operand type... Unit
srcl scst7 .S2
src2 ucst3
dst uint
Description A 7-bit signed constant, srcl, is shifted 2 bits to the left, then added to the address of the
first instruction of the fetch packet that contains the ADDKPC instruction (PCE1). The
result is placed in dst. The 3-bit unsigned constant, src2, specifies the number of NOP
cycles to insert after the current instruction. This instruction helps reduce the number of
instructions needed to set up the return address for a function call.
The following code:
B . S2 func
MVKL .S2 LABEL, B3
MVKH .S2 LABEL, B3
NOP 3
LABEL
could be replaced by:
B . 82 func
ADDKPC . S2 LABEL, B3, 4
LABEL
The 7-bit value coded as srcl is the difference between LABEL and PCEZ1 shifted right
by 2 bits. The address of LABEL must be within 9 bits of PCE1.
Only one ADDKPC instruction can be executed per cycle. An ADDKPC instruction
cannot be paired with any relative branch instruction in the same execute packet. If an
ADDKPC and a relative branch are in the same execute packet, and if the ADDKPC
instruction is executed when the branch is taken, behavior is undefined.
The ADDKPC instruction cannot be paired with any other multicycle NOP instruction in
the same execute packet. Instructions that generate a multicycle NOP are: IDLE, BNOP,
and the multicycle NOP.
Execution
if (cond) (scst7 << 2) + PCE1 — dst
else nop

SPRU732J-July 2010

Instruction Set 111

Copyright © 2010, Texas Instruments Incorporated

ADDKPC — Add Signed 7-Bit Constant to Program Counter

13 TEXAS
INSTRUMENTS

www.ti.com

Pipeline

Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .S
Instruction Type Single-cycle
Delay Slots 0
See Also B, BNOP
Example ADDKPC .S2 LABEL, B3, 4
LABEL:
Before instruction @ 1 cycle after instruction
PCEL |004013DCh |
B3 [0006 x000h | B3 | 0040 13E0h
@ LABEL is equal to 0040 13DCh.

112 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com ADDSUB — Parallel ADD and SUB Operations On Common Inputs
ADDSUB Parallel ADD and SUB Operations On Common Inputs
Syntax ADDSUB (.unit) srcl, src2, dst_o:dst_e
unit=.L1 or .L2
Compatibility C64x+ CPU only
Opcode
31 30 29 28 27 24 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lof[ofo]1] dst [0] src2 srcl [x]oJolol1]1]ofo]1][1]o]s]p]
4 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl sint L1, .12
src2 xsint
dst dint
Description The following is performed in parallel:
1. src2is added to srcl. The result is placed in dst_o.
2. src2 is subtracted from srcl. The result is placed in dst_e.
Execution

srcl + src2 — dst_o
srcl - src2 — dst_e

Instruction Type Single-cycle

Delay Slots 0

See Also ADDSUB2, SADDSUB
Examples Example 1

ADDSUB . L1 AO, Al, A3: A2

Before instruction 1 cycle after instruction
AQ | 0700 CO05h \ A2 \ 0700 C006h \
AL |FFFFFFFFh A3 |0700 C004h
Example 2

ADDSUB . L2X BO, Al, B3: B2

Before instruction 1 cycle after instruction
BO | 7FFFFFFFh | B2 | 7FFF FFFEh \
AL [00000001h B3 |80000000h \
SPRU732J-July 2010 Instruction Set 113

Copyright © 2010, Texas Instruments Incorporated

ADDSUB2 — Parallel ADD2 and SUB2 Operations On Common Inputs

13 TEXAS
INSTRUMENTS

www.ti.com

ADDSUB2 Parallel ADD2 and SUB2 Operations On Common Inputs
Syntax ADDSUB2 (.unit) srcl, src2, dst_o:dst_e
unit=.L1 or .L2
Compatibility C64x+ CPU only
Opcode
31 30 29 28 27 24 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lof[ofo]1] dst [0] src2 srcl [x]oJolol1]1]o]1][1]a]o]s]p]
4 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl sint L1, .12
src2 xsint
dst dint
Description For the ADD2 operation, the upper and lower halves of the src2 operand are added to
the upper and lower halves of the srcl operand. The values in srcl and src2 are treated
as signed, packed 16-bit data and the results are written in signed, packed 16-bit format
into dst_o.
For the SUB2 operation, the upper and lower halves of the src2 operand are subtracted
from the upper and lower halves of the srcl operand. The values in srcl and src2 are
treated as signed, packed 16-bit data and the results are written in signed, packed 16-bit
format into dst_e.
Execution

Isb16(srcl) + Isb16(src2) — Ish16(dst_o)
msb16(srcl) + msb16(src2) — msb16(dst_o)
Isb16(srcl) - Isb16(src2) — Isb16(dst_e)
msb16(srcl) - msb16(src2) — msb16(dst_e)

Instruction Type Single-cycle
Delay Slots 0
See Also ADDSUB, SADDSUB2
Examples Example 1
ADDSUB2 . L1 A0, Al, A3: A2
Before instruction 1 cycle after instruction
A0 | 0700 COOSh | A2 |0701 C004h |
Al | FFFF 0001h | A3 | 06FF C006h |

114 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com ADDSUB2 — Parallel ADD2 and SUB2 Operations On Common Inputs
Example 2
ADDSUB2 . L2X BO, Al, B3: B2
Before instruction 1 cycle after instruction
BO | 7FFF 8000h | B2 | 8000 8001h |
AL |FFFF FFFFh | B3 | 7FFE 7FFFh |
Example 3
ADDSUB2 . L1 A0, Al, A3: A2
Before instruction 1 cycle after instruction
AO | 9000 9000h | A2 | 1000 1000h |
Al | 8000 8000h | A3 | 1000 1000h |
Example 4
ADDSUB2 . L1 A0, Al, A3: A2
Before instruction 1 cycle after instruction
A0 | 9000 8000h | A2 | 1000 FOOOh |
Al | 8000 9000h | A3 | 1000 1000h |
SPRU732J-July 2010 Instruction Set 115

Copyright © 2010, Texas Instruments Incorporated

ADDU — Add Two Unsigned Integers Without Saturation

13 TEXAS
INSTRUMENTS

www.ti.com

ADDU Add Two Unsigned Integers Without Saturation
Syntax ADDU (.unit) srcl, src2, dst
unit=.L1 or .L2
Compatibility C62x, C64x, and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x| op |1|1‘0|s‘p‘
3 1 5 5 1 7 1 1
Opcode map field used... For operand type... Unit Opfield
srcl uint L1, L2 010 1011
src2 xuint
dst ulong
srcl xuint L1, L2 010 1001
src2 ulong
dst ulong
Description src2 is added to srcl. The result is placed in dst.
Execution
if (cond) srcl + src2 — dst
else nop
Pipeline

Instruction Type
Delay Slots

See Also

Pipeline Stage El
Read srcl, src2
Written dst
Unit in use L

Single-cycle

0

ADD, SADD

116 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

ADDU — Add Two Unsigned Integers Without Saturation

Examples Example 1
ADDU . L1 Al, A2, A5: A4

Before instruction

Al 0000 325Ah 12,890
A2 FFFF FF12h 4,294,967,058"

Al

A2

A5:A4

1 cycle after instruction

0000 325Ah
FFFF FF12h

\ 0000 0001h \ 0000 316Ch 4,294,979,948@

@ Unsigned 32-bit integer
@ Unsigned 40-bit (long) integer

Example 2
ADDU . L1 Al, A3: A2, A5: Ad

Before instruction

Al 0000 325Ah 12,890®

A5:A4 \oooo 0000h |oooo 0000h \o

A3:A2 ‘OOOOOOFFh |FFFFFF12h ‘1,099,511,627,538‘2’

1 cycle after instruction

Al 0000 325Ah

A3:A2 |000000FFh ’FFFFFFth |

A5:A4 |00000000h \0000316Ch |12,652‘2)

@ Unsigned 32-bit integer
@ Unsigned 40-bit (long) integer

SPRU732J-July 2010

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

117

ADD2 — Add Two 16-Bit Integers on Upper and Lower Register Halves

13 TEXAS
INSTRUMENTS

www.ti.com

ADD2 Add Two 16-Bit Integers on Upper and Lower Register Halves
Syntax ADD?2 (.unit) srcl, src2, dst
unit = .S1, .S2, .L1, .L2, .D1, .D2
Compatibility C62x, C64x, and C64x+ CPU
Opcode .S unit
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| ‘ src2 srcl |x|0‘0|0‘0‘0‘1‘1|0|0‘0|s‘p‘
3 1 5 5 1 1

Opcode map field used... For operand type... Unit

srcl i2 .81, .82

src2 Xi2

dst i2
Opcode .L Unit
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| ‘ src2 srcl |x|0‘0|0‘0‘1‘0‘1|1|1‘0|s‘p‘

3 1 5 5 1 1

Opcode map field used... For operand type... Unit

srcl i2 L1, L2

src2 xi2

dst i2
Opcode .D unit
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| ‘ src2 srcl |x|1‘0|0‘1‘0‘0‘1|1|0‘0|s‘p‘

3 1 5 5 1 1

Opcode map field used... For operand type... Unit
srcl i2 .D1, .D2
src2 Xi2

dst i2

118 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com ADD2 — Add Two 16-Bit Integers on Upper and Lower Register Halves
Description The upper and lower halves of the src1 operand are added to the upper and lower
halves of the src2 operand. The values in srcl and src2 are treated as signed, packed
16-bit data and the results are written in signed, packed 16-bit format into dst.
For each pair of signed packed 16-bit values found in the src1 and src2, the sum
between the 16-bit value from srcl and the 16-bit value from src2 is calculated to
produce a 16-bit result. The result is placed in the corresponding positions in the dst.
The carry from the lower half add does not affect the upper half add.
31 16 15 0
‘ a_hi ‘ a_lo ‘ «—srcl
+ +
ADD2
\ b_hi \ b_lo | src2
31 16 15 0
\ a_hi+b_hi \ alo+b_lo \ < dst
Execution
if (cond) {
msb16(srcl) + msb16(src2) — msb16(dst);
Isb16(srcl) + Isb16(src2) — Isb16(dst)
}
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use S, .L,.D
Instruction Type Single-cycle
Delay Slots 0
See Also ADD, ADD4, SADD2, SUB2
Examples Example 1
ADD2 . S1X Al, Bl1, A2
Before instruction 1 cycle after instruction
Al |002137Elh | 33 14305 Al |002137E1h |
A2 |00 xo0oh | A2 [03BB1C99h | 955 7321
Bl |039A E4BSh | 922 58552 Bl [039A E4Bsh |
SPRU732J-July 2010 Instruction Set 119

Copyright © 2010, Texas Instruments Incorporated

ADD2 — Add Two 16-Bit Integers on Upper and Lower Register Halves

13 TEXAS
INSTRUMENTS

www.ti.com

Example 2

ADD2 . L1 A0, Al, A2

Before instruction

\ 33 14305

\ 922 -6984

A0 \ 0021 37E1h
Al \ 039A E4B8h
A2 ‘ XXXX XXXxh ‘

signed

signed

1 cycle after instruction

A0 \ 0021 37E1h \

Al | 039A E4B8h |

A2 |03BB 1C99h | 955 7321
signed

120

Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

ADD4 — Add Without Saturation, Four 8-Bit Pairs for Four 8-Bit Results

ADD4 Add Without Saturation, Four 8-Bit Pairs for Four 8-Bit Results
Syntax ADDA4 (.unit) srcl, src2, dst
unit=.L1 or .L2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x|1‘1|0‘0‘1‘0‘1|1|1‘0|s‘p‘
3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit
srcl i4 L1, L2
src2 xi4
dst i4
Description Performs 2s-complement addition between packed 8-bit quantities. The values in srcl
and src2 are treated as packed 8-bit data and the results are written into dst in a packed
8-bit format.
For each pair of packed 8-bit values in srcl and src2, the sum between the 8-bit value
from srcl and the 8-bit value from src2 is calculated to produce an 8-bit result. No
saturation is performed. The carry from one 8-bit add does not affect the add of any
other 8-bit add. The result is placed in the corresponding positions in dst:
e The sum of srcl byte0 and src2 byteO is placed in byteO of dst.
» The sum of srcl bytel and src2 bytel is placed in bytel of dst.
» The sum of srcl byte2 and src2 byte2 is placed in byte2 of dst.
» The sum of srcl byte3 and src2 byte3 is placed in byte3 of dst.
31 24 23 16 15 0
‘ a3 ‘ a2 ‘ a1l a0 ‘ «— srcl
+ + +
ADD4
b 3 b 2 b 1 b 0 \ < src2
31 24 23 16 15 0
\ a3+b_3 \ a2+b2 \ al+b1 a0+b0 | dst

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set 121

13 TEXAS

INSTRUMENTS
ADD4 — Add Without Saturation, Four 8-Bit Pairs for Four 8-Bit Results www.ti.com
Execution
if (cond) {
byteO(srcl) + byteO(src2) — byteO(dst);
bytel(srcl) + bytel(src2) — bytel(dst);
byte2(srcl) + byte2(src2) — byte2(dst);
byte3(srcl) + byte3(src2) — byte3(dst)
}
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use L
Instruction Type Single-cycle
Delay Slots 0
See Also ADD, ADD2, SADDU4, SUB4
Examples Example 1
ADD4 . L1 AO, AL, A2
Before instruction 1 cycle after instruction
AQ \ FF 68 4E 3Dh \ 1104 78 61 A0 \ FF 68 4E 3Dh \
Al] 3F F6 F1 05h \ 63-10-155 Al] 3F F6 F1 05h \
A2 \ 00K Xxxxh \ A2 \ 3E 5E 3F 42h \ 62 94 63 66
Example 2
ADD4 . L1 AO, Al, A2
Before instruction 1 cycle after instruction
A0 \ 4A E2 D3 1Fh \ 74226 211 31 A0 \ 4A E2 D3 1Fh \
Al \ 32 1A C1 28h \ 50 26 -63 40 Al] 32 1A C1 28h \
A2 \ x0xx xxxxh \ A2 \ 7C FC 94 47h \ 124 252 148 71
122 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com AND — Bitwise AND
AND Bitwise AND
Syntax AND (.unit) srcl, src2, dst
unit = .L1, .L2, .81, .S2, .D1, .D2
Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure
L L2c Figure D-7
Opcode .L unit
31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0
\ creg |z| dst \ src2 srcl |x| op |1|1\0|s\p\
3 1 5 5 5 1 7 1 1
Opcode map field used... For operand type... Unit Opfield
srcl uint L1, .L2 1111011
src2 xuint
dst uint
srcl scstb L1, L2 111 1010
src2 xuint
dst uint
Opcode .S unit
31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0
’ creg |z| dst ’ src2 srcl |x| op ’1|0|0‘0|s‘p‘
3 1 5 5 5 1 6 1 1
Opcode map field used... For operand type... Unit Opfield
srcl uint .81, .S2 011111
src2 xuint
dst uint
srcl scstb .S1, .82 011110
src2 xuint
dst uint
SPRU732J-July 2010 Instruction Set 123

Copyright © 2010, Texas Instruments Incorporated

AND — Bitwise AND

13 TEXAS
INSTRUMENTS

www.ti.com

Opcode .D unit
31 29 28 27 23 22 18 17 13 12 11 10 9 6 5 4 3 2 1 0
’ creg |z| dst ’ src2 srcl |x|1‘0| op ’1|1|0‘0|s‘p‘
3 1 5 5 5 1 4 1 1
Opcode map field used... For operand type... Unit Opfield
srcl uint .D1, .D2 0110
src2 xuint
dst uint
srcl scst5 .D1, .D2 0111
src2 xuint
dst uint
Description Performs a bitwise AND operation between srcl and src2. The result is placed in dst.
The scst5 operands are sign extended to 32 bits.
Execution
if (cond) srcl AND src2 — dst
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use .L,.S,or.D
Instruction Type Single-cycle
Delay Slots 0
See Also ANDN, OR, XOR
Examples Example 1
AND . L1X Al, B1, A2
Before instruction 1 cycle after instruction
Al | F7A1302Ah | Al | F7A1302Ah
A2 | 000 x000¢h | A2 | 02A0 2020h
B1 | 0286 E724h | B1 0286 E724h

124 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com AND — Bitwise AND
Example 2
AND . L1 15, A1, A3
Before instruction 1 cycle after instruction
Al | 32E4 6936h | Al | 32E4 6936h |
A3 [000 x000¢h | A3 | 0000 0006h |
SPRU732J-July 2010 Instruction Set 125

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
ANDN — Bitwise AND Invert www.ti.com
ANDN Bitwise AND Invert
Syntax ANDN (.unit) srcl, src2, dst
unit = .L1, .L2, S1, .S2, .D1, .D2
Compatibility C64x and C64x+ CPU
Opcode .L unit
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| dst ‘ src2 srcl |x|1‘1|1‘1‘1‘0‘0|1|1‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl uint L1, .12
src2 xuint
dst uint
Opcode .S unit
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| dst ‘ src2 srcl |x|1‘1|0‘1‘1‘0‘1|1|0‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl uint .S1,.S2
src2 xuint
dst uint
Opcode .D unit
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| dst ‘ src2 srcl |x|1‘0|0‘0‘0‘0‘1|1|0‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl uint .D1, .D2
src2 xuint
dst uint
Description Performs a bitwise logical AND operation between srcl and the bitwise logical inverse of

src2. The result is placed in dst.

126 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com ANDN — Bitwise AND Invert
Execution
if (cond) srcl AND ~src2 — dst
else nop
Pipeline
Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .L,.S,or.D
Instruction Type Single-cycle
Delay Slots 0
See Also AND, OR, XOR
Example ANDN . L1 A0, Al, A2
Before instruction 1 cycle after instruction
AO \ 1957 21ABh \ A0 | 1957 21ABh \
Al \ 081C 17E6h \ F7E3 E819h Al | 081C 17E6h \
A2 \ XX Xx0xxh \ A2 | 1143 2009h \
SPRU732J-July 2010 Instruction Set 127

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
AVG2 — Average, Signed, Packed 16-Bit www.ti.com
AVG2 Average, Signed, Packed 16-Bit
Syntax AVG2 (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x|0‘1|0‘0‘1‘1‘1|1|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s2 M1, .M2
src2 Xxs2
dst s2
Description Performs an averaging operation on packed 16-bit data. For each pair of signed 16-bit

values found in srcl and src2, AVG2 calculates the average of the two values and
returns a signed 16-bit quantity in the corresponding position in the dst.

The averaging operation is performed by adding 1 to the sum of the two 16-bit numbers
being averaged. The result is then right-shifted by 1 to produce a 16-bit result.

No overflow conditions exist.

31 16 15 0

‘ sa_1 ‘ sa 0 ‘ < srcl

AVG2
‘ sb_1 ‘ sb_0 ‘ «— src2
! !
31 16 15 0

\ (sa l+sb 1+1)>>1 \ (sa 0+sb 0+1)>>1 | dst
Execution

if (cond) {

((Isb16(srcl) + Isb16(src2) + 1) >> 1) — Isb16(dst);
((msb16(srcl) + msh16(src2) + 1) >> 1) — msb16(dst)
}

else nop

128 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

AVG2 — Average, Signed, Packed 16-Bit

Pipeline

Instruction Type
Delay Slots
See Also

Example

Pipeline Stage El E2
Read srcl, src2
Written dst
Unit in use M

Two-cycle

1

AVGU4

AVG . ML AO, Al, A2

Before instruction

AQ \ 6198 4357h

\ 24984 17239

Al \ 7582 AE15

\30082-20971

A2 ‘ XXXX XXxxh

2 cycles after instruction

AO \ 6198 4357h |

AL \ 7582 AE15h |

A2 \ 6B8D F8B6h | 27533 -1866

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

129

13 TEXAS

INSTRUMENTS
AVGU4 — Average, Unsigned, Packed 8-Bit www.ti.com
AVGU4 Average, Unsigned, Packed 8-Bit
Syntax AVGU4 (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x|0‘1|0‘0‘1‘0‘1|1|0‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl u4 M1, .M2
src2 xu4
dst usd
Description Performs an averaging operation on packed 8-bit data. The values in srcl and src2 are
treated as unsigned, packed 8-bit data and the results are written in unsigned, packed
8-bit format. For each unsigned, packed 8-bit value found in srcl and src2, AVGU4
calculates the average of the two values and returns an unsigned, 8-bit quantity in the
corresponding positions in the dst.
The averaging operation is performed by adding 1 to the sum of the two 8-bit numbers
being averaged. The result is then right-shifted by 1 to produce an 8-bit result.
No overflow conditions exist.
31 24 23 16 15 8 7 0
‘ ua_3 ‘ ua_2 ‘ ua_1l | ua_0 ‘ «— srcl
AVGU4
‘ ub_3 ‘ ub_2 ‘ ub_1 | ub_0 ‘ « src2
! ! ! !
31 24 23 16 15 8 7 0
\ (Ua_3+ub 3+1)>>1 \ (Ua_2+ub 2+1)>>1 \ (Ua_l+ub 1+1)>>1 | (Ua_0+ub 0+1)>>1 \ — dst
Execution
if (cond) {
((ubyteO(srcl) + ubyteO(src2) + 1) >> 1) — ubyte0O(dst);
((ubytel(srcl) + ubytel(src2) + 1) >> 1) — ubytel(dst);
((ubyte2(srcl) + ubyte2(src2) + 1) >> 1) — ubyte2(dst);
((ubyte3(srcl) + ubyte3(src2) + 1) >> 1) — ubyte3(dst)
}
else nop

130 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com AVGU4 — Average, Unsigned, Packed 8-Bit
Pipeline
Pipeline Stage El E2
Read srcl, src2
Written dst
Unit in use M
Instruction Type Two-cycle
Delay Slots 1
See Also AVG2
Example AVGU4 . ML AOQ, Al, A2
Before instruction 2 cycles after instruction
A0 | 1A 2E 5F 4Eh | 26 46 95 78 A0 | 1A 2E 5F 4Eh |
unsigned
Al | 9E F2 6E 3Fh | 158 242 110 63 Al | 9E F2 6E 3Fh
unsigned
A2 | xo00x xoooch | A2 |5C 9067 47h | 92144 103 71
unsigned
SPRU732J-July 2010 Instruction Set 131

Copyright © 2010, Texas Instruments Incorporated

B — Branch Using a Displacement

13 TEXAS
INSTRUMENTS

www.ti.com

B Branch Using a Displacement

Syntax B (.unit) label

unit = .S1 or .S2

Compatibility C62x, C64x, and C64x+ CPU

Opcode

31 29 28 27 7 6 5 4 3 2 1 0

‘ creg |z| cst21 ‘O‘O|1|O‘O|s‘p‘
3 1 21 1 1

Opcode map field used... For operand type... Unit
cst21 scst21 .S1, .52
Description A 21-bit signed constant, cst21, is shifted left by 2 bits and is added to the address of the
first instruction of the fetch packet that contains the branch instruction. The result is
placed in the program fetch counter (PFC). The assembler/linker automatically computes
the correct value for cst21 by the following formula:
cst21 = (label - PCE1) >> 2
If two branches are in the same execute packet and both are taken, behavior is
undefined.
Two conditional branches can be in the same execute packet if one branch uses a
displacement and the other uses a register, IRP, or NRP. As long as only one branch
has a true condition, the code executes in a well-defined way.
NOTE:
PCEL1 (program counter) represents the address of the first
instruction in the fetch packet in the E1 stage of the pipeline.
PFC is the program fetch counter.
The execute packets in the delay slots of a branch cannot be
interrupted. This is true regardless of whether the branch is taken.
See Section 3.4.2 for information on branching into the middle of an
execute packet.
On the C64x+ CPU, a branch to an execute packet that spans two
fetch packets will cause a stall while the second fetch packet is
fetched.
A relative branch instruction cannot be in the same execute packet
as an ADDKPC instruction.
Execution
if (cond) (cst21 << 2) + PCE1 — PFC
else nop

132 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com B — Branch Using a Displacement
Pipeline
Target Instruction
Pipeline Stage El PS PW PR DP DC E1l
Read
Written
Branch taken v
Unit in use .S
Instruction Type Branch
Delay Slots 5
Example Table 3-14 gives the program counter values and actions for the following code example.
0000 0000 B .81 LooP
0000 0004 ADD L1 AL, A2, A3
0000 0008 [ADD .L2 B1, B2, B3
0000 000C LOOP: MPY .MLX A3, B3, A4
0000 0010 [SUB .DL A5, A6, A6
0000 0014 MPY ML A3, AB, A5
0000 0018 MPY .ML A6, A7, A8
0000 001C SHR .Sl A4, 15, A4
0000 0020 ADD .DL A4, A6, A4

Table 3-14. Program Counter Values for Branch Using a Displacement Example

Cycle Program Counter Value Action
Cycle 0 0000 0000h Branch command executes (target code fetched)
Cycle 1 0000 0004h
Cycle 2 0000 000Ch
Cycle 3 0000 0014h
Cycle 4 0000 0018h
Cycle 5 0000 001Ch
Cycle 6 0000 000Ch Branch target code executes
Cycle 7 0000 0014h
SPRU732J-July 2010 Instruction Set 133

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
B — Branch Using a Register www.ti.com
B Branch Using a Register
Syntax B (.unit) src2
unit = .S2
Compatibility C62x, C64x, and C64x+ CPU
Opcode
31 29 28 27 26 25 24 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| creg [z]o]oo]o]o] src2 loJoJoJo]o|x]o]of1][1]o]2][2]o]o]o]1]p]
3 1 5 1 1
Opcode map field used... For operand type... Unit
src2 xuint .S2
Description src2 is placed in the program fetch counter (PFC).
If two branches are in the same execute packet and are both taken, behavior is
undefined.
Two conditional branches can be in the same execute packet if one branch uses a
displacement and the other uses a register, IRP, or NRP. As long as only one branch
has a true condition, the code executes in a well-defined way.
NOTE:
1. This instruction executes on .S2 only. PFC is program fetch counter.
2. The execute packets in the delay slots of a branch cannot be
interrupted. This is true regardless of whether the branch is taken.
3. See Section 3.4.2 for information on branching into the middle of an
execute packet.
4. On the C64x+ CPU, a branch to an execute packet that spans two
fetch packets will cause a stall while the second fetch packet is
fetched.
Execution
if (cond) src2 — PFC
else nop
Pipeline
Target Instruction
Pipeline Stage El PS PW PR DP DC E1l
Read src2
Written
Branch taken v
Unit in use .S2

134 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com B — Branch Using a Register
Instruction Type Branch
Delay Slots 5
Example Table 3-15 gives the program counter values and actions for the following code example.
In this example, the B10 register holds the value 1000 000Ch.
1000 0000 B . S2 B10
1000 0004 ADD L1 A1, A2, A3
1000 0008 [ADD .L2 B1, B2, B3
1000 000C MPY .MLX A3, B3, A4
1000 0010 [SuB .DL A5, A6, A6
1000 0014 MPY .ML A3, A6, A5
1000 0018 MPY .ML A8, A7, A8
1000 001C SHR .Sl A4, 15, A4
1000 0020 ADD .DL A4, A6, A4

Table 3-15. Program Counter Values for Branch Using a Register Example

Cycle Program Counter Value Action
Cycle 0 1000 0000h Branch command executes (target code fetched)
Cycle 1 1000 0004h
Cycle 2 1000 000Ch
Cycle 3 1000 0014h
Cycle 4 1000 0018h
Cycle 5 1000 001Ch
Cycle 6 1000 000Ch Branch target code executes
Cycle 7 1000 0014h
SPRU732J-July 2010 Instruction Set 135

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
B IRP — Branch Using an Interrupt Return Pointer www.ti.com
B IRP Branch Using an Interrupt Return Pointer
Syntax B (.unit) IRP
unit = .S2

Compatibility C62x, C64x, and C64x+ CPU
Opcode
31 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| creg [z]|oJoJoJoJoJo|o|1]1]o]o]ofofo]o]o]ofoloJo]1]1]1]o]o]o]1]p]

3 1 1
Description IRP is placed in the program fetch counter (PFC). This instruction also moves the PGIE

bit value to the GIE bit. The PGIE bit is unchanged.

If two branches are in the same execute packet and are both taken, behavior is
undefined.

Two conditional branches can be in the same execute packet if one branch uses a
displacement and the other uses a register, IRP, or NRP. As long as only one branch
has a true condition, the code executes in a well-defined way.

NOTE:
1. This instruction executes on .S2 only. PFC is the program fetch
counter.
2. Refer to Chapter 5 for more information on IRP, PGIE, and GIE.
3. The execute packets in the delay slots of a branch cannot be
interrupted. This is true regardless of whether the branch is taken.
4. See Section 3.4.2 for information on branching into the middle of an
execute packet.
5. On the C64x+ CPU, a branch to an execute packet that spans two
fetch packets will cause a stall while the second fetch packet is
fetched.
Execution
if (cond) IRP — PFC
else nop
Pipeline
Target Instruction
Pipeline Stage El PS PW PR DP DC E1l
Read IRP
Written
Branch taken v
Unit in use .S2
136 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

B IRP — Branch Using an Interrupt Return Pointer

Instruction Type Branch
Delay Slots 5
Example Table 3-16 gives the program counter values and actions for the following code example.
Given that an interrupt occurred at
PC = 0000 1000 I RP = 0000 1000
0000 0020 B .S2 I RP
0000 0024 ADD .S1 A0, A2, Al
0000 0028 MPY .ML Al, A0, Al
0000 002C NOP
0000 0030 SHR .S1 A1, 15, Al
0000 0034 ADD L1 A1, A2, Al
0000 0038 ADD .L2 B1, B2, B3
Table 3-16. Program Counter Values for B IRP Instruction Example
Cycle Program Counter Value Action
Cycle O 0000 0020 Branch command executes (target code fetched)
Cycle 1 0000 0024
Cycle 2 0000 0028
Cycle 3 0000 002C
Cycle 4 0000 0030
Cycle 5 0000 0034
Cycle 6 0000 1000 Branch target code executes

SPRU732J-July 2010

Instruction Set 137

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
B NRP — Branch Using NMI Return Pointer www.ti.com
B NRP Branch Using NMI Return Pointer
Syntax B (.unit) NRP
unit = .S2

Compatibility C62x, C64x, and C64x+ CPU
Opcode
31 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O
| creg [z]|oJoJoJoJoJo|o|1]1]1]o]ofofo]o]o]ofolo]o]1]1]1]o]o]o]1]p]

3 1 1
Description NRP is placed in the program fetch counter (PFC). This instruction also sets the NMIE

bit. The PGIE bit is unchanged.

If two branches are in the same execute packet and are both taken, behavior is
undefined.

Two conditional branches can be in the same execute packet if one branch uses a
displacement and the other uses a register, IRP, or NRP. As long as only one branch
has a true condition, the code executes in a well-defined way.

NOTE:
1. This instruction executes on .S2 only. PFC is program fetch counter.
2. Refer to Chapter 5 for more information on NRP and NMIE.
3. The execute packets in the delay slots of a branch cannot be
interrupted. This is true regardless of whether the branch is taken.
4. See Section 3.4.2 for information on branching into the middle of an
execute packet.
5. On the C64x+ CPU, a branch to an execute packet that spans two
fetch packets will cause a stall while the second fetch packet is
fetched.
Execution
if (cond) NRP — PFC
else nop
Pipeline
Target Instruction
Pipeline Stage El PS PW PR DP DC E1l
Read NRP
Written
Branch taken v
Unit in use .S2
138 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

B NRP — Branch Using NMI Return Pointer

Instruction Type Branch
Delay Slots 5
Example Table 3-17 gives the program counter values and actions for the following code example.
Given that an interrupt occurred at
PC = 0000 1000 | RP = 0000 1000
0000 0020 B .S2 NRP
0000 0024 ADD .S1 A0, A2, Al
0000 0028 MPY .ML A1, A0, Al
0000 002C NOP
0000 0030 SHR .S1 A1, 15, Al
0000 0034 ADD L1 AL, A2, AL
0000 0038 ADD .L2 B1, B2, B3
Table 3-17. Program Counter Values for B NRP Instruction Example
Cycle Program Counter Value Action
Cycle O 0000 0020 Branch command executes (target code fetched)
Cycle 1 0000 0024
Cycle 2 0000 0028
Cycle 3 0000 002C
Cycle 4 0000 0030
Cycle 5 0000 0034
Cycle 6 0000 1000 Branch target code executes

SPRU732J-July 2010

Instruction Set 139

Copyright © 2010, Texas Instruments Incorporated

BDEC — Branch and Decrement

13 TEXAS
INSTRUMENTS

www.ti.com

BDEC Branch and Decrement
Syntax BDEC (.unit) src, dst
unit = .S1 or .S2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src |l|0‘0|0‘0‘0‘0‘1|0|0‘0|s‘p‘
3 1 5 10 1 1
Opcode map field used... For operand type... Unit
src scst10 .S1, .52
dst int
Description If the predication and decrement register (dst) is positive (greater than or equal to 0), the

BDEC instruction performs a relative branch and decrements dst by 1. The instruction
performs the relative branch using a 10-bit signed constant, scst10, in src. The constant
is shifted 2 bits to the left, then added to the address of the first instruction of the fetch
packet that contains the BDEC instruction (PCE1). The result is placed in the program
fetch counter (PFC).

This instruction helps reduce the number of instructions needed to decrement a register
and conditionally branch based upon the value of the register. Note also that any register
can be used that can free the predicate registers (A0-A2 and B0-B2) for other uses.

The following code:
OWPLT .L1 Al0,0,Al

[1Al] SUB
[I[tA1] B

L1 Al0, 1, A10
.S1 func
5

could be replaced by:

BDEC
NOP

.S1 func, Al0
5

NOTE:

Only one BDEC instruction can be executed per cycle. The BDEC
instruction can be predicated by using any conventional condition
register. The conditions are effectively ANDed together. If two
branches are in the same execute packet, and if both are taken,
behavior is undefined.

See Section 3.4.2 for information on branching into the middle of an
execute packet.

On the C64x+ CPU, a branch to an execute packet that spans two
fetch packets will cause a stall while the second fetch packet is
fetched.

The BDEC instruction cannot be in the same execute packet as an
ADDKPC instruction.

140 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com BDEC — Branch and Decrement
Execution
if (cond) {
if (dst >= 0), PFC = ((PCE1 + se(scst10)) << 2);
if (dst >=0), dst = dst - 1;
else nop
}
else nop
Pipeline
Target Instruction
Pipeline Stage El PS PW PR DP DC El
Read dst
Written dst, PC
Branch taken v
Unit in use .S
Instruction Type Branch
Delay Slots 5
Examples Example 1
BDEC . S1 100h, A10
Before instruction After branch has been taken

PCE1 \ 0100 0000h |

PC \ X0 xxxxh | PC \ 0100 0400h \
A10 | 0000 000AN | A10 |0000 0009h |
Example 2

BDEC . S1 300h, A10 ; 300h is sign extended

Before instruction After branch has been taken

PCE1 \ 0100 0000h |

PC \ X0 xxxxh | PC \ 00FF FCOOh \
A10 \ 0000 0010h | A10] 0000 000Fh \
SPRU732J-July 2010 Instruction Set 141

Copyright © 2010, Texas Instruments Incorporated

BITC4 — Bit Count, Packed 8-Bit

13 TEXAS
INSTRUMENTS

www.ti.com

BITC4 Bit Count, Packed 8-Bit

Syntax BITC4 (.unit) src2, dst
unit = .M1 or .M2

Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| creg | z] dst src2 l1]1]1]1]o]x]o]ofofofr]2]2]2]0]o]s]|p]
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 p v M1, .M2
dst ud
Description Performs a hit-count operation on 8-bit quantities. The value in src2 is treated as packed

8-bit data, and the result is written in packed 8-bit format. For each of the 8-bit quantities
in src2, the count of the number of 1 bits in that value is written to the corresponding
position in dst.

31 24 23 16 15 8 0
ub_3 \ ub_2 \ ub_1 ub_0 ‘ < src2
BITC4
! ! ! !
31 24 23 16 15 8 0
bit_count(ub_3) bit_count(ub_2) bit_count(ub_1) bit_count(ub_0) «— dst
Execution
if (cond) {
bit_count(src2(ubyte0)) — ubyte0(dst);
bit_count(src2(ubytel)) — ubytel(dst);
bit_count(src2(ubyte2)) — ubyte2(dst);
bit_count(src2(ubyte3)) — ubyte3(dst)
}
else nop
Pipeline
Pipeline Stage El E2
Read src2
Written dst
Unit in use .M

142 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com BITC4 — Bit Count, Packed 8-Bit
Instruction Type Two-cycle
Delay Slots 1
Example BITC4 . ML Al, A2
Before instruction 2 cycles after instruction
Al \ 9E 52 6E 30h | Al \ 9E 52 6E 30h \
A2 | xx xocch | A2 050305 02h |

SPRU732J-July 2010 Instruction Set 143

Copyright © 2010, Texas Instruments Incorporated

BITR — Bit Reverse

13 TEXAS
INSTRUMENTS

www.ti.com

BITR Bit Reverse
Syntax BITR (.unit) src2, dst
unit = .M1 or .M2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| creg | z] src2 l1]1]1]1]1]x]o]ofofofa]2][2]2]0]o]s]|p]
3 1 5 1 11
Opcode map field used... For operand type... Unit
src2 xuint M1, .M2
dst uint
Description Implements a bit-reversal function that reverses the order of bits in a 32-bit word. This
means that bit O of the source becomes bit 31 of the result, bit 1 of the source becomes
bit 30 of the result, bit 2 becomes bit 29, and so on.
31 0
abcd efgh ijkl mnop grst uvwx yzAB CDEF ‘ « src2
BITR
l
31 0
FEDC BAzy xwvu tsrq ponm Ikji hgfe dcba «— dst
Execution
if (cond) bit_reverse(src2) — dst
else nop
Pipeline
Pipeline Stage El E2
Read src2
Written dst
Unit in use M

Instruction Type

Delay Slots

Two-cycle

1

144 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com BITR — Bit Reverse
Example BITR . M2 B4, B5
Before instruction 2 cycles after instruction
B4 |A6E2C17%h | B4 |A6E2C179h |
BS |0 xooch | B5 | 9E83 4765h |
SPRU732J-July 2010 Instruction Set 145

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
BNOP — Branch Using a Displacement With NOP www.ti.com
BNOP Branch Using a Displacement With NOP
Syntax BNOP (.unit) src2, srcl
unit = .S1 or .S2 (C64x and C64x+ CPU)
unit = .S1, .S2, or none (C64x+ CPU only)
Compatibility C64x and C64x+ CPU
Compact Instruction Format
Unit Opcode Format Figure
.S Shs7 Figure F-16
Sbu8 Figure F-17
Sbs7c Figure F-19
Sbu8c Figure F-20
Sx1b Figure F-31
Opcode
31 29 28 27 16 15 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| src2 srcl |0|0‘0|0‘1‘0‘0‘1|0|0‘0|s‘p‘
3 1 12 3 1 1
Opcode map field used... For operand type... Unit
src2 scstl2 .S1, .52
srcl ucst3
Description The constant displacement form of the BNOP instruction performs a relative branch with
NOP instructions. The instruction performs the relative branch using the 12-bit signed
constant specified by src2. The constant is shifted 2 bits to the left, then added to the
address of the first instruction of the fetch packet that contains the BNOP instruction
(PCEL). The result is placed in the program fetch counter (PFC).
The 3-bit unsigned constant specified in srcl gives the number of delay slot NOP
instructions to be inserted, from 0 to 7. With srcl = 0, no NOP cycles are inserted.
This instruction helps reduce the number of instructions to perform a branch when NOP
instructions are required to fill the delay slots of a branch.
The following code:
B .S1 LABEL
NOP N
LABEL: ADD
could be replaced by:
BNOP .S1 LABEL, N
LABEL: ADD
146 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

BNOP — Branch Using a Displacement With NOP

NOTE:

1. BNOP instructions may be predicated. The predication condition
controls whether or not the branch is taken, but does not affect the
insertion of NOPs. BNOP always inserts the number of NOPs
specified by N, regardless of the predication condition.

2. The execute packets in the delay slots of a branch cannot be
interrupted. This is true regardless of whether the branch is taken.

3. See Section 3.4.2 for information on branching into the middle of an
execute packet.

4. On the C64x+ CPU, a branch to an execute packet that spans two

fetch packets will cause a stall while the second fetch packet is
fetched.

Only one branch instruction can be executed per cycle. If two branches are in the same
execute packet, and if both are taken, the behavior is undefined. It should also be noted
that when a predicated BNOP instruction is used with a NOP count greater than 5, the
C64x CPU inserts the full delay slots requested when the predicated condition is false.

For example, the following set of instructions will insert 7 cycles of NOPs:

ZERO .L1 A0
[AO] BNOP .S1 LABEL,7 ; branch is not taken and
7 cycles of NOPs are inserted

Conversely, when a predicated BNOP instruction is used with a NOP count greater than
5 and the predication condition is true, the branch will be taken and the multi-cycle NOP
is terminated when the branch is taken.

For example in the following set of instructions, only 5 cycles of NOP are inserted:

MK .D1 1,A0
[AO] BNOP .S1 LABEL, 7 ; branch is taken and
5 cycles of NOPs are inserted

The BNOP instruction cannot be paired with any other multicycle NOP instruction in the
same execute packet. Instructions that generate a multicycle NOP are: IDLE, ADDKPC,
CALLP, and the multicycle NOP.

For the C64x+ CPU: The BNOP instruction does not require the use of the .S unit. If no
unit is specified, then it may be scheduled in parallel with instructions executing on both
the .S1 and .S2 units. If either the .S1 or .S2 unit is specified for BNOP, then the .S unit
specified is not available for another instruction in the same execute packet. This is
enforced by the assembler.

For the C64x+ CPU: It is possible to branch into the middle of a 32-bit instruction. The
only case that will be detected and result in an exception is when the 32-bit instruction is
contained in a compact header-based fetch packet. The header cannot be the target of a
branch instruction. In the event that the header is the target of a branch, an exception
will be raised.

SPRU732J-July 2010

Instruction Set 147

Copyright © 2010, Texas Instruments Incorporated

BNOP — Branch Using a Displacement With NOP

13 TEXAS
INSTRUMENTS

www.ti.com

Execution (if instruction is within compact instruction fetch packet, C64x+ CPU only)

if (cond)

else nop

Execution (if instruction is not within compact instruction fetch packet)

{
PFC = (PCE1 + (se(scst12) << 1));
nop (srcl)

}
(srcl +1)

if (cond) {
PFC = (PCEL1 + (se(scst12) << 2));
nop (srcl)
}
else nop (srcl +1)
Pipeline
Target Instruction
Pipeline Stage El PS PW PR DP DC E1l
Read src2
Written PC
Branch taken v
Unit in use .S
Instruction Type Branch
Delay Slots 5
See Also ADDKPC, B, NOP
Example BNOP . S1 30h, 2
Before instruction After branch has been taken
PCE1 | 0100 0500h |
PC | xxx x00¢h | PC 0100 1100h

148 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

BNOP — Branch Using a Register With NOP

BNOP Branch Using a Register With NOP
Syntax BNOP (.unit) src2, srcl
unit = .S2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 26 25 24 23 22 18 17 16 15 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| creg [z]o]olofo]1] src2 loJo| st [x]o]of1[1]o]1]1]o0]o]o]1]p]
3 1 5 3 1 1
Opcode map field used... For operand type... Unit
src2 xuint .S2
srcl ucst3
Description The register form of the BNOP instruction performs an absolute branch with NOP

instructions. The register specified in src2 is placed in the program fetch counter (PFC).

For branch targets residing in compact header-based fetch packets(C64x+ CPU only,
see Section 3.9 for more information), the 31 most-significant bits of the register are
used to determine the branch target. For branch targets not residing in compact
header-based fetch packets, the 30 most-significant bits of the register are used to
determine the branch target.

The 3-bit unsigned constant specified in srcl gives the number of delay slots NOP
instructions to be inserted, from 0 to 7. With srcl = 0, no NOP cycles are inserted.

This instruction helps reduce the number of instructions to perform a branch when NOP
instructions are required to fill the delay slots of a branch.

The following code:

B .S2 B3

NOP N

could be replaced by:
BNOP .S2 B3, N

NOTE:

1. BNOP instructions may be predicated. The predication condition
controls whether or not the branch is taken, but does not affect the
insertion of NOPs. BNOP always inserts the number of NOPs
specified by N, regardless of the predication condition.

2. The execute packets in the delay slots of a branch cannot be
interrupted. This is true regardless of whether the branch is taken.

3. See Section 3.4.2 for information on branching into the middle of an
execute packet.

4. Onthe C64x+ CPU, a branch to an execute packet that spans two
fetch packets will cause a stall while the second fetch packet is
fetched.

SPRU732J-July 2010

Instruction Set 149

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

BNOP — Branch Using a Register With NOP www.ti.com

Only one branch instruction can be executed per cycle. If two branches are in the same
execute packet, and if both are taken, the behavior is undefined. It should also be noted
that when a predicated BNOP instruction is used with a NOP count greater than 5, the
CPU inserts the full delay slots requested when the predicated condition is false.

For example, the following set of instructions will insert 7 cycles of NOPs:

ZERO .L1 A0
[AO] BNOP .S2 B3,7 ; branch is not taken and 7 cycles of NOPs are inserted

Conversely, when a predicated BNOP instruction is used with a NOP count greater than
5 and the predication condition is true, the branch will be taken and multi-cycle NOP is
terminated when the branch is taken.

For example, in the following set of instructions only 5 cycles of NOP are inserted:

WK .D1 1,A0
[A0] BNOP .S2 B3,7 ; branch is taken and 5 cycles of NOPs are inserted

The BNOP instruction cannot be paired with any other multicycle NOP instruction in the
same execute packet. Instructions that generate a multicycle NOP are: IDLE, ADDKPC,
CALLP, and the multicycle NOP.

Execution
if (cond) {
src2 — PFC;
nop (srcl)
}
else nop (srcl +1)
Pipeline
Target Instruction
Pipeline Stage El PS PW PR DP DC E1l
Read src2
Written PC
Branch taken v
Unit in use .S2
Instruction Type Branch
Delay Slots 5
See Also ADDKPC, B, NOP
Example BNOP . S2 A5, 2

Before instruction After branch has been taken

PCE1 \ 0010 0000h |

PC \ X0 xxxxh | PC \ 0100 FOOOh \

A5 \ 0100 FOOOh | A5 \ 0100 FOOOh \

150 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

BPOS — Branch Positive

BPOS Branch Positive

Syntax BPOS (.unit) src, dst
unit = .S1 or .S2

Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| dst src |0|0‘0|0‘0‘0‘0‘1|0|0‘0|s‘p‘
3 1 5 10 1 1
Opcode map field used... For operand type... Unit
src scst1l0 .S1, .52
dst int
Description If the predication register (dst) is positive (greater than or equal to 0), the BPOS
instruction performs a relative branch. If dst is negative, the BPOS instruction takes no
other action.
The instruction performs the relative branch using a 10-bit signed constant, scst10, in
src. The constant is shifted 2 bits to the left, then added to the address of the first
instruction of the fetch packet that contains the BPOS instruction (PCE1). The result is
placed in the program fetch counter (PFC).
Any register can be used that can free the predicate registers (A0-A2 and B0-B2) for
other uses.
NOTE:
1. Only one BPOS instruction can be executed per cycle. The BPOS
instruction can be predicated by using any conventional condition
register. The conditions are effectively ANDed together. If two
branches are in the same execute packet, and if both are taken,
behavior is undefined.
2. The execute packets in the delay slots of a branch cannot be
interrupted. This is true regardless of whether the branch is taken.
3. See Section 3.4.2 for information on branching into the middle of an
execute packet.
4. Onthe C64x+ CPU, a branch to an execute packet that spans two
fetch packets will cause a stall while the second fetch packet is
fetched.
5. The BPOS instruction cannot be in the same execute packet as an
ADDKPC instruction.
Execution
if (cond) {
if (dst >= 0), PFC = (PCEL1 + (se(scst10) << 2));
else nop
}
else nop

SPRU732J-July 2010

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

151

BPOS — Branch Positive

13 TEXAS
INSTRUMENTS

www.ti.com

Pipeline

Target Instruction

Pipeline Stage El PS PW PR DP DC E1l
Read dst
Written PC
Branch taken v
Unit in use .S
Instruction Type Branch
Delay Slots 5
Example BPOS . S1 200h, A10
Before instruction After branch has been taken
PCE1 |0010 0000h |
PC [0000 x00xxh | PC [0100 0800h \
A10 [0000 000A | A10 | 0000 000A \

152

Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

CALLP — Call Using a Displacement

CALLP

Syntax

Compatibility

Call Using a Displacement

CALLP (.unit) label, A3/B3
unit = .S1 or .S2

C64x+ CPU

Compact Instruction Format

Unit

Opcode Format Figure

.S

Scs10 Figure F-18

Opcode

31 30 29 28 27

7 6 5 4 3 2 1 0

lof[o]o]1] cst21 loJoJ1]o]o]s]|p]
21 1 1
Opcode map field used... For operand type... Unit
cst21 scst21 .S1, .82
Description A 21-bit signed constant, cst21, is shifted left by 2 bits and is added to the address of the

first instruction of the fetch packet that contains the branch instruction. The result is
placed in the program fetch counter (PFC). The assembler/linker automatically computes
the correct value for cst21 by the following formula:

cst21 = (label - PCE1) >> 2

The address of the execute packet immediately following the execute packet containing
the CALLP instruction is placed in A3, if the S1 unit is used; or in B3, if the S2 unit is
used. This write occurs in E1. An implied NOP 5 is inserted into the instruction pipeline
occupying E2-E6.

Since this branch is taken unconditionally, it cannot be placed in the same execute
packet as another branch. Additionally, no other branches should be pending when the
CALLP instruction is executed.

CALLP, like other relative branch instructions, cannot have an ADDKPC instruction in
the same execute packet with it.

NOTE:

1. PCE1 (program counter) represents the address of the first
instruction in the fetch packet in the E1 stage of the pipeline. PFC is
the program fetch counter. retPC represents the address of the first
instruction of the execute packet in the DC stage of the pipeline.

2. The execute packets in the delay slots of a branch cannot be
interrupted. This is true regardless of whether the branch is taken.

SPRU732J-July 2010

Instruction Set 153

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS

CALLP — Call Using a Displacement www.ti.com
Execution

(cst21 << 2) + PCE1 — PFC

if (unit = S2), retPC — B3

else if (unit = S1), retPC — A3

nop 5
Pipeline

Target Instruction

Pipeline Stage El PS PW PR DP DC E1l

Read

Written A3/B3

Branch taken v

Unit in use .S
Instruction Type Branch
Delay Slots 5
154 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com CLR — Clear a Bit Field
CLR Clear a Bit Field
Syntax CLR (.unit) src2, csta, cstb, dst
or
CLR (.unit) src2, srcl, dst
unit = .S1 or .S2
Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure
.S Sch Figure F-26
Opcode Constant form
31 29 28 27 23 22 18 17 13 12 8 7 6 5 4 3 2 1 0
’ creg |z| dst ’ src2 csta cstb ‘1’1’0|0|1‘0|s‘p‘
3 1 5 5 5 5 1 1
Opcode map field used... For operand type... Unit
src2 uint .S1, .82
csta ucst5
cstb ucst5
dst uint
Opcode Register form
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
’ creg |z| dst ’ src2 srcl |x|1‘1|1‘1‘1’1’1|0|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 xuint .S1, .82
srcl uint
dst uint
Description For cstb = csta, the field in src2 as specified by csta to cstb is cleared to all Os in dst.

The csta and cstb operands may be specified as constants or in the 10 LSBs of the srcl
register, with cstb being bits 0-4 (srcl , ,) and csta being bits 5-9 (srcl 4 ¢). csta is the
LSB of the field and cstb is the MSB of the field. In other words, csta and cstb represent
the beginning and ending bits, respectively, of the field to be cleared to all Os in dst. The
LSB location of src2 is bit 0 and the MSB location of src2 is bit 31.

SPRU732J-July 2010 Instruction Set 155

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

CLR — Clear a Bit Field www.ti.com

In the following example, csta is 15 and cstb is 23. For the register version of the
instruction, only the 10 LSBs of the srcl register are valid. If any of the 22 MSBs are
non-zero, the result is invalid.

i: cstb ;i

: « csta >

| | |
sre2 [XXX x| x[x]x|xPrJol1fofo]1[1+]o]1Ix]x]|x|x]x]x[x]x]x|[x]x]|x|x]x]x]
313029 28 27 26 2524 23 222120191817 1615141312110 9 8 7 6 5 4 3 2 1 0

ast [x[x[x]x]x]x]x|xfofofofoJoJoJoJofolx|x[x]x]|x]x]x]x|x|x[x]x]x]|x]x]
3130292827 26252423222120191817 1615141312110 9 8 7 6 5 4 3 2 1 0

For cstb < csta, the src2 register is copied to dst. The csta and cstb operands may be
specified as constants or in the 10 LSBs of the srcl register, with cstb being bits 0-4
(srcl , ,) and csta being bits 5-9 (srcl g 5).

Execution If the constant form is used when cstb = csta:
if (cond) src2 clear csta, cstb — dst
else nop

If the register form is used when cstb = csta:

if (cond) src2 clear srcl 4 g, srcl , o — dst
else nop
Pipeline
Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .S
Instruction Type Single-cycle
Delay Slots 0
See Also SET
Examples Example 1

CLR . S1 A1, 4,19, A2

Before instruction 1 cycle after instruction
Al | 074 3F2AN | Al | 07A4 3F2Ah \
A2 [0000 x00x¢h | A2 07A0 000Ah \
156 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com CLR — Clear a Bit Field
Example 2
CLR . S2 B1, B3, B2
Before instruction 1 cycle after instruction

B1 \ 03B6 E7D5h | Bl \ 03B6 E7D5h

B2 \ xxxx xxxxh | B2] 03B0 0001h

B3 | 0000 0052h | B3 | 0000 0052h

SPRU732J-July 2010 Instruction Set 157

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
CMPEQ — Compare for Equality, Signed Integer www.ti.com
CMPEQ Compare for Equality, Signed Integer
Syntax CMPEQ (.unit) srcl, src2, dst
unit=.L1 or .L2
Compatibility C62x, C64x, and C64x+ CPU
Compact Instruction Format
Unit Opcode Format Figure
L L2c Figure D-7
Lx3c Figure D-9
Opcode
31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0
\ creg |z| dst src2 srcl |x| op |1|1\0|s\p\
3 1 5 5 5 1 7 1 1
Opcode map field used... For operand type... Unit Opfield
srcl sint L1, L2 101 0011
src2 xsint
dst uint
srcl scstb L1, .L2 101 0010
src2 xsint
dst uint
srcl xsint L1, L2 101 0001
src2 slong
dst uint
srcl scstb L1, .L2 101 0000
src2 slong
dst uint
Description Compares srcl to src2. If srcl equals src2, then 1 is written to dst; otherwise, 0 is written
to dst.
Execution
if (cond) {
if (srcl == src2), 1 — dst
else 0 — dst
}
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use L
158 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

CMPEQ — Compare for Equality, Signed Integer

Instruction Type Single-cycle
Delay Slots 0
See Also CMPEQ2, CMPEQ4
Examples Example 1
CMPEQ . L1X Al, B1, A2
Before instruction 1 cycle after instruction
Al | 0000 04B8h | 1208 Al | 0000 04B8h |
A2 | 0 xxxxh | A2 \ 0000 0000h \ false
B1 | 0000 04B7h | 1207 B1 \ 0000 04B7h \
Example 2
CMPEQ . L1 Ch, AL, A2
Before instruction 1 cycle after instruction
Al | 0000 000Ch 12 Al | 0000 000Ch |
A2 | %00x xxxxh | A2 \ 0000 0001h \ true
Example 3
CMPEQ . L2X Al, B3: B2, B1
Before instruction 1 cycle after instruction
Al | F23A 3789h \ Al \ F23A 3789h \
B1 | XXXX XXxxh ‘ B1 ‘ 0000 0001h ‘ true
B3:B2 | 0000 00FFh \ F23A 3789h B3:B2 \ 0000 0OFFh \ F23A 3789h

SPRU732J-July 2010

Instruction Set 159

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
CMPEQ2 — Compare for Equality, Packed 16-Bit www.ti.com
CMPEQ?2 Compare for Equality, Packed 16-Bit
Syntax CMPEQ?2 (.unit) srcl, src2, dst
unit = .S1 or .S2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x|0‘1|1‘1‘0‘1‘1|0|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s2 .S1, .52
src2 Xxs2
dst bv2
Description Performs equality comparisons on packed 16-bit data. Each 16-bit value in srcl is

compared against the corresponding 16-bit value in src2, returning either a 1 if equal or
a 0 if not equal. The equality results are packed into the two least-significant bits of dst.
The result for the lower pair of values is placed in bit 0, and the results for the upper pair
of values are placed in bit 1. The remaining bits of dst are cleared to 0.

31 16 15 0
a_hi ‘ a_lo ‘ «—srcl
CMPEQ2
i 1
31 16 15 0
b_hi b_lo « src2
alo==b lo
a_hi==b_hi
A 2 4
0 0000O0O0O0OOOO0OOOOOO0O0O0O0O0O0O0O0O0GO0O0O0 0f[=]=]|eadst
31 210
Execution
if (cond) {
if (Isb16(src1) == Isb16(src2)), 1 — dst
else 0 — dst ;
if (msb16(src1) == msb16(src2)), 1 — dst,
else 0 — dst
}
else nop
160 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

CMPEQ2 — Compare for Equality, Packed 16-Bit

Pipeline

Instruction Type
Delay Slots
See Also

Examples

Pipeline Stage El

Read srcl, src2

Written dst

Unit in use .S
Single-cycle

0
CMPEQ, CMPEQ4, CMPGT2, XPND2

Example 1
CMPEQ . S1 A3, Ad, A5

Before instruction 1 cycle after instruction
A3 | 1105 6E30h | A3 | 1105 6E30h |
A4 \ 1105 6980h | A4 \ 1105 6980h |
A5 | xoo0x xoocxh | A5 | 0000 0002h | true, false
Example 2
CMPEQ . S2 B2, B8, B15
Before instruction 1 cycle after instruction
B2 | F23A 378%h \ B2 \ F23A 3789h \
B8 | 04B8 3789h \ B8 \ 04B8 3789h \
B15 | XXXX XXxxh ‘ B15 ‘ 0000 0001h ‘ false, true
Example 3
CMPEQ . S2 B2, B8, B15
Before instruction 1 cycle after instruction
B2 | 01B6 2451h \ B2 \ 01B6 2451h \
BS | 01B6 2451h \ BS \ 01B6 2451h \
B15 | XXXX XXxxh ‘ B15 ‘ 0000 0003h ‘ true, true

SPRU732J-July 2010

Instruction Set 161

Copyright © 2010, Texas Instruments Incorporated

CMPEQ4 — Compare for Equality, Packed 8-Bit

13 TEXAS
INSTRUMENTS

www.ti.com

CMPEQ4 Compare for Equality, Packed 8-Bit
Syntax CMPEQ4 (.unit) srcl, src2, dst
unit = .S1 or .S2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x|0‘1|1‘1‘0‘0‘1|0|0‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s4 .S1, .52
src2 xs4
dst bv4
Description Performs equality comparisons on packed 8-bit data. Each 8-bit value in srcl is
compared against the corresponding 8-bit value in src2, returning either a 1 if equal or a
0 if not equal. The equality comparison results are packed into the four least-significant
bits of dst.
The 8-bit values in each input are numbered from 0 to 3, starting with the
least-significant byte, then working towards the most-significant byte. The comparison
results for byte 0 are written to bit O of the result. Likewise the results for byte 1 to 3 are
written to bits 1 to 3 of the result, respectively, as shown in the diagram below. The
remaining bits of dst are cleared to 0.
31 24 23 16 15 8 7 0
sa_3 ‘ sa_2 ‘ sa_1 sa_0 «— srcl
CMPEQ4
1 1 1 o
31 24 23 16 15 8 7 0
sb_3 sh_2 sb_1 shb_0 « src2
sa 0==sb 0
sa_1==sb_1
sa 2==sb 2
sa_3==sb 3
AR A A
000000 O0O0O0O0O00O00O0O0O0O0O0O0O0O0O0O0GO0O0O0O0O0O0[=[=[=][=]east
31 43210

162 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

CMPEQ4 — Compare for Equality, Packed 8-Bit

Execution
if (cond) {
if (sbyteO(srcl) == sbyteO(src2)), 1 — dst,
else 0 — dst ;
if (sbytel(srcl) == sbytel(src2)), 1 — dst ,
else 0 — dst ,;
if (sbyte2(srcl) == sbyte2(src2)), 1 — dst,
else 0 — dst ,;
if (sbyte3(srcl) == sbyte3(src2)), 1 — dst
else 0 — dst ,
}
else nop
Pipeline
Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .S
Instruction Type Single-cycle
Delay Slots 0
See Also CMPEQ, CMPEQ2, CMPGTU4, XPND4
Examples Example 1
CMPEQ4 . S1 A3, A4, A5
Before instruction 1 cycle after instruction
A3 02 3A 4E 1Ch | A3 02 3A 4E 1Ch \
A4 | 02 B8 4E 76h | A4 02 B8 4E 76h \
A5 | XXXX XXXXh | A5 | 0000 000Ah ‘ true, false, false, false
Example 2
CMPEQ4 . S2 B2, B8, B13
Before instruction 1 cycle after instruction
B2 | F23A37 89h | B2 | F23A37 8%h \
B8 | 04 B8 37 89h | B8 |04 B8 37 89h |
B13 | XXXX XXXXh | B13 | 0000 0003h ‘ false, false, true, true

SPRU732J-July 2010

Instruction Set 163

Copyright © 2010, Texas Instruments Incorporated

CMPEQ4 — Compare for Equality, Packed 8-Bit

13 TEXAS
INSTRUMENTS

www.ti.com

Example 3
CMPEQY . S2 B2, B8, B13

Before instruction

B2 | 01 B6 24 51h |
B8 | 05 B6 24 51h |
B13 | XXXX XXXxh |

B2

B8

B13

1 cycle after instruction

| 01 B6 24 51h \

| 05 B6 24 51h \

| 0000 0007h ‘ false, true, true, true

164 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

CMPGT — Compare for Greater Than, Signed Integers

CMPGT Compare for Greater Than, Signed Integers
Syntax CMPGT (.unit) srcl, src2, dst

unit=.L1 or .L2
Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure
L L2c Figure D-7
Lx1c Figure D-10
Opcode
31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0
\ creg |z| dst src2 srcl |x| op |1|1\0|s\p\
3 1 5 5 5 1 7 1 1
Opcode map field used... For operand type... Unit Opfield
srcl sint L1, .L2 100 0111
src2 xsint
dst uint
srcl scstb L1, L2 100 0110
src2 xsint
dst uint
srcl xsint L1, .L2 100 0101
src2 slong
dst uint
srcl scstb L1, L2 100 0100
src2 slong
dst uint
Description Performs a signed comparison of srcl to src2. If srcl is greater than src2, thena 1 is
written to dst; otherwise, a 0 is written to dst.
SPRU732J-July 2010 Instruction Set 165

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

CMPGT — Compare for Greater Than, Signed Integers www.ti.com

NOTE: The CMPGT instruction allows using a 5-bit constant as srcl. If src2 is a
5-bit constant, as in

CMPGT . L1 A4, 5, A0

Then to implement this operation, the assembler converts this instruction
to

CWPLT . L1 5, A4, AO

These two instructions are equivalent, with the second instruction using
the conventional operand types for srcl and src2.

Similarly, the CMPGT instruction allows a cross path operand to be used
as src2. If srcl is a cross path operand as in
CMPGT . L1x B4, A5, A0

Then to implement this operation the assembler converts this instruction
to

CWPLT . L1x A5, B4, A0

In both of these operations the listing file (.Ist) will have the first
implementation, and the second implementation will appear in the

debugger.
Execution
if (cond) {
if (srcl > src2), 1 — dst
else 0 — dst
}
else nop
Pipeline
Pipeline Stage El
Read srcl, src2
Written dst
Unit in use L
Instruction Type Single-cycle
Delay Slots 0
See Also CMPGT2, CMPGTU, CMPGTU4
Examples Example 1
CWPGT . L1X A1, B1, A2
Before instruction 1 cycle after instruction
Al | 0000 01B6h | 438 Al 0000 01B6h |
A2 | 0000000 | A2 | 0000 0000h | false
B1 | 0000 08BDh | 2237 B1 0000 08BDh |
166 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com CMPGT — Compare for Greater Than, Signed Integers
Example 2
CVPGT . L1X Al, B1, A2
Before instruction 1 cycle after instruction

Al | FFFF FE91h | -367 Al | FFFF FE91h

A2 ‘ XXXX XXXXh | A2 ’ 0000 0001h ‘ true

B1 | FFFF FDC4h 572 B1 | FFFF FDC4h
Example 3

CWPGT . L1 8, Al, A2

Before instruction 1 cycle after instruction
Al | 0000 0023h 35 Al | 0000 0023h
A2 \ %0 xxxxh | A2 \ 0000 0000h \ false
Example 4

CMPGT . L1X Al, B1, A2

Before instruction 1 cycle after instruction
Al | 0000 00EBh | 235 Al 0000 00EBh \
A2 ‘ XXXX XXxxh | A2 ’ 0000 0000h ‘ false
B1 | 0000 00EBh | 235 B1 0000 00EBh \

SPRU732J-July 2010 Instruction Set 167

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
CMPGT2 — Compare for Greater Than, Packed 16-Bit www.ti.com
CMPGT2 Compare for Greater Than, Packed 16-Bit
Syntax CMPGT?2 (.unit) srcl, src2, dst
unit = .S1 or .S2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x|0‘1|0‘1‘0‘0‘1|0|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s2 .S1, .52
src2 Xxs2
dst bv2
Description Performs comparisons for greater than values on signed, packed 16-bit data. Each

signed 16-bit value in srcl is compared against the corresponding signed 16-bit value in
src2, returning a 1 if srcl is greater than src2 or returning a O if it is not greater. The
comparison results are packed into the two least-significant bits of dst. The result for the
lower pair of values is placed in bit 0, and the results for the upper pair of values are
placed in bit 1. The remaining bits of dst are cleared to 0.

31 16 15 0
a_hi ‘ a_lo ‘ «—srcl
CMPGT2
i n
31 16 15 0
b_hi b_lo « src2
a_lo>b_lo
a_hi>b_hi
A A
0 0000O0O0O0O0OOOO0OO0O0O0O0O0O0O0O0O0O0O0O0O0O0O0 O0f>]>]edst
31 210
Execution
if (cond) {
if (Isb16(src1) > Isb16(src2)), 1 — dst ,
else 0 — dst ;
if (msb16(src1) > msh16(src2)), 1 — dst ;
else 0 — dst,
}
else nop
168 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com CMPGT2 — Compare for Greater Than, Packed 16-Bit
Pipeline
Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .S
Instruction Type Single-cycle
Delay Slots 0
See Also CMPEQ2, CMPGT, CMPGTU, CMPGTU4, CMPLT2, XPND2
Examples Example 1
CVPGT2 .S1 A3, A4, A5
Before instruction 1 cycle after instruction
A3 | 1105 6E30h | 4357 28208 A3 | 1105 6E30h |
A4 \ 1105 6980h | 4357 27008 A4 \ 1105 6980h |
A5 | xoo0x xoocxh | A5 | 0000 0001h | false, true
Example 2
CMPGT2 . S2 B2, B8, B15
Before instruction 1 cycle after instruction
B2 | F348 3789h -3526 14217 B2 \ F348 3789h \
B8 | 04B8 4975h \ 1208 18805 B8 \ 04B8 4975h \
B15 | XXXX XXxxh ‘ B15 ‘ 0000 0000h ‘ false, false
Example 3
CVPGT2 .S2 B2, B8, B15
Before instruction 1 cycle after instruction
B2 | 01A6 2451h \ 422 9297 B2 \ 01A6 2451h \
BS | 0124 A051h \ 292 -24495 BS \ 0124 AO51h \
B15 | XXXX XXxxh ‘ B15 ‘ 0000 0003h ‘ true, true
SPRU732J-July 2010 Instruction Set 169

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
CMPGTU — Compare for Greater Than, Unsigned Integers www.ti.com
CMPGTU Compare for Greater Than, Unsigned Integers
Syntax CMPGTU (.unit) srcl, src2, dst
unit=.L1 or .L2

Compatibility C62x, C64x, and C64x+ CPU
Compact Instruction Format

Unit Opcode Format Figure

L L2c Figure D-7

Lx1c Figure D-10
Opcode
31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0
\ creg |z| dst src2 srcl |x| op |1|1\0|s\p\
3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

srcl uint L1, L2 1001111

src2 xuint

dst uint

srcl ucst4 L1, .L2 100 1110

src2 xuint

dst uint

srcl xuint L1, L2 1001101

src2 ulong

dst uint

srcl ucst4 or ucst5® L1, .L2 100 1100

src2 ulong

dst uint

@ On the C62x CPU, only the four LSBs (ucst4) are valid in the 5-bit src1 field. On the C64x and C64x+ CPU, all five bits (ucst5)
are valid in the 5-bit srcl field.

Description Performs an unsigned comparison of srcl to src2. If srcl is greater than src2, then a 1 is
written to dst; otherwise, a 0 is written to dst.

On the C62x CPU: When the ucst4 operand is used, only the four LSBs are valid in the
5-bit srcl field; if the MSB of the srcl field is nonzero, the result is invalid.

On the C64x and C64x+ CPU: When the ucst5 operand is used, all five bits are valid in
the 5-bit src1l field.

Execution
if (cond) {
if (srcl > src2), 1 — dst
else 0 — dst
}
else nop
170 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS

www.ti.com

CMPGTU — Compare for Greater Than, Unsigned Integers

Pipeline

Instruction Type
Delay Slots
See Also

Examples

Pipeline Stage El

Read srcl, src2

Written dst

Unit in use L
Single-cycle

0
CMPGT, CMPGT2, CMPGTU4

Example 1
CMPGTU . L1 Al, A2, A3

A3

Al | 0000 0128h

Before instruction

\ 296®

A2 FFFF FFDEh

\ 4,294,967,2620

| XXXX Xxxxh

1 cycle after instruction

Al \ 0000 0128h \

A2| FFFF FFDEh |

A3 \ 0000 0000h \ false

@ Unsigned 32-bit integer

Example 2
CMPGTU . L1 0Ah, Al, A2

Al

A2

Before instruction

| 0000 0005h \ 50

| XXXX XxXxXh ‘

1 cycle after instruction

Al \ 0000 0005h

A2 \ 0000 0001h] true

@ Unsigned 32-bit integer

Example 3
CMPGTU . L1 OEh, A3: A2, A4

Before instruction

A3:A2 | 0000 0000h

| 0000 000Ah 100

A4 | XXXX XXxXXh |

1 cycle after instruction

A3:A2 | 0000 0000h \ 0000 000Ah

A4 | 0000 0001h \ true

@ Unsigned 40-bit (long) integer

SPRU732J-July 2010

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

171

13 TEXAS

INSTRUMENTS
CMPGTU4 — Compare for Greater Than, Unsigned, Packed 8-Bit www.ti.com
CMPGTU4 Compare for Greater Than, Unsigned, Packed 8-Bit
Syntax CMPGTU4 (.unit) srcl, src2, dst
unit = .S1 or .S2

Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x|0‘1|0‘1‘0‘1‘1|0|0‘0|s‘p‘

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit
srcl u4 .S1, .52
src2 xu4
dst bv4
Description Performs comparisons for greater than values on packed 8-bit data. Each unsigned 8-bit
value in srcl is compared against the corresponding unsigned 8-bit value in src2,
returning a 1 if the byte in srcl is greater than the corresponding byte in src2 or a 0 if is
not greater. The comparison results are packed into the four least-significant bits of dst.
The 8-bit values in each input are numbered from 0 to 3, starting with the
least-significant byte, then working towards the most-significant byte. The comparison
results for byte O are written to bit O of the result. Likewise, the results for byte 1 to 3 are
written to bits 1 to 3 of the result, respectively, as shown in the diagram below. The
remaining bits of dst are cleared to 0.
31 24 23 16 15 8 0
ua_3 ‘ ua_2 ‘ ua_1l ua_0 «— srcl
CMPGTU4
1 1 o o
31 24 23 16 15 8 0
ub_3 ub_2 ub_1 ub_0 « src2
ua_0>ub_0
ua_1>ub_1
ua_2>ub_2
ua_3>ub_3

y vV Vv
000000 O0O0O0O0O00O00O0O0O0O0O0O0O0O0O0O0GO0O0OO0O0O0[>[>]>]>]«ast

31

4 3 2

1

0

172

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com

CMPGTU4 — Compare for Greater Than, Unsigned, Packed 8-Bit

Execution
if (cond) {
if (ubyteO(srcl) > ubyteO(src2)), 1 — dst ,
else 0 — dst ;
if (ubytel(srcl) > ubytel(src2)), 1 — dst
else 0 — dst ,;
if (ubyte2(src1) > ubyte2(src2)), 1 — dst ,
else 0 — dst ,;
if (ubyte3(srcl) > ubyte3(src2)), 1 — dst
else 0 — dst ,
}
else nop
Pipeline
Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .S
Instruction Type Single-cycle
Delay Slots 0
See Also CMPEQ4, CMPGT, CMPGT2, CMPGTU, CMPLT, XPND4
Examples Example 1
CVMPGTU4 . S1 A3, A4, A5
Before instruction 1 cycle after instruction
A3 | 25 3A 1C E4h \ 3758 28 228 A3 | 25 3A 1C E4h |
A4 | 02 B8 4E 76h \ 218478 118 A4 | 02 B8 4E 76h |
A5 | XXXX XXXxh ‘ A5 | 0000 0009h | true, false, false, true
Example 2
CMPGTW4 . S2 B2, B8, B13
Before instruction 1 cycle after instruction
B2 89 F2 3A 37h | 137 242 58 55 B2 89 F2 3A 37h |
B8 | 04 8F 17 89h \ 4143 23 137 BS | 04 8F 17 89h |
B13 | XXXX XXxxh ‘ B13 | 0000 000Eh | true, true, true, false

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

173

CMPGTU4 — Compare for Greater Than, Unsigned, Packed 8-Bit

13 TEXAS
INSTRUMENTS

www.ti.com

Example 3
CMPGTU4 . S2 B2, B8, B13

B2

B8

B13

Before instruction

1233 9D 51h | 1851157 81 B2
| 75 67 24 C5h \ 117 103 36 197 B8
| XXXX XXXXh ‘ B13

1 cycle after instruction

| 12 33 9D 51h |

| 75 67 24 C5h |

| 0000 0002h | false, false, true, false

174

Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com CMPLT — Compare for Less Than, Signed Integers
CMPLT Compare for Less Than, Signed Integers
Syntax CMPLT (.unit) srcl, src2, dst
unit=.L1 or .L2
Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure
L L2c Figure D-7
Lxlc Figure D-10
Opcode
31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0
\ creg |z| dst src2 srcl |x| op |1|1\0|s\p\
3 1 5 5 5 1 7 1 1
Opcode map field used... For operand type... Unit Opfield
srcl sint L1, L2 1010111
src2 xsint
dst uint
srcl scst5 L1, .L2 101 0110
src2 xsint
dst uint
srcl xsint L1, L2 101 0101
src2 slong
dst uint
srcl scst5 L1, .L2 101 0100
src2 slong
dst uint
Description Performs a signed comparison of srcl to src2. If srcl is less than src2, then 1 is written

to dst; otherwise, 0 is written to dst.

SPRU732J-July 2010 Instruction Set 175

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

CMPLT — Compare for Less Than, Signed Integers www.ti.com

NOTE: The CMPLT instruction allows using a 5-bit constant as srcl. If src2 is a
5-bit constant, as in
CMPLT . L1 A4, 5, A0

Then to implement this operation, the assembler converts this instruction
to
CWMPGT . L1 5, A4, AO

These two instructions are equivalent, with the second instruction using
the conventional operand types for srcl and src2.

Similarly, the CMPLT instruction allows a cross path operand to be used
as src2. If srcl is a cross path operand as in
CMPLT . L1x B4, A5, A0

Then to implement this operation, the assembler converts this instruction
to
CMPGT . L1x A5, B4, A0

In both of these operations the listing file (.Ist) will have the first
implementation, and the second implementation will appear in the

debugger.
Execution
if (cond) {
if (srcl < src2), 1 — dst
else 0 — dst
}
else nop
Pipeline
Pipeline Stage El
Read srcl, src2
Written dst
Unit in use L
Instruction Type Single-cycle
Delay Slots 0
See Also CMPLT2, CMPLTU, CMPLTU4
Examples Example 1
CWVPLT . L1 A1, A2, A3
Before instruction 1 cycle after instruction
Al | 0000 07E2h | 2018 Al | 0000 07E2h |
A2 | 0000 0F6Bh | 3947 A2 | 0000 OF6Bh |
A3 ‘ XXXX XXXxXh | A3 ’ 0000 0001h ‘ true

176 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com CMPLT — Compare for Less Than, Signed Integers
Example 2
CMPLT . L1 A1, A2, A3
Before instruction 1 cycle after instruction

Al | FFFF FED6h | -298 Al | FFFF FED6h

A2 | 0000 000Ch 12 A2 | 0000 000Ch

A3 | 0000000 | A3 | 0000 0001h | true
Example 3

CWPLT . L1 9, Al, A2

Before instruction 1 cycle after instruction

Al \ 0000 0005h | 5 Al \ 0000 0005h

A2 \ 0000 0000h \ false

A2 ‘ XXXX XXXxh |

SPRU732J-July 2010 Instruction Set 177

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
CMPLT2 — Compare for Less Than, Packed 16-Bit www.ti.com
CMPLT2 Compare for Less Than, Packed 16-Bit
Syntax CMPLT2 (.unit) src2, srcl, dst
unit = .S1 or .S2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| src2 srcl |x|0‘1|0‘1‘0‘0‘1|0|0‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s2 .S1, .52
src2 Xxs2
dst bv2
Description The CMPLT2 instruction is a pseudo-operation used to perform less-than comparisons
on signed, packed 16-bit data. Each signed 16-bit value in src2 is compared against the
corresponding signed 16-bit value in srcl, returning a 1 if src2 is less than srcl or
returning a 0 if it is not less than. The comparison results are packed into the two
least-significant bits of dst. The result for the lower pair of values is placed in bit 0, and
the results for the upper pair of values are placed in bit 1. The remaining bits of dst are
cleared to 0.
The assembler uses the operation CMPGT2 (.unit) srcl, src2, dst to perform this task
(see CMPGT2).
Execution
if (cond) {
if (Isb16(src2) < Isb16(srcl)), 1 — dst ,
else 0 — dst ;
if (msb16(src2) < msh16(srcl)), 1 — dst ,
else 0 — dst
}
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use .S
Instruction Type Single-cycle
Delay Slots 0
See Also CMPEQ2, CMPGT2, CMPLT, CMPLTU, CMPLTU4, XPND2

178 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS

www.ti.com

CMPLT2 — Compare for Less Than, Packed 16-Bit

Examples

Example 1
CVMPLT2 . S1 A4, A3, A5; assenbler treats as CMPGI2 A3, A4, A5

Before instruction 1 cycle after instruction
A3 | 1105 6E30h | 4357 28208 A3 |1105 6E30h
A4] 1105 6980h | 4357 27008 A4 \ 1105 6980h
A5 | 00 xoooch | A5 | 0000 0001h | false, true
Example 2
CMPLT2 . S2 B8, B2, B15; assenbler treats as CWPGI2 B2, B8, B15
Before instruction 1 cycle after instruction
B2 \ F23A 3789h | -3526 14217 B2 \ F23A 3789h
B8 \ 04B8 4975h | 1208 18805 B8 \ 04B8 4975h
B15 | x0x xxxxh | B15 | 0000 0000h | false, false
Example 3
CMPLT2 .S2 B8, B2, B12; assenbler treats as CWPGI2 B2, B8, B15
Before instruction 1 cycle after instruction
B2] 01A6 2451h | 422 9297 B2 \ 01A6 2451h \
B8 \ 0124 AO51h | 292 -24495 B8 \ 0124 AO51h \
B12 ’ XXXX XXXxh | B12 ‘ 0000 0003h ‘ true, true

SPRU732J-July 2010

Instruction Set 179

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
CMPLTU — Compare for Less Than, Unsigned Integers www.ti.com
CMPLTU Compare for Less Than, Unsigned Integers
Syntax CMPLTU (.unit) srcl, src2, dst
unit=.L1 or .L2

Compatibility C62x, C64x, and C64x+ CPU
Compact Instruction Format

Unit Opcode Format Figure

L L2c Figure D-7

Lx1c Figure D-10
Opcode
31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0
\ creg |z| dst src2 srcl |x| op |1|1\0|s\p\
3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

srcl uint L1, L2 101 1111

src2 xuint

dst uint

srcl ucst4 L1, .L2 101 1110

src2 xuint

dst uint

srcl xuint L1, L2 101 1101

src2 ulong

dst uint

srcl ucst4 or ucsts® L1, .L2 101 1100

src2 ulong

dst uint

@ On the C62x CPU, only the four LSBs (ucst4) are valid in the 5-bit src1 field. On the C64x and C64x+ CPU, all five bits (ucst5)
are valid in the 5-bit srcl field.

Description Performs an unsigned comparison of srcl to src2. If srcl is less than src2, then 1 is
written to dst; otherwise, O is written to dst.

On the C62x CPU: When the ucst4 operand is used, only the four LSBs are valid in the
5-bit srcl field; if the MSB of the srcl field is nonzero, the result is invalid.

On the C64x and C64x+ CPU: When the ucst5 operand is used, all five bits are valid in
the 5-bit src1l field.

Execution
if (cond) {
if (srcl < src2), 1 — dst
else 0 — dst
}
else nop
180 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

CMPLTU — Compare for Less Than, Unsigned Integers

Pipeline

Instruction Type
Delay Slots
See Also

Examples

Pipeline Stage El

Read srcl, src2

Written dst

Unit in use L
Single-cycle

0
CMPLT, CMPLT2, CMPLTU4

Example 1
CMPLTU . L1 A1, A2, A3

Before instruction

AL \ 0000 289Ah

| 10,394®

A2 \ FFFF F35Eh

| 4,294,964,0620

1 cycle after instruction

Al \ 0000 289Ah \

A2 \ FFFF F35Eh \

A3 | x0000 x00ch | A3 | 0000 0001h | true
@ Unsigned 32-bit integer
Example 2
CMPLTU . L1 14, A1, A2
Before instruction 1 cycle after instruction
A1[0000 000Fh | 150 A1 0000 000Fh \
A2 ‘ XXXX XXxxh | A2 ’ 0000 0001h ‘ true

@ Unsigned 32-bit integer

Example 3
CMPLTU . L1 Al, A5: Ad, A2

Before instruction

A5:A4 | 0000 0000h

Al | 003B 8260h | 3,900,000
A2 | XXXX XXXXh |
| 003A 0002h 3,801,090?

1 cycle after instruction

Al \ 003B 8260h \

A2 \ 0000 0000h \ false

A5:A4 \ 0000 0000h \ 003A 0002h

@ Unsigned 32-bit integer
@ Unsigned 40-bit (long) integer

SPRU732J-July 2010

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

181

13 TEXAS

INSTRUMENTS
CMPLTU4 — Compare for Less Than, Unsigned, Packed 8-Bit www.ti.com
CMPLTU4 Compare for Less Than, Unsigned, Packed 8-Bit
Syntax CMPLTU4 (.unit) src2, srcl, dst
unit = .S1 or .S2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x|0‘1|0‘1‘0‘1‘1|0|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl u4 .S1, .52
src2 xu4
dst bv4
Description The CMPLTUA4 instruction is a pseudo-operation that performs less-than comparisons on

packed 8-bit data. Each unsigned 8-bit value in src2 is compared against the
corresponding unsigned 8-bit value in srcl, returning a 1 if the byte in src2 is less than
the corresponding byte in srcl or a 0 it if is not less than. The comparison results are
packed into the four least-significant bits of dst.

The 8-bit values in each input are numbered from 0 to 3, starting with the
least-significant byte, and moving towards the most-significant byte. The comparison
results for byte 0 are written to bit O of the result. Similarly, the results for byte 1 to 3 are
written to bits 1 to 3 of the result, respectively, as shown in the diagram below. The
remaining bits of dst are cleared to 0.

The assembler uses the operation CMPGTU4 (.unit) srcl, src2, dst to perform this task
(see CMPGTUA4).

Execution
if (cond) {
if (ubyteO(src2) < ubyteO(srcl)), 1 — dst,
else 0 — dst ;
if (ubytel(src2) < ubytel(srcl)), 1 — dst,
else 0 — dst ,;
if (ubyte2(src2) < ubyte2(src2)), 1 — dst,
else 0 — dst ,;
if (ubyte3(src2) < ubyte3(srcl)), 1 — dst,
else 0 — dst ,
}
else nop
182 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

CMPLTU4 — Compare for Less Than, Unsigned, Packed 8-Bit

Pipeline
Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .S
Instruction Type Single-cycle
Delay Slots 0
See Also CMPEQ4, CMPGT, CMPLT, CMPLT2, CMPLTU, XPND4
Examples Example 1
CVMPLTU4 . S1 A4, A3, A5; assenbler treats as CVMPGTW A3, A4, A5
Before instruction 1 cycle after instruction
A3 253A1C E4h | 3758 28 228 A3 |25 3A 1C E4h \
A4 | 02 B8 4E 76h 218478118 A4 02 B8 4E 76h \
A5 ’ XXXX XXXXh | A5 | 0000 0009h ‘ true, false, false, true
Example 2
CWMPLTU4 . S2 B8, B2, B13; assenbler treats as CMWPGTW B2, B8, B13
Before instruction 1 cycle after instruction
B2 89 F2 3A 37h | 137 242 58 55 B2 89 F2 3A 37h |
BS | 04 8F 17 89h | 4143 23137 B8 |04 8F 17 8%h |
B13 ‘ XX XX XX XXh | B13 | 0000 000Eh ‘ true, true, true, false
Example 3
CWMPLTU4 . S2 B8, B2, B13; assenbler treats as CMPGTW B2, B8, B13
Before instruction 1 cycle after instruction
B2 (1233 9D 51h | 1851157 81 B2 (1233 9D 51h |
B8 | 75 67 24 C5h 117 103 36 197 B8 | 75 67 24 C5h |
B13 ‘ XX XX XX XXh | B13 | 0000 0002h ‘ false, false, true, false

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

183

13 TEXAS

INSTRUMENTS
CMPY — Complex Multiply Two Pairs, Signed, Packed 16-Bit www.ti.com
CMPY Complex Multiply Two Pairs, Signed, Packed 16-Bit
Syntax CMPY (.unit) srcl, src2, dst_o:dst_e
unit = .M1 or .M2
Compatibility C64x+ CPU
Opcode
31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lof[ofo]1] dst src2 srcl [x]oJol1]o]1]o]1][1]o]o]s]p]
5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s2 M1, .M2
src2 Xxs2
dst dint
Description Returns two dot-products between two pairs of signed, packed 16-bit values. The values

in srcl and src2 are treated as signed, packed 16-bit quantities. The signed results are
written to a 64-bit register pair.

The product of the lower halfwords of srcl and src2 is subtracted from the product of the
upper halfwords of srcl and src2. The result is written to dst_o.

The product of the upper halfword of srcl and the lower halfword of src2 is added to the
product of the lower halfword of src1 and the upper halfword of src2. The result is written
to dst_e.

If the result saturates, the M1 or M2 bit in SSR and the SAT bit in CSR are written one
cycle after the result is written to dst_e.

This instruction executes unconditionally.

NOTE: In the overflow case, where all four halfwords in srcl and src2 are
8000h, the saturation value 7FFF FFFFh is written into the 32-bit dst_e
register.

Execution

sat((Isb16(srcl) x msb16(src2)) + (msb16(srcl) x Isb16(src2))) — dst_e
(msb16(srcl) x msb16(src2)) - (Isb16(srcl) x Isb16(src2)) — dst_o

Instruction Type Four-cycle

Delay Slots 3

See Also CMPYR, CMPYR1, DOTP2, DOTPN2

184 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

CMPY — Complex Multiply Two Pairs, Signed, Packed 16-Bit

Examples Example 1
CWPY . ML A0, Al, A3: A2
Before instruction 4 cycles after instruction @
A0 | 0008 0004h | A2 |0000 0034h
AL | 0009 0002h | A3 [0000 0040h
@ CSR.SAT and SSR.M1 unchanged by operation
Example 2
CWPY . M2X BO, Al, B3: B2
Before instruction 4 cycles after instruction @
BO | 7FFF 7FFFh | B2 |FFFF 8001h
AL | 7FFF 8000h | B3 | 7FFE 8001h
@ CSR.SAT and SSR.M2 unchanged by operation
Example 3
CWPY . ML AQ, Al, A3: A2
Before instruction 4 cycles after instruction ®
A0 | 8000 8000h | A2 | 7FFF FFFFh
AL [8000 8000h | A3 [0000 0000h

@ CSR.SAT and SSR.M1 unchanged by operation

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

185

13 TEXAS

INSTRUMENTS
CMPYR — Complex Multiply Two Pairs, Signed, Packed 16-Bit With Rounding www.ti.com
CMPYR Complex Multiply Two Pairs, Sighed, Packed 16-Bit With Rounding
Syntax CMPYR (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C64x+ CPU
Opcode
31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lof[ofo]1] dst src2 srcl [x]oJol1]o]1]1]1]1]o]o]s]p]
5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s2 M1, .M2
src2 Xxs2
dst s2
Description Performs two dot-products between two pairs of signed, packed 16-bit values. The

values in srcl and src2 are treated as signed, packed 16-bit quantities. The signed
results are rounded with saturation, shifted, packed and written to a 32-bit register.

The product of the lower halfwords of src1 and src2 is subtracted from the product of the
upper halfwords of srcl and src2. The result is rounded by adding 2™ to it. The 16
most-significant bits of the rounded value are written to the upper half of dst.

The product of the upper halfword of srcl and the lower halfword of src2 is added to the
product of the lower halfword of src1 and the upper halfword of src2. The result is
rounded by adding 2*° to it. The 16 most-significant bits of the rounded value are written
to the lower half of dst.

If either result saturates, the M1 or M2 bit in SSR and the SAT bit in CSR are written one
cycle after the result is written to dst.

This instruction executes unconditionally.

Execution

sat((Isb16(srcl) x msb16(src2)) + (msb16(srcl) x Isb16(src2))) — tmp_e
msb16(sat(tmp_e + 0000 8000h)) — Ish16(dst)

sat((msb16(srcl) x msh16(src2)) - (Isb16(srcl) x Isb16(src2))) — tmp_o
msb16(sat(tmp_o + 0000 8000h)) — msb16(dst)

Instruction Type Four-cycle

Delay Slots 3

See Also CMPY, CMPYR1, DOTP2, DOTPN2

186 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com CMPYR — Complex Multiply Two Pairs, Signed, Packed 16-Bit With Rounding
Examples Example 1
CMPYR . ML AQ, Al, A2
Before instruction 4 cycles after instruction @
A0 | 0800 0400h | A2 0040 0034h
Al | 0900 0200h \

@ CSR.SAT and SSR.M1 unchanged by operation

Example 2
CMVPYR . M2X BO, Al, B2
Before instruction 4 cycles after instruction @
BO \ 7FFF 7FFFh \ B2 7FFF 0000h
Al \ 7FFF 8000h \

@ CSR.SAT and SSR.M2 unchanged by operation

Example 3
CVPYR . ML A0, Al, A2
Before instruction 4 cycles after instruction
AO | 8000 8000h \ A2 0000 7FFFh |
Al | 8000 8000h \
CSR | 0001 0100h \ CSR® | 0001 0300h |
SSR | 0000 0000h \ SSR® 0000 0010h |

@ CSR.SAT and SSR.M1 set to 1, 5 cycles after instruction

Example 4
CWPYR . M2 BO, B1, B2

Before instruction 4 cycles after instruction
BO \ 8000 8000h \ B2 | 0001 7FFFh |
B1 | 8000 8001h |
CSR \ 0001 0100h \ CSRW® | 0001 0300h |
SSR | 0000 0000h | SSR® | 0000 0020h |

@ CSR.SAT and SSR.M2 set to 1, 5 cycles after instruction

SPRU732J-July 2010 Instruction Set 187

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
CMPYR1 — Complex Multiply Two Pairs, Signed, Packed 16-Bit With Rounding www.ti.com
CMPYR1 Complex Multiply Two Pairs, Sighed, Packed 16-Bit With Rounding
Syntax CMPYRZ1 (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C64x+ CPU
Opcode
31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lof[ofo]1] dst src2 srcl [x]oJol1]1]o]o]1][1]o]o]s]p]
5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s2 M1, .M2
src2 Xxs2
dst s2
Description Performs two dot-products between two pairs of signed, packed 16-bit values. The

values in srcl and src2 are treated as signed, packed 16-bit quantities. The signed
results are rounded with saturation to 31 bits, shifted, packed and written to a 32-bit
register.

The product of the lower halfwords of src1l and src2 is subtracted from the product of the
upper halfwords of srcl and src2. The intermediate result is rounded by adding 2** to it.
This value is shifted left by 1 with saturation. The 16 most-significant bits of the shifted
value are written to the upper half of dst.

The product of the upper halfword of srcl and the lower halfword of src2 is added to the
product of the lower halfword of srcl and the upper halfword of src2. The intermediate
result is rounded by adding 2* to it. This value is shifted left by 1 with saturation. The 16
most-significant bits of the shifted value are written to the lower half of dst.

If either result saturates in the rounding or shifting process, the M1 or M2 bit in SSR and
the SAT bit in CSR are written one cycle after the results are written to dst.

This instruction executes unconditionally.

Execution

sat((Isb16(srcl) x msb16(src2)) + (msb16(srcl) x Isb16(src2))) — tmp_e
msb16(sat((tmp_e + 0000 4000h) << 1)) — Isb16(dst)

sat((msb16(srcl) x msb16(src2)) - (Isb16(srcl) x Isb16(src2))) — tmp_o
mshb16(sat((tmp_e + 0000 4000h) << 1)) — msb16(dst)

Instruction Type Four-cycle

Delay Slots 3

See Also CMPY, CMPYR, DOTP2, DOTPN2

188 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com CMPYR1 — Complex Multiply Two Pairs, Signed, Packed 16-Bit With Rounding
Examples Example 1
CMPYRL . ML AO, AL, A2
Before instruction 4 cycles after instruction @
A0 | 0800 0400h | A2 0080 0068h
Al \ 0900 0200h \
@ CSR.SAT and SSR.M1 unchanged by operation
Example 2
CMPYRL . M2X BO, Al, B2
Before instruction 4 cycles after instruction
BO | 7FFF 7FFFh | B2 | 7TFFF FFFFh |
Al | 7FFF 8000h \
CSR 0001 0100h | CSR® | 0001 0300h |
SSR \ 0000 0000h \ SSR® | 0000 0020h |
@ CSR.SAT and SSR.M2 set to 1, 5 cycles after instruction
Example 3
CMPYRL . ML AQ, Al, A2
Before instruction 4 cycles after instruction
AO \ 8000 8000h \ A2 | 0000 7FFFh |
Al \ 8000 8000h \
CSR \ 0001 0100h \ CSR® | 0001 0300h |
SSR \ 0000 0000h \ SSR® | 0000 0010h |
@ CSR.SAT and SSR.M1 set to 1, 5 cycles after instruction
Example 4
CMPYRL . M2 BO, B1, B2
Before instruction 4 cycles after instruction
BO \ C000 CO00h \ B2 | 0001 7FFFh |
B1 | 8000 8001h |
CSR \ 0001 0100h \ CSRW® | 0001 0300h |
SSR | 0000 0000h | SSR® | 0000 0020h |

@ CSR.SAT and SSR.M2 set to 1, 5 cycles after instruction

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

189

13 TEXAS

INSTRUMENTS
CMTL — Commit Store Linked Word to Memory Conditionally www.ti.com
CMTL Commit Store Linked Word to Memory Conditionally
Syntax CMTL (.unit) *baseR, dst
unit = .D2
Compatibility C64x+ CPU

NOTE: The atomic operations are not supported on all C64x+ devices, see your
device-specific data manual for more information.

Opcode
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| creg | z] dst baseR loJofoJoJoJofJof[1][1]1]o2]o]o]o]o1]p]
3 1 5 5 1
Opcode map field used... For operand type... Unit
baseR address .D2
dst int
Description The CMTL instruction performs a read of the 32-bit word in memory at the address
specified by baseR. For linked-operation aware systems, the read request is interpreted
as a request to write the corresponding linked-stored 32-bit word (previously buffered by
an SL operation) to memory conditionally. The decision to perform the write to memory is
based on whether the link valid flag is set and whether the previously buffered address is
equal to the address specified by baseR. If the result is written, a value of 1 is returned
as the 32-bit data for the read operation; otherwise a value of 0 is returned. The return
value is written to dst.
When initiating the memory read operation, the CPU signals that this is a commit-linked
read operation. Other than this signaling, the operation of the CMTL instruction from the
CPU perspective is identical to that of LDW *baseR, dst.
See Chapter 9 for more details.
Execution
if (cond) mem — dst
signal commit-linked operation
else nop
Instruction Type Load
Delay Slots 4
See Also LL, SL
190 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

DDOTP4 — Double Dot Product, Signed, Packed 16-Bit and Signed, Packed 8-Bit

DDOTP4 Double Dot Product, Signed, Packed 16-Bit and Signed, Packed 8-Bit
Syntax DDOTP4 (.unit) srcl, src2, dst_o:dst_e
unit = .M1 or .M2
Compatibility C64x+ CPU
Opcode
31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lof[ofo]1] src2 srcl [x]ol1]1]o]o]o]1][1]o]o]s]p]
5 5 1 1 1

Opcode map field used... For operand type... Unit
srcl ds2 M1, .M2
src2 xs4
dst dint

Description Performs two DOTP2 operations simultaneously.

The lower byte of the lower halfword of src2 is sign-extended to 16 bits and multiplied by
the lower halfword of src1. The upper byte of the lower halfword of src2 is sign-extended

to 16 bits and multiplied by the upper halfword of srcl. The two products are added

together and the result is then written to dst_e.

The lower byte of the upper halfword of src2 is sign-extended to 16 bits and multiplied by
the lower halfword of srcl. The upper byte of the upper halfword of src2 is sign-extended

to 16 bits and multiplied by the upper halfword of srcl. The two products are added

together and the result is then written to dst_o.

There are no saturation cases possible.

This instruction executes unconditionally.

src
d1 do

MSB16

LSB16 |

src2
c3 c2

c0

| MsBga

MSB8b

LSB8b
T

d1xc3+d0xc2

dst o

d1xc1+d0xcO

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

191

13 TEXAS

INSTRUMENTS
DDOTP4 — Double Dot Product, Signed, Packed 16-Bit and Signed, Packed 8-Bit www.ti.com
Execution
(msb16(srcl) x msh8(Ish16(src2))) + (Isb16(srcl) x Isb8(Isb16(src2))) — dst e
(msb16(srcl) x msh8(msb16(src2))) + (Isb16(srcl) x Ish8(msbl16(src2))) — dst o
Instruction Type Four-cycle
Delay Slots 3
Examples Example 1
DDOTP4 . ML A4, A5, A9: A8
Before instruction 4 cycles after instruction
A4 | 0005 0003h | 53 A8 | 0000 001Bh | Gx3+@xa=27
A5 | 0102 0304h | 1,234 A9 | 0000 000Bh | Gx1+@Ex2)=11
Example 2
DDOTP4 . MLX A4, B5, A9: A8
Before instruction 4 cycles after instruction
A4 | 8000 8000h | A8 | FF81 0000h \
B5 8080 7F7Fh | A9 | 0080 0000h \
192 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com DDOTPH2 — Double Dot Product, Two Pairs, Signed, Packed 16-Bit
DDOTPH2 Double Dot Product, Two Pairs, Signed, Packed 16-Bit
Syntax DDOTPH2 (.unit) srcl_o:srcl_e, src2, dst_o:dst e
unit = .M1 or .M2
Compatibility C64x+ CPU
Opcode
31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lof[ofo]1] src2 srcl I xJol1lol1]1]1]1]1]o]o]s]p]
5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl ds2 M1, .M2
src2 Xxs2
dst dint
Description Returns two dot-products between two pairs of signed, packed 16-bit values. The values

in srcl_e, srcl o, and src2 are treated as signed, packed 16-bit quantities. The signed
results are written to a 64-bit register pair.

The product of the lower halfwords of srcl_o and src2 is added to the product of the
upper halfwords of srcl_o and src2. The result is then written to dst_o.

The product of the upper halfword of src2 and the lower halfword of src1_o is added to
the product of the lower halfword of src2 and the upper halfword of src1_e. The result is
then written to dst_e.

If either result saturates, the M1 or M2 bit in SSR and the SAT bit in CSR are written one
cycle after the results are written to dst_o:dst_e.

This instruction executes unconditionally.

src1_o srcl_e src2
d3 d2 d1 do c1 c0

[msB16 [LsB16 | | msB16 | LsB16 | | MsB16 | LsB16
T T |

32 | | 32 |
dst o dst e
d3xc1+d2xc0 d2xc1+d1xc0

SPRU732J-July 2010

Instruction Set 193

Copyright © 2010, Texas Instruments Incorporated

DDOTPH2 — Double Dot Product, Two Pairs, Signed, Packed 16-Bit

13 TEXAS

INSTRUMENTS

www.ti.com

Execution

sat((msb16(srcl_o) x msh16(src2)) + (Isb16(srcl_o) x Ish16(src2))) — dst o
sat((Isb16(srcl_o) x msb16(src2)) + (msb16(srcl_e) x Isb16(src2))) — dst_e

Instruction Type Four-cycle
Delay Slots 3
See Also DDOTPLZ2, DDOTPH2R, DDOTPL2R
Examples Example 1
DDOTPH2 . ML AS: A4, AG, A9: A8
Before instruction 4 cycles after instruction @
A4 | 0005 0003h | 5,3 A8 | 0000 0021h | (4x7)+(5x1)=33
A5 | 0002 0004h | 2,4 A9 | 0000 0012h | (2x7)+(@x1)=18
A6 | 0007 0001h | 7.1
@ CSR.SAT and SSR.M1 unchanged by operation
Example 2
DDOTPH2 . ML AS: Ad, A6, A9: A8
Before instruction 4 cycles after instruction
A4 8000 5678h | A8 | 7FFF FFFFh |
A5 | 1234 8000h | A9 | 36E6 0000h |
A6 | 8000 8000h |
CSR | 0001 0100h | CSR® | 0001 0300h |
SSR | 0000 0000h | SSR® 0000 0010h |
@ CSR.SAT and SSR.M1 set to 1, 5 cycles after instruction
Example 3
DDOTPH2 . M2X BS: B4, A6, B9: BS
Before instruction 4 cycles after instruction @
B4 | 46B4 16BAN | B8 | F41B 4AFFh |
B5 | BBAE D169h | B9 | F3B4 FAADN |
A6 | 340B F73Bh |

(6]

CSR.SAT and SSR.M2 unchanged by operation

194 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

DDOTPH2R — Double Dot Product With Rounding, Two Pairs, Signed, Packed 16-Bit

DDOTPH2R Double Dot Product With Rounding, Two Pairs, Signed, Packed 16-Bit
Syntax DDOTPH2R (.unit) srcl_o:srcl_e, src2, dst
unit = .M1 or .M2
Compatibility C64x+ CPU
Opcode
31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lof[ofo]1] src2 srcl [x]ol1lol1]o]1]1][1]o]o]s]p]
5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl ds2 M1, .M2
src2 Xxs2
dst s2
Description Returns two dot-products between two pairs of signed, packed 16-bit values. The values
in srcl_e, srcl o, and src2 are treated as signed, packed 16-bit quantities. The signed
results are rounded, shifted right by 16 and packed into a 32-bit register.
The product of the lower halfwords of srcl_o and src2 is added to the product of the
upper halfwords of src1_o and src2. The result is rounded by adding 2™ to it and
saturated if appropriate. The 16 most-significant bits of the result are written to the 16
most-significant bits of dst.
The product of the upper halfword of src2 and the lower halfword of src1_o is added to
the product of the lower halfword of src2 and the upper halfword of src1_e. The result is
rounded by adding 2*° to it and saturated if appropriate. The 16 most-significant bits of
the result are written to the 16 least-significant bits of dst.
If either result saturates, the M1 or M2 bit in SSR and the SAT bit in CSR are written one
cycle after the results are written to dst.
This instruction executes unconditionally.
Execution

msh16(sat((msb16(srcl o) x msb16(src2)) +
(Isb16(srcl_o) x Ish16(src2)) + 0000 8000h)) — msb16(dst)

msb16(sat((Isb16(src1l_o) x msb16(src2)) +
(msb16(srcl_e) x Isb16(src2)) + 0000 8000h)) — Isb16(dst)

Instruction Type
Delay Slots

See Also

Four-cycle
3
DDOTPH2, DDOTPL2, DDOTPL2R

SPRU732J-July 2010

Instruction Set 195

Copyright © 2010, Texas Instruments Incorporated

I} TEXAS
INSTRUMENTS
DDOTPH2R — Double Dot Product With Rounding, Two Pairs, Signed, Packed 16-Bit www.ti.com
Examples Example 1
DDOTPH2R . ML A5: A4, A6, A8
Before instruction 4 cycles after instruction @
A4 | 46B4 16BAh | A8 F3B5 F41Bh
A5 | BBAE D169h |
A6 | 340B F73Bh |

(€}

CSR.SAT and SSR.M1 unchanged by operation

Example 2
DDOTPH2R . ML AS: Ad, A6, A8

A4

A5

A6

CSR

SSR

Before instruction

\ 8000 5678h

\ 1234 8000h

\ 0001 0100h

|
|
\ 8000 8001h |
|
|

\ 0000 0000h

4 cycles after instruction

A8 36E6 7FFFh
CSR® | 0001 0300h |
SSR® \ 0000 0010h \

1)

CSR.SAT and SSR.M1 set to 1, 5 cycles after instruction

Example 3

DDOTPH2R . M2 B5: B4, B6, B8

B4
B5
B6
CSR

SSR

Before instruction

] 8000 8000h

\ 8000 8000h

\ 0001 0100h

|
|
] 8000 8001h |
|
|

] 0000 0000h

4 cycles after instruction

B8 7FFF 7FFFh
CSR® \ 0001 0300h \
SSR® \ 0000 0020h \

(6]

CSR.SAT and SSR.M2 set to 1, 5 cycles after instruction

196

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com

DDOTPL2 — Double Dot Product, Two Pairs, Signed, Packed 16-Bit

DDOTPL2 Double Dot Product, Two Pairs, Signed, Packed 16-Bit
Syntax DDOTPL2 (.unit) srcl_o:srcl_e, src2, dst_o:dst_e
unit = .M1 or .M2
Compatibility C64x+ CPU
Opcode
31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lof[ofo]1] dst src2 srcl [x]ol1lol1]1]o]1]1]o]o]s]p]
5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl ds2 M1, .M2
src2 Xxs2
dst dint
Description Returns two dot-products between two pairs of signed, packed 16-bit values. The values

in srcl_e, srcl o, and src2 are treated as signed, packed 16-bit quantities. The signed
results are written to a 64-bit register pair.

The product of the lower halfwords of srcl_e and src2 is added to the product of the
upper halfwords of srcl_e and src2. The result is then written to dst_e.

The product of the upper halfword of src2 and the lower halfword of src1_o is added to
the product of the lower halfword of src2 and the upper halfword of src1_e. The result is
then written to dst_o.

If either result saturates, the M1 or M2 bit in SSR and the SAT bit in CSR are written one
cycle after the results are written to dst_o:dst_e.

src1_o srcl_e src2
d3 d2 d1 do ct c0

MsB16 | LSB16 | | MSB16 | LSB16 | [msB16 | LsB16
T T

32 | | 32 |
dst o dst e
d2xc1+d1xcl d1xc1+d0xcO

SPRU732J-July 2010

Instruction Set 197

Copyright © 2010, Texas Instruments Incorporated

DDOTPL2 — Double Dot Product, Two Pairs, Signed, Packed 16-Bit

13 TEXAS
INSTRUMENTS

www.ti.com

Execution

sat((msb16(srcl_e) x msh16(src2)) + (Isb16(srcl_e) x Ish16(src2))) — dst_e
sat((Isb16(srcl_o) x msb16(src2)) + (msb16(srcl_e) x Isb16(src2))) — dst_o

Instruction Type Four-cycle

Delay Slots 3

See Also DDOTPH2, DDOTPL2R, DDOTPH2R
Examples Example 1

DDOTPL2 . ML AS5: A4, A6, A9: A8

Before instruction

4 cycles after instruction @

A4 | 0005 0003h | 5,3 A8 | 0000 0026h | (4x7)+(5x1)=33
A5 | 0002 0004h | 2,4 A9 | 0000 0021h | (2x7)+(@x1)=18
A6 | 0007 0001h | 7.1
@ CSR.SAT and SSR.M1 unchanged by operation
Example 2
DDOTPL2 . ML AS: Ad, AB, A9: A8
Before instruction 4 cycles after instruction @
A4 | 46B4 16BAN | A8 | 0D98 4C9AN |
A5 | BBAE D169h | A9 | FA1B 4AFFh |
AG | 3408 F73Bh |
@ CSR.SAT and SSR.M1 unchanged by operation
Example 3
DDOTPL2 . ML AS: Ad, AB, A9: A8
Before instruction 4 cycles after instruction
A4 | 8000 5678h | A8 | 14C4 0000h |
A5 | 1234 8000h | A9 | 7FFF FFFFh |
A6 | 8000 8000h |
CSR | 0001 0100h | CSR® [00010300h |
SSR | 0000 0000h | SSR® | 00000010h |

@ CSR.SAT and SSR.M1 set to 1, 5 cycles after instruction

198 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com

DDOTPL2R — Double Dot Product With Rounding, Two Pairs, Signed Packed 16-Bit

DDOTPL2R Double Dot Product With Rounding, Two Pairs, Signed Packed 16-Bit
Syntax DDOTPL2R (.unit) src1l_o:srcl_e, src2, dst
unit = .M1 or .M2
Compatibility C64x+ CPU
Opcode
31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lof[ofo]1] src2 srcl [x]ol1]ol1]o]o]1][1]o]o]s]p]
5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl ds2 M1, .M2
src2 Xxs2
dst s2
Description Returns two dot-products between two pairs of signed, packed 16-bit values. The values
in srcl_e, srcl o, and src2 are treated as signed, packed 16-bit quantities. The signed
results are rounded, shifted right by 16 and packed into a 32-bit register.
The product of the lower halfwords of srcl_e and src2 is added to the product of the
upper halfwords of src1_e and src2. The result is rounded by adding 2™ to it and
saturated if appropriate. The 16 most-significant bits of the result are written to the 16
least-significant bits of dst.
The product of the upper halfword of src2 and the lower halfword of src1_o is added to
the product of the lower halfword of src2 and the upper halfword of src1_e. The result is
rounded by adding 2*° to it and saturated if appropriate. The 16 most-significant bits of
the result are written to the 16 most-significant bits of dst.
If either result saturates, the M1 or M2 bit in SSR and the SAT bit in CSR are written one
cycle after the results are written to dst.
Execution

msb16(sat((msbl16(srcl_e) x msb16(src2)) +
(Isb16(srcl_e) x Ish16(src2)) + 0000 8000h)) — Isb16(dst)

msb16(sat((Isb16(srcl_o) x msb16(src2)) +
(msb16(srcl_e) x Isb16(src2)) + 0000 8000h)) — msb16(dst)

Instruction Type
Delay Slots

See Also

Four-cycle
3
DDOTPH2R, DDOTPL2, DDOTPH2

SPRU732J-July 2010

Instruction Set 199

Copyright © 2010, Texas Instruments Incorporated

I} TEXAS
INSTRUMENTS
DDOTPL2R — Double Dot Product With Rounding, Two Pairs, Signed Packed 16-Bit www.ti.com
Examples Example 1
DDOTPL2R . ML A5: A4, A6, A8
Before instruction 4 cycles after instruction @
A4 | 46B4 16BAh | A8 F41B 0D98h
A5 | BBAE D169h |
A6 | 340B F73Bh |

@ CSR.SAT and SSR.M1 unchanged by operation

Example 2
DDOTPL2R . ML AS: Ad, A6, A8

A4

A5

A6

CSR

SSR

Before instruction 4 cycles after instruction
8000 5678h | A8 7FFF 14C4h
| 1234 8000h |
8000 8001h |
| 0001 0100h | CSR® | 0001 0300h |
| 0000 0000h | SSR® [00000010h |

@ CSR.SAT and SSR.M1 set to 1, 5 cycles after instruction

Example 3
DDOTPL2R . M2 BS: B4, B6, B8

B4
B5
B6
CSR

SSR

Before instruction 4 cycles after instruction
| 8000 8000h | B8 7FFF 7FFFh
| 8000 8000h |
| 8000 8001h |
| 0001 0100h | CSR® [00010300h |
| 0000 0000h | SSR® | 0000 0020h |

@ CSR.SAT and SSR.M2 set to 1, 5 cycles after instruction

200 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com

DEAL — Deinterleave and Pack

DEAL Deinterleave and Pack
Syntax DEAL (.unit) src2, dst
unit = .M1 or .M2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| creg | z] dst src2 l1]1]1]of1]x]o]ofofof1]2][2]2]0]o]s]p]
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 xuint M1, .M2
dst uint
Description Performs a deinterleave and pack operation on the bits in src2. The odd and even bits of
src2 are extracted into two separate, 16-bit quantities. These 16-bit quantities are then
packed such that the even bits are placed in the lower halfword, and the odd bits are
placed in the upper halfword.
As a result, bits 0, 2, 4, ..., 28, 30 of src2 are placed in bits 0, 1, 2, ..., 14, 15 of dst.
Likewise, bits 1, 3, 5, ..., 29, 31 of src2 are placed in bits 16, 17, 18, ..., 30, 31 of dst.
31 0
aAbB cCdD eEfF gGhH iljJ kKIL mMnN oOpP « src2
DEAL
! l
31 0
abcd efgh ijkl mnop ABCD EFGH IJKL MNOP « dst
NOTE: The DEAL instruction is the exact inverse of the SHFL instruction
(see SHFL).
Execution
if (cond) {
SIC2 3129271 — USt 313020..16
SIC2 3028260 — USt 151413.0
}
else nop

SPRU732J-July 2010

Instruction Set 201

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
DEAL — Deinterleave and Pack www.ti.com
Pipeline
Pipeline Stage El E2
Read src2
Written dst
Unit in use M
Instruction Type Two-cycle
Delay Slots 1
See Also SHFL
Example DEAL . ML Al, A2
Before instruction 2 cycles after instruction
AL [9E52 6E30h | Al |9E52 6E30h |
A2 | xooo xooch | A2 |B174 6CA4h |
202 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com DINT — Disable Interrupts and Save Previous Enable State
DINT Disable Interrupts and Save Previous Enable State
Syntax DINT
unit = none
Compatibility C64x+ CPU
Opcode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofoJofs]ofofofofofofofofofofofofo[s][ofofofoofofofofofofofo]o]p]
1

Description Disables interrupts in the current cycle, copies the contents of the GIE bit in TSR into the
SGIE bit in TSR, and clears the GIE bit in both TSR and CSR. The PGIE bit in CSR is

unchanged.

The CPU will not service a maskable interrupt in the cycle immediately following the
DINT instruction. This behavior differs from writes to GIE using the MVC instruction. See
section 5.2 for details.

The DINT instruction cannot be placed in parallel with the following instructions: MVC
reg, TSR; MVC reg, CSR; B IRP; B NRP; NOP n; RINT; SPKERNEL; SPKERNELR,;
SPLOOP; SPLOOPD; SPLOOPW; SPMASK; or SPMASKR.

This instruction executes unconditionally.

NOTE: The use of the DINT and RINT instructions in a nested manner, like the
following code:

DI NT
DI NT
RI NT
RI NT

leaves interrupts disabled. The first DINT leaves TSR.GIE cleared to O,
so the second DINT leaves TSR,.SGIE cleared to 0. The RINT
instructions, therefore, copy zero to TSR.GIE (leaving interrupts
disabled).

Execution Disable interrupts in current cycle

GIE bit in TSR — SGIE bit in TSR
0 — GIE bitin TSR
0 — GIE bitin CSR

Instruction Type Single-cycle

Delay Slots 0

See Also RINT

SPRU732J-July 2010 Instruction Set 203

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
DMV — Move Two Independent Registers to Register Pair www.ti.com
DMV Move Two Independent Registers to Register Pair
Syntax DMV (.unit) srcl, src2, dst_o:dst e
unit = .S1 or .S2
Compatibility C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x|1‘1|1‘0‘1‘1‘1|1|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl sint .81, .S2
src2 xsint
dst dint
Description The srcl operand is written to the odd register of the register pair specified by dst and
the src2 operand is written to the even register of the register pair specified by dst.
Execution
if (cond) {
src2 — dst_e
srcl — dst_ o
}
else nop
Instruction Type Single-cycle
Delay Slots 0
Examples Example 1
DW .Sl AQ, Al, A3: A2
Before instruction 1 cycle after instruction
A0 |87654321h | A2 [12345678h \
Al |12345678h | A3 | 87654321h |
Example 2
DW . S2X BO, Al, B3: B2
Before instruction 1 cycle after instruction
BO | 0007 0009h | B2 |12345678h \
AL [12345678h | B3 |0007 0009h \
204 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

DOTP2 — Dot Product, Signed, Packed 16-Bit

DOTP2 Dot Product, Signed, Packed 16-Bit
Syntax DOTP2 (.unit) srcl, src2, dst
or
DOTP2 (.unit) srcl, src2, dst_o:dst_e
unit = .M1 or .M2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 6 5 4 3 2 1 0
’ creg |z| dst src2 srcl |x|0‘ op ’1|1|O‘0|s‘p‘
3 1 5 5 5 1 5 1 1
Opcode map field used... For operand type... Unit Opfield
srcl s2 M1, .M2 01100
src2 Xs2
dst int
srcl s2 M1, .M2 01011
src2 Xs2
dst sllong
Description Returns the dot-product between two pairs of signed, packed 16-bit values. The values
in srcl and src2 are treated as signed, packed 16-bit quantities. The signed result is
written either to a single 32-bit register, or sign-extended into a 64-bit register pair.
The product of the lower halfwords of srcl and src2 is added to the product of the upper
halfwords of srcl and src2. The result is then written to the dst.
If the result is sign-extended into a 64-bit register pair, the upper word of the register pair
always contains either all Os or all 1s, depending on whether the result is positive or
negative, respectively.
31 16 15 0
| a_hi | a_lo ‘ «—srcl
DOTP2
| b_hi | b_lo ‘ < src2
63 32 31 0
OorF | a_hixb_hi+a_loxb_lo ‘ « dst_o:dst_e

SPRU732J-July 2010

Instruction Set 205

Copyright © 2010, Texas Instruments Incorporated

DOTP2 — Dot Product, Signed, Packed 16-Bit

13 TEXAS
INSTRUMENTS

www.ti.com

The 32-bit result version returns the same results that the 64-bit result version does in
the lower 32 bits. The upper 32-bits are discarded.

31 16 15 0
‘ a_hi ‘ a_lo ‘ « srcl
DOTP2
\ b_hi \ b_lo \ < src2
31 0
\ a hixb_hi+a_loxb_lo \ — dst
NOTE: In the overflow case, where all four halfwords in srcl and src2 are
8000h, the value 8000 0000h is written into the 32-bit dst and
0000 0000 8000 0000h is written into the 64-bit dst.
Execution
if (cond) (Isb16(srcl) x Isb16(src2)) + (msb16(srcl) x msb16(src2)) — dst
else nop
Pipeline
Pipeline Stage El E2 E3 E4
Read srcl, src2
Written dst
Unit in use M
Instruction Type Four-cycle
Delay Slots 3
See Also DOTPN2
Examples Example 1
DOTP2 . ML A5, A6, A8
Before instruction 4 cycles after instruction
A5 | 6A32 1193h | 27186 4499 A5 | 6A32 1193h |
A | B174 6CA4h -20108 27812 A | B174 6CA4h \
A8 | 000 x000ch | A8 | E6DF F6D4h | -421,529,900

206 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS

www.ti.com

DOTP2 — Dot Product, Signed, Packed 16-Bit

Example 2
DOTP2 . ML A5, AB, A9: A8

Before instruction 4 cycles after instruction
A5 | 6A32 1193h | 27186 4499 A5 | 6A32 1193h |
AG | B174 6CA4h | -20108 27812 AG | B174 6CA4h |
A9:A8 | x00x x000¢h | 0000 x000¢h A9:AS | FFFF FFFFh | E6DF F6D4h
-421,529,900
Example 3
DOTP2 . M2 B2, B5, BS
Before instruction 4 cycles after instruction
B2 1234 3497h | 4660 13463 B2 1234 3497h |
B5 | 21FF 50A7h | 8703 20647 B5 | 21FF 50A7h |
B8 | x000¢ x000ch | B8 | 12FC 544Dh | 318,526,541
Example 4
DOTP2 . M2 B2, B5, B9: B8
Before instruction 4 cycles after instruction
B2 1234 3497h | 4660 13463 B2 | 1234 3497h |
B5 | 21FF 50A7h | 8703 20647 B5 | 21FF 50A7h |
B9:BS | 000 xch | xoxx x000ch BY:BS | 0000 0000h | 12FC 544Dh
318,526,541

SPRU732J-July 2010

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

207

13 TEXAS

INSTRUMENTS
DOTPN2 — Dot Product With Negate, Signed, Packed 16-Bit www.ti.com
DOTPN2 Dot Product With Negate, Signed, Packed 16-Bit
Syntax DOTPN2 (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| src2 srcl |x|0‘0|1‘0‘0‘1‘1|1|0‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s2 M1, .M2
src2 Xxs2
dst int
Description Returns the dot-product between two pairs of signed, packed 16-bit values where the
second product is negated. The values in srcl and src2 are treated as signed, packed
16-bit quantities. The signed result is written to a single 32-bit register.
The product of the lower halfwords of srcl and src2 is subtracted from the product of the
upper halfwords of srcl and src2. The result is then written to dst.
31 16 15 0
‘ a_hi ‘ a_lo ‘ «—srcl
DOTPN2
b_hi \ b_lo ‘ < src2
31 0
\ a hixb_hi-a_loxb_lo \ — dst
Execution Note that unlike DOTP2, no overflow case exists for this instruction.
if (cond) (msb16(srcl) x msb16(src2)) - (Isb16(srcl) x Isb16(src2)) — dst
else nop
Pipeline

Pipeline Stage El E2 E3 E4
Read srcl, src2

Written dst
Unit in use .M

208 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com DOTPN2 — Dot Product With Negate, Signed, Packed 16-Bit
Instruction Type Four-cycle
Delay Slots 3
See Also DOTP2
Examples Example 1
DOTPN2 . ML A5, A6, A8
Before instruction 4 cycles after instruction
A5 3629 274Ah | 13865 10058 A5 |3629 274Ah |
A \ 325C 8036h \ 12892 -32714 A6] 325C 8036h \
A8 \ xxxx xxxxh \ A8 \ 1E44 2F20h \ 507,784,992
Example 2
DOTPN2 . M2 B2, B5, BS
Before instruction 4 cycles after instruction
B2 \ 3FF6 5010h \ 16374 20496 B2 \ 3FF6 5010h \
B5 \ B1C3 0244h \ 20029 580 B5 \ B1C3 0244h \
B8 \ xxxx xxxxh \ BS \ EBBE 6A22h -339,842,526
SPRU732J-July 2010 Instruction Set 209

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
DOTPNRSU2 — Dot Product With Negate, Shift and Round, Signed by Unsigned, Packed 16-Bit www.ti.com
DOTPNRSU2 Dot Product With Negate, Shift and Round, Signed by Unsigned, Packed 16-Bit
Syntax DOTPNRSUZ2 (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| src2 srcl |x|0‘0|0‘1‘1‘1‘1|1|0‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s2 M1, .M2
src2 Xu2
dst int
Description Returns the dot-product between two pairs of packed 16-bit values, where the second

product is negated. This instruction takes the result of the dot-product and performs an
additional round and shift step. The values in srcl are treated as signed, packed 16-bit
guantities; whereas, the values in src2 are treated as unsigned, packed 16-bit quantities.
The results are written to dst.

The product of the lower halfwords of srcl and src2 is subtracted from the product of the
upper halfwords of srcl and src2. The value 2% is then added to this sum, producing an
intermediate 32 or 33-bit result. The intermediate result is signed shifted right by 16,
producing a rounded, shifted result that is sign extended and placed in dst.

On the C64x CPU: The intermediate results of the DOTPNRSU2 instruction are only
maintained to a 32-bit precision. Overflow may occur during the rounding step. Overflow
can be avoided if the difference of the two products plus the rounding term is less than
or equal to 2% - 1 for a positive sum and greater than or equal to -2% for a negative sum.

On the C64x+ CPU: The intermediate results of the DOTPNRSU2 instruction are
maintained to a 33-bit precision, ensuring that no overflow may occur during the
subtracting and rounding steps.

31 16 15 0
sa_hi sa_lo ‘ «—srcl
DOTPNRSU2
‘ ub_hi ‘ ub_lo ‘ « src2
31 0
\ (((sa_hi x ub_hi) - (sa_lo x ub_lo)) + 8000h) >> 16 \ < dst

210 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com DOTPNRSU2 — Dot Product With Negate, Shift and Round, Signed by Unsigned, Packed 16-Bit
Execution For C64x CPU:
if (cond) {
int32 = (smsb16(srcl) x umsb16(src2)) -
(slsb16(srcl) x ulsb16(src2)) + 8000h;
int32 >> 16 — dst
}
else nop
For C64x+ CPU:
if (cond) {
int33 = (smsh16(srcl) x umsb16(src2)) -
(slsb16(srcl) x ulsb16(src2)) + 8000h;
int33 >> 16 — dst
}
else nop
Pipeline
Pipeline Stage El E2 E3 E4
Read srcl, src2
Written dst
Unit in use .M
Instruction Type Four-cycle
Delay Slots 3
See Also DOTP2, DOTPN2, DOTPRSU2
Examples Example 1
DOTPNRSU2 . ML A5, A6, A8
Before instruction 4 cycles after instruction
A5 3629 274Ah | 13865 10058 A5 3629 274Ah |
signed
A6 |325C 8036h | 12892 32822 A6 |325C 8036h |
unsigned
A8 | w00 xooxxh | A8 | FFFF F6FAh -2310 (signed)
SPRU732J-July 2010 Instruction Set 211

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
DOTPNRSU2 — Dot Product With Negate, Shift and Round, Signed by Unsigned, Packed 16-Bit www.ti.com
Example 2
DOTPNRSU2 . M2 B2, B5, B8
Before instruction 4 cycles after instruction
B2 |3FF65010h | 16374 20496 B2 |3FF65010h |
signed
B5 |B1C30244h | 45507 580 B5 |B1C30244h |
unsigned
BS \ xxxx xxxxh \ B8 \ 0000 2BB4h \ 11188 (signed)
Example 3
DOTPNRSU2 . M2 B12, B23, Bll
Before instruction 4 cycles after instruction
B12 | 7FFF 8000h | 32767 -32768 B12 | 7FFF 8000h |
signed
B23 | FFFF FFFFh | 65535 65535 B23 | FFFF FFFFh |
unsigned
B11 ‘ XXXX XXXXh ‘ B11 ‘ XXXX XXxxh ‘ Overflow occurs;
result undefined

212 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

DOTPNRUS2 — Dot Product With Negate, Shift and Round, Unsigned by Signed, Packed 16-Bit

DOTPNRUS2 Dot Product With Negate, Shift and Round, Unsigned by Signed, Packed 16-Bit
Syntax DOTPNRUS?2 (.unit) src2, srcl, dst
unit = .M1 or .M2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x|0‘0|0‘1‘1‘1‘1|1|0‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s2 M1, .M2
src2 Xu2
dst int
Description The DOTPNRUS2 pseudo-operation performs the dot-product between two pairs of
packed 16-bit values, where the second product is negated. This instruction takes the
result of the dot-product and performs an additional round and shift step. The values in
srcl are treated as signed, packed 16-bit quantities; whereas, the values in src2 are
treated as unsigned, packed 16-bit quantities. The results are written to dst. The
assembler uses the DOTPNRSU2 srcl, src2, dst instruction to perform this task (see
DOTPNRSU2).
The product of the lower halfwords of srcl and src2 is subtracted from the product of the
upper halfwords of srcl and src2. The value 2% is then added to this sum, producing an
intermediate 32 or 33-bit result. The intermediate result is signed shifted right by 16,
producing a rounded, shifted result that is sign extended and placed in dst.
On the C64x CPU: The intermediate results of the DOTPNRUS2 pseudo-operation are
only maintained to a 32-bit precision. Overflow may occur during the rounding step.
Overflow can be avoided if the difference of the two products plus the rounding term is
less than or equal to 2% - 1 for a positive sum and greater than or equal to -2* for a
negative sum.
On the C64x+ CPU: The intermediate results of the DOTPNRUS2 pseudo-operation are
maintained to a 33-bit precision, ensuring that no overflow may occur during the
subtracting and rounding steps.
Execution For C64x CPU:
if (cond) {
int32 = (smsh16(srcl) x umsb16(src2)) -
(slsb16(srcl) x ulsb16(src2)) + 8000h;
int32 >> 16 — dst
}
else nop

SPRU732J-July 2010

Instruction Set 213

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
DOTPNRUS2 — Dot Product With Negate, Shift and Round, Unsigned by Signed, Packed 16-Bit www.ti.com
For C64x+ CPU:
if (cond) {
int33 = (smsb16(srcl) x umsb16(src2)) -
(slsb16(srcl) x ulsb16(src2)) + 8000h;
int33 >> 16 — dst
}
else nop
Pipeline
Pipeline Stage El E2 E3 E4
Read srcl, src2
Written dst
Unit in use .M
Instruction Type Four-cycle
Delay Slots 3
See Also DOTP2, DOTPNZ2, DOTPNRSU2, DOTPRUS2
214 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

DOTPRSU2 — Dot Product With Shift and Round, Signed by Unsigned, Packed 16-Bit

DOTPRSU2 Dot Product With Shift and Round, Signed by Unsigned, Packed 16-Bit
Syntax DOTPRSU2 (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| src2 srcl |x|0‘0|1‘1‘0‘1‘1|1|0‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s2 M1, .M2
src2 Xu2
dst int
Description Returns the dot-product between two pairs of packed 16-bit values. This instruction

takes the result of the dot-product and performs an additional round and shift step. The
values in srcl are treated as signed packed 16-bit quantities; whereas, the values in
src2 are treated as unsigned packed 16-bit quantities. The results are written to dst.

The product of the lower halfwords of src1 and src2 is added to the product of the upper
halfwords of srcl and src2. The value 2%is then added to this sum, producing an
intermediate 32 or 33-bit result. The intermediate result is signed shifted right by 16,
producing a rounded, shifted result that is sign extended and placed in dst.

On the C64x CPU: The intermediate results of the DOTPRSU2 instruction are only
maintained to a 32-bit precision. Overflow may occur during the rounding step. Overflow
can be avoided if the difference of the two products plus the rounding term is less than
or equal to 2% - 1 for a positive sum and greater than or equal to -2° for a negative sum.

On the C64x+ CPU: The intermediate results of the DOTPRSU?2 instruction are
maintained to a 33-bit precision, ensuring that no overflow may occur during the
subtracting and rounding steps.

31 16 15 0
‘ sa_hi ‘ sa_lo ‘ «— srcl
DOTPRSU2
‘ ub_hi ‘ ub_lo ‘ « src2
31 0
‘ (((sa_hi x ub_hi) + (sa_lo x ub_lo)) + 8000h) >> 16 ‘ « dst

SPRU732J-July 2010

Instruction Set 215

Copyright © 2010, Texas Instruments Incorporated

DOTPRSU2 — Dot Product With Shift and Round, Signed by Unsigned, Packed 16-Bit

13 TEXAS
INSTRUMENTS

www.ti.com

NOTE: Certain combinations of operands for the DOTPRSU2 instruction results
in an overflow condition. If an overflow does occur, the result is
undefined. Overflow can be avoided if the sum of the two products plus
the rounding term is less than or equal to 2** — 1 for a positive sum and

greater than or equal to —2* for a negative sum.

The intermediate results of the DOTPRSU2 instruction are maintained to
33-bit precision, ensuring that no overflow may occur during the adding

and rounding steps.

Execution For C64x CPU:

if (cond) {
int32 = (smsb16(srcl) x umsb16(src2)) +
(slsb16(srcl) x ulsb16(src2)) + 8000h;
int32 >> 16 — dst

}
else nop
For C64x+ CPU:
if (cond) {
int33 = (smsb16(srcl) x umsb16(src2)) +
(slsb16(srcl) x ulsb16(src2)) + 8000h;
int33 >> 16 — dst
}
else nop
Pipeline
Pipeline Stage El E2 E3 E4
Read srcl, src2
Written dst
Unit in use .M
Instruction Type Four-cycle
Delay Slots 3
See Also DOTP2, DOTPN2, DOTPNRSU2

216 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com DOTPRSU2 — Dot Product With Shift and Round, Signed by Unsigned, Packed 16-Bit
Examples Example 1

DOTPRSU2 . ML A5, A6, A8

Before instruction 4 cycles after instruction
A5 3629 274Ah | 13865 10058 A5 |3629 274Ah |
signed
A6 |325C 8036h | 12892 32822 A6 | 325C 8036h
unsigned
A8 | xooox xooxh A8 | 0000 1E55h | 7765 (signed)
Example 2
DOTPRSU2 . M2 B2, B5, B8
Before instruction 4 cycles after instruction
B2 |B1C30244h -20029 580 B2 |B1C30244h | 20029 580
signed signed
B5 ‘ 3FF6 5010h ‘ 16374 20496 B5 ‘ 3FF6 5010h 16374 20496
unsigned unsigned
B8 | xxx xxooxh B8 | FFFF ED20h -4823 (signed)
Example 3
DOTPRSU2 . M2 B12, B23, Bll
Before instruction 4 cycles after instruction
B12 | 7FFF 7FFFh | 32767 32767 B12 | 7FFF 7FFFh
signed
B23 | FFFF FFFFh | 65535 65535 B23 | FFFF FFFFh
unsigned
B11 ‘ XXXX XXXXh B11 ‘ XXXX XXXXh ‘ Overflow occurs;
result undefined

SPRU732J-July 2010 Instruction Set 217

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

DOTPRUS2 — Dot Product With Shift and Round, Unsigned by Signed, Packed 16-Bit www.ti.com

DOTPRUS2

Syntax

Compatibility

Opcode

31 29 28 27

Dot Product With Shift and Round, Unsigned by Signed, Packed 16-Bit

DOTPRUS2 (.unit) src2, srcl, dst
unit = .M1 or .M2

C64x and C64x+ CPU

23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O

‘ creg | z |

dst src2 srcl [x]oJol1l1]of1]1][1]o]o]s]p]

3 1

5 5 1 1 1

Opcode map field used... For operand type... Unit

srcl
src2
dst

s2 M1, .M2
Xu2
int

Description

Execution

if (cond)

else nop

The DOTPRUS2 pseudo-operation returns the dot-product between two pairs of packed
16-bit values. This instruction takes the result of the dot-product, and performs an
additional round and shift step. The values in srcl are treated as signed packed 16-bit
guantities; whereas, the values in src2 are treated as unsigned packed 16-bit quantities.
The results are written to dst. The assembler uses the DOTPRSU2 (.unit) srcl, src2, dst
instruction to perform this task (see DOTPRSU2).

The product of the lower halfwords of srcl and src2 is added to the product of the upper
halfwords of srcl and src2. The value 2%is then added to this sum, producing an
intermediate 32-bit result. The intermediate result is signed shifted right by 16, producing
a rounded, shifted result that is sign extended and placed in dst.

On the C64x CPU: The intermediate results of the DOTPRUS2 pseudo-operation are
only maintained to a 32-bit precision. Overflow may occur during the rounding step.
Overflow can be avoided if the difference of the two products plus the rounding term is
less than or equal to 2% - 1 for a positive sum and greater than or equal to -2*! for a
negative sum.

On the C64x+ CPU: The intermediate results of the DOTPRUS2 pseudo-operation are
maintained to a 33-bit precision, ensuring that no overflow may occur during the
subtracting and rounding steps.

For C64x CPU:

{
int32 = (umsb16(src2) x smsh16(srcl)) +
(ulsb16(src2) x slsb16(srcl)) + 8000h;

int32 >> 16 — dst
}

218 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com DOTPRUS2 — Dot Product With Shift and Round, Unsigned by Signed, Packed 16-Bit
For C64x+ CPU:
if (cond) {
int33 = (umsb16(src2) x smsb16(srcl)) +
(ulsb16(src2) x slsb16(srcl)) + 8000h;
int33 >> 16 — dst
}
else nop
Pipeline
Pipeline Stage El E2 E3 E4
Read srcl, src2
Written dst
Unit in use .M
Instruction Type Four-cycle
Delay Slots 3
See Also DOTP2, DOTPNZ2, DOTPNRUS2, DOTPRSUZ2
SPRU732J-July 2010 Instruction Set 219

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
DOTPSU4 — Dot Product, Signed by Unsigned, Packed 8-Bit www.ti.com
DOTPSU4 Dot Product, Signed by Unsigned, Packed 8-Bit
Syntax DOTPSU4 (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x|0‘0|0‘0‘1‘0‘1|1|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s4 M1, .M2
src2 xu4
dst int
Description Returns the dot-product between four sets of packed 8-bit values. The values in srcl are

treated as signed packed 8-bit quantities; whereas, the values in src2 are treated as
unsigned 8-bit packed data. The signed result is written into dst.

For each pair of 8-bit quantities in srcl and src2, the signed 8-bit value from srcl is
multiplied with the unsigned 8-bit value from src2. The four products are summed
together, and the resulting dot product is written as a signed 32-bit result to dst.

31 24 23 16 15 8 7 0

‘ sa_3 ‘ sa_2 ‘ sa_1l | sa_0 ‘ «—srcl

DOTPSU4

\ ub_3 \ ub_2 \ ub_1 | ub_0 ‘ < src2
31 0

‘ (sa_3xub_3)+(sa_2xub_2) +(sa_1xub_1) + (sa_0 x ub_0) ‘ «— dst

Execution
if (cond) {

(sbyteO(srcl) x ubyteO(src2)) +
(sbytel(srcl) x ubytel(src2)) +
(sbyte2(srcl) x ubyte2(src2)) +
(sbyte3(srcl) x ubyte3(src2)) — dst
}

else nop

220 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com DOTPSU4 — Dot Product, Signed by Unsigned, Packed 8-Bit
Pipeline
Pipeline Stage El E2 E3 E4
Read srcl, src2
Written dst
Unit in use .M
Instruction Type Four-cycle
Delay Slots 3
See Also DOTPU4
Examples Example 1
DOTPSW . ML A5, A6, A8
Before instruction 4 cycles after instruction
A5 | 6A321193h 106 50 17 -109 A5 | 6A3211093h |
signed
A6 | B1746C Adh 177 116 108 164 A6 | B1746C Adh |
unsigned
A8 | xo00x xooxxh | A8 | 0000 214Ah | 8522 (signed)
Example 2
DOorPsSWw4 . M2 B2, B5, B8
Before instruction 4 cycles after instruction
B2 |3F F65010h 63 -10 80 16 B2 |3FF65010h \
signed
B5 | C3560244h 195 86 2 68 BS [C3560244h \
unsigned
B8 | XXXX XxXxxh | B8 | 0000 3181h ‘ 12,673 (signed)
SPRU732J-July 2010 Instruction Set 221

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
DOTPUS4 — Dot Product, Unsigned by Signed, Packed 8-Bit www.ti.com
DOTPUS4 Dot Product, Unsigned by Signed, Packed 8-Bit
Syntax DOTPUS4 (.unit) src2, srcl, dst
unit = .M1 or .M2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x|0‘0|0‘0‘1‘0‘1|1|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s4 M1, .M2
src2 xu4
dst int
Description The DOTPUS4 pseudo-operation returns the dot-product between four sets of packed

8-bit values. The values in srcl are treated as signed packed 8-bit quantities; whereas,
the values in src2 are treated as unsigned 8-bit packed data. The signed result is written
into dst. The assembler uses the DOTPSU4 (.unit) srcl, src2, dst instruction to perform
this task (see DOTPSU4).

For each pair of 8-bit quantities in src1 and src2, the signed 8-bit value from srcl is
multiplied with the unsigned 8-bit value from src2. The four products are summed
together, and the resulting dot-product is written as a signed 32-bit result to dst.

Execution
if (cond) {
(ubyteO(src2) x shyteO(srcl)) +
(ubytel(src2) x sbytel(srcl)) +
(ubyte2(src2) x shyte2(srcl)) +
(ubyte3(src2) x shyte3(srcl)) — dst
}
else nop
Pipeline
Pipeline Stage El E2 E3 E4
Read srcl, src2
Written dst
Unit in use .M
Instruction Type Four-cycle
Delay Slots 3
See Also DOTPU4, DOTPSU4
222 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

DOTPU4 — Dot Product, Unsigned, Packed 8-Bit

DOTPU4 Dot Product, Unsigned, Packed 8-Bit
Syntax DOTPU4 (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x|0‘0|0‘1‘1‘0‘1|1|0‘0|s‘p‘
3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit
srcl u4 M1, .M2
src2 xu4
dst uint
Description Returns the dot-product between four sets of packed 8-bit values. The values in both
srcl and src2 are treated as unsigned, 8-bit packed data. The unsigned result is written
into dst.
For each pair of 8-bit quantities in srcl and src2, the unsigned 8-bit value from srcl is
multiplied with the unsigned 8-bit value from src2. The four products are summed
together, and the resulting dot-product is written as a 32-bit result to dst.
31 24 23 16 15 8 0
‘ ua_3 ‘ ua_2 ‘ ua_1 ua_0 ‘ «—srcl
DOTPU4
\ ub_3 \ ub_2 \ ub_1 ub_0 ‘ < src2
31 0
‘ (ua_3 x ub_3) + (ua_2 x ub_2) + (ua_1 x ub_1) + (ua_0 x ub_0) ‘ «— dst
Execution
if (cond) {
(ubyteO(srcl) x ubyteO(src2)) +
(ubytel(srcl) x ubytel(src2)) +
(ubyte2(srcl) x ubyte2(src2)) +
(ubyte3(srcl) x ubyte3(src2)) — dst
}
else nop

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

223

13 TEXAS

INSTRUMENTS
DOTPU4 — Dot Product, Unsigned, Packed 8-Bit www.ti.com
Pipeline
Pipeline Stage El E2 E3 E4
Read srcl, src2
Written dst
Unit in use M
Instruction Type Four-cycle
Delay Slots 3
See Also DOTPSU4
Example DOTPU4 . ML A5, A6, A8
Before instruction 4 cycles after instruction
A5 [6A321193h | 106 50 17 147 A5 [6A321193h |
unsigned
A6 [B1746C Adn 177 116 108 164 A6 |B1746C Adh |
unsigned
A8 [o0k xooah | A8 0000 C54Ah | 50,506 (unsigned)
224 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com DPACK2 — Parallel PACK2 and PACKH2 Operations
DPACK?2 Parallel PACK2 and PACKH2 Operations
Syntax DPACK?2 (.unit) srcl, src2, dst_o:dst_e
unit=.L1 or .L2
Compatibility C64x+ CPU
Opcode
31 30 29 28 27 24 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lof[ofo]1] dst [0] src2 srcl [x]ol1l1]o]1]ofof1][1]o]s]p]
4 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl sint L1, .12
src2 xsint
dst dint
Description Executes a PACK2 instruction in parallel with a PACKH2 instruction.
The PACK2 function of the DPACK2 instruction takes the lower halfword from src1 and
the lower halfword from src2, and packs them both into dst_e. The lower halfword of
srcl is placed in the upper halfword of dst_e. The lower halfword of src2 is placed in the
lower halfword of dst_e.
The PACKH2 function of the DPACK2 instruction takes the upper halfword from srcl
and the upper halfword from src2, and packs them both into dst_o. The upper halfword
of srcl is placed in the upper halfword of dst_o. The upper halfword of src2 is placed in
the lower halfword of dst_o.
This instruction executes unconditionally.
src src2
MSB16 | LSB16 MSB16 | LSB16
MsB16 | LSB16 | | MsB16 | LSB16
dst o dst_e
Execution
Isb16(srcl) — msh16(dst_e)
Isb16(src2) — Isb16(dst_e)
msb16(srcl) — msb16(dst_o)
msb16(src2) — Isbh16(dst_o)
SPRU732J-July 2010 Instruction Set 225

Copyright © 2010, Texas Instruments Incorporated

DPACK2 — Parallel PACK2 and PACKH2 Operations

13 TEXAS
INSTRUMENTS

www.ti.com

Instruction Type Single-cycle
Delay Slots 0
Example DPACK2 . L1 A0, Al, A3: A2

AO

Al

Before instruction

| 8765 4321h \

| 1234 5678h \

A2

A3

1 cycle after instruction

| 4321 5678h \

| 8765 1234h \

226 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

DPACKX2 — Parallel PACKLH2 Operations

DPACKX2 Parallel PACKLH2 Operations
Syntax DPACKX2 (.unit) srcl, src2, dst_o:dst_e
unit=.L1 or .L2
Compatibility C64x+ CPU
Opcode
31 30 29 28 27 24 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lof[ofo]1] dst [0] src2 srcl I xJol1l1]ofol1]1]1]a]o]s]p]
4 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl sint L1, .12
src2 xsint
dst dint
Description Executes two PACKLHZ2 instructions in parallel.

Execution

One PACKLH2 function of the DPACKX2 instruction takes the lower halfword from srcl

and the upper halfword from src2, and packs them both into dst_e. The lower halfword of
srcl is placed in the upper halfword of dst_e. The upper halfword of src2 is placed in the
lower halfword of dst_e.

The other PACKLH2 function of the DPACKX2 instruction takes the upper halfword from
srcl and the lower halfword from src2, and packs them both into dst_o. The upper
halfword of srcl is placed in the lower halfword of dst_o. The lower halfword of src2 is
placed in the upper halfword of dst_o.

This instruction executes unconditionally.

src src2
MSB16 | LSB16 MSB16 | LSB16
MsB16 | LSB16 | | MsB16 | LSB16
dst o dst_e

Isb16(srcl) — msh16(dst_e)
msb16(src2) — Isb16(dst_e)
mshb16(srcl) — Isb16(dst_o)
Isb16(src2) — msh16(dst_o)

SPRU732J-July 2010

Instruction Set 227

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
DPACKX2 — Parallel PACKLH2 Operations www.ti.com
Instruction Type Single-cycle
Delay Slots 0
Examples Example 1
DPACKX2 . L1 AQ, Al, A3: A2
Before instruction 1 cycle after instruction
A0 |87654321h | A2 [43211234h \
Al |12345678h | A3 | 56788765h |
Example 2
DPACKX2 . L1X A0, BO, A3: A2
Before instruction 1 cycle after instruction
A0 | 3FFF 8000h | A2 | 8000 4000h \
BO [40007777h | A3 | 7777 3FFFh \
228 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com EXT — Extract and Sign-Extend a Bit Field
EXT Extract and Sign-Extend a Bit Field
Syntax EXT (.unit) src2, csta, cstb, dst
or
EXT (.unit) src2, srcl, dst
unit = .S1 or .S2
Compatibility C62x, C64x, and C64x+ CPU
Compact Instruction Format
Unit Opcode Format Figure
.S S2ext Figure F-27
Opcode Constant form
31 29 28 27 23 22 18 17 13 12 8 7 6 5 4 3 2 1 0
’ creg |z| dst ’ src2 csta cstb ‘0’1’0|0|1‘0|s‘p‘
3 1 5 5 5 5 1 1
Opcode map field used... For operand type... Unit
src2 sint .81, .82
csta ucst5
cstb ucsts
dst sint
Opcode Register form
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
’ creg |z| dst ’ src2 srcl |x|1‘0|1‘1‘1’1’1|0|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 xsint .81, .82
srcl uint
dst sint

SPRU732J-July 2010

Instruction Set 229

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

EXT — Extract and Sign-Extend a Bit Field www.ti.com

Description

The field in src2, specified by csta and cstb, is extracted and sign-extended to 32 bits.
The extract is performed by a shift left followed by a signed shift right. csta and cstb are
the shift left amount and shift right amount, respectively. This can be thought of in terms
of the LSB and MSB of the field to be extracted. Then csta = 31 - MSB of the field and
cstb = csta + LSB of the field. The shift left and shift right amounts may also be specified
as the ten LSBs of the srcl register with cstb being bits 0-4 and csta bits 5-9. In the
example below, csta is 12 and cstb is 11 + 12 = 23. Only the ten LSBs are valid for the
register version of the instruction. If any of the 22 MSBs are non-zero, the result is
invalid.

< csta g — cstb-csta ———y

] | | |
sre2 [x]x]x]x]x Ix ExIx Ix] x]xxPafolJolol a1 ol IxIx]x]x]x]x]x|x[x]x]x]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 1312110 9 8 7 6 5 4 3 2 1 0

Shifts left by 12 to produce:

glafofifofolr]afofefxx[x|x[x{x[x|x|x[x[x]o]oJoJo[ofofofofoofofo]
3130 29 28 27 26 25 24 23 22 21 20 1918 17 16 15141312 1110 9 8 7 6 5 4 3 2 1 0

Then shifts right by 23 to produce:

v
ast 3y[1|1l alafala o]l [a]1alo]1]ofol1]1 o]}
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 151413121110 9 8 7 6 5 4 3 2 1 0

Execution

if (cond)
else nop

if (cond)
else nop

Pipeline

Instruction Type
Delay Slots

See Also

If the constant form is used:

src2 ext csta, cstb — dst

If the register form is used:

src2 ext srcl 4 ¢, srcl , , — dst

Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .S

Single-cycle

0

EXTU

230 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com EXT — Extract and Sign-Extend a Bit Field

Examples Example 1
EXT .S1 Al, 10, 19, A2
Before instruction 1 cycle after instruction
Al | 07A4 3F2Ah | Al | 07A4 3F2Ah |
A2 [000 X000 | A2 | FFFF F21Fh
Example 2

EXT . S1 Al, A2, A3

Before instruction 1 cycle after instruction
Al \ 03B6 E7D5h | Al \ 03B6 E7D5h \
A2 | 0000 0073h | A2 0000 0073h |
A3 \ %0 xxxxh | A3 \ 0000 03B6h \
SPRU732J-July 2010 Instruction Set 231

Copyright © 2010, Texas Instruments Incorporated

EXTU — Extract and Zero-Extend a Bit Field

13 TEXAS
INSTRUMENTS

www.ti.com

EXTU Extract and Zero-Extend a Bit Field
Syntax EXTU (.unit) src2, csta, cstb, dst

or

EXTU (.unit) src2, srcl, dst

unit = .S1 or .S2
Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure
.S Figure F-26
S2ext Figure F-27
Opcode Constant form:
31 29 28 27 23 22 18 17 13 12 8 7 6 5 4 3 2 1 O
’ creg |z| dst ’ src2 csta cstb ‘O’O’O|O|l‘0|s‘p‘
3 1 5 5 5 5 1 1
Opcode map field used... For operand type... Unit
src2 uint .S1,.S2
csta ucst5
cstb ucst5
dst uint
Opcode Register form;
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
’ creg |z| dst ’ src2 srcl |x|1‘0|1‘0‘1’1’1|0|0‘0|s‘p‘
3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit
src2 xuint .81, .82
srcl uint

dst uint

232 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com

EXTU — Extract and Zero-Extend a Bit Field

Description

The field in src2, specified by csta and cstb, is extracted and zero extended to 32 bits.
The extract is performed by a shift left followed by an unsigned shift right. csta and cstb
are the amounts to shift left and shift right, respectively. This can be thought of in terms
of the LSB and MSB of the field to be extracted. Then csta = 31 - MSB of the field and
cstb = csta + LSB of the field. The shift left and shift right amounts may also be specified
as the ten LSBs of the srcl register with cstb being bits 0-4 and csta bits 5-9. In the
example below, csta is 12 and cstb is 11 + 12 = 23. Only the ten LSBs are valid for the
register version of the instruction. If any of the 22 MSBs are non-zero, the result is
invalid.

|:

csta g — cstb-csta ———y

] | | |
sre2 [x]x]x]x]x Ix ExIx Ix] x]xxPafolJolol a1 ol IxIx]x]x]x]x]x|x[x]x]x]

31 30 29 28 27 26 25 24 23 22 21 2019 1817 16 151413121110 9 8 7 6 5 4 3 2 1 0

Shifts left by 12 to produce:

glafofifofola]aoltIxIx{xx x| x|x|x|x|x[x]ofofofofofoJo]o]ofofo]o]

31 30 29 28 27 26 25 24 23 22 21 2019 1817 16 151413121110 9 8 7 6 5 4 3 2 1 0

Then shifts right by 23 to produce:

v
dst 3)[o]o]ofofo]ofofo]olo]o]ofofo]ofo]o]ofofo]ofo]of1]o1]ofof1]1[o]1]

31 30 29 28 27 26 25 24 23 22 21 2019 18 17 16 151413121110 9 8 7 6 5 4 3 2 1 O

Execution

if (cond)
else nop

if (cond)
else nop

Pipeline

Instruction Type
Delay Slots

See Also

If the constant form is used:

src2 extu csta, cstb — dst

If the register form is used:

src2 extu srcl 4 ¢, srcl , , — dst

Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .S

Single-cycle

0

EXT

SPRU732J-July 2010

Instruction Set 233

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
EXTU — Extract and Zero-Extend a Bit Field www.ti.com
Examples Example 1
EXTU . S1 A1, 10, 19, A2
Before instruction 1 cycle after instruction
Al \ 07A4 3F2Ah | Al \ 07A4 3F2Ah \
A2 \ X0 xxxxh | A2] 0000 121Fh \
Example 2
EXTU . S1 Al, A2, A3
Before instruction 1 cycle after instruction
Al \ 03B6 E7D5h | Al \ 03B6 E7D5h \
A2 | 0000 0156h | A2 | 0000 0156h |
A3 \ XX xxxxh | A3 \ 0000 036Eh \
234 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

GMPY — Galois Field Multiply

GMPY Galois Field Multiply
Syntax GMPY (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C64x+ CPU
Opcode
31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lof[ofo]1] dst src2 srcl IxJolalala]1]1]1]1]o]o]s]p]
5 5 5 1 11

Opcode map field used... For operand type... Unit
srcl uint M1, .M2
src2 uint
dst uint
Description Performs a Galois field multiply, where srcl is 32 bits and src2 is limited to 9 bits. This

utilizes the existing hardware and produces a 32-bit result. This multiply connects alll
levels of the gmpy4 together and only extends out by 8 bits, the resulting data is XORed

down by the 32-bit polynomial.

The polynomial used comes from either the GPLYA or GPLYB control register
depending on which side (A or B) the instruction executes. If the A-side M1 unit is used,
the polynomial comes from GPLYA,; if the B-side M2 unit, the polynomial comes from

GPLYB.
This instruction executes unconditionally.

uword gnmpy(uword srcl, uword src2,uword pol ynom al)

/1l the multiply is always between G-(2"9) and GF(2"32)

/!l so no size information is needed

ui nt pp;
ui nt mask, tpp;
uint |;
pp = 0;
mask = 0x00000100; // multiply by conputing

/] partial products.
for (1=0; i<8; |I++){
if (src2 & mask)

mask >>= 1;

tpp = pp << 1;

if (pp & 0x80000000) pp
el se pp

pp "= srcl;

tpp;
}
if (src2 & 0x1) pp "= srcil;

return (pp) ; /Il leave it asserted left.
}

pol ynomi al " tpp;

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set 235

13 TEXAS
INSTRUMENTS

GMPY — Galois Field Multiply www.ti.com

Execution

if (unit = M1)
GMPY_poly = GPLYA
Isb9(src2) gmpy srcl — dst
else if (unit = M2)
GMPY_poly = GPLYB
Isb9(src2) gmpy srcl — dst

Instruction Type Four-cycle
Delay Slots 3

See Also GMPY4, XORMPY, XOR

Example GWY . ML A0, Al, A2 GPLYA = 87654321

Before instruction 4 cycles after instruction

AQ | 1234 5678h \ A2 [c721 AOEFh

Al | 0000 0126h \

236 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

GMPY4 — Galois Field Multiply, Packed 8-Bit

GMPY4 Galois Field Multiply, Packed 8-Bit
Syntax GMPY4 (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |1| src2 srcl |x|0‘1|0‘0‘0‘1‘1|1|0‘0|s‘p‘
3 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl u4 M1, .M2
src2 xu4
dst usd
Description Performs the Galois field multiply on four values in srcl with four parallel values in src2.

The four products are packed into dst. The values in both srcl and src2 are treated as
unsigned, 8-bit packed data.

For each pair of 8-bit quantities in srcl and src2, the unsigned, 8-bit value from srcl is
Galois field multiplied (gmpy) with the unsigned, 8-bit value from src2. The product of
srcl byte 0 and src2 byte 0 is written to byte0O of dst. The product of srcl byte 1 and src2
byte 1 is written to bytel of dst. The product of srcl byte 2 and src2 byte 2 is written to
byte2 of dst. The product of srcl byte 3 and src2 byte 3 is written to the most-significant
byte in dst.

31 24 23 16 15 8 7 0
‘ ua_3 ‘ ua_2 ‘ ua_1l | ua_0 ‘ «— srcl
GMPY4
‘ ub_3 ‘ ub_2 ‘ ub_1 | ub_0 ‘ « src2
31 0
‘ ua_3 gmpy ub_3 ‘ ua_2 gmpy ub_2 ‘ ua_1 gmpyub_1 | ua_0 gmpy ub_0 ‘ «— dst

The size and polynomial are controlled by the Galois field polynomial generator function
register (GFPGFR). All registers in the control register file can be written using the MVC
instruction (see MVC).

The default field generator polynomial is 1Dh, and the default size is 7. This setting is
used for many communications standards.

Note that the GMPY4 instruction is commutative, so:
GWPY4 . ML A10, Al2, A13

is equivalent to:
GWPY4 . ML Al2, A10, A13

SPRU732J-July 2010

Instruction Set 237

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
GMPY4 — Galois Field Multiply, Packed 8-Bit www.ti.com
Execution
if (cond) {
(ubyteO(src1) gmpy ubyteO(src2)) — ubyteO(dst);
(ubytel(srcl) gmpy ubytel(src2)) — ubytel(dst);
(ubyte2(srcl) gmpy ubyte2(src2)) — ubyte2(dst);
(ubyte3(srcl) gmpy ubyte3(src2)) — ubyte3(dst)
}
else nop
Pipeline
Pipeline Stage El E2 E3 E4
Read srcl, src2
Written dst
Unit in use M
Instruction Type Four-cycle
Delay Slots 3
See Also GMPY, MVC, XOR
Examples Example 1
GWY4 . ML A5, A6, A7; pol ynom al = 0x1d
Before instruction 4 cycles after instruction
A5 [45230001h (693501 A5 [45230001h
unsigned
A6 [57340001h 875201 A6 |57340001h
unsigned
A7 [x0xooh A7 729200 01h 114146 0 1
unsigned
Example 2
GWPY4 . ML A5, A6, A7; field size is Ox7
Before instruction 4 cycles after instruction
A5 | FFFE 02 1Fh | 255 254 231 A5 | FFFE 02 1Fh |
unsigned
A6 | FF FE0201h | 25525421 A6 |FFFE0201h |
unsigned
AT | w00 xoooh | A7 |E2E3041Fh | 226 227 4 31
unsigned

238 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com IDLE — Multicycle NOP With No Termination Until Interrupt
IDLE Multicycle NOP With No Termination Until Interrupt
Syntax IDLE
unit = none
Compatibility C62x, C64x, and C64x+ CPU
Opcode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofoJofofofofofofofofofofofofofs]1[s[s]ofofoofofofofofof[ofofo]p]
1

Description Performs an infinite multicycle NOP that terminates upon servicing an interrupt, or a
branch occurs due to an IDLE instruction being in the delay slots of a branch.

The IDLE instruction cannot be paired with any other multicycle NOP instruction in the
same execute packet. Instructions that generate a multicycle NOP are: ADDKPC,
BNOP, and the multicycle NOP.

Instruction Type NOP
Delay Slots 0
SPRU732J-July 2010 Instruction Set 239

Copyright © 2010, Texas Instruments Incorporated

LDB(U) — Load Byte Fro

13 TEXAS
INSTRUMENTS

m Memory With a 5-Bit Unsigned Constant Offset or Register Offset www.ti.com

LDB(U)
Syntax

Register Offset

Load Byte From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

Unsigned Constant Offset

LDB (.unit) *+baseRJ[offsetR], dst LDB (.unit) *+baseR[ucst5], dst
or or
LDBU (.unit) *+baseR[offsetR], dst LDBU (.unit) *+baseR[ucst5], dst

unit = .D1 or .D2

Compatibility

C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure
.D Doff4 Figure C-9
Dind Figure C-11
Dinc Figure C-13
Ddec Figure C-15
Opcode
31 29 28 27 23 22 18 17 13 12 9 8 7 6 4 3 2 1 0
‘ creg | z | dst baseR offsetR/ucst5 mode ‘ 0 ‘ y ‘ op | 0 ‘ 1 | S ‘ p ‘
3 1 5 5 5 4 1 3 1 1
Description Loads a byte from memory to a general-purpose register (dst). Table 3-18 summarizes
the data types supported by loads. Table 3-6 describes the addressing generator
options. The memory address is formed from a base address register (baseR) and an
optional offset that is either a register (offsetR) or a 5-bit unsigned constant (ucst5). If an
offset is not given, the assembler assigns an offset of zero.
Table 3-18. Data Types Supported by LDB(U) Instruction
Mnemonic op Field Load Data Type Slze Left Shift of Offset
LDB 0 1 0 Load byte 8 0 bits
LDBU 0 0 1 Load byte unsigned 8 0 bits

offsetR and baseR must be in the same register file and on the same side as the .D unit

used. The y bit in the opcode determines the .D unit and register file used: y = 0 selects

the .D1 unit and baseR and offsetR from the A register file, and y = 1 selects the .D2 unit
and baseR and offsetR from the B register file.

offsetR/ucst5 is scaled by a left-shift of 0 bits. After scaling, offsetR/ucst5 is added to or
subtracted from baseR. For the preincrement, predecrement, positive offset, and
negative offset address generator options, the result of the calculation is the address to
be accessed in memory. For postincrement or postdecrement addressing, the value of
baseR before the addition or subtraction is the address to be accessed in memory.

The addressing arithmetic that performs the additions and subtractions defaults to linear
mode. However, for A4-A7 and for B4-B7, the mode can be changed to circular mode by
writing the appropriate value to the AMR (see Section 2.8.3).

240 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com LDB(U) — Load Byte From Memory With a 5-Bit Unsigned Constant Offset or Register Offset
For LDB(U), the values are loaded into the 8 LSBs of dst. For LDB, the upper 24 bits of
dst values are sign-extended; for LDBU, the upper 24 bits of dst are zero-filled. The s bit
determines which file dst will be loaded into: s = 0 indicates dst will be loaded in the A
register file and s = 1 indicates dst will be loaded in the B register file.
Increments and decrements default to 1 and offsets default to O when no bracketed
register or constant is specified. Loads that do no modification to the baseR can use the
syntax *R. Square brackets, [], indicate that the ucst5 offset is left-shifted by 0.
Parentheses, (), can be used to set a nonscaled, constant offset. You must type either
brackets or parentheses around the specified offset, if you use the optional offset
parameter.
Execution
if (cond) mem — dst
else nop
Pipeline
Pipeline Stage El E2 E3 E4 E5
Read baseR, offsetR
Written baseR dst
Unit in use .D
Instruction Type Load
Delay Slots 4 for loaded value
0 for address modification from pre/post increment/decrement
For more information on delay slots for a load, see Chapter 4.
See Also LDH, LDW
Examples Example 1
LDB . D1 *-A5[4], A7
Before instruction 1 cycle after 5 cycles after
instruction instruction
A5 | 0000 0204h | As | 0000 0204h s | 0000 0204h |
A7 1951 1970h | A7 | 1951 1970h | A7 | FFFF FFE1h |
AMR | 0000 0000h | AMR | 0000 0000h | AMR | 0000 0000h |
mem 200h | E1h | mem 200h | E1h | mem 200h E1h |
SPRU732J-July 2010 Instruction Set 241

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

LDB(U) — Load Byte From Memory With a 5-Bit Unsigned Constant Offset or Register Offset www.ti.com

Example 2
LDB . DL *++A4[5], A8

Before instruction 1 cycle after 5 cycles after
instruction instruction
A4 \ 0000 0400h | A4 \ 0000 4005h \ A4 | 0000 4005h \
A8 | 0000 0000h | A8 | 0000 0000h | As 0000 0067h |
AMR \ 0000 0000h | AMR \ 0000 0000h \ AMR | 0000 0000h \
mem 4000h \ 0112 2334h | mem 4000h \ 0112 2334h \ mem 4000h | 0112 2334h \
mem 4004h \ 4556 6778h | mem 4004h \ 4556 6778h \ mem 4004h | 4556 6778h \
Example 3
LDB . Dl *Ad++[5], A8
Before instruction 1 cycle after 5 cycles after
instruction instruction
A4 | 0000 0400h | A4 | 0000 4005h | A4 | 0000 4005h |
A8 \ 0000 0000h | A8 \ 0000 0000h \ A8 | 0000 0034h \
AMR | 0000 0000h | AMR | 0000 0000h | AMR | 0000 0000h |
mem 4000h \ 0112 2334h | mem 4000h \ 0112 2334h \ mem 4000h | 0112 2334h \
mem 4004h \ 4556 6778h | mem 4004h \ 4556 6778h \ mem 4004h | 4556 6778h \
Example 4
LDB . Dl *++A4[Al2], A8
Before instruction 1 cycle after 5 cycles after
instruction instruction
A4 \ 0000 0400h | A4 \ 0000 4006h \ A4 | 0000 4006h \
A8 \ 0000 0000h | A8 \ 0000 0000h \ A8 | 0000 0056h \
A12 \ 0000 0006h | A12 \ 0000 0006h \ A12 | 0000 0006h \
AMR \ 0000 0000h | AMR \ 0000 0000h \ AMR | 0000 0000h \
mem 4000h \ 0112 2334h | mem 4000h \ 0112 2334h \ mem 4000h | 0112 2334h \
mem 4004h \ 4556 6778h | mem 4004h \ 4556 6778h \ mem 4004h | 4556 6778h \

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS

www.ti.com

LDB(U) — Load Byte From Memory With a 15-Bit Unsigned Constant Offset

LDB(V) Load Byte From Memory With a 15-Bit Unsigned Constant Offset
Syntax LDB (.unit) *+B14/B15[ucst15], dst
or
LDBU (.unit) *+B14/B15[ucst15], dst
unit = .D2
Compatibility C62x, C64x, and C64x+ CPU
Opcode
31 29 28 27 23 22 8 7 6 4 3 2 1 0
’ creg |z| dst ucstl5 ‘y’ op |1‘1|s‘p‘
3 1 5 15 1 3 1 1
Description Loads a byte from memory to a general-purpose register (dst). Table 3-19 summarizes
the data types supported by loads. The memory address is formed from a base address
register B14 (y = 0) or B15 (y = 1) and an offset, which is a 15-bit unsigned constant
(ucstl1b). The assembler selects this format only when the constant is larger than five
bits in magnitude. This instruction operates only on the .D2 unit.
The offset, ucstl5, is scaled by a left shift of O bits. After scaling, ucst15 is added to
baseR. Subtraction is not supported. The result of the calculation is the address sent to
memory. The addressing arithmetic is always performed in linear mode.
For LDB(U), the values are loaded into the 8 LSBs of dst. For LDB, the upper 24 bits of
dst values are sign-extended; for LDBU, the upper 24 bits of dst are zero-filled. The s bit
determines which file dst will be loaded into: s = 0 indicates dst will be loaded in the A
register file and s = 1 indicates dst will be loaded in the B register file.
Square brackets, [], indicate that the ucstl150ffset is left-shifted by 0. Parentheses, (),
can be used to set a nonscaled, constant offset. You must type either brackets or
parentheses around the specified offset, if you use the optional offset parameter.
Table 3-19. Data Types Supported by LDB(U) Instruction (15-Bit Offset)
Mnemonic op Field Load Data Type Slze Left Shift of Offset
LDB 0 1 0 Load byte 8 0 bits
LDBU 0 0 1 Load byte unsigned 8 0 bits
Execution
if (cond) mem — dst
else nop

NOTE: This instruction executes only on the B side (.D2).

SPRU732J-July 2010

Instruction Set 243

Copyright © 2010, Texas Instruments Incorporated

LDB(U) — Load Byte From Memory With a 15-Bit Unsigned Constant Offset

13 TEXAS
INSTRUMENTS

www.ti.com

Pipeline

Pipeline Stage E2 E3 E4 E5
Read B14/B15
Written dst
Unit in use
Instruction Type Load
Delay Slots 4
See Also LDH, LDW
Example LDB .D2 *+B14[36], BL
Before instruction 1 cycle after instruction
B1 | XXXX Xxxxh B1 ‘ XXXX XXxxh ‘
B14 0000 0100h B14 | 0000 0100h |
mem 124-127h | AETAFF12h mem 124-127h | AE7AFF12h |
mem 124h | 12h mem 124h [12n |
5 cycles after instruction
B1 | 0000 0012h |
B14 | 0000 0100h |
mem 124-127h | AE7AFF12h |
mem 124h [12n |

244

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com LDDW — Load Doubleword From Memory With a 5-Bit Unsigned Constant Offset or Register Offset
LDDW Load Doubleword From Memory With a 5-Bit Unsigned Constant Offset or
Register Offset
Syntax

Unsigned Constant Offset
LDDW (.unit) *+baseR[ucst5], dst

Register Offset
LDDW (.unit) *+baseR[offsetR], dst

unit = .D1 or .D2

Compatibility C64x and C64x+ CPU

Compact Instruction Format

Unit

Opcode Format

Figure

.D

Doff4DW
DindDW
DincDW
DdecDW

Dpp

Figure C-10
Figure C-12
Figure C-14
Figure C-16
Figure C-22

Opcode

31 29 28 27 23 22 18 17 13 12 9 8 7 6 5 4 3 2 1 0
’ creg | z | dst baseR offsetR/ucst5 mode ‘ 1 ‘ y ’ 1 ’ 1 | 0 | 0 ‘ 1 | S ‘ p ‘
3 1 5 5 5 4 1 1 1

Description Loads a 64-bit quantity from memory into a register pair dst_o:dst_e. Table 3-6
describes the addressing generator options. The memory address is formed from a base
address register (baseR) and an optional offset that is either a register (offsetR) or a
5-bit unsigned constant (ucst5).

Both offsetR and baseR must be in the same register file and on the same side as the .D
unit used. The y bit in the opcode determines the .D unit and the register file used: y = 0
selects the .D1 unit and the baseR and offsetR from the A register file, and y = 1 selects
the .D2 unit and baseR and offsetR from the B register file. The s bit determines the
register file into which the dst is loaded: s = 0 indicates that dst is in the A register file,
and s = 1 indicates that dst is in the B register file. The dst field must always be an even
value because the LDDW instruction loads register pairs. Therefore, bit 23 is always
zero.

The offsetR/ucst5 is scaled by a left-shift of 3 to correctly represent doublewords. After
scaling, offsetR/ucst5 is added to or subtracted from baseR. For the preincrement,
predecrement, positive offset, and negative offset address generator options, the result
of the calculation is the address to be accessed in memory. For postincrement or
postdecrement addressing, the shifted value of baseR before the addition or subtraction
is the address to be accessed in memory.

Increments and decrements default to 1 and offsets default to 0 when no bracketed
register, bracketed constant, or constant enclosed in parentheses is specified. Square
brackets, [], indicate that ucst5 is left shifted by 3. Parentheses, (), indicate that ucst5 is
not left shifted. In other words, parentheses indicate a byte offset rather than a
doubleword offset. You must type either brackets or parenthesis around the specified
offset if you use the optional offset parameter.

SPRU732J-July 2010 Instruction Set 245

Copyright © 2010, Texas Instruments Incorporated

LDDW — Load Doubleword From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

13 TEXAS
INSTRUMENTS

www.ti.com

The addressing arithmetic that performs the additions and subtractions defaults to linear
mode. However, for A4-A7 and for B4-B7, the mode can be changed to circular mode by
writing the appropriate value to the AMR (see Section 2.8.3).

The destination register pair must consist of a consecutive even and odd register pair
from the same register file. The instruction can be used to load a double-precision
floating-point value (64 bits), a pair of single-precision floating-point words (32 bits), or a
pair of 32-bit integers. The 32 least-significant bits are loaded into the even-numbered
register and the 32 most-significant bits (containing the sign bit and exponent) are
loaded into the next register (which is always odd-numbered register). The register pair
syntax places the odd register first, followed by a colon, then the even register (that is,
A1:A0, B1:BO, A3:A2, B3:B2, etc.).

All 64 bits of the double-precision floating point value are stored in big- or little-endian
byte order, depending on the mode selected. When the LDDW instruction is used to load
two 32-bit single-precision floating-point values or two 32-bit integer values, the order is
dependent on the endian mode used. In little-endian mode, the first 32-bit word in
memory is loaded into the even register. In big-endian mode, the first 32-bit word in
memory is loaded into the odd register. Regardless of the endian mode, the doubleword
address must be on a doubleword boundary (the three LSBs are zero).

Execution
if (cond) mem — dst
else nop
Pipeline
Pipeline Stage El E2 E3 E4 E5
Read baseR, offsetR
Written baseR dst
Unit in use .D
Instruction Type Load
Delay Slots 4
Functional Unit Latency 1
Examples Example 1
LDDW . D2 *+B10[1], Al: AO
Before instruction 5 cycles after instruction
A1:A0 ‘ XXXX XXxXh ‘ XXXX XxxXh | Al1:A0 | 4021 3333h ‘ 3333 3333h ‘
B10 0000 0010h 16 B10 0000 0010h
mem18h | 33333333h | 4021 3333h 8.6 mem18h | 33333333h | 4021 3333h |
Little-endian mode
246 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com LDDW — Load Doubleword From Memory With a 5-Bit Unsigned Constant Offset or Register Offset
Example 2
LDDW . D1 *++A10[1], Al: AO
Before instruction 1 cycle after instruction
A1:A0 ‘ XXXX XXXxh ‘ XXXX XXXXh | A1:A0 | XXXX XXXXh ‘ XXXX XXXXh ‘
A10 0000 0010h 16 A10 0000 0018h 24
mem 18h | 4021 3333h | 33333333h 8.6 mem 18h 4021 3333h 3333 3333h |
5 cycles after instruction
AL:AQ | 4021 3333h \ 3333 3333h \
A10 0000 0018h 24
mem 18h | 4021 3333h \ 3333 3333h \
Big-endian mode
Example 3
LDDW . D1 *Ad++[5], A9: A8
Before instruction 1 cycle after instruction
A9:A8 ‘ XXXX XXXXh | XXXX XXXXh ‘ A9:A8 | XXXX XXXXh ‘ XXXX XXxXh |
A4 \ 0000 40B0h | A4 | 0000 40B0Oh \
mem 40BOh \ 0112 2334h | 4556 6778h \ mem 40BOh | 0112 2334h \ 4556 6778h |
5 cycles after instruction
A9:A8 | 4556 6778h \ 0112 2334h |
A4 | 0000 40B0h |
mem 40B0h | 0112 2334h \ 4556 6778h |
Little-endian mode
SPRU732J-July 2010 Instruction Set 247

Copyright © 2010, Texas Instruments Incorporated

LDDW — Load Doubleword From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

13 TEXAS
INSTRUMENTS

www.ti.com

Example 4
LDDW . D1 *++A4[A12], A9: A8

Before instruction

1 cycle after instruction

A9:A8 ‘ XXXX XXxXh ‘ XXXX XXxXh A9:A8 ‘ XXXX XXxXh ‘ XXXX XxXxxh
A4 | 0000 40B0h | A4 | 0000 40E0N \
A12 | 0000 0006h | A12 | 0000 0006h |
mem 40EOh | 0112 2334h | 4556 6778h mem 40EOh | 0112 2334h | 4556 6778h |
5 cycles after instruction
A9:A8 | 4556 6778h | 0112 2334h |
A4 | 0000 40E0N \
A12 | 0000 0006h |
mem 40EOh | 0112 2334h | 4556 6778h
Little-endian mode
Example 5
LDDW . DL *++A4(16), A9: A8
Before instruction 1 cycle after instruction
A9:A8 ‘ XXXX XXxXxh ‘ XXXX XXxXh A9:A8 | XXXX Xxxxh | XXXX Xxxxh ‘
A4 | 0000 40B0h | A4 0000 40COh |
mem 40COh | 4556 6778h | 899A ABBCh mem 40COh | 4556 6778h | 899A ABBCh |
5 cycles after instruction
A9:A8 | 899A ABBCh | 4556 6778h |
A4 | 0000 40COh |
mem 40COh [4556 6778h | 899A ABBCh |

Little-endian mode

248

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS

www.ti.com

LDH(U) — Load Halfword From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

LDH(U)

Syntax

Load Halfword From Memory With a 5-Bit Unsigned Constant Offset or
Register Offset

Register Offset
LDH (.unit) *+baseR][offsetR], dst

or

LDHU (.unit) *+baseR[offsetR], dst
unit = .D1 or .D2

Compatibility

C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unsigned Constant Offset
LDH (.unit) *+baseR[ucst5], dst

or

LDHU (.unit) *+baseR[ucst5], dst

Unit Opcode Format Figure
.D Doff4 Figure C-9
Dind Figure C-11
Dinc Figure C-13
Ddec Figure C-15
Opcode
31 29 28 27 23 22 18 17 13 12 9 8 7 6 4 3 2 1 0
\ creg | z | dst baseR offsetR/ucst5 mode \ 0 \ y \ op | 0 \ 1 | s \ p \
3 1 5 5 5 4 1 3 1 1
Description Loads a halfword from memory to a general-purpose register (dst). Table 3-20
summarizes the data types supported by halfword loads. Table 3-6 describes the
addressing generator options. The memory address is formed from a base address
register (baseR) and an optional offset that is either a register (offsetR) or a 5-bit
unsigned constant (ucstb). If an offset is not given, the assembler assigns an offset of
zero.
Table 3-20. Data Types Supported by LDH(U) Instruction
Mnemonic op Field Load Data Type Slze Left Shift of Offset
LDH 1 0 0 Load halfword 16 1 bit
LDHU 0 0 0 Load halfword unsigned 16 1 bit

offsetR and baseR must be in the same register file and on the same side as the .D unit
used. The y bit in the opcode determines the .D unit and register file used: y = 0 selects
the .D1 unit and baseR and offsetR from the A register file, and y = 1 selects the .D2 unit

and baseR and offsetR from the B register file.

offsetR/ucst5 is scaled by a left-shift of 1 bit. After scaling, offsetR/ucst5 is added to or
subtracted from baseR. For the preincrement, predecrement, positive offset, and
negative offset address generator options, the result of the calculation is the address to
be accessed in memory. For postincrement or postdecrement addressing, the value of

baseR before the addition or subtraction is the address to be accessed in memory.

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

249

LDH(U) — Load Halfword From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

13 TEXAS
INSTRUMENTS

www.ti.com

Execution

if (cond)
else nop

Pipeline

Instruction Type

The addressing arithmetic that performs the additions and subtractions defaults to linear
mode. However, for A4-A7 and for B4-B7, the mode can be changed to circular mode by
writing the appropriate value to the AMR (see Section 2.8.3).

For LDH(U), the values are loaded into the 16 LSBs of dst. For LDH, the upper 16 bits of
dst are sign-extended; for LDHU, the upper 16 bits of dst are zero-filled. The s bit
determines which file dst will be loaded into: s = 0 indicates dst will be loaded in the A
register file and s = 1 indicates dst will be loaded in the B register file.

Increments and decrements default to 1 and offsets default to O when no bracketed
register or constant is specified. Loads that do no modification to the baseR can use the
syntax *R. Square brackets, [], indicate that the ucst5 offset is left-shifted by 1.
Parentheses, (), can be used to set a nonscaled, constant offset. You must type either
brackets or parentheses around the specified offset, if you use the optional offset

parameter.

Halfword addresses must be aligned on halfword (LSB is 0) boundaries.

mem — dst

Pipeline Stage El E2 E3 E4 E5
Read baseR, offsetR

Written baseR dst
Unit in use .D

Load

Delay Slots 4 for loaded value
0 for address modification from pre/post increment/decrement
For more information on delay slots for a load, see Chapter 4.
See Also LDB, LDW
Example LDH . D1 *++A4[Al], A8
Before ' 1 cycle after instruction 5 cycles after
instruction instruction
Al | 0000 0002h A1 | 0000 0002h A1 | 0000 0002h |
A4 | 0000 0020h | A4 | 0000 0024h | A4 | 0000 0024h |
A8 | 1103 51FFh | As | 1103 51FFh | As | FFFF A21Fh |
AMR | 0000 0000h | AMR | 0000 0000h | AMR | 0000 0000h |
mem 24h | A21Fh | mem24h |A21Fh | mem24h |A21Fh |

250 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com LDH(U) — Load Halfword From Memory With a 15-Bit Unsigned Constant Offset
LDH(V) Load Halfword From Memory With a 15-Bit Unsigned Constant Offset
Syntax LDH (.unit) *+B14/B15[ucst15], dst
or
LDHU (.unit) *+B14/B15[ucst15], dst
unit = .D2
Compatibility C62x, C64x, and C64x+ CPU
Opcode
31 29 28 27 23 22 8 7 6 4 3 2 1 0
’ creg |z| dst ucstl5 ‘y’ op |1‘1|s‘p‘
3 1 5 15 1 3 11
Description Loads a halfword from memory to a general-purpose register (dst). Table 3-21

summarizes the data types supported by loads. The memory address is formed from a
base address register B14 (y = 0) or B15 (y = 1) and an offset, which is a 15-bit
unsigned constant (ucst15). The assembler selects this format only when the constant is
larger than five bits in magnitude. This instruction operates only on the .D2 unit.

The offset, ucstl5, is scaled by a left shift of 1 bit. After scaling, ucst15 is added to
baseR. Subtraction is not supported. The result of the calculation is the address sent to
memory. The addressing arithmetic is always performed in linear mode.

For LDH(U), the values are loaded into the 16 LSBs of dst. For LDH, the upper 16 bits of
dst are sign-extended; for LDHU, the upper 16 bits of dst are zero-filled. The s bit
determines which file dst will be loaded into: s = 0 indicates dst will be loaded in the A
register file and s = 1 indicates dst will be loaded in the B register file.

Square brackets, [], indicate that the ucstl150ffset is left-shifted by 1. Parentheses, (),
can be used to set a nonscaled, constant offset. You must type either brackets or
parentheses around the specified offset, if you use the optional offset parameter.

Halfword addresses must be aligned on halfword (LSB is 0) boundaries.

Table 3-21. Data Types Supported by LDH(U) Instruction (15-Bit Offset)

Mnemonic op Field Load Data Type Slze Left Shift of Offset
LDH 1 0 0 Load halfword 16 1 bit
LDHU 0 0 0 Load halfword unsigned 16 1 bit
Execution
if (cond) mem — dst
else nop

NOTE: This instruction executes only on the B side (.D2).

SPRU732J-July 2010 Instruction Set 251

Copyright © 2010, Texas Instruments Incorporated

LDH(U) — Load Halfword From Memory With a 15-Bit Unsigned Constant Offset

13 TEXAS
INSTRUMENTS

www.ti.com

Pipeline

Instruction Type
Delay Slots

See Also

Pipeline Stage El E2

E3

E4 ES

Read B14/B15
Written
Unit in use .D2

dst

Load

LDB, LDW

252 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com

LDNDW — Load Nonaligned Doubleword From Memory With Constant or Register Offset

LDNDW

Syntax

Register Offset

Load Nonaligned Doubleword From Memory With Constant or Register Offset

Unsigned Constant Offset

LDNDW (.unit) *+baseR[offsetR], dst LDNDW (.unit) *+baseR[ucst5], dst

unit = .D1 or .D2

Compatibility

C64x and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure
.D DoffADW Figure C-10
DindDW Figure C-12
DincDW Figure C-14
DdecDW Figure C-16
Opcode
31 29 28 27 24 23 22 18 17 13 12 9 8 7 6 5 4 3 2 1 O
’ creg | z | dst ‘sc’ baseR offsetR/ucst5 mode ‘ 1 ‘ y ’ 0 ’ 1 | 0 | 0 ‘ 1 | S ‘ p ‘
3 1 4 1 5 5 4 1 1 1
Opcode map field used... For operand type... Unit
baseR uint .D1, .D2
offsetR uint
dst ullong
baseR uint .D1, .D2
offsetR ucst5
dst ullong
Description Loads a 64-bit quantity from memory into a register pair, dst_o:dst_e. Table 3-6

describes the addressing generator options. The LDNDW instruction may read a 64-bit
value from any byte boundary. Thus alignment to a 64-bit boundary is not required. The
memory address is formed from a base address register (baseR) and an optional offset
that is either a register (offsetR) or a 5-bit unsigned constant (ucst5).

Both offsetR and baseR must be in the same register file, and on the same side, as the
.D unit used. The y bit in the opcode determines the .D unit and register file used: y =0
selects the .D1 unit and baseR and offsetR from the A register file, and y = 1 selects the
.D2 unit and baseR and offsetR from the B register file.

The LDNDW instruction supports both scaled offsets and nonscaled offsets. The sc field
is used to indicate whether the offsetR/ucst5 is scaled or not. If sc is 1 (scaled), the
offsetR/ucst5 is shifted left 3 bits before adding or subtracting from the baseR. If sc is 0
(nonscaled), the offsetR/ucst5 is not shifted before adding or subtracting from the baseR.
For the preincrement, predecrement, positive offset, and negative offset address
generator options, the result of the calculation is the address to be accessed in memory.
For postincrement or postdecrement addressing, the value of baseR before the addition
or subtraction is the address to be accessed from memory.

SPRU732J-July 2010

Instruction Set 253

Copyright © 2010, Texas Instruments Incorporated

LDNDW — Load Nonaligned Doubleword From Memory With Constant or Register Offset

13 TEXAS
INSTRUMENTS

www.ti.com

Assembler Notes

Execution

if (cond)
else nop

Pipeline

Instruction Type

Delay Slots

See Also

The addressing arithmetic that performs the additions and subtractions defaults to linear
mode. However, for A4-A7 and for B4-B7, the mode can be changed to circular mode by
writing the appropriate value to the AMR (see Section 2.8.3).

The dst field of the instruction selects a register pair, a consecutive even-numbered and
odd-numbered register pair from the same register file. The instruction can be used to
load a pair of 32-bit integers. The 32 least-significant bits are loaded into the
even-numbered register and the 32 most-significant bits are loaded into the next register
(that is always an odd-numbered register).

The dst can be in either register file, regardless of the .D unit or baseR or offsetR used.
The s bit determines which file dst will be loaded into: s = 0 indicates dst will be in the A
register file and s = 1 indicates dst will be loaded in the B register file.

NOTE: No other memory access may be issued in parallel with a nonaligned
memory access. The other .D unit can be used in parallel as long as it is
not performing a memory access.

When no bracketed register or constant is specified, the assembler defaults increments
and decrements to 1 and offsets to 0. Loads that do no modification to the baseR can
use the assembler syntax *R. Square brackets, [], indicate that the ucst5 offset is
left-shifted by 3 for doubleword loads.

Parentheses, (), can be used to tell the assembler that the offset is a non-scaled offset.

For example, LDNDW (.unit) *+baseR (14), dst represents an offset of 14 bytes, and the
assembler writes out the instruction with offsetC = 14 and sc = 0.

LDNDW (.unit) *+baseR [16], dst represents an offset of 16 doublewords, or 128 bytes,
and the assembler writes out the instruction with offsetC = 16 and sc = 1.

Either brackets or parentheses must be typed around the specified offset if the optional
offset parameter is used.

mem — dst

Pipeline Stage El E2 E3 E4 E5
Read baseR, offsetR

Written baseR dst
Unit in use .D
Load

4 for loaded value

0 for address modification from pre/post increment/decrement

LDNW, STNDW, STNW

254 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com LDNDW — Load Nonaligned Doubleword From Memory With Constant or Register Offset
Examples Example 1
LDNDW . D1 *AQ++, A3: A2
Before instruction 1 cycle after instruction

AO | 0000 1001h | A0 0000 1009h |

A3:A2 ‘ XXXX XXXXh ‘ XXXX XXXXh A3:A2 | XXXX XXXXh | XXXX XXxXXh

mem 1000h | 12B6 C5D4h | mem 1000h | 12B6 C5D4h |

mem 1004h | 1C4F 29A8h | mem 1004h | 1C4F 29A8h |

mem 1008h | 0569 345Eh | mem 1008h | 0569 345Eh |

5 cycles after instruction

AO | 0000 1009h |

A3:A2 | 5E1C 4F29h | A812 B6C5h
Little-endian mode

mem 1000h | 12B6 C5D4h |
mem 1004h | 1C4F 29A8h |
mem 1008h | 0569 345Eh |

Byte Memory 100C 100B 100A 1009 1008 1007 1006 1005 1004 1003 1002 1001 1000

Address
Data Value 11 05 69 34 5E 1C 4F 29 A8 12 B6 C5 D4
SPRU732J-July 2010 Instruction Set 255

Copyright © 2010, Texas Instruments Incorporated

LDNDW — Load Nonaligned Doubleword From Memory With Constant or Register Offset

13 TEXAS
INSTRUMENTS

www.ti.com

Example 2

LDNDW . D1 *AO++, A3: A2

Before instruction

AO | 0000 1003h | A0
A3:A2 ‘ XXXX XXXXh ‘ XXXX XXXXh A3:A2
mem 1000h | 12B6 C5D4h | mem 1000h
mem 1004h | 1C4F 29A8h | mem 1004h
mem 1008h | 0569 345Eh | mem 1008h
A0
A3:A2
mem 1000h
mem 1004h
mem 1008h

1 cycle after instruction

| 0000 100Bh

| XXXX XXXXh

| XXXX XXxXXh

| 12B6 C5D4h

| 1C4F 29A8h

| 0569 345Eh

5 cycles after instruction

| 0000 100Bh

| 6934 5E1Ch

| 4F29 A812h

Little-endian mode

| 12B6 C5D4h

| 1C4F 29A8h

| 0569 345Eh

Byte Memory 100C 100B
Address

Data Value 11 05

100A 1009 1008 1007 1006 1005 1004 1003

69 34 5E 1C 4F 29

A8 12

1002 1001 1000

B6 C5 D4

256

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com LDNW — Load Nonaligned Word From Memory With Constant or Register Offset
LDNW Load Nonaligned Word From Memory With Constant or Register Offset
Syntax

Register Offset

LDNW (.unit) *+baseR[offsetR], dst

unit = .D1 or .D2

Compatibility

Unsigned Constant Offset
LDNW (.unit) *+baseR[ucst5], dst

C64x and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure
.D Doff4 Figure C-9
Dind Figure C-11
Dinc Figure C-13
Ddec Figure C-15
Opcode
31 29 28 27 23 22 18 17 13 12 9 8 7 6 5 4 3 2 1 O
’ creg | z | dst baseR offsetR/ucst5 mode ‘ 1 ‘ y ’ 0 ’ 1 | 1 | 0 ‘ 1 | S ‘ p ‘
3 1 5 5 5 4 1 1 1
Opcode map field used... For operand type... Unit
baseR uint .D1, .D2
offset uint
dst int
baseR uint .D1, .D2
offset ucst5
dst int
Description Loads a 32-bit quantity from memory into a 32-bit register, dst. Table 3-6 describes the

addressing generator options. The LDNW instruction may read a 32-bit value from any
byte boundary. Thus alignment to a 32-bit boundary is not required. The memory
address is formed from a base address register (baseR), and an optional offset that is
either a register (offsetR) or a 5-bit unsigned constant (ucst5). If an offset is not given,
the assembler assigns an offset of zero.

Both offsetR and baseR must be in the same register file, and on the same side, as the
.D unit used. The y bit in the opcode determines the .D unit and register file used: y = 0
selects the .D1 unit and baseR and offsetR from the A register file, and y = 1 selects the
.D2 unit and baseR and offsetR from the B register file.

The offsetR/ucst5 is scaled by a left shift of 2 bits. After scaling, offsetR/ucst5 is added
to, or subtracted from, baseR. For the preincrement, predecrement, positive offset, and
negative offset address generator options, the result of the calculation is the address to
be accessed in memory. For postincrement or postdecrement addressing, the value of
baseR before the addition or subtraction is the address to be accessed from memory.

SPRU732J-July 2010

Instruction Set 257

Copyright © 2010, Texas Instruments Incorporated

LDNW — Load Nonaligned Word From Memory With Constant or Register Offset

13 TEXAS
INSTRUMENTS

www.ti.com

Assembler Notes

Execution

if (cond)
else nop

Pipeline

Instruction Type

Delay Slots

See Also

The addressing arithmetic that performs the additions and subtractions defaults to linear
mode. However, for A4-A7 and for B4-B7, the mode can be changed to circular mode by
writing the appropriate value to the AMR (see Section 2.8.3).

The dst can be in either register file, regardless of the .D unit or baseR or offsetR used.
The s bit determines which file dst will be loaded into: s = 0 indicates dst will be in the A
register file and s = 1 indicates dst will be loaded in the B register file.

NOTE: No other memory access may be issued in parallel with a nonaligned
memory access. The other .D unit can be used in parallel, as long as it is
not doing a memory access.

When no bracketed register or constant is specified, the assembler defaults increments
and decrements to 1 and offsets to 0. Loads that do no modification to the baseR can
use the assembler syntax *R. Square brackets, [], indicate that the ucst5 offset is
left-shifted by 2 for word loads.

Parentheses, (), can be used to tell the assembler that the offset is a nonscaled,
constant offset. The assembler right shifts the constant by 2 bits for word loads before
using it for the ucst5 field. After scaling by the LDNW instruction, this results in the same
constant offset as the assembler source if the least-significant two bits are zeros.

For example, LDNW (.unit) *+baseR (12), dst represents an offset of 12 bytes (3 words),
and the assembler writes out the instruction with ucst5 = 3.

LDNW (.unit) *+baseR [12], dst represents an offset of 12 words, or 48 bytes, and the
assembler writes out the instruction with ucst5 = 12.

Either brackets or parentheses must be typed around the specified offset if the optional
offset parameter is used.

mem — dst

Pipeline Stage El E2 E3 E4 E5
Read baseR, offsetR

Written baseR dst
Unit in use .D
Load

4 for loaded value

0 for address modification from pre/post increment/decrement

LDNDW, STNDW, STNW

258 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com LDNW — Load Nonaligned Word From Memory With Constant or Register Offset
Examples Example 1
LDNW . D1 *AQ++, A2
Before instruction 1 cycle after 5 cycles after
instruction instruction
AO \ 0000 1001h | AO \ 0000 1005h \ A0 | 0000 1005h \
A2 ‘ XXXX XXxxh | A2 ‘ XXXX XXxXh ‘ A2 | A812 B6C5h ‘
Little-endian mode
mem 1000h \ 12B6 C5D4h | mem 1000h \ 12B6 C5D4h \ mem 1000h | 12B6 C5D4h \
mem 1004h \ 1C4F 29A8h | mem 1004h \ 1C4F 29A8h \ mem 1004h | 1C4F 29A8h \
Byte Memory Address 1007 1006 1005 1004 1003 1002 1001 1000
Data Value 1C 4F 29 A8 12 B6 C5 D4
Example 2
LDNW . D1 *AQ++, A2
Before instruction 1 cycle after 5 cycles after
instruction instruction
AO \ 0000 1003h | AO \ 0000 1007h \ A0 | 0000 1007h \
A2 ‘ XXXX XXxxh | A2 ‘ XXXX XXxXh ‘ A2 | 4F29 A812h ‘
Little-endian mode
mem 1000h \ 12B6 C5D4h | mem 1000h \ 12B6 C5D4h \ mem 1000h | 12B6 C5D4h \
mem 1004h \ 1C4F 29A8h | mem 1004h \ 1C4F 29A8h \ mem 1004h | 1C4F 29A8h \
Byte Memory Address 1007 1006 1005 1004 1003 1002 1001 1000
Data Value 1C 4F 29 A8 12 B6 C5 D4
SPRU732J-July 2010 Instruction Set 259

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

LDW — Load Word From Memory With a 5-Bit Unsigned Constant Offset or Register Offset www.ti.com

LDW

Syntax

Register Offset

Load Word From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

Unsigned Constant Offset

LDW (.unit) *+baseR][offsetR], dst LDW (.unit) *+baseR[ucst5], dst

unit = .D1 or .D2

Compatibility

C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure
.D Doff4 Figure C-9
Dind Figure C-11
Dinc Figure C-13
Ddec Figure C-15
Opcode
31 29 28 27 23 22 18 17 13 12 9 8 7 6 5 4 3 2 1 0
’ creg | z | baseR offsetR/ucst5 mode ‘ 0 ‘ y ’ 1 ’ 1 | 0 | 0 ‘ 1 | S ‘ p ‘
3 1 5 5 4 1 1 1
Description Loads a word from memory to a general-purpose register (dst). Table 3-6 describes the

addressing generator options. The memory address is formed from a base address
register (baseR) and an optional offset that is either a register (offsetR) or a 5-bit
unsigned constant (ucstb). If an offset is not given, the assembler assigns an offset of
zero.

offsetR and baseR must be in the same register file and on the same side as the .D unit
used. The y bit in the opcode determines the .D unit and register file used: y = 0 selects
the .D1 unit and baseR and offsetR from the A register file, and y = 1 selects the .D2 unit
and baseR and offsetR from the B register file.

offsetR/ucst5 is scaled by a left-shift of 2 bits. After scaling, offsetR/ucst5 is added to or
subtracted from baseR. For the preincrement, predecrement, positive offset, and
negative offset address generator options, the result of the calculation is the address to
be accessed in memory. For postincrement or postdecrement addressing, the value of
baseR before the addition or subtraction is the address to be accessed in memory.

The addressing arithmetic that performs the additions and subtractions defaults to linear
mode. However, for A4-A7 and for B4-B7, the mode can be changed to circular mode by
writing the appropriate value to the AMR (see Section 2.8.3).

For LDW, the entire 32 bits fills dst. dst can be in either register file, regardless of the .D
unit or baseR or offsetR used. The s bit determines which file dst will be loaded into:

s = 0 indicates dst will be loaded in the A register file and s = 1 indicates dst will be
loaded in the B register file.

Increments and decrements default to 1 and offsets default to O when no bracketed
register or constant is specified. Loads that do no modification to the baseR can use the
syntax *R. Square brackets, [], indicate that the ucst5 offset is left-shifted by 2.
Parentheses, (), can be used to set a nonscaled, constant offset. For example,

260 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com LDW — Load Word From Memory With a 5-Bit Unsigned Constant Offset or Register Offset
LDW (.unit) *+baseR (12), dst represents an offset of 12 bytes; whereas, LDW (.unit)
*+baseR [12], dst represents an offset of 12 words, or 48 bytes. You must type either
brackets or parentheses around the specified offset, if you use the optional offset
parameter.
Word addresses must be aligned on word (two LSBs are 0) boundaries.
Execution
if (cond) mem — dst
else nop
Pipeline
Pipeline Stage El E2 E3 E4 E5
Read baseR, offsetR
Written baseR dst
Unit in use .D
Instruction Type Load
Delay Slots 4 for loaded value
0 for address modification from pre/post increment/decrement
For more information on delay slots for a load, see Chapter 4.
See Also LDB, LDH
Examples Example 1
LDW . DL *Al0, Bl
Before instruction 1 cycle after 5 cycles after
instruction instruction
B1 \ 0000 0000h | B1 \ 0000 0000h \ B1 | 21F3 1996h \
A10 | 0000 0100h | A10 | 0000 0100h | A0 0000 0100h |
mem 100h \ 21F3 1996h | mem 100h \ 21F3 1996h \ mem 100h | 21F3 1996h \
Example 2
LDW . DL *Ad++[1], A6
Before instruction 1 cycle after 5 cycles after
instruction instruction
A4 | 0000 0100h | A4 | 0000 0104h | A4 0000 0104h |
A6 \ 1234 4321h | A \ 1234 4321h \ AB | 0798 F25Ah \
AMR | 0000 0000h | AMR | 0000 0000h | AMR | 0000 0000h |
mem 100h \ 0798 F25Ah | mem 100h \ 0798 F25Ah \ mem 100h | 0798 F25Ah \
mem 104h \ 1970 19F3h | mem 104h \ 1970 19F3h \ mem 104h | 1970 19F3h \
SPRU732J-July 2010 Instruction Set 261

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
LDW — Load Word From Memory With a 5-Bit Unsigned Constant Offset or Register Offset www.ti.com
Example 3
LDW . DL *++A4[1], A6
Before instruction 1 cycle after 5 cycles after
instruction instruction
A4 \ 0000 0100h | A4 \ 0000 0104h \ A4 | 0000 0104h \
A6 \ 1234 5678h | A6 \ 1234 5678h \ A6 | 0217 6991h \
AMR \ 0000 0000h | AMR \ 0000 0000h \ AMR | 0000 0000h \
mem 104h \ 0217 6991h | mem 104h \ 0217 6991h \ mem 104h | 0217 6991h \
Example 4
LDW . DL *++A4[A12] , A8
Before instruction 1 cycle after 5 cycles after
instruction instruction
A4 \ 0000 40B0h | A4 \ 0000 40C8h \ A4 | 0000 40C8h \
A8 | 0000 0000h | As | 0000 0000h | As | DCCB BAASh |
A12 \ 0000 0006h | A12 \ 0000 0006h \ A12 | 0000 0006h \
AMR | 0000 0000h | AMR | 0000 0000h | AMR | 0000 0000h |
mem 40C8h \ DCCB BAASh | mem 40C8h \ DCCB BAA8h \ mem 40C8h | DCCB BAASh \
Example 5
LDW . DL *++A4(8), A8
Before instruction 1 cycle after 5 cycles after
instruction instruction
A4 \ 0000 40B0h | A4 \ 0000 40B8h \ A4 | 0000 40B8h \
A8 \ 0000 0000h | A8 \ 0000 0000h \ A8 | 9AAB BCCDh \
AMR \ 0000 0000h | AMR \ 0000 0000h \ AMR | 0000 0000h \
mem 40Bgh \ 9AAB BCCDh | mem 40Bgh \ 9AAB BCCDh \ mem 40Bgh | 9AAB BCCDh \
262 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS

www.ti.com

LDW — Load Word From Memory With a 15-Bit Unsigned Constant Offset

LDW

Syntax

Compatibility

Load Word From Memory With a 15-Bit Unsigned Constant Offset

LDW (.unit) *+B14/B15[ucst15], dst
unit = .D2

C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit

Opcode Format Figure

.D

Dstk
Dpp

Figure C-17
Figure C-22

Opcode

31 29 28 27

23 22 8 7 6 5 4 3 2 1 0

| creg | z]

dst

ucst1s [y[1]1]ofa]a]s[p]

3 1

Description

Execution

if (cond)
else nop

15 1 1 1

Load a word from memory to a general-purpose register (dst). The memory address is
formed from a base address register B14 (y = 0) or B15 (y = 1) and an offset, which is a
15-bit unsigned constant (ucst15). The assembler selects this format only when the
constant is larger than five bits in magnitude. This instruction operates only on the .D2
unit.

The offset, ucstl5, is scaled by a left shift of 2 bits. After scaling, ucstl5 is added to
baseR. Subtraction is not supported. The result of the calculation is the address sent to
memory. The addressing arithmetic is always performed in linear mode.

For LDW, the entire 32 bits fills dst. dst can be in either register file. The s bit determines
which file dst will be loaded into: s = 0 indicates dst will be loaded in the A register file
and s = 1 indicates dst will be loaded in the B register file.

Square brackets, [], indicate that the ucstl50ffset is left-shifted by 2. Parentheses, (),
can be used to set a nonscaled, constant offset. For example,

LDW (.unit) *+B14/B15(60), dst represents an offset of 60 bytes; whereas,

LDW (.unit) *+B14/B15[60], dst represents an offset of 60 words, or 240 bytes. You must
type either brackets or parentheses around the specified offset, if you use the optional
offset parameter.

Word addresses must be aligned on word (two LSBs are 0) boundaries.

mem — dst

NOTE: This instruction executes only on the B side (.D2).

SPRU732J-July 2010

Instruction Set 263

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS

LDW — Load Word From Memory With a 15-Bit Unsigned Constant Offset www.ti.com
Pipeline

Pipeline Stage E1l E2 E3 E4 E5

Read B14/B15

Written dst

Unit in use .D2
Instruction Type Load
Delay Slots 4
See Also LDB, LDH
264 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com LL — Load Linked Word from Memory
LL Load Linked Word from Memory
Syntax LL (.unit) *baseR, dst
unit = .D2
Compatibility C64x+ CPU
NOTE: The atomic operations are not supported on all C64x+ devices, see your
device-specific data manual for more information.
Opcode
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| creg | z] dst baseR loJofoJoJoJofJo[1][1]o]of2]o]o]o]o[1]p]
3 1 5 5 1
Opcode map field used... For operand type... Unit
baseR address .D2
dst int
Description The LL instruction performs a read of the 32-bit word in memory at the address specified
by baseR. The result is placed in dst. For linked-operation aware systems, the read
request also results in a request to store the address specified by baseR in a linked
operation register and the CPU signals that this is a linked read operation by setting the
link valid flag. Other than this signaling, the operation of the LL instruction from the CPU
perspective is identical to that of LDW *baseR, dst.
See Chapter 9 for more details.
Execution
if (cond) mem — dst
signal load-linked operation
else nop
Instruction Type Load
Delay Slots 4
See Also CMTL, SL
SPRU732J-July 2010 Instruction Set 265

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
LMBD — Leftmost Bit Detection www.ti.com
LMBD Leftmost Bit Detection
Syntax LMBD (.unit) srcl, src2, dst
unit=.L1 or .L2
Compatibility C62x, C64x, and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0
‘ creg | z | dst src2 srcl/cst5 | X | op | 1 | 1 ‘ 0 | S ‘ p ‘
3 1 5 5 5 1 7 1 1
Opcode map field used... For operand type... Unit Opfield
srcl uint L1, L2 1101011
src2 xuint
dst uint
srcl cst5 L1, .12 110 1010
src2 xuint
dst uint
Description The LSB of the srcl operand determines whether to search for a leftmost 1 or 0 in src2.

The number of bits to the left of the first 1 or 0 when searching for a 1 or 0, respectively,
is placed in dst.

The following diagram illustrates the operation of LMBD for several cases.
When searching for 0 in src2, LMBD returns O:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Lol e D [x D b fx Do o fx Do fox Pox Do Ex Do o fox Do o fox o x Pox D [x Do [[x D [x [x

When searching for 1 in src2, LMBD returns 4:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Lofolofol e [x xlxxxlxx[xlxxlx]xx]xx[x]x[x[xx[x]x[x[x]x][x][x]

When searching for 0 in src2, LMBD returns 32:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[efalafefa]s]

266 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com LMBD — Leftmost Bit Detection
Execution
if (cond) {
if (srcl , == 0), ImbO(src2) — dst
if (srcl o == 1), Imb1(src2) — dst
}
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use L
Instruction Type Single-cycle
Delay Slots 0
Example LMBD . L1 Al, A2, A3
Before instruction 1 cycle after instruction
Al | 0000 0001h | Al | 0000 0001h |
A2 | 009E 3A81h | A2 | 009E 3A81h |
A3 | 0000 3000 | A3 | 0000 0008h |
SPRU732J-July 2010 Instruction Set 267

Copyright © 2010, Texas Instruments Incorporated

MAX2 — Maximum,

13 TEXAS
INSTRUMENTS

Signed, Packed 16-Bit www.ti.com

MAX?2 Maximum, Signed, Packed 16-Bit
Syntax MAX2 (.unit) srcl, src2, dst
unit = .L1 or .L2 (C64x and C64x+ CPU)
unit = .S1 or .S2 (C64x+ CPU)
Compatibility C64x and C64x+ CPU
Opcode .L unit (C64x and C64x+ CPU)
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| dst ’ src2 | srcl |x|1‘0|0‘0‘0’1’0|1|1‘0|s‘p‘
3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit
srcl s2 L1, .L.2
src2 Xxs2
dst s2
Opcode .S unit (C64x+ CPU)
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| creg |z dst \ src2 | srcl I xJaf1]1]s]ofa]a]1]o]o]s]p]
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s2 .S1, .82
src2 Xs2
dst s2
Description Performs a maximum operation on signed, packed 16-bit values. For each pair of signed
16-bit values in srcl and src2, MAX2 places the larger value in the corresponding
position in dst.
31 16 15 0
‘ a_hi ‘ a_lo ‘ «— srcl
MAX2
\ b_hi \ b_lo \ < src2
! !
31 16 15 0
\ (a_hi>b_hi) ? a_hi:b_hi \ (a_lo>b_lo)? a_lo:b_lo \ — dst
268 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com MAX2 — Maximum, Signed, Packed 16-Bit
Execution
if (cond) {
if (Isb16(srcl) >= Isb16(src2)), Isb16(srcl) — Isb16(dst)
else Isb16(src2) — Isb16(dst);
if (msb16(src1) >= msb16(src2)), msb16(srcl) — msb16(dst)
else msb16(src2) — msb16(dst)
}
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use L
Instruction Type Single-cycle
Delay Slots 0
See Also MAXU4, MIN2, MINU4
Examples Example 1
MAX2 . L1 A2, A8, A9
Before instruction 1 cycle after instruction
A2 \ 3789 F23Ah | A2 \ 3789 F23Ah | 14217 -3526
A8 \ 04B8 4975h | A8] 04B8 4975h | 1208 18805
A9 \ X0 xxxxh | A9 \ 3789 4975h | 14217 18805
Example 2
MAX2 .L2X A2, B8, B12
Before instruction 1 cycle after instruction
A2 | 0124 2451h \ A2 \ 0124 2451h \ 292 9297
B8 | 01A6 A051h \ B8 \ 01A6 A051h \ 422 -24495
B12 | xxxx xxxxh \ B12 \ 01A6 2451h \ 422 9297
SPRU732J-July 2010 Instruction Set 269

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
MAX2 — Maximum, Signed, Packed 16-Bit www.ti.com
Example 3 (C64x+ CPU)
MAX2 .Sl A2, A8, A9
Before instruction 1 cycle after instruction
A2 | 3789 F23Ah \ A2 \ 3789 F23Ah \ 14217 -3526
A8 | 04B8 4975h \ A8 \ 04B8 4975h \ 1208 18805
A9 | x0xx xxxxh \ A9 \ 3789 4975h \ 14217 18805
Example 4 (C64x+ CPU)
MAX2 . S2X A2, B8, B12
Before instruction 1 cycle after instruction
A2 | 0124 2451h \ A2 \ 0124 2451h \ 292 9297
B8 | 01A6 AO51h \ B8 \ 01A6 AO51h \ 422 -24495
B12 | xxxx xxxxh \ B12 \ 01A6 2451h \ 422 9297
270 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com MAXU4 — Maximum, Unsigned, Packed 8-Bit
MAXU4 Maximum, Unsigned, Packed 8-Bit
Syntax MAXU4 (.unit) srcl, src2, dst
unit=.L1 or .L2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| src2 srcl |x|1‘0|0‘0‘0‘1‘1|1|1‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl u4 L1, .L2
src2 xu4
dst usd
Description Performs a maximum operation on unsigned, packed 8-bit values. For each pair of
unsigned 8-bit values in srcl and src2, MAXU4 places the larger value in the
corresponding position in dst.
31 24 23 16 15 8 7 0
‘ ua_3 ‘ ua_2 ‘ ua_1l | ua_0 ‘ «— srcl
MAXU4
‘ ub_3 ‘ ub_2 ‘ ub_1 | ub_0 ‘ « src2
! ! ! !
31 24 23 16 15 8 7 0
ua_3>ub_3?ua_3:wub_3 ‘ ua_2>ub_2?ua_2:ub_2 ‘ ua_l>ub_1?ua_lwub 1 | ua_0>ub_07?ua O:ub_0 ‘ «— dst
Execution
if (cond) {
if (ubyteO(srcl) >= ubyteO(src2)), ubyteO(srcl) — ubyteO(dst)
else ubyteO(src2) — ubyteO(dst);
if (ubytel(srcl) >= ubytel(src2)), ubytel(srcl) — ubytel(dst)
else ubytel(src2) — ubytel(dst);
if (ubyte2(srcl) >= ubyte2(src2)), ubyte2(srcl) — ubyte2(dst)
else ubyte2(src2) — ubyte2(dst);
if (ubyte3(srcl) >= ubyte3(src2)), ubyte3(srcl) — ubyte3(dst)
else ubyte3(src2) — ubyte3(dst)
}
else nop
SPRU732J-July 2010 Instruction Set 271

Copyright © 2010, Texas Instruments Incorporated

MAXU4 — Maximum, Unsigned, Packed 8-Bit

13 TEXAS
INSTRUMENTS

www.ti.com

Pipeline

Pipeline Stage El
Read srcl, src2
Written dst
Unit in use L
Instruction Type Single-cycle
Delay Slots 0
See Also MAX2, MIN2, MINU4
Examples Example 1
MAXU4 . L1 A2, A8, A9
Before instruction 1 cycle after instruction
A2 \ 37 89 F2 3Ah | A2 \ 37 89 F2 3Ah \ 55 137 242 58
unsigned
A8 \ 04 B8 49 75h | A8 \ 04 B8 49 75h \ 418473117
unsigned
A9 \ x0xx xxoxxh | A9 \ 37 B8 F2 75h \ 55184 242 117
unsigned
Example 2
MAXU4 . L2X A2, B8, B12
Before instruction 1 cycle after instruction
A2 \ 01 24 24 Boh | A2] 01 24 24 Boh] 136 36 185
unsigned
B8 \ 01 A6 A0 51h | B8] 01 A6 A0 51h] 1166 160 81
unsigned
B12 \ Xxxx Xx0xxh | B12] 01 A6 A0 BOh] 1166 160 185
unsigned

272 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com

MIN2 — Minimum, Signed, Packed 16-Bit

MIN2 Minimum, Signed, Packed 16-Bit
Syntax MINZ2 (.unit) srcl, src2, dst
unit = .L1 or .L2 (C64x and C64x+ CPU)
unit = .S1 or .S2 (C64x+ CPU)
Compatibility C64x and C64x+ CPU
Opcode .L unit (C64x and C64x+ CPU)
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| dst ’ src2 | srcl |x|1‘0|0‘0‘0’0’1|1|1‘0|s‘p‘
3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit
srcl s2 L1, .L.2
src2 Xxs2
dst s2
Opcode .S unit (C64x+ CPU)
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
\ creg |z| dst \ src2 | srcl |x|1\1|1\1\0\0\1|1|0\0|s\p\
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s2 .S1, .82
src2 Xs2
dst s2
Description Performs a minimum operation on signed, packed 16-bit values. For each pair of signed
16-bit values in srcl and src2, MIN2 instruction places the smaller value in the
corresponding position in dst.
31 16 15 0
a_hi ‘ a_lo ‘ «— srcl
MIN2
\ b_hi \ b_lo \ < src2
! !
31 16 15 0
(a_hi < b_hi) ? a_hi:b_hi \ (a_lo<b_lo) ? a_lo:b_lo \ — dst

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set 273

13 TEXAS

INSTRUMENTS
MIN2 — Minimum, Signed, Packed 16-Bit www.ti.com
Execution
if (cond) {
if (Isb16(srcl) <= Isb16(src2)), Isb16(srcl) — Isb16(dst)
else Isb16(src2) — Isb16(dst);
if (msb16(src1) <= msb16(src2)), msb16(srcl) — msb16(dst)
else msb16(src2)— msb16(dst)
}
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use L
Instruction Type Single-cycle
Delay Slots 0
See Also MAX2, MAXU4, MINU4
Examples Example 1
MN2 .L1 A2, A8, A9
Before instruction 1 cycle after instruction
A2 \ 3789 F23Ah | A2 \ 3789 F23Ah \ 14217 -3526
A8 \ 04B8 4975h | A8] 04B8 4975h \ 1208 18805
A9 \ X0 xxxxh | A9 \ 04B8 F23Ah \ 1208 -3526
Example 2
M N2 .L2X A2, B8, B12
Before instruction 1 cycle after instruction
A2 \ 0124 8003h | A2 \ 0124 8003h \ 292 -32765
B8 \ 0A37 8001h | B8 \ 0A37 8001h \ 2615 -32767
B12 \ xxxx xxxxh | B12 \ 0124 8001h \ 292 -32767
274 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com MIN2 — Minimum, Signed, Packed 16-Bit

Example 3 (C64x+ CPU)
MN2 .Sl A2, A8, A9

Before instruction 1 cycle after instruction
A2 |3789 F23Ah | A2 |3789 F23Ah | 14217 -3526
A8 | 04B8 4975h | A8 | 04B8 4975h | 1208 18805
A9 | X0k xoooxh | A9 | 04B8 F23Ah | 1208 -3526

Example 4 (C64x+ CPU)
M N2 .S2X A2, B8, B12

Before instruction 1 cycle after instruction
A2 |0124 8003h | A2 |0124 8003h | 202 -32765
B8 |0A378001h | B8 |0A378001h | 2615 -32767
B12 | xxxh | B12 | 0124 8001h | 202 -32767

SPRU732J-July 2010 Instruction Set 275

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
MINU4 — Minimum, Unsigned, Packed 8-Bit www.ti.com
MINU4 Minimum, Unsigned, Packed 8-Bit
Syntax MINU4 (.unit) srcl, src2, dst
unit=.L1 or .L2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x|1‘0|0‘1‘0‘0‘0|1|1‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl u4 L1, .L2
src2 xu4
dst usd
Description Performs a minimum operation on unsigned, packed 8-bit values. For each pair of
unsigned 8-bit values in srcl and src2, MINU4 places the smaller value in the
corresponding position in dst.
31 24 23 16 15 8 7 0
‘ ua_3 ‘ ua_2 ‘ ua_1l | ua_0 ‘ «— srcl
MINU4
‘ ub_3 ‘ ub_2 ‘ ub_1 | ub_0 ‘ « src2
! ! ! !
31 24 23 16 15 8 7 0
‘ ua_3<ub_3?ua_3:wub_3 ‘ ua_2<ub_2?ua_2:wub_2 ‘ ua_l<ub_1?ua_lwub 1 | ua_0<ub_0?ua_O:ub_0 ‘ « dst
Execution
if (cond) {
if (ubyteO(srcl) <= ubyteO(src2)), ubyteO(srcl) — ubyteO(dst)
else ubyteO(src2) — ubyteO(dst);
if (ubytel(srcl) <= ubytel(src2)), ubytel(srcl) — ubytel(dst)
else ubytel(src2) — ubytel(dst);
if (ubyte2(srcl) <= ubyte2(src2)), ubyte2(srcl) — ubyte2(dst)
else ubyte2(src2) — ubyte2(dst);
if (ubyte3(srcl) <= ubyte3(src2)), ubyte3(srcl) — ubyte3(dst)
else ubyte3(src2) — ubyte3(dst)
}
else nop
276 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS

www.ti.com

MINU4 — Minimum, Unsigned, Packed 8-Bit

Pipeline
Pipeline Stage El
Read srcl, src2
Written dst
Unit in use L
Instruction Type Single-cycle
Delay Slots 0
See Also MAX2, MAXU4, MIN2
Examples Example 1
MNUW . L1 A2, A8, A9
Before instruction 1 cycle after instruction
A2 \ 37 89 F2 3Ah | A2 \ 37 89 F2 3Ah \ 55 137 242 58
unsigned
A8 \ 04 B8 49 75h | A8 \ 04 B8 49 75h \ 418473117
unsigned
A9 | xoo0x xooxxh | A9 |0489493An 41377358
unsigned
Example 2
MNW . L2 B2, B8, B12
Before instruction 1 cycle after instruction
B2 |012424B%h | B2 |012424B9h | 136 36 185
unsigned
B8 |01A6A051h | B8 |01A6A051h | 1166 160 81
unsigned
B12 | 000 x00¢h | B12 |01242451h 1363681
unsigned

SPRU732J-July 2010 Instruction Set 277

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
MPY — Multiply Signed 16 LSB x Signed 16 LSB www.ti.com
MPY Multiply Signed 16 LSB x Signed 16 LSB
Syntax MPY (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C62x, C64x, and C64x+ CPU
Compact Instruction Format
Unit Opcode Format Figure
M M3 Figure E-5
Opcode
31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0
\ creg |z| dst src2 srcl |x| op \0\0|0|0\0|s\p\
3 1 5 5 5 1 5 1 1
Opcode map field used... For operand type... Unit Opfield
srcl slsb16 M1, .M2 11001
src2 xslsb16
dst sint
srcl scst5 M1, .M2 11000
src2 xslsb16
dst sint
Description The srcl operand is multiplied by the src2 operand. The result is placed in dst. The
source operands are signed by default.
Execution
if (cond) Isb16(srcl) x Isb16(src2) — dst
else nop
Pipeline
Pipeline Stage El E2
Read srcl, src2
Written dst
Unit in use .M
Instruction Type Multiply (16 x 16)
Delay Slots 1
See Also MPYU, MPYSU, MPYUS, SMPY
278 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com MPY — Multiply Signed 16 LSB x Signed 16 LSB
Examples Example 1

MPY . ML Al, A2, A3
Before instruction 2 cycles after instruction
Al | 0000 0123h | 201® Al 0000 0123h
A2 \ 01E0 FA81h | -1407® A2] 01EO FA81h
A3 \ xxxx xxxxh | A3 \ FFF9 COA3h -409,437
@ Signed 16-LSB integer
Example 2
MPY . ML 13, Al, A2
Before instruction 2 cycles after instruction
Al \ 3497 FFF3h | 13W Al \ 3497 FFF3h
A2 \ X0 xxxxh | A2 \ FFFF FF57h -169

@ Signed 16-LSB integer

SPRU732J-July 2010 Instruction Set 279

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
MPYH — Multiply Signed 16 MSB x Signed 16 MSB www.ti.com
MPYH Multiply Signed 16 MSB x Signed 16 MSB
Syntax MPYH (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C62x, C64x, and C64x+ CPU
Compact Instruction Format
Unit Opcode Format Figure
M M3 Figure E-5
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
\ creg |z| dst src2 srcl |x|0\0|0\0\1\0\0|0|0\0|s\p\
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl smsb16 M1, .M2
src2 xsmsh16
dst sint
Description The srcl operand is multiplied by the src2 operand. The result is placed in dst. The
source operands are signed by default.
Execution
if (cond) msb16(srcl) x msb16(src2) — dst
else nop
Pipeline
Pipeline Stage El E2
Read srcl, src2
Written dst
Unit in use .M
Instruction Type Multiply (16 x 16)
Delay Slots 1
See Also MPYHU, MPYHSU, MPYHUS, SMPYH
280 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com MPYH — Multiply Signed 16 MSB x Signed 16 MSB
Example MPYH . ML Al, A2, A3

Before instruction 2 cycles after instruction
Al \ 0023 0000h | 350 Al] 0023 0000h \
A2 \ FFA7 1234h | -89® A2 \ FFA7 1234h \
A3 \ X0 xxxxh A3] FFFF F3D5h \ -3115

@ Signed 16-MSB integer

SPRU732J-July 2010 Instruction Set 281

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
MPYHI — Multiply 16 MSB x 32-Bit Into 64-Bit Result www.ti.com
MPYHI Multiply 16 MSB x 32-Bit Into 64-Bit Result
Syntax MPYHI (.unit) srcl, src2, dst_o:dst e
unit = .M1 or .M2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| dst src2 srcl |x|0‘1|0‘1‘0‘0‘1|1|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl int M1, .M2
src2 xint
dst sllong
Description Performs a 16-bit by 32-bit multiply. The upper half of srcl is used as a signed 16-bit

input. The value in src2 is treated as a signed 32-bit value. The result is written into the
lower 48 bits of a 64-bit register pair, dst_o:dst_e, and sign extended to 64 bits.

Execution
if (cond) msb16(srcl) x src2 — dst_o:dst e
else nop
Pipeline
Pipeline Stage El E2 E3 E4
Read srcl, src2
Written dst
Unit in use .M
Instruction Type Four-cycle
Delay Slots 3
See Also MPYLI
282 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS

www.ti.com

MPYHI — Multiply 16 MSB x 32-Bit Into 64-Bit Result

Examples Example 1
MPYH .M. A5, A6, A9: A8
Before instruction 4 cycles after instruction
A5 | 6A32 1193h | 27,186 A5 \ 6A32 1193h \
A6 | B174 6CA4h | -1,317,770,076 AB \ B174 6CA4h \
A9:A8 | 00 xxxxh | xxxx xxxxh A9:A8 \ FFFF DF6Ah \ DDB9 2008h
-35,824,897,286,136
Example 2
MPYH .M B2, B5, BO: BS
Before instruction 4 cycles after instruction
B2 | 1234 3497h | 4660 B2 \ 1234 3497h \
B5 | 21FF 50A7h | 570,380,455 B5 \ 21FF 50A7h \
B9:B8 | %00x xxxxh | X0 xxxxh BY:B8 \ 0000 026Ah \ DB88 1FECh
2,657,972,920,300

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

283

13 TEXAS

INSTRUMENTS
MPYHIR — Multiply 16 MSB x 32-Bit, Shifted by 15 to Produce a Rounded 32-Bit Result www.ti.com
MPYHIR Multiply 16 MSB x 32-Bit, Shifted by 15 to Produce a Rounded 32-Bit Result
Syntax MPYHIR (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| src2 srcl |x|0‘1|0‘0‘0‘0‘1|1|0‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl int M1, .M2
src2 xint
dst int
Description Performs a 16-bit by 32-bit multiply. The upper half of srcl is treated as a signed 16-bit
input. The value in src2 is treated as a signed 32-bit value. The product is then rounded
to a 32-bit result by adding the value 2** and then this sum is right shifted by 15. The
lower 32 bits of the result are written into dst.
31 16 15 0
‘ a_hi ‘ a_lo ‘ «—srcl
MPYHIR
\ b_hi \ b_lo \ < src2
31 0
\ ((a_hi x b_hi:b_lo) + 4000h) >> 15 \ — dst
Execution
if (cond) Isb32(((msb16(srcl) x (src2)) + 4000h) >> 15) — dst
else nop
Pipeline

Pipeline Stage El E2 E3 E4
Read srcl, src2

Written dst
Unit in use M

284 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com MPYHIR — Multiply 16 MSB x 32-Bit, Shifted by 15 to Produce a Rounded 32-Bit Result
Instruction Type Four-cycle
Delay Slots 3
See Also MPYLIR
Example MPYH R . M2 B2, B5, B9
Before instruction 4 cycles after instruction

B2 [12343497h | 4660 B2 [12343497h |

B5 \ 21FF 50A7h | 570,380,455 B5 | 21FF 50A7h \

B9 | 000 xo00¢h | B9 |04D5B710h | 81,114,896
SPRU732J-July 2010 Instruction Set 285

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
MPYHL — Multiply Signed 16 MSB x Signed 16 LSB www.ti.com
MPYHL Multiply Signed 16 MSB x Signed 16 LSB
Syntax MPYHL (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C62x, C64x, and C64x+ CPU
Compact Instruction Format
Unit Opcode Format Figure
M M3 Figure E-5
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
\ creg |z| dst src2 srcl |x|0\1|0\O\1\0\0|0|0\0|s\p\
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl smsb16 M1, .M2
src2 xslsh16
dst sint
Description The srcl operand is multiplied by the src2 operand. The result is placed in dst. The
source operands are signed by default.
Execution
if (cond) msb16(srcl) x Isb16(src2) — dst
else nop
Pipeline
Pipeline Stage El E2
Read srcl, src2
Written dst
Unit in use .M
Instruction Type Multiply (16 x 16)
Delay Slots 1
See Also MPYHLU, MPYHSLU, MPYHULS, SMPYHL
286 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

MPYHL — Multiply Signed 16 MSB x Signed 16 LSB

Example MPYHL . ML Al, A2, A3

2 cycles after instruction

Before instruction
Al | 008A 003Eh | 138% Al | 008A 003Eh |
A2 | 21FF 00A7h | 167@ A2 | 21FF 00A7h
A3 [000 x000¢h A3 | 0000 5A06h | 23,046

@ Signed 16-MSB integer
@ Signed 16-LSB integer

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

287

13 TEXAS

INSTRUMENTS
MPYHLU — Multiply Unsigned 16 MSB x Unsigned 16 LSB www.ti.com
MPYHLU Multiply Unsigned 16 MSB x Unsigned 16 LSB
Syntax MPYHLU (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C62x, C64x, and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x|0‘1|1‘1‘1‘0‘0|0|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl umsb16 M1, .M2
src2 xulsb16
dst uint
Description The srcl operand is multiplied by the src2 operand. The result is placed in dst. The
source operands are unsigned by default.
Execution
if (cond) msb16(srcl) x Ish16(src2) — dst
else nop
Pipeline
Pipeline Stage El E2
Read srcl, src2
Written dst
Unit in use .M
Instruction Type Multiply (16 x 16)
Delay Slots 1
See Also MPYHL, MPYHSLU, MPYHULS
288 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

MPYHSLU — Multiply Signed 16 MSB x Unsigned 16 LSB

MPYHSLU Multiply Signed 16 MSB x Unsigned 16 LSB
Syntax MPYHSLU (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C62x, C64x, and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| src2 srcl |x|0‘1|0‘1‘1‘0‘0|0|0‘0|s‘p‘
3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit
srcl smsh16 M1, .M2
src2 xulsb16
dst sint
Description The signed operand srcl is multiplied by the unsigned operand src2. The result is placed
in dst. The S is needed in the mnemonic to specify a signed operand when both signed
and unsigned operands are used.
Execution
if (cond) msb16(srcl) x Ish16(src2) — dst
else nop
Pipeline

Instruction Type
Delay Slots

See Also

Pipeline Stage El E2
Read srcl, src2

Written dst
Unit in use .M

Multiply (16 x 16)
1
MPYHL, MPYHLU, MPYHULS

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

289

13 TEXAS

INSTRUMENTS
MPYHSU — Multiply Signed 16 MSB x Unsigned 16 MSB www.ti.com
MPYHSU Multiply Signed 16 MSB x Unsigned 16 MSB
Syntax MPYHSU (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C62x, C64x, and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x|0‘0|0‘1‘1‘0‘0|0|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl smsh16 M1, .M2
src2 xumsb16
dst sint
Description The signed operand srcl is multiplied by the unsigned operand src2. The result is placed

in dst. The S is needed in the mnemonic to specify a signed operand when both signed
and unsigned operands are used.

Execution
if (cond) msb16(srcl) x msb16(src2) — dst
else nop
Pipeline
Pipeline Stage El E2
Read srcl, src2
Written dst
Unit in use M
Instruction Type Multiply (16 x 16)
Delay Slots 1
See Also MPYH, MPYHU, MPYHUS
Example MPYHSU . ML Al, A2, A3
Before instruction 2 cycles after instruction
Al | 0023 0000h | 350 Al | 0023 0000h
A2 | FFA7 FFFFh | 65,447 A2 | FFA7 FFFFh |
A3 [000 x000¢h | A3 | 0022 F3D5h | 2,290,645

@ Signed 16-MSB integer
@ Unsigned 16-MSB integer

290 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com MPYHU — Multiply Unsigned 16 MSB x Unsigned 16 MSB
MPYHU Multiply Unsigned 16 MSB x Unsigned 16 MSB
Syntax MPYHU (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C62x, C64x, and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
creg |z| dst src2 srcl |x|0‘0|1‘1‘1‘0‘0|0|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl umsb16 M1, .M2
src2 xumsh16
dst uint
Description The srcl operand is multiplied by the src2 operand. The result is placed in dst. The
source operands are unsigned by default.
Execution
if (cond) msb16(srcl) x msb16(src2) — dst
else nop
Pipeline
Pipeline Stage El E2
Read srcl, src2
Written dst
Unit in use .M
Instruction Type Multiply (16 x 16)
Delay Slots 1
See Also MPYH, MPYHSU, MPYHUS
Example MPYHU . ML A1, A2, A3
Before instruction 2 cycles after instruction
Al | 0023 0000h | 350 Al | 0023 0000h |
A2 | FFA7 1234h | 65,4470 A2 | FFA7 1234h
A3 [0000 X000 | A3 0022 F3D5h | 2,290,645%)

@ Unsigned 16-MSB integer
@ Unsigned 32-bit integer

SPRU732J-July 2010 Instruction Set 291

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
MPYHULS — Multiply Unsigned 16 MSB x Signed 16 LSB www.ti.com
MPYHULS Multiply Unsigned 16 MSB x Signed 16 LSB
Syntax MPYHULS (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C62x, C64x, and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x|0‘1|1‘0‘1‘0‘0|0|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl umsb16 M1, .M2
src2 xslsb16
dst sint
Description The unsigned operand srcl is multiplied by the signed operand src2. The result is placed

in dst. The S is needed in the mnemonic to specify a signed operand when both signed
and unsigned operands are used.

Execution
if (cond) msb16(srcl) x Ish16(src2) — dst
else nop
Pipeline
Pipeline Stage El E2
Read srcl, src2
Written dst
Unit in use .M
Instruction Type Multiply (16 x 16)
Delay Slots 1
See Also MPYHL, MPYHLU, MPYHSLU
292 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com MPYHUS — Multiply Unsigned 16 MSB x Signed 16 MSB
MPYHUS Multiply Unsigned 16 MSB x Signed 16 MSB
Syntax MPYHUS (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C62x, C64x, and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x|0‘0|1‘0‘1‘0‘0|0|0‘0|s‘p‘
3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit
srcl umsb16 M1, .M2
src2 xsmsb16
dst sint
Description The unsigned operand srcl is multiplied by the signed operand src2. The result is placed
in dst. The S is needed in the mnemonic to specify a signed operand when both signed
and unsigned operands are used.
Execution
if (cond) msb16(srcl) x msb16(src2) — dst
else nop
Pipeline

Instruction Type
Delay Slots

See Also

Pipeline Stage El E2
Read srcl, src2

Written dst
Unit in use .M

Multiply (16 x 16)
1
MPYH, MPYHU, MPYHSU

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

293

13 TEXAS

INSTRUMENTS
MPYIH — Multiply 32-Bit x 16-MSB Into 64-Bit Result www.ti.com
MPYIH Multiply 32-Bit x 16-MSB Into 64-Bit Result
Syntax MPYIH (.unit) src2, srcl, dst
unit = .M1 or .M2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| dst src2 srcl |x|0‘1|0‘1‘0‘0‘1|1|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl int M1, .M2
src2 xint
dst sllong
Description The MPYIH pseudo-operation performs a 16-bit by 32-bit multiply. The upper half of srcl

is used as a signed 16-bit input. The value in src2 is treated as a signed 32-bit value.
The result is written into the lower 48 bits of a 64-bit register pair, dst_o:dst_e, and sign
extended to 64 bits. The assembler uses the MPYHI (.unit) srcl, src2, dst instruction to
perform this operation (see MPYHI).

Execution
if (cond) src2 x msh16(srcl) — dst_o:dst_e
else nop
Pipeline
Pipeline Stage El E2 E3 E4
Read srcl, src2
Written dst
Unit in use .M
Instruction Type Four-cycle
Delay Slots 3
See Also MPYHI, MPYIL
294 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com MPYIHR — Multiply 32-Bit x 16 MSB, Shifted by 15 to Produce a Rounded 32-Bit Result
MPYIHR Multiply 32-Bit x 16 MSB, Shifted by 15 to Produce a Rounded 32-Bit Result
Syntax MPYIHR (.unit) src2, srcl, dst
unit = .M1 or .M2

Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| src2 srcl |x|0‘1|0‘0‘0‘0‘1|1|0‘0|s‘p‘

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit
srcl int M1, .M2
src2 xint
dst int
Description The MPYIHR pseudo-operation performs a 16-bit by 32-bit multiply. The upper half of
srcl is treated as a signed 16-bit input. The value in src2 is treated as a signed 32-bit
value. The product is then rounded to a 32-bit result by adding the value 2'* and then
this sum is right shifted by 15. The lower 32 bhits of the result are written into dst. The
assembler uses the MPYHIR (.unit) srcl, src2, dst instruction to perform this operation
(see MPYHIR).
Execution
if (cond) Isb32((((src2) x msb16(srcl)) + 4000h) >> 15) — dst
else nop
Pipeline

Instruction Type
Delay Slots

See Also

Pipeline Stage El E2 E3 E4
Read srcl, src2
Written dst
Unit in use .M

Four-cycle

3
MPYHIR, MPYILR

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

295

MPYIL — Multiply 32-Bit x 16 LSB Into 64-Bit Result

13 TEXAS
INSTRUMENTS

www.ti.com

MPYIL Multiply 32-Bit x 16 LSB Into 64-Bit Result

Syntax MPYIL (.unit) src2, srcl, dst
unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O

‘ creg |z| dst src2 srcl |x|0‘1|0‘1‘0‘1‘1|1|0‘0|s‘p‘
3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit
srcl int M1, .M2
src2 xint
dst sllong
Description The MPYIL pseudo-operation performs a 16-bit by 32-bit multiply. The lower half of srcl
is used as a signed 16-bit input. The value in src2 is treated as a signed 32-bit value.
The result is written into the lower 48 bits of a 64-bit register pair, dst_o:dst_e, and sign
extended to 64 hits. The assembler uses the MPYLI (.unit) srcl, src2, dst instruction to
perform this operation (see MPYLI).
Execution
if (cond) src2 x Isb16(srcl) — dst_o:dst_e
else nop
Pipeline
Pipeline Stage El E2 E3 E4
Read srcl, src2
Written dst
Unit in use .M
Instruction Type Four-cycle
Delay Slots 3
See Also MPYIH, MPYLI

296 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com MPYILR — Multiply 32-Bit x 16 LSB, Shifted by 15 to Produce a Rounded 32-Bit Result
MPYILR Multiply 32-Bit x 16 LSB, Shifted by 15 to Produce a Rounded 32-Bit Result
Syntax MPYILR (.unit) src2, srcl, dst
unit = .M1 or .M2

Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| src2 srcl |x|0‘0|1‘1‘1‘0‘1|1|0‘0|s‘p‘

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit
srcl int M1, .M2
src2 xint
dst int
Description The MPYILR pseudo-operation performs a 16-bit by 32-bit multiply. The lower half of
srcl is used as a signed 16-bit input. The value in src2 is treated as a signed 32-bit
value. The product is then rounded to a 32-bit result by adding the value 2'* and then
this sum is right shifted by 15. The lower 32 bhits of the result are written into dst. The
assembler uses the MPYLIR (.unit) srcl, src2, dst instruction to perform this operation
(see MPYLIR).
Execution
if (cond) Isb32((((src2) x Isb16(srcl)) + 4000h) >> 15) — dst
else nop
Pipeline

Instruction Type
Delay Slots

See Also

Pipeline Stage El E2 E3 E4
Read srcl, src2
Written dst
Unit in use .M

Four-cycle

3
MPYIHR, MPYLIR

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

297

13 TEXAS

INSTRUMENTS
MPYLH — Multiply Signed 16 LSB x Signed 16 MSB www.ti.com
MPYLH Multiply Signed 16 LSB x Signed 16 MSB
Syntax MPYLH (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C62x, C64x, and C64x+ CPU
Compact Instruction Format
Unit Opcode Format Figure
M M3 Figure E-5
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
\ creg |z| dst src2 srcl |x|l\0|0\0\1\0\0|0|0\0|s\p\
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl slsb16 M1, .M2
src2 xsmsh16
dst sint
Description The srcl operand is multiplied by the src2 operand. The result is placed in dst. The
source operands are signed by default.
Execution
if (cond) Isb16(srcl) x msb16(src2) — dst
else nop
Pipeline
Pipeline Stage El E2
Read srcl, src2
Written dst
Unit in use .M
Instruction Type Multiply (16 x 16)
Delay Slots 1
See Also MPYLHU, MPYLSHU, MPYLUHS, SMPYLH
298 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

MPYLH — Multiply Signed 16 LSB x Signed 16 MSB

Example MPYLH . ML A1, A2, A3

2 cycles after instruction

Before instruction
Al | 0900 000EN | 140 Al | 0900 000EN |
A2 | 0029 00A7h | 41@ A2 0029 00A7h
A3 [000 x000¢h A3 | 0000 023Eh | 574

@ Signed 16-LSB integer
@ signed 16-MSB integer

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

299

13 TEXAS

INSTRUMENTS
MPYLHU — Multiply Unsigned 16 LSB x Unsigned 16 MSB www.ti.com
MPYLHU Multiply Unsigned 16 LSB x Unsigned 16 MSB
Syntax MPYLHU (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C62x, C64x, and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x|1‘0|1‘1‘1‘0‘0|0|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl ulsb16 M1, .M2
src2 xumsb16
dst uint
Description The srcl operand is multiplied by the src2 operand. The result is placed in dst. The
source operands are unsigned by default.
Execution
if (cond) Isb16(srcl) x msh16(src2) — dst
else nop
Pipeline
Pipeline Stage El E2
Read srcl, src2
Written dst
Unit in use .M
Instruction Type Multiply (16 x 16)
Delay Slots 1
See Also MPYLH, MPYLSHU, MPYLUHS
300 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com MPYLI — Multiply 16 LSB x 32-Bit Into 64-Bit Result
MPYLI Multiply 16 LSB x 32-Bit Into 64-Bit Result
Syntax MPYLI (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x|0‘1|0‘1‘0‘1‘1|1|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl int M1, .M2
src2 xint
dst sllong
Description Performs a 16-bit by 32-bit multiply. The lower half of srcl is used as a signed 16-bit
input. The value in src2 is treated as a signed 32-bit value. The result is written into the
lower 48 bits of a 64-bit register pair, dst_o:dst_e, and sign extended to 64 bits.
Execution
if (cond) Isb16(srcl) x src2 — dst_o:dst_e
else nop
Pipeline

Instruction Type
Delay Slots

See Also

Pipeline Stage El E2 E3 E4
Read srcl, src2
Written dst
Unit in use M

Four-cycle

3

MPYHI

SPRU732J-July 2010

Instruction Set 301

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
MPYLI — Multiply 16 LSB x 32-Bit Into 64-Bit Result www.ti.com
Examples Example 1
MPYLI .M. A5, A6, A9: A8
Before instruction 4 cycles after instruction
A5 \ 6A32 1193h \ 4499 A5 \ 6A32 1193h \
A6 \ B174 6CA4h \ -1,317,770,076 A] B174 6CA4h \
A9:A8 \ xxxx xxxxh \ xxxx xxxxh A9:A8 \ FFFF FA9Bh \ Al111 462Ch
-5,928,647,571,924
Example 2
MPYLI .M B2, B5, BO: B8
Before instruction 4 cycles after instruction
B2 \ 1234 3497h \ 13,463 B2 \ 1234 3497h \
B5 \ 21FF 50A7h \ 570,380,455 B5 \ 21FF 50A7h \
B9:B8 \ X0 xxxxh \ XX xxxxh B9:B8 \ 0000 06FBh \ E9FA 7E81h
7,679,032,065,665

302 Instruction Set

SPRU732J-July 2010
Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com MPYLIR — Multiply 16 LSB x 32-Bit, Shifted by 15 to Produce a Rounded 32-Bit Result
MPYLIR Multiply 16 LSB x 32-Bit, Shifted by 15 to Produce a Rounded 32-Bit Result
Syntax MPYLIR (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x|0‘0|1‘1‘1‘0‘1|1|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl int M1, .M2
src2 xint
dst int
Description Performs a 16-bit by 32-bit multiply. The lower half of srcl is treated as a signed 16-bit
input. The value in src2 is treated as a signed 32-bit value. The product is then rounded
into a 32-bit result by adding the value 2** and then this sum is right shifted by 15. The
lower 32 bits of the result are written into dst.
31 16 15 0
‘ a_hi ‘ a_lo ‘ «—srcl
MPYLIR
\ b_hi \ b_lo \ < src2
31 0
\ ((a_lo x b_hi:b_lo) + 4000h) >> 15 \ — dst
Execution
if (cond) Isb32(((Isb16(srcl) x (src2)) + 4000h) >> 15) — dst
else nop
Pipeline

Pipeline Stage El E2 E3 E4
Read srcl, src2

Written dst
Unit in use M

SPRU732J-July 2010

Instruction Set 303

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
MPYLIR — Multiply 16 LSB x 32-Bit, Shifted by 15 to Produce a Rounded 32-Bit Result www.ti.com
Instruction Type Four-cycle
Delay Slots 3
See Also MPYHIR
Example MPYLIR . M2 B2, B5, B9
Before instruction 4 cycles after instruction
B2 [12343497h | 13,463 B2 |12343497h
B5 \ 21FF 50A7h \ 570,380,455 B5 \ 21FF 50A7h \
B9 | 000 xooxh | B9 | ODF7 D3F5h | 234,345,461
304 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com MPYLSHU — Multiply Signed 16 LSB x Unsigned 16 MSB
MPYLSHU Multiply Signed 16 LSB x Unsigned 16 MSB
Syntax MPYLSHU (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C62x, C64x, and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x|1‘0|0‘1‘1‘0‘0|0|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl slsb16 M1, .M2
src2 xumsb16
dst sint
Description The signed operand srcl is multiplied by the unsigned operand src2. The result is placed
in dst. The S is needed in the mnemonic to specify a signed operand when both signed
and unsigned operands are used.
Execution
if (cond) Isb16(srcl) x msh16(src2) — dst
else nop
Pipeline
Pipeline Stage El E2
Read srcl, src2
Written dst
Unit in use .M
Instruction Type Multiply (16 x 16)
Delay Slots 1
See Also MPYLH, MPYLHU, MPYLUHS
SPRU732J-July 2010 Instruction Set 305

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
MPYLUHS — Multiply Unsigned 16 LSB x Signed 16 MSB www.ti.com
MPYLUHS Multiply Unsigned 16 LSB x Signed 16 MSB
Syntax MPYLUHS (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C62x, C64x, and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| src2 srcl |x|1‘0|1‘0‘1‘0‘0|0|0‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl ulsb16 M1, .M2
src2 xsmsb16
dst sint
Description The unsigned operand srcl is multiplied by the signed operand src2. The result is placed
in dst. The S is needed in the mnemonic to specify a signed operand when both signed
and unsigned operands are used.
Execution
if (cond) Isb16(srcl) x msh16(src2) — dst
else nop
Pipeline

Instruction Type
Delay Slots

See Also

Pipeline Stage El E2
Read srcl, src2

Written dst
Unit in use .M

Multiply (16 x 16)
1
MPYLH, MPYLHU, MPYLSHU

306 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com MPYSU — Multiply Signed 16 LSB x Unsigned 16 LSB
MPYSU Multiply Signed 16 LSB x Unsigned 16 LSB
Syntax MPYSU (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C62x, C64x, and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x| op ‘0‘0|0|0‘0|s‘p‘
3 1 5 5 5 1 5 1 1
Opcode map field used... For operand type... Unit Opfield
srcl slsb16 M1, .M2 11011
src2 xulsb16
dst sint
srcl scst5 M1, .M2 11110
src2 xulsb16
dst sint
Description The signed operand srcl is multiplied by the unsigned operand src2. The result is placed
in dst. The S is needed in the mnemonic to specify a signed operand when both signed
and unsigned operands are used.
Execution
if (cond) Isb16(srcl) x Isb16(src2) — dst
else nop
Pipeline

Instruction Type

Pipeline Stage El E2
Read srcl, src2

Written dst
Unit in use .M

Multiply (16 x 16)

Delay Slots 1
See Also MPY, MPYU, MPYUS
Example MPYSU . ML 13, Al, A2
Before instruction 2 cycles after instruction
Al | 3497 FFF3h 65,523 Al | 3497 FFF3h |
A2 | 0000000 | A2 | 000C FF57h | 851,779

@ Unsigned 16-LSB integer

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set 307

13 TEXAS

INSTRUMENTS
MPYSU4 — Multiply Signed x Unsigned, Four 8-Bit Pairs for Four 8-Bit Results www.ti.com
MPYSU4 Multiply Signed x Unsigned, Four 8-Bit Pairs for Four 8-Bit Results
Syntax MPYSU4 (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| dst src2 srcl |x|0‘0|0‘1‘0‘1‘1|1|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s4 M1, .M2
src2 xu4
dst dws4
Description Returns the product between four sets of packed 8-bit values producing four signed

16-bit results. The four signed 16-bit results are packed into a 64-bit register pair,
dst_o:dst_e. The values in srcl are treated as signed 8-bit packed quantities; whereas,
the values in src2 are treated as unsigned 8-bit packed data.

For each pair of 8-bit quantities in srcl and src2, the signed 8-bit value from srcl is
multiplied with the unsigned 8-bit value from src2:

» The product of srcl byte 0 and src2 byte 0 is written to the lower half of dst_e.

* The product of srcl byte 1 and src2 byte 1 is written to the upper half of dst_e.
» The product of srcl byte 2 and src2 byte 2 is written to the lower half of dst_o.

e The product of srcl byte 3 and src2 byte 3 is written to the upper half of dst_o.

31 24 23 16 15 8 7 0

| sa_3 ‘ sa_2 | sa_1l ‘ sa_0 ‘ «— srcl
X X X X
MPYSU4

| ub_3 ‘ ub_2 | ub_1 ‘ ub_0 ‘ « src2

63 48 47 32 31 16 15 0

sa_3xub_3 sa_2 xub_2 | sa_1xub_1 | sa_0xub_0 ‘ «— dst_o:dst_e
308 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com MPYSU4 — Multiply Signed x Unsigned, Four 8-Bit Pairs for Four 8-Bit Results

Execution
if (cond) {
(sbyteO(srcl) x ubyteO(src2)) — Isb16(dst_e);
(sbytel(srcl) x ubytel(src2)) — msb16(dst_e);
(sbyte2(srcl) x ubyte2(src2)) — Isb16(dst_o);
(sbyte3(srcl) x ubyte3(src2)) — msh16(dst_o)
}
else nop
Pipeline
Pipeline Stage El E2 E3 E4
Read srcl, src2
Written dst
Unit in use M
Instruction Type Four-cycle
Delay Slots 3
See Also MPYU4
Examples Example 1
MPYSU4 . ML A5, A6, A9: A8
Before instruction 4 cycles after instruction
A5 | 6A 32 11 93h | 106 50 17 -109 A5 \ 6A 32 11 93h \
signed
AB | B1 74 6C Adh | 177 116 108 164 AB \ B1 74 6C A4h \
unsigned
A9:A8 | %00 xxxxh | %00 xxxxh A9:A8 \ 494A 16A8h \ 072C BA2Ch
18762 5800 1386 -17876
signed
Example 2
MPYSW4 . M2 BS, B6, B9: B8
Before instruction 4 cycles after instruction
B5 | 3F F6 50 10h 63 -10 80 16 B5 | 3F F6 50 10h |
signed
B6 | C3 56 02 44h 19586 2 68 B6 | C3 56 02 44h |
unsigned
B9:B8 | xxxx xxxxh | xxxx xxxxh B9:BS \ 2FFD FCA4h \ 00AO 0440h
12285 -680 160 1088
signed

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

309

13 TEXAS

INSTRUMENTS
MPYU — Multiply Unsigned 16 LSB x Unsigned 16 LSB www.ti.com
MPYU Multiply Unsigned 16 LSB x Unsigned 16 LSB
Syntax MPYU (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C62x, C64x, and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x|1‘1|1‘1‘1‘0‘0|0|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl ulsb16 M1, .M2
src2 xulsh16
dst uint
Description The srcl operand is multiplied by the src2 operand. The result is placed in dst. The
source operands are unsigned by default.
Execution
if (cond) Isb16(srcl) x Isb16(src2) — dst
else nop
Pipeline
Pipeline Stage El E2
Read srcl, src2
Written dst
Unit in use .M
Instruction Type Multiply (16 x 16)
Delay Slots 1
See Also MPY, MPYSU, MPYUS
Example MPYU . ML Al, A2, A3
Before instruction 2 cycles after instruction
Al | 0000 0123h | 2010 Al 0000 0123h |
A2 | OF12 FA81h | 64,129 A2 | OF12 FA81h |
A3 [0000 X000 | A3 011C COA3h | 18,661,539
@ Unsigned 16-LSB integer
@ Unsigned 32-bit integer
310 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

MPYU4 — Multiply Unsigned x Unsigned, Four 8-Bit Pairs for Four 8-Bit Results

MPYU4 Multiply Unsigned x Unsigned, Four 8-Bit Pairs for Four 8-Bit Results

Syntax MPYU4 (.unit) srcl, src2, dst_o:dst_e
unit = .M1 or .M2

Compatibility C64x and C64x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
creg |z| dst src2 srcl |x|0‘0|0‘1‘0‘0‘1|1|0‘0|s‘p
3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit
srcl u4 M1, .M2
src2 xu4
dst dwu4
Description Returns the product between four sets of packed 8-bit values producing four unsigned
16-bit results that are packed into a 64-bit register pair, dst_o:dst_e. The values in both
srcl and src2 are treated as unsigned 8-bit packed data.
For each pair of 8-bit quantities in srcl and src2, the unsigned 8-bit value from srcl is
multiplied with the unsigned 8-bit value from src2:
e The product of srcl byte 0 and src2 byte 0 is written to the lower half of dst_e.
» The product of srcl byte 1 and src2 byte 1 is written to the upper half of dst_e.
* The product of srcl byte 2 and src2 byte 2 is written to the lower half of dst_o.
» The product of srcl byte 3 and src2 byte 3 is written to the upper half of dst_o.
31 24 23 16 15 8 7 0
| ua_3 ‘ ua_2 | ua_1 ‘ ua_0 ‘ «—srcl
MPYU4
| ub_3 ‘ ub_2 | ub_1 ‘ ub_0 ‘ « src2
63 48 47 32 31 16 15 0
ua_3xub_3 ua_2xub_2 | ua_lxub_ 1 | ua_0xub_0 ‘ « dst_o:dst_e

SPRU732J-July 2010

Instruction Set 311

Copyright © 2010, Texas Instruments Incorporated

MPYU4 — Multiply Unsigned x Unsigned, Four 8-Bit Pairs for Four 8-Bit Results

13 TEXAS
INSTRUMENTS

www.ti.com

Execution
if (cond) {
(ubyteO(srcl) x ubyteO(src2)) — Isb16(dst_e);
(ubytel(srcl) x ubytel(src2)) — msb16(dst_e);
(ubyte2(srcl) x ubyte2(src2)) — Isb16(dst_o);
(ubyte3(srcl) x ubyte3(src2)) — msb16(dst_o)
}
else nop
Pipeline
Pipeline Stage El E2 E3 E4
Read srcl, src2
Written dst
Unit in use M
Instruction Type Four-cycle
Delay Slots 3
See Also MPYSU4
Examples Example 1
MPYU4 . ML A5, A6, A9: A8
Before instruction 4 cycles after instruction
A5 | 68 32 C1 93h | 104 50 193 147 A5 \ 68 32 C1 93h \
unsigned
AB | B1 74 2C ABh | 177 116 44 171 AB \ B1 74 2C ABh \
unsigned
A9:A8 | %00 xxxxh | %00 xxxxh A9:A8 \ 47E8 16A8h \ 212C 6231h
18408 5800 8492 25137
unsigned
Example 2
MPYU4 . M2 B2, B5, B9: B8
Before instruction 4 cycles after instruction
B2 | 3D E6 50 7Fh | 61 230 80 127 B2 \ 3D E6 50 7Fh \
unsigned
B5 | C3 56 02 44h 19586 2 68 B5 | C3 56 02 44h |
unsigned
B9:BS | xxxx xxxxh | xxxx xxxxh B9:BS \ 2E77 4D44h \ 00AQ 21BCh
11895 19780 160 8636
unsigned

312 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com MPYUS — Multiply Unsigned 16 LSB x Signed 16 LSB
MPYUS Multiply Unsigned 16 LSB x Signed 16 LSB
Syntax MPYUS (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C62x, C64x, and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x|1‘1|1‘0‘1‘0‘0|0|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl ulsb16 M1, .M2
src2 xslsb16
dst sint
Description The unsigned operand srcl is multiplied by the signed operand src2. The result is placed
in dst. The S is needed in the mnemonic to specify a signed operand when both signed
and unsigned operands are used.
Execution
if (cond) Isb16(srcl) x Isb16(src2) — dst
else nop
Pipeline
Pipeline Stage El E2
Read srcl, src2
Written dst
Unit in use M
Instruction Type Multiply (16 x 16)
Delay Slots 1
See Also MPY, MPYU, MPYSU
Example MPYUS . ML Al, A2, A3
Before instruction 2 cycles after instruction
Al | 1234 FFALh 65,441 Al | 1234 FFALh |
A2 | 1234 FFALh | -95 A2 | 1234 FFA1h |
A3 [000 x000¢h | A3 | FFA12341h | -6,216,895
@ Unsigned 16-LSB integer
@ Signed 16-LSB integer
SPRU732J-July 2010 Instruction Set 313

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
MPYUS4 — Multiply Unsigned x Signed, Four 8-Bit Pairs for Four 8-Bit Results www.ti.com
MPYUS4 Multiply Unsigned x Signed, Four 8-Bit Pairs for Four 8-Bit Results
Syntax MPYUS4 (.unit) src2, srcl, dst
unit = .M1 or .M2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| dst src2 srcl |x|0‘0|0‘1‘0‘1‘1|1|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s4 M1, .M2
src2 xu4
dst dws4
Description The MPYUS4 pseudo-operation returns the product between four sets of packed 8-bit

values, producing four signed 16-bit results. The four signed 16-bit results are packed
into a 64-bit register pair, dst_o:dst_e. The values in srcl are treated as signed 8-bit
packed quantities; whereas, the values in src2 are treated as unsigned 8-bit packed
data. The assembler uses the MPYSU4 (.unit)srcl, src2, dst instruction to perform this
operation (see MPYSUA4).

For each pair of 8-bit quantities in src1 and src2, the signed 8-bit value from srcl is
multiplied with the unsigned 8-bit value from src2:

» The product of srcl byte 0 and src2 byte 0 is written to the lower half of dst_e.

e The product of srcl byte 1 and src2 byte 1 is written to the upper half of dst_e.
e The product of srcl byte 2 and src2 byte 2 is written to the lower half of dst_o.

» The product of srcl byte 3 and src2 byte 3 is written to the upper half of dst_o.

Execution
if (cond) {
(ubyteO(src2) x sbyteO(srcl)) — Isb16(dst_e);
(ubytel(src2) x sbytel(srcl)) — msh16(dst_e);
(ubyte2(src2) x shyte2(srcl)) — Isb16(dst_o);
(ubyte3(src2) x shyte3(srcl)) — msb16(dst o)
}
else nop
314 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com MPYUS4 — Multiply Unsigned x Signed, Four 8-Bit Pairs for Four 8-Bit Results
Pipeline
Pipeline Stage El E2 E3 E4
Read srcl, src2
Written dst
Unit in use .M
Instruction Type Four-cycle
Delay Slots 3
See Also MPYSU4, MPYU4
SPRU732J-July 2010 Instruction Set 315

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
MPY2 — Multiply Signed by Signed, 16 LSB x 16 LSB and 16 MSB x 16 MSB www.ti.com
MPY2 Multiply Signed by Signed, 16 LSB x 16 LSB and 16 MSB x 16 MSB
Syntax MPY2 (.unit) srcl, src2, dst_o:dst_e
unit = .M1 or .M2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x|0‘0|0‘0‘0‘0‘1|1|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s2 M1, .M2
src2 Xxs2
dst ullong
Description Performs two 16-bit by 16-bit multiplications between two pairs of signed, packed 16-bit

values. The values in srcl and src2 are treated as signed, packed 16-bit quantities. The
two 32-bit results are written into a 64-bit register pair.

The product of the lower halfwords of src1l and src2 is written to the even destination
register, dst_e. The product of the upper halfwords of src1 and src2 is written to the odd
destination register, dst_o.

This instruction helps reduce the number of instructions required to perform two 16-bit by
16-bit multiplies on both the lower and upper halves of two registers.

31 16 15 0
| a_hi | a_lo ‘ «— srcl
MPY2
| b_hi | b_lo \ < src2
63 32 31 0
a_hi x b_hi | a_loxb_lo ‘ «— dst_o:dst_e

The following code:

MPY ML A0, Al, A2
MPYH ML A0, Al, A3

may be replaced by:
MPY2 ML A0, Al, A3:A2

316 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS

www.ti.com

MPY2 — Multiply Signed by Signed, 16 LSB x 16 LSB and 16 MSB x 16 MSB

Execution
if (cond) {
Isb16(srcl) x Ishb16(src2) — dst_e;
msb16(srcl) x msb16(src2) — dst_o
}
else nop
Pipeline
Pipeline Stage El E2 E3 E4
Read srcl, src2
Written dst
Unit in use M
Instruction Type Four-cycle
Delay Slots 3
See Also MPYSU4, MPY2IR, SMPY2
Examples Example 1
MPY2 . ML A5, A6, AQ: A8
Before instruction 4 cycles after instruction
A5 \ 6A32 1193h \ 27186 4499 A5 \ 6A32 1193h \
A6 \ B174 6CA4h \ 20108 27812 A \ B174 6CA4h \
A9:A8 \ xxxx xxxxh \ xxxx xxxxh A9:A8 \ DF6A BOASh \ 0775 462Ch
-546,656,088 125,126,188
Example 2
MPY2 . M2 B2, B5, B9: B8
Before instruction 4 cycles after instruction
B2 \ 1234 3497h \ 4660 13463 B2 \ 1234 3497h \
B5 \ 21FF 50A7h \ 8703 20647 B5] 21FF 50A7h \
BO:B8 \ %00 xxxxh \ %00 xxxxh BO:B8 \ 026A D5CCh \ 1091 7E81h
40,555,980 277,970,561

SPRU732J-July 2010

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

317

13 TEXAS

INSTRUMENTS
MPY2IR — Multiply Two 16-Bit x 32-Bit, Shifted by 15 to Produce a Rounded 32-Bit Result www.ti.com
MPY2IR Multiply Two 16-Bit x 32-Bit, Shifted by 15 to Produce a Rounded 32-Bit Result

Syntax MPY2IR (.unit) srcl, src2, dst_o:dst_e

unit = .M1 or .M2

Compatibility C64x+ CPU
Opcode
31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lof[ofo]1] dst src2 srcl I xJoJolal1]1]1]1]1]o]o]s]p]
5 5 5 1 1
Opcode map field used... For operand type... Unit
srcl int M1, .M2
src2 xint
dst dint
Description Performs two 16-bit by 32-bit multiplies. The upper and lower halves of srcl are treated
as 16-bit signed inputs. The value in src2 is treated as a 32-bit signed value. The
products are then rounded to a 32-bit result by adding the value 2** and then these sums
are right shifted by 15. The lower 32 bits of the two results are written into dst_o:dst_e.
If either result saturates, the M1 or M2 bit in SSR and the SAT bit in CSR are written one
cycle after the results are written to dst_o:dst_e.
This instruction executes unconditionally and cannot be predicated.
NOTE: In the overflow case, where the 16-bit input to the MPYIR operation is
8000h and the 32-bit input is 8000 0000h, the saturation value
7FFF FFFFh is written into the corresponding 32-bit dst register.
Execution

if (msb16(srcl) = 8000h && src2 = 8000 0000h), 7FFF FFFFh — dst_o
else Isb32(((msh16(srcl) x (src2)) + 4000h) >> 15) — dst_o;

if (Isb16(srcl) = 8000h && src2 = 8000 0000h), 7FFF FFFFh — dst_e
else Isb32(((Isb16(srcl) x (src2)) + 4000h) >> 15) — dst_e

Instruction Type Four-cycle
Delay Slots 3
See Also MPYLIR, MPYHIR

318 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS

www.ti.com

MPY2IR — Multiply Two 16-Bit x 32-Bit, Shifted by 15 to Produce a Rounded 32-Bit Result

Examples Example 1
MPY2I R . M2 B2, B5, BY: B8
Before instruction 4 cycles after instruction
B2 8000 8001h | B8 | 7FFF 0000h |
B5 | 8000 0000h | B9 | 7FFF FFFFh \
CSR |00010100h | CSR® | 0001 0300h |
SSR | 0000 0000h | SSR® | 0000 0020h \
@ CSR.SAT and SSR.M2 set to 1, 5 cycles after instruction
Example 2
MPY2I R . MLX A2, BS, A9: A8
Before instruction 4 cycles after instruction
A2 | 8765 4321h | A8 | 098C 16C1h |
B5 1234 5678h | A9 | EED8 E38Fh \
CsR |00010100h | CSR® | 0001 0100h |
SSR | 0000 0000h | SSR® [0000 0000h \

@ CSR.SAT and SSR.M1 unchanged by operation

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

319

MPY32 — Multiply Signed 32-Bit x Signed 32-Bit Into 32-Bit Result

13 TEXAS
INSTRUMENTS

www.ti.com

MPY32 Multiply Signed 32-Bit x Signed 32-Bit Into 32-Bit Result
Syntax MPY32 (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| src2 srcl |x|1‘0|0‘0‘0‘0‘0|0|0‘0|s‘p‘
3 1 5 5 1 1

Opcode map field used... For operand type... Unit
srcl int M1, .M2
src2 xint
dst int

Description Performs a 32-bit by 32-bit multiply. src1 and src2 are signed 32-bit values. Only the

lower 32 bits of the 64-bit result are written to dst.

Execution
if (cond) srcl x src2 — dst
else nop

Instruction Type
Delay Slots

See Also

Four-cycle

3

MPY32, MPY32SU, MPY32US, MPY32U, SMPY32

320 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com

MPY32 — Multiply Signed 32-Bit x Signed 32-Bit Into Signed 64-Bit Result

MPY32 Multiply Signed 32-Bit x Signed 32-Bit Into Signed 64-Bit Result
Syntax MPY32 (.unit) srcl, src2, dst_o:dst_e
unit = .M1 or .M2
Compatibility C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| src2 srcl |x|1‘0|1‘0‘0‘0‘0|0|0‘0|s‘p‘
3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit
srcl int M1, .M2
src2 xint
dst dint
Description Performs a 32-bit by 32-bit multiply. src1 and src2 are signed 32-bit values. The signed
64-bit result is written to the register pair specified by dst.
Execution
if (cond) srcl x src2 — dst_o:dst_e
else nop

Instruction Type
Delay Slots

See Also

Four-cycle

3

MPY32, MPY32SU, MPY32US, MPY32U, SMPY32

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set 321

MPY32SU — Multiply Signed 32-Bit x Unsigned 32-Bit Into Signed 64-Bit Result

13 TEXAS
INSTRUMENTS

www.ti.com

MPY325U Multiply Signed 32-Bit x Unsigned 32-Bit Into Signed 64-Bit Result
Syntax MPY32SU (.unit) srcl, src2, dst_o:dst_e
unit = .M1 or .M2
Compatibility C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| src2 srcl |x|1‘0|1‘1‘0‘0‘0|0|0‘0|s‘p‘
3 1 5 5 1 1

Opcode map field used... For operand type... Unit

srcl int M1, .M2

src2 xuint

dst dint
Description Performs a 32-bit by 32-bit multiply. srcl is a signed 32-bit value and src2 is an unsigned

32-bit value. The signed 64-bit result is written to the register pair specified by dst.

Execution

if (cond) srcl x src2 — dst_o:dst_e

else nop

Instruction Type
Delay Slots

See Also

Four-cycle
3
MPY32, MPY32U, MPY32US, SMPY32

322 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com

MPY32U — Multiply Unsigned 32-Bit x Unsigned 32-Bit Into Unsigned 64-Bit Result

MPY32U Multiply Unsigned 32-Bit x Unsigned 32-Bit Into Unsigned 64-Bit Result
Syntax MPY32U (.unit) srcl, src2, dst_o:dst e
unit = .M1 or .M2
Compatibility C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| src2 srcl |x|0‘1|1‘0‘0‘0‘1|1|0‘0|s‘p
3 1 5 5 1 1

Opcode map field used... For operand type... Unit
srcl uint M1, .M2
src2 xuint
dst duint

Description Performs a 32-bit by 32-bit multiply. src1 and src2 are unsigned 32-bit values. The

unsigned 64-bit result is written to the register pair specified by dst.

Execution
if (cond) srcl x src2 — dst_o:dst_e
else nop

Instruction Type
Delay Slots

See Also

Four-cycle
3
MPY32, MPY32SU, MPY32US, SMPY32

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set 323

MPY32US — Multiply Unsigned 32-Bit x Signed 32-Bit Into Signed 64-Bit Result

TEXAS
INSTRUMENTS

www.ti.com

MPY32US Multiply Unsigned 32-Bit x Signed 32-Bit Into Signed 64-Bit Result
Syntax MPY32US (.unit) srcl, src2, dst_o:dst_e
unit = .M1 or .M2
Compatibility C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| src2 srcl |x|0‘1|1‘0‘0‘1‘1|1|0‘0|s‘p‘
3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

srcl uint M1, .M2

src2 xint

dst dint
Description Performs a 32-bit by 32-bit multiply. srcl is an unsigned 32-bit value and src2 is a signed

32-bit value. The signed 64-bit result is written to the register pair specified by dst.

Execution

if (cond) srcl x src2 — dst_o:dst_e

else nop

Instruction Type
Delay Slots

See Also

Four-cycle
3
MPY32, MPY32SU, MPY32U, SMPY32

324 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com MV — Move From Register to Register
MV Move From Register to Register
Syntax MV (.unit) src2, dst
unit = .L1, .L2, .81, .S2, .D1, .D2
Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure
.L,.S,.D LSDmvto Figure G-1
LSDmvtfr Figure G-2
Opcode .L unit (if the cross path form is not used)
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| creg | z] dst \ src2 loJoJoJo]ofo]o]1]o]o]o]Jo]o[1]1]0]s]p]
3 1 5 5 1 1
Opcode map field used... For operand type... Unit
src2 slong L1, .12
dst slong
Opcode .L unit (if the cross path form is used)
31 29 28 27 23 22 18 17 16 15 14 13 12 11 5 4 3 2 1 0
\ creg |z| dst \ src2 |O\O\O\O\O|x| op |1|1\0|s\p\
3 1 5 5 1 7 1 1
Opcode map field used... For operand type... Unit Opfield
src2 xsint L1, L2 000 0010
dst sint
src2 xuint L1, L2 111 1110
dst uint
SPRU732J-July 2010 Instruction Set 325

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
MV — Move From Register to Register www.ti.com
Opcode .S unit
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| creg | z] dst] src2 loJofoJoJo[x][ofo]o]1]1]o]1][o]o]o]s]p]
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 xsint .81, .82
dst sint
Opcode .D unit (if the cross path form is not used)
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O©
| creg | z] dst] src2 loJofo]oJoJo[1][o]o]1]o[2]o]o]o]o]s]p]
3 1 5 5 1 1
Opcode map field used... For operand type... Unit
src2 sint .D1, .D2
dst sint
Opcode .D unit (if the cross path form is used)
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O©
’ creg |z| dst ’ src2 |O‘O‘0’O’O|x|l‘0|0‘0‘1’1’1|1|0‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 xuint .D1, .D2
dst uint
Description The MV pseudo-operation moves a value from one register to another. The assembler

will either use the ADD (.unit) O, src2, dst instruction (see ADD) or the OR (.unit) O, src2,
dst instruction (see OR) to perform this operation.

Execution

if (cond) 0 + src2 — dst
else nop

Instruction Type Single-cycle

Delay Slots 0

326 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com MVC — Move Between Control File and Register File
MVC Move Between Control File and Register File
Syntax MVC (.unit) src2, dst
unit = .S2
Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure
.S Sx1 Figure F-30
Opcode C64x and C64x+ CPU

Operands when moving from the control file to the register file:

31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| dst crlo |0‘0‘0‘0‘0|x|0‘0|1‘1‘1‘1‘1|0|0‘0|1‘p‘
3 1 5 5 1 1
Opcode map field used... For operand type... Unit
crlo uint .S2
dst uint
Description For the C64x and C64x+ CPU, the contents of the control file specified by the crlo field is

moved to the register file specified by the dst field.
Register addresses for accessing the control registers are in Table 3-22.

Operands when moving from the register file to the control file:

31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| creg | z] crlo \ src2 joJofoJoJo[x]JofJo]1]z]1]of1r]o]o]o]1]p]
3 1 5 5 1 1
Opcode map field used... For operand type... Unit
src2 xuint .82
crlo uint
Description For the C64x and C64x+ CPU, the contents of the register file specified by the src2 field

is moved to the control file specified by the crlo field.
Register addresses for accessing the control registers are in Table 3-22.

SPRU732J-July 2010 Instruction Set 327

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
MVC — Move Between Control File and Register File www.ti.com
Opcode C64x+ CPU
Operands when moving from the control file to the register file:
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| dst crlo | crhi |x|0‘0|1‘1‘1‘1‘1|0|0‘0|1‘p‘
3 1 5 5 5 1 1
Opcode map field used... For operand type... Unit
crlo ucsts .S2
dst uint
crhi ucsts
Description For the C64x+ CPU, the contents of the control file specified by the crhi and crlo fields is

moved to the register file specified by the dst field. Valid assembler values for crlo and
crhi are shown in Table 3-22.

Operands when moving from the register file to the control file:

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
creg |z| crlo src2 crhi |x|0‘0|1‘1‘1‘0‘1|0|0‘0|1‘p‘
3 1 5 5 5 1 1
Opcode map field used... For operand type... Unit
src2 xuint .82
crlo ucst5
crhi ucst5
Description For the C64x+ CPU, the contents of the register file specified by the src2 field is moved

to the control file specified by the crhi and crlo fields. Valid assembler values for crlo and
crhi are shown in Table 3-22.

Execution
if (cond) src2 — dst
else nop
NOTE: The MVC instruction executes only on the B side (.S2).
Refer to the individual control register descriptions for specific behaviors
and restrictions in accesses via the MVC instruction.
Pipeline
Pipeline Stage E1l
Read src2
Written dst
Unit in use .S2
328 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com MVC — Move Between Control File and Register File
Instruction Type Single-cycle
Any write to the ISR or ICR (by the MVC instruction) effectively has one delay slot
because the results cannot be read (by the MVC instruction) in the IFR until two cycles
after the write to the ISR or ICR.
Delay Slots 0
Example M/C . S2 B1, AMR
Before instruction 1 cycle after instruction
B1 | F009 0001h | B1 | F009 0001h \
AMR | 0000 0000h | AMR | 0009 0001h |
NOTE: The six MSBs of the AMR are reserved and therefore are not written to.
SPRU732J-July 2010 Instruction Set 329

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
MVC — Move Between Control File and Register File www.ti.com
Table 3-22. Register Addresses for Accessing the Control Registers
Address Supervisor User
Acronym Register Name crhi crlo Read/Write @ Read/Write @
AMR Addressing mode register 00000 00000 R, W R, W
O0XXXX 00000
CSR Control status register 00000 00001 R, W* R, W*
00001 00001
0XXXX 00001
DIER Debug interrupt enable register 00000 11001 R, W X
DNUM DSP core number register 00000 10001 R R
ECR Exception clear register 00000 11101 w X
EFR Exception flag register 00000 11101 R X
GFPGFR Galois field multiply control register 00000 11000 R, W R, W
GPLYA GMPY A-side polynomial register 00000 10110 R, W R, W
GPLYB GMPY B-side polynomial register 00000 10111 R, W R, W
ICR Interrupt clear register 00000 00011 w X
0XXXX 00011
IER Interrupt enable register 00000 00100 R, W X
0xXXXX 00100
IERR Internal exception report register 00000 11111 R,W X
IFR Interrupt flag register 00000 00010 R X
00010 00010
ILC Inner loop count register 00000 01101 R, W R, W
IRP Interrupt return pointer register 00000 00110 R, W R, W
0XXXX 00110
ISR Interrupt set register 00000 00010 W X
O0xXXXX 00010
ISTP Interrupt service table pointer register 00000 00101 R, W X
0XXXX 00101
ITSR Interrupt task state register 00000 11011 R, W X
NRP Nonmaskable interrupt or exception return pointer 00000 00111 R, W R, W
register 0xXXXX 00111
NTSR NMI/Exception task state register 00000 11100 R, W X
PCE1 Program counter, E1 phase 00000 10000 R R
10000 10000
REP Restricted entry point address register 00000 01111 R, W X
RILC Reload inner loop count register 00000 01110 R, W R, W
SSR Saturation status register 00000 10101 R, W R, W
TSCH Time-stamp counter (high 32 bits) register 00000 01011 R R
TSCL Time-stamp counter (low 32 bits) register 00000 01010 R R
TSR Task state register 00000 11010 R, W* R,W*

® R = Readable by the MVC instruction; W = Writeable by the MVC instruction; W* = Partially writeable by the MVC instruction;
X = Access causes exception

330 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com MVD — Move From Register to Register, Delayed
MVD Move From Register to Register, Delayed
Syntax MVD (.unit) src2, dst
unit = .M1 or .M2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| creg | z] dst src2 l1]1]of1]o]x]o]ofofof1]2]2]2]0]0o]s]|p]
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 xint M1, .M2
dst int
Description Moves data from the src2 register to the dst register over 4 cycles. This is done using
the multiplier path.
M/D .M2x A0, BO ;
NOP ;
NOP ;
NOP ; BO = A0
Execution
if (cond) src2 — dst
else nop
Pipeline
Pipeline Stage El E2 E3 E4
Read src2
Written dst
Unit in use .M
Instruction Type Four-cycle
Delay Slots 3
Example M/D . MeX A5, B8
Before instruction 4 cycles after instruction
A5 [6A321193h \ A5 [6A321193h |
B8 ‘ XXXX XXxxh ‘ B8 ’ 6A32 1193h ‘

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set 331

13 TEXAS

INSTRUMENTS
MVK — Move Signed Constant Into Register and Sign Extend www.ti.com
MVK Move Signhed Constant Into Register and Sign Extend
Syntax MVK (.unit) cst, dst
unit=.L1, .L2, .S1, .S2, .D1, .D2
Compatibility C62x, C64x, and C64x+ CPU
Compact Instruction Format
Unit Opcode Format Figure
L Lx5 Figure D-8
.S Smvk8 Figure F-23
.L,.S,.D LSDx1c Figure G-3
LSDx1 Figure G-4
Opcode .S unit
31 29 28 27 23 22 7 6 5 4 3 2 1 0
\ creg |z| dst \ cstl6 \0\1|0|l\0|s\p\
3 1 5 16 1 1
Opcode map field used... For operand type... Unit
cstl6 scstl6 .S1, .82
dst sint
Opcode .L unit (C64x and C64x+ CPU)
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| creg | z] dst \ cst5 loJoJ1]of1]x]o]ofar][a]o]r]o2]1]0o]s]p]
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
cst5 scstb L1, .L.2
dst sint
332 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com MVK — Move Signed Constant Into Register and Sign Extend
Opcode .D unit (C64x and C64x+ CPU)
31 29 28 27 23 22 21 20 19 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| creg | z] dst (oJofo]o]o] cst5 lofofo]ofoJof[1]o]o]o]o]s]p]
3 1 5 5 1 1

Opcode map field used... For operand type... Unit

cstb scstb .D1, .D2

dst sint
Description The constant cst is sign extended and placed in dst. The .S unit form allows for a 16-bit

signed constant.

Since many nonaddress constants fall into a 5-bit sign constant range, this allows the
flexibility to schedule the MVK instruction on the .L or .D units. In the .D unit form, the
constant is in the position normally used by srcl, as for address math.

In most cases, the C6000 assembler and linker issue a warning or an error when a
constant is outside the range supported by the instruction. In the case of MVK .S, a
warning is issued whenever the constant is outside the signed 16-bit range, -32768 to
32767 (or FFFF 8000h to 0000 7FFFh).

For example:
M/K .Sl 0x00008000X, AQO

will generate a warning; whereas:
MK .Sl OxFFFF8000, A0

will not generate a warning.

Execution
if (cond) scst — dst
else nop
Pipeline
Pipeline Stage E1l
Read
Written dst
Unit in use .L,.S,or.D
Instruction Type Single cycle
Delay Slots 0
See Also MVKH, MVKL, MVKLH
SPRU732J-July 2010 Instruction Set 333

Copyright © 2010, Texas Instruments Incorporated

MVK — Move Signed Constant Into Register and Sign Extend

13 TEXAS
INSTRUMENTS

www.ti.com

Examples Example 1
MK . L2 -5, B8

Before instruction

1 cycle after instruction

B8 XXXX XXXXh B8 FFFF FFFBh
Example 2
MK . D2 14, B8
Before instruction 1 cycle after instruction
B8 XXXX XXXXh B8 0000 000Eh

334 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com

MVKH/MVKLH — Move 16-Bit Constant Into Upper Bits of Register

MVKH/MVKLH Move 16-Bit Constant Into Upper Bits of Register
Syntax MVKH (.unit) cst, dst
or
MVKLH (.unit) cst, dst
unit = .S1 or .S2
Compatibility C62x, C64x, and C64x+ CPU
Opcode
31 29 28 27 23 22 7 6 5 4 3 2 1 0
’ creg |z| dst cstl6 ’h’1|0|1‘0|s‘p‘
3 1 5 16 1 1 1
Opcode map field used... For operand type... Unit
cstl6 uscstl6 .51, .82
dst sint
Description The 16-bit constant, cstl16 , is loaded into the upper 16 bits of dst. The 16 LSBs of dst
are unchanged. For the MVKH instruction, the assembler encodes the 16 MSBs of a
32-bit constant into the cst16 field of the opcode. For the MVKLH instruction, the
assembler encodes the 16 LSBs of a constant into the cst16 field of the opcode.
NOTE: Use the MVK instruction (see MVK) to load 16-bit constants. The
assembler generates a warning for any constant over 16 bits. To load
32-bit constants, such as 1234 5678h, use the following pair of
instructions:
MVKL 0x12345678
MVKH 0x12345678
If you are loading the address of a label, use:
MVKL | abel
MKH | abel
Execution For the MVKLH instruction:
if (cond) ((cst 45 o) << 16) or (dst ;5 ;) — dst
else nop
For the MVKH instruction:
if (cond) ((cst 51 46) << 16) or (dst ;5 o) — dst
else nop
SPRU732J-July 2010 Instruction Set 335

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
MVKH/MVKLH — Move 16-Bit Constant Into Upper Bits of Register www.ti.com
Pipeline
Pipeline Stage El
Read
Written dst
Unit in use .S
Instruction Type Single-cycle
Delay Slots 0
See Also MVK, MVKL
Examples Example 1
MVKH . S1 0A329123h, Al
Before instruction 1 cycle after instruction
Al 0000 7634h | Al 0A32 7634h
Example 2
MVKLH . S1 7A8h, Al
Before instruction 1 cycle after instruction
Al FFFF F25Ah Al 07A8 F25Ah
336 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

MVKL — Move Signed Constant Into Register and Sign Extend

MVKL Move Signhed Constant Into Register and Sign Extend
Syntax MVKL (.unit) cst, dst
unit = .S1 or .S2
Compatibility C62x, C64x, and C64x+ CPU
Opcode
31 29 28 27 23 22 7 6 5 4 3 2 1 0
‘ creg |z| dst cstl6 ‘0‘1|0|1‘0|s‘p‘
3 1 5 16 1 1
Opcode map field used... For operand type... Unit
cst1l6 scstl6 .S1, .52
dst sint
Description The 16-bit constant, cstl6, is sign extended and placed in dst.
The MVKL instruction is equivalent to the MVK instruction (see MVK), except that the
MVKL instruction disables the constant range checking normally performed by the
assembler/linker. This allows the MVKL instruction to be paired with the MVKH
instruction (see MVKH) to generate 32-bit constants.
To load 32-bit constants, such as 1234 ABCDh, use the following pair of instructions:
M/KL .Sl OxOABCD, A4
M/KLH .S1 0x1234, A4
This could also be used:
MVKL .Sl Ox1234ABCD, A4
M/KH .Sl Ox1234ABCD, A4
Use this to load the address of a label:
MKL .S2 label, B5
M/KH .S2 label, B5
Execution
if (cond) scst — dst
else nop
Pipeline
Pipeline Stage El
Read
Written dst
Unit in use .S
Instruction Type Single cycle
Delay Slots 0
See Also MVK, MVKH, MVKLH

SPRU732J-July 2010

Instruction Set 337

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

MVKL — Move Signed Constant Into Register and Sign Extend www.ti.com

Examples Example 1
MVKL . S1 5678h, A8

Before instruction 1 cycle after instruction

A8 XXXX XXxxh A8 0000 5678h

Example 2
MVKL . S1 0C678h, A8

Before instruction 1 cycle after instruction

A8 XXXX XXxxh A8 FFFF C678h

338 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS

www.ti.com

NEG — Negate

NEG Negate
Syntax NEG (.unit) src2, dst
or
NEG (.L1 or .L2) src2_h:src2_|, dst_h:dst_|
unit = .L1, .L2, .S1, .S2
Compatibility C62x, C64x, and C64x+ CPU
Opcode .S unit
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O©
| creg | z]] src2 loJofoJoJo[x]of[1]o]1]1]o]1]o]o]o]s]p]
3 1 5 1 1 1
Opcode map field used... For operand type... Unit
src2 xsint .81, .82
dst sint
Opcode .L unit
31 29 28 27 23 22 18 17 16 15 14 13 12 11 5 4 3 2 1 0
’ creg |z| ’ src2 |O‘O‘0’O’O|x| op |1|1‘0|s‘p‘
3 1 5 1 7 1 1
Opcode map field used... For operand type... Unit Opfield
src2 xsint L1, .L2 000 0110
dst sint
src2 slong L1, L2 010 0100
dst slong
Description The NEG pseudo-operation negates src2 and places the result in dst. The assembler
uses the SUB (.unit) 0, src2, dst instruction to perform this operation (see SUB).
Execution
if (cond) 0 -s src2 — dst
else nop
Instruction Type Single-cycle
Delay Slots 0
See Also SUB
SPRU732J-July 2010 Instruction Set 339

Copyright © 2010, Texas Instruments Incorporated

NOP — No Operation

13 TEXAS
INSTRUMENTS

www.ti.com

NOP

Syntax

Compatibility

No Operation

NOP [count]

unit = none

C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure
none Unop Figure H-9
Opcode
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lo[o]ofoJoJo]o]o]o]o]o]o]o]o]o] src joJoJo|o]o]o]o]o]o]o]o]o]p]
4 1
Opcode map field used... For operand type... Unit
src ucst4 none
Description src is encoded as count - 1. For src + 1 cycles, no operation is performed. The maximum
value for count is 9. NOP with no operand is treated like NOP 1 with src encoded as
0000.
A multicycle NOP will not finish if a branch is completed first. For example, if a branch is
initiated on cycle n and a NOP 5 instruction is initiated on cycle n + 3, the branch is
complete on cycle n + 6 and the NOP is executed only from cycle n + 3tocyclen +5. A
single-cycle NOP in parallel with other instructions does not affect operation.
A multicycle NOP instruction cannot be paired with any other multicycle NOP instruction
in the same execute packet. Instructions that generate a multicycle NOP are: ADDKPC,
BNOP, CALLP, and IDLE.
Execution No operation for count cycles
Instruction Type NOP
Delay Slots 0
Examples Example 1
NOP
MVK .S1 125h, Al
1 cycle after NOP
Before NOP (No operation executes) 1 cycle after MVK
Al 1234 5678h Al \ 1234 5678h | Al 0000 0125h

340 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

NOP — No Operation

Example 2

MVK .S1
MVKLH . S1
NOP 5

ADD . L1

opRr

Before NOP 5

1 cycle after ADD instruction (6 cycles after NOP 5)

Al \ 0000 0001h

Al | 0000 0004h |

A2 \ 0000 0003h

\ A2 | 0000 0003h |

341

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

13 TEXAS

INSTRUMENTS
NORM — Normalize Integer www.ti.com
NORM Normalize Integer
Syntax NORM (.unit) src2, dst
or
NORM (.unit) src2_h:src2_1, dst
unit =.L1 or .L2
Compatibility C62x, C64x, and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 16 15 14 13 12 11 5 4 3 2 1 0
’ creg |z| dst src2 |0‘0‘0’0’0|x| op |1|l‘0|s‘p‘
3 1 5 5 1 7 1 1
Opcode map field used... For operand type... Unit Opfield
src2 xsint L1, .L2 1100011
dst uint
src2 slong L1, L2 110 0000
dst uint
Description The number of redundant sign bits of src2 is placed in dst. Several examples are shown

in the following diagram.
In this case, NORM returns 0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Lol e D [x D b fx Do o fx Do fox Pox Do Ex Do o fox Do o fox o x Pox D [x Do [[x D [x [x

In this case, NORM returns 3:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Lofolofol e [x xlxxxlxx[xlxxlx]xx]xx[x]x[x[xx[x]x[x[x]x][x][x]

In this case, NORM returns 30:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[efafafefafafafafafafafafafafafafafafafafafaafafafafafefafafa]o]

In this case, NORM returns 31:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[afa]

342 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

NORM — Normalize Integer

Execution
if (cond) norm(src) — dst
else nop
Pipeline
Pipeline Stage El
Read src2
Written dst
Unit in use L
Instruction Type Single-cycle
Delay Slots 0
Examples Example 1
NORM . L1 A1, A2
Before instruction 1 cycle after instruction
Al \ 02A3 469Fh | Al \ 02A3 469Fh \
A2 | 0000 000h | A2 | 0000 0005h |5
Example 2
NORM . L1 Al, A2
Before instruction 1 cycle after instruction
Al] FFFF F25Ah | Al \ FFFF F25Ah \
A2 | xo000000ch Y | 0000 0013h 19
Example 3
NORM . L1 Al: AO, A3
Before instruction 1 cycle after instruction
A0 0000 0007h | Ao | 0000 0007h |
Al \ 0000 0000h | Al \ 0000 0000h \
A3 | x00x xo00ch | A3 | 0000 0024h |36

SPRU732J-July 2010

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

343

13 TEXAS

INSTRUMENTS
NOT — Bitwise NOT www.ti.com
NOT Bitwise NOT
Syntax NOT(.unit) src2, dst
unit=.L1, .L2, .S1, .S2, .D1, .D2
Compatibility C62x, C64x, and C64x+ CPU
Opcode .L unit
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| creg | z] dst \ src2 J1lafafafa]x]a]afofa]a]a]of2]1]o]s]p]
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 xuint L1, .12
dst uint
Opcode .S unit
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| creg | z] dst \ src2 11111]x]o]of1]o]2]o]2]0o]0o]o]s]|p]
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 xuint .81, .S2
dst uint
Opcode .D unit
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| creg | z] dst \ src2 J1lafafa]a]x]a]ofafafa]a]2]2]0o]o]s]|p]
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 xuint .D1, .D2
dst uint
Description The NOT pseudo-operation performs a bitwise NOT on the src2 operand and places the

result in dst. The assembler uses the XOR (.unit) -1, src2, dst instruction to perform this
operation (see XOR).

344 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com NOT — Bitwise NOT

Execution

if (cond) -1 XOR src2 — dst
else nop

Instruction Type Single-cycle
Delay Slots 0

See Also XOR

SPRU732J-July 2010 Instruction Set 345

Copyright © 2010, Texas Instruments Incorporated

OR — Bitwise OR

13 TEXAS
INSTRUMENTS

www.ti.com

OR Bitwise OR

Syntax

OR (.unit) src1, src2, dst

unit =.D1, .D2, .L1, .L2, .S1, .S2

Compatibility

Compact Instruction Format

C62x, C64x, and C64x+ CPU

Unit Opcode Format Figure
L L2c Figure D-7
Opcode .D unit
31 29 28 27 23 22 18 17 13 12 11 10 9 6 5 4 3 2 1 0
\ creg |z| dst \ src2 srcl |x|l\0| op \1|1|0\0|s\p\
3 1 5 5 5 1 4 1 1
Opcode map field used... For operand type... Unit Opfield
srcl uint .D1, .D2 0010
src2 xuint
dst uint
srcl scstb .D1, .D2 0011
src2 xuint
dst uint
Opcode .L unit
31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0
’ creg |z| dst ’ src2 srcl |x| op |1|l‘0|s‘p‘
3 1 5 5 5 1 7 1 1
Opcode map field used... For operand type... Unit Opfield
srcl uint L1, L2 1111111
src2 xuint
dst uint
srcl scstb L1, .L2 1111110
src2 xuint
dst uint

346 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com OR — Bitwise OR
Opcode .S unit
31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0
’ creg |z| dst ’ src2 srcl |x| op ’1|0|0‘0|s‘p‘
3 1 5 5 5 1 6 1 1
Opcode map field used... For operand type... Unit Opfield
srcl uint .81, .82 011011
src2 xuint
dst uint
srcl scst5 .51, .S2 011010
src2 xuint
dst uint
Description Performs a bitwise OR operation between srcl and src2. The result is placed in dst. The
scstb operands are sign extended to 32 hits.
Execution
if (cond) srcl OR src2 — dst
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use .L,.S,or.D
Instruction Type Single-cycle
Delay Slots 0
See Also AND, ANDN, XOR
Examples Example 1
OR . S1 A3, A4, A5
Before instruction 1 cycle after instruction
A3 | 08A3 A49Fh | A3 |08A3 A49Fh \
A4 | OOFF 375Ah | A4 | OOFF 375Ah \
A5 | xxx xxch | A5 | 08FF B7DFh \
SPRU732J-July 2010 Instruction Set 347

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
OR — Bitwise OR www.ti.com
Example 2
OR .D2 -12,B2,B8
Before instruction 1 cycle after instruction
B2 \ 0000 3A41h | B2 \ 0000 3A41h \
B8 | 000 x00xh | B8 | FFFF FFFS5h |
348 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

PACK2 — Pack Two 16 LSBs Into Upper and Lower Register Halves

PACK?2 Pack Two 16 LSBs Into Upper and Lower Register Halves
Syntax PACK2 (.unit) srcl, src2, dst
unit = .L1, .L2, .S1, .S2
Compatibility C64x and C64x+ CPU
Opcode .L unit
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| ‘ src2 srcl |x|0‘0|0‘0‘0‘0‘0|1|1‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl i2 L1, L2
src2 Xi2
dst i2
Opcode .S unit
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| dst ‘ src2 srcl |x|1‘1|1‘1‘1‘1‘1|1|0‘0|s‘p‘
3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit
srcl i2 .S1, .S2
src2 xi2
dst i2
Description Moves the lower halfwords from srcl and src2 and packs them both into dst. The lower
halfword of srcl is placed in the upper halfword of dst. The lower halfword of src2 is
placed in the lower halfword of dst.
This instruction is useful for manipulating and preparing pairs of 16-bit values to be used
by the packed arithmetic operations, such as ADD2 (see ADD?2).
31 16 15 0
‘ a_hi ‘ a_lo ‘ «— srcl
PACK2
\ b_hi | b_lo | sre2
!
31 16 15 0
a_lo ‘ b_lo ‘ «— dst

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set 349

13 TEXAS

INSTRUMENTS
PACK2 — Pack Two 16 LSBs Into Upper and Lower Register Halves www.ti.com
Execution
if (cond) {
Isb16(src2) — Isb16(dst);
Isb16(srcl) — msh16(dst)
}
else nop
Pipeline
Pipeline Stage El
Read srcl, src2
Written dst
Unit in use L .S
Instruction Type Single-cycle
Delay Slots 0
See Also PACKH2, PACKHL2, PACKLH2, SPACK2
Examples Example 1
PACK2 . L1 A2, A8, A9
Before instruction 1 cycle after instruction
A2 |3789 F23Ah | A2 |3789 F23Ah |
A8 | 04B8 4975h | A8 | 04B8 4975h |
A9 | xo0xx xoxxxh | A9 |F23A4975h |
Example 2
PACK2 . S2 B2, B8, B12
Before instruction 1 cycle after instruction
B2 |0124 2451h | B2 | 0124 2451h \
B8 [01A6 A051h | B8 |01A6 A051h \
B12 | 000 00xh | B12 | 2451 A051h \
350 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

PACKH2 — Pack Two 16 MSBs Into Upper and Lower Register Halves

PACKH2 Pack Two 16 MSBs Into Upper and Lower Register Halves
Syntax PACKH2 (.unit) srcl, src2, dst
unit = .L1, .L2, .S1, .S2
Compatibility C64x and C64x+ CPU
Opcode .L unit
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
creg |z| src2 srcl |x|0‘0|1‘1‘1‘1‘0|1|1‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl i2 L1, L2
src2 Xi2
dst i2
Opcode .S unit
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| dst ‘ src2 srcl |x|0‘0|1‘0‘0‘1‘1|0|0‘0|s‘p‘
3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit
srcl i2 .S1, .S2
src2 xi2
dst i2
Description Moves the upper halfwords from srcl and src2 and packs them both into dst. The upper
halfword of srcl is placed in the upper half-word of dst. The upper halfword of src2 is
placed in the lower halfword of dst.
This instruction is useful for manipulating and preparing pairs of 16-bit values to be used
by the packed arithmetic operations, such as ADD2 (see ADD?2).
31 16 15 0
‘ a_hi ‘ a_lo ‘ « srcl
PACKH2
b_hi b_lo \ < src2
!
31 16 15 0
\ a_hi \ b_hi ‘ — dst

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set 351

PACKH2 — Pack Two 16 MSBs Into Upper and Lower Register Halves

13 TEXAS
INSTRUMENTS

www.ti.com

Execution
if (cond) {
msb16(src2) — Isb16(dst);
msb16(srcl) — msh16(dst)
}
else nop
Pipeline
Pipeline Stage El
Read srcl, src2
Written dst
Unit in use L, .S
Instruction Type Single-cycle
Delay Slots 0
See Also PACK2, PACKHL2, PACKLH2, SPACK?2
Examples Example 1
PACKH2 . L1 A2, A8, A9
Before instruction 1 cycle after instruction
A2 \ 3789 F23Ah | A2 \ 3789 F23Ah
A8 \ 04B8 4975h | A8 \ 04B8 4975h
A9 \ x0xx xxoxxh | A9 \ 3789 04B8h
Example 2
PACKH2 .S2 B2, B8, B12
Before instruction 1 cycle after instruction
B2 | 0124 2451h | B2 | 0124 2451h
B8 \ 01A6 A051h | B8 \ 01A6 A051h
B12 ‘ XXXX XXxxh | B12 ’ 0124 01A6h

352 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com PACKH4 — Pack Four High Bytes Into Four 8-Bit Halfwords
PACKH4 Pack Four High Bytes Into Four 8-Bit Halfwords
Syntax PACKH4 (.unit) srcl, src2, dst
unit=.L1 or .L2

Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| dst src2 srcl |x|1‘1|0‘1‘0‘0‘1|1|1‘0|s‘p‘

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit
srcl i4 L1, .12
src2 xi4
dst i4
Description Moves the high bytes of the two halfwords in srcl and src2, and packs them into dst.

The bytes from srcl are packed into the most-significant bytes of dst, and the bytes from

src2 are packed into the least-significant bytes of dst.

e The high byte of the upper halfword of srcl is moved to the upper byte of the upper
halfword of dst. The high byte of the lower halfword of srcl is moved to the lower
byte of the upper halfword of dst.

* The high byte of the upper halfword of src2 is moved to the upper byte of the lower
halfword of dst. The high byte of the lower halfword of src2 is moved to the lower
byte of the lower halfword of dst.

31 24 23 16 15 0
‘ a3 ‘ a2 ‘ al a0 ‘ «— srcl
PACKH4
\ b_3 | b_2 | b_1 b0 | sre2
!
31 24 23 16 15 0
‘ a3 ‘ al ‘ b_3 b_1 ‘ «— dst
Execution
if (cond) {
byte3(srcl) — byte3(dst);
bytel(srcl) — byte2(dst);
byte3(src2) — bytel(dst);
bytel(src2) — byteO(dst)
}
else nop

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set 353

PACKH4 — Pack Four High Bytes Into Four 8-Bit Halfwords

13 TEXAS
INSTRUMENTS

www.ti.com

Pipeline

Instruction Type
Delay Slots
See Also

Examples

Pipeline Stage El

Read srcl, src2

Written dst

Unit in use L
Single-cycle

0
PACKL4, SPACKU4

Example 1
PACKHA . L1 A2, A8, A9

Before instruction

A2 \ 37 89 F2 3Ah |

A8 \ 04 B8 49 75h |

A9 ‘ XXXX XXXxh

1 cycle after instruction

A2 \ 37 89 F2 3Ah \

A8 \ 04 B8 49 75h \

A9 \ 37 F2 04 49h \

Example 2
PACKH4 . L2 B2, B8, B12

Before instruction

B2] 01 24 24 51h

B8 \ 01 A6 AOQ 51h |

B12 ’ XXXX XXXXh

1 cycle after instruction

B2 \ 01 24 24 51h \

B8 \ 01 A6 AO 51h \

B12 \ 01 24 01 AGh \

354 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

PACKHL2 — Pack 16 MSB Into Upper and 16 LSB Into Lower Register Halves

PACKHL2 Pack 16 MSB Into Upper and 16 LSB Into Lower Register Halves
Syntax PACKHL2 (.unit) srcl, src2, dst
unit = .L1, .L2, .S1, .S2
Compatibility C64x and C64x+ CPU
Opcode .L unit
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
creg |z| src2 srcl |x|0‘0|1‘1‘1‘0‘0|1|1‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl i2 L1, L2
src2 Xi2
dst i2
Opcode .S unit
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| dst ‘ src2 srcl |x|0‘0|1‘0‘0‘0‘1|0|O‘0|s‘p‘
3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit
srcl i2 .S1, .S2
src2 xi2
dst i2
Description Moves the upper halfword from srcl and the lower halfword from src2 and packs them
both into dst. The upper halfword of srcl is placed in the upper halfword of dst. The
lower halfword of src2 is placed in the lower halfword of dst.
This instruction is useful for manipulating and preparing pairs of 16-bit values to be used
by the packed arithmetic operations, such as ADD2 (see ADD?2).
31 16 15 0
‘ a_hi ‘ a_lo ‘ «— srcl
PACKHL2
\ b_hi | b_lo | sre2
!
31 16 15 0
a_hi \ b_lo ‘ — dst

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set 355

PACKHL2 — Pack 16 MSB Into Upper and 16 LSB Into Lower Register Halves

13 TEXAS
INSTRUMENTS

www.ti.com

Execution
if (cond) {
Isb16(src2) — Isb16(dst);
msb16(srcl) — msh16(dst)
}
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use L .S
Instruction Type Single-cycle
Delay Slots 0
See Also PACK2, PACKH2, PACKLH2, SPACK2
Examples Example 1

PACKHL2 . L1 A2, A8, A9

Before instruction

A2 \ 3789 F23Ah \

A8 \ 04B8 4975h \

A9 ‘ XXXX XXXxh ‘

1 cycle after instruction

A2 \ 3789 F23Ah

A8 \ 04B8 4975h

A9 \ 3789 4975h

Example 2
PACKHL2 . S2 B2, B8, B12

Before instruction

B2] 0124 2451h \

B8 \ 01A6 AO51h \

B12 ’ XXXX XXXXh ‘

1 cycle after instruction

B2 \ 0124 2451h

B8 \ 01A6 AO51h

B12 \ 0124 A051h

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com

PACKLH2 — Pack 16 LSB Into Upper and 16 MSB Into Lower Register Halves

PACKLH2 Pack 16 LSB Into Upper and 16 MSB Into Lower Register Halves
Syntax PACKLH2 (.unit) srcl, src2, dst
unit = .L1, .L2, .S1, .S2
Compatibility C64x and C64x+ CPU
Opcode .L unit
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
creg |z| src2 srcl |x|0‘0|1‘1‘0‘1‘1|1|1‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl i2 L1, L2
src2 Xi2
dst i2
Opcode .S unit
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| dst ‘ src2 srcl |x|0‘1|0‘0‘0‘0‘1|0|0‘0|s‘p‘
3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit
srcl i2 .81, .S2
src2 xi2
dst i2
Description Moves the lower halfword from srcl, and the upper halfword from src2, and packs them
both into dst. The lower halfword of srcl is placed in the upper halfword of dst. The
upper halfword of src2 is placed in the lower halfword of dst.
This instruction is useful for manipulating and preparing pairs of 16-bit values to be used
by the packed arithmetic operations, such as ADD2 (see ADD?2).
31 16 15 0
‘ a_hi ‘ a_lo ‘ «— srcl
PACKLH2
\ b_hi | b_lo | sre2
!
31 16 15 0
a_lo \ b_hi ‘ — dst

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set 357

PACKLH2 — Pack 16 LSB Into Upper and 16 MSB Into Lower Register Halves

13 TEXAS
INSTRUMENTS

www.ti.com

Execution
if (cond) {
msb16(src2) — Isb16(dst);
Isb16(srcl) — msh16(dst)
}
else nop
Pipeline
Pipeline Stage El
Read srcl, src2
Written dst
Unit in use L, .S
Instruction Type Single-cycle
Delay Slots 0
See Also PACK2, PACKH2, PACKHL2, SPACK2
Examples Example 1
PACKLH2 . L1 A2, A8, A9
Before instruction 1 cycle after instruction
A2 \ 3789 F23Ah \ A2 \ 3789 F23Ah
A8 \ 04B8 4975h \ A8 \ 04B8 4975h
A9 \ %00 xxxxh \ A9 \ F23A 04B8h
Example 2
PACKLH2 . S2 B2, B8, B12
Before instruction 1 cycle after instruction
B2] 0124 2451h \ B2 \ 0124 2451h
B8 \ 01A6 AO51h \ B8 \ 01A6 AO51h
B12] XXX X0xxh \ B12 \ 2451 01A6h

358 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com PACKL4 — Pack Four Low Bytes Into Four 8-Bit Halfwords
PACKL4 Pack Four Low Bytes Into Four 8-Bit Halfwords
Syntax PACKLA4 (.unit) srcl, src2, dst
unit=.L1 or .L2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| dst src2 srcl |x|1‘1|0‘1‘0‘0‘0|1|1‘0|s‘p‘
3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit
srcl i4 L1, .12
src2 xi4
dst i4
Description Moves the low bytes of the two halfwords in src1 and src2, and packs them into dst. The
bytes from srcl are packed into the most-significant bytes of dst, and the bytes from src2
are packed into the least-significant bytes of dst.

e The low byte of the upper halfword of srcl is moved to the upper byte of the upper
halfword of dst. The low byte of the lower halfword of srcl is moved to the lower byte
of the upper halfword of dst.

* The low byte of the upper halfword of src2 is moved to the upper byte of the lower
halfword of dst. The low byte of the lower halfword of src2 is moved to the lower byte
of the lower halfword of dst.

31 24 23 16 15 8 0
‘ a3 ‘ a2 ‘ al a0 ‘ «— srcl
PACKL4
\ b_3 | b_2 | b_1 b0 | sre2
!
31 24 23 16 15 8 0
‘ a2 ‘ a0 ‘ b_2 b_0 ‘ «— dst
Execution
if (cond) {
byte2(srcl) — byte3(dst);
byteO(srcl) — byte2(dst);
byte2(src2) — bytel(dst);
byteO(src2) — byteO(dst)
}
else nop

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

359

PACKL4 — Pack Four Low Bytes Into Four 8-Bit Halfwords

13 TEXAS
INSTRUMENTS

www.ti.com

Pipeline

Instruction Type
Delay Slots
See Also

Examples

Pipeline Stage El

Read srcl, src2

Written dst

Unit in use L
Single-cycle

0
PACKH4, SPACKU4

Example 1
PACKL4 . L1 A2, A8, A9

Before instruction

A2 \ 37 89 F2 3Ah \

A8 \ 04 B8 49 75h \

A9 ‘ XXXX XXXxh

1 cycle after instruction

A2 \ 37 89 F2 3Ah

A8 \ 04 B8 49 75h

A9 \ 89 3A B8 75h

Example 2
PACKL4 . L2 B2, B8, B12

Before instruction

B2] 01 24 24 51h

B8 \ 01 A6 AOQ 51h \

B12 ’ XXXX XXXXh

1 cycle after instruction

B2 \ 01 24 24 51h

B8 \ 01 A6 AO 51h

B12 \ 24 51 A6 51h

360 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com RINT — Restore Previous Enable State
RINT Restore Previous Enable State
Syntax RINT
unit = none
Compatibility C64x+ CPU
Opcode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofoJofs[ofofofofofofofofofofofofo[s[s][ofofoofofofofofofofo]o]p]
1

Description Copies the contents of the SGIE bit in TSR into the GIE bit in TSR and CSR, and clears
the SGIE bit in TSR. The value of the SGIE bit in TSR is used for the current cycle as
the GIE indication; if restoring the GIE bit to 1, interrupts are enabled and can be taken
after the E1 phase containing the RINT instruction.

The CPU may service a maskable interrupt in the cycle immediately following the RINT
instruction. See section 5.2 for details.

The RINT instruction cannot be placed in parallel with: MVC reg, TSR; MVC reg, CSR;
B IRP; B NRP; NOP n; DINT; SPKERNEL; SPKERNELR; SPLOOP; SPLOOPD;
SPLOOPW; SPMASK; or SPMASKR.

This instruction executes unconditionally and cannot be predicated.

NOTE: The use of the DINT and RINT instructions in a nested manner, like the
following code:

DI NT
DI NT
RI NT
RI NT

leaves interrupts disabled. The first DINT leaves TSR.GIE cleared to O,
so the second DINT leaves TSR,.SGIE cleared to 0. The RINT
instructions, therefore, copy zero to TSR.GIE (leaving interrupts
disabled).

Execution Enable interrupts in current cycle

SGIE bit in TSR — GIE bit in TSR
SGIE bit in TSR — GIE bit in CSR
0 — SGIE bit in TSR

Instruction Type Single-cycle

Delay Slots 0

See Also DINT

SPRU732J-July 2010 Instruction Set 361

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
ROTL — Rotate Left www.ti.com
ROTL Rotate Left
Syntax ROTL (.unit) src2, srcl, dst
unit = .M1 or .M2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 6 5 4 3 2 1 O
‘ creg |z| dst src2 srcl |x|0‘ op ‘1|1|0‘0|s‘p‘
3 1 5 5 5 1 5 1 1
Opcode map field used... For operand type... Unit Opfield
srcl uint M1, .M2 11101
src2 xuint
dst uint
srcl ucst5 M1, .M2 11110
src2 xuint
dst uint
Description Rotates the 32-bit value of src2 to the left, and places the result in dst. The humber of

bits to rotate is given in the 5 least-significant bits of srcl. Bits 5 through 31 of srcl are
ignored and may be non-zero.

In the following figure, srcl is equal to 8.

31 24 23 16 15 8 7 0
abcdefgh ijklmnop grstuvwx yzABCDEF « src2
ROTL
l
31 0
ijkimnopgrstuvwxyzABCDEFabcdefgh «— dst
(for srcl = 8)

NOTE: The ROTL instruction is useful in cryptographic applications.

Execution
if (cond) (src2 << srel) | (src2 >> (32 - srcl)) — dst
else nop
362 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com ROTL — Rotate Left
Pipeline
Pipeline Stage El E2
Read srcl, src2
Written dst
Unit in use M
Instruction Type Two-cycle
Delay Slots 1
See Also SHL, SHLMB, SHRMB, SHR, SHRU
Examples Example 1
ROTL . M2 B2, B4, BS
Before instruction 2 cycles after instruction
B2 \ ABE2 C179h | B2 \ ABE2 C179h \
B4 |1458 3869h | B4 |1458 3B69h |
B5 \ x0xx xxxxh | B5 \ C582 F34Dh \
Example 2
ROTL . ML A4, 10h, A5
Before instruction 2 cycles after instruction
A4 | 187A 65FCh | A4 | 187AB5FCh \
A5 | xxx xxch | A5 | B5FC 187Ah \
SPRU732J-July 2010 Instruction Set 363

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
RPACK2 — Shift With Saturation and Pack Two 16 MSBs Into Upper and Lower Register Halves www.ti.com
RPACK?2 Shift With Saturation and Pack Two 16 MSBs Into Upper and Lower Register
Halves
Syntax RPACK?2 (.unit) srcl, src2, dst
unit = .S1 or .S2
Compatibility C64x+ CPU
Opcode
31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o]oJo]1] dst src2 srcl I x[1[1]1]ofa]a]a]1]o]o]s]p]
5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl sint .S1,.S2
src2 xsint
dst s2
Description srcl and src2 are shifted left by 1 with saturation. The 16 most-significant bits of the

shifted srcl value are placed in the 16 most-significant bits of dst. The 16
most-significant bits of the shifted src2 value are placed in the 16 least-significant bits of
dst.

If either value saturates, the S1 or S2 bit in SSR and the SAT bit in CSR are written one
cycle after the result is written to dst.

This instruction executes unconditionally and cannot be predicated.

31 16 15 0
‘ a_hi ‘ a_lo ‘ «— srcl
RPACK2
\ b_hi | b_lo | sre2
L i
31 16 15 0
‘ sat(a_hi << 1) ‘ sat(b_hi << 1) ‘ « dst
Execution

msh16(sat(srcl << 1)) — msb16(dst)
msb16(sat(src2 << 1)) — Isb16(dst)

Instruction Type Single-cycle

Delay Slots 0

See Also PACK2, PACKH2, SPACK2

364 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com RPACK2 — Shift With Saturation and Pack Two 16 MSBs Into Upper and Lower Register Halves
Examples Example 1

RPACK2 . S1 AOQ, Al, A2

Before instruction

A0 \ FEDC BA98h

Al \ 1234 5678h

CSR \ 0001 0100h

SSR \ 0000 0000h

1 cycle after instruction

A2 \ FDBA 2468h

CSRW \ 0001 0100h

SSR®] 0000 0000h

@ CSR.SAT and SSR.S1 unchanged by operation

Example 2

RPACK2 . S2X BO, Al, B2

Before instruction

BO \ 8765 4321h

Al \ 1234 5678h

CSR \ 0001 0100h

SSR \ 0000 0000h

1 cycle after instruction

B2 \ 8000 2468h

CSRW \ 0001 0300h

SSR® \ 0000 0008h

@ CSR.SAT and SSR.S2 set to 1, 2 cycles after instruction

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

365

SADD — Add Two Signed Integers With Saturation

13 TEXAS
INSTRUMENTS

www.ti.com

SADD Add Two Signed Integers With Saturation
Syntax SADD (.unit) srcl, src2, dst
or
SADD (.L1 or .L2) srcl, src2_h:src2_|, dst_h:dst_|I
unit=.L1, .L2, .81, .S2
Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure
.L L3 Figure D-4
.S S3 Figure F-21
Opcode .L unit
31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0
’ creg |z| dst ’ src2 srcl |x| op |1|1‘0|s‘p‘
3 1 5 5 5 1 7 1 1
Opcode map field used... For operand type... Unit Opfield
srcl sint L1, L2 001 0011
src2 xsint
dst sint
srcl xsint L1, L2 011 0001
src2 slong
dst slong
srcl scst5 L1, L2 001 0010
src2 xsint
dst sint
srcl scst5 L1, L2 011 0000
src2 slong
dst slong
Opcode .S unit
31 29 28 27 23 22 18 17 13 12 11 10 9 7 5 4 3 2 1 0
\ creg |z| dst \ src2 srcl |x|1\0|0\0\0\0\1|0|0\0|s\p\
3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit
srcl sint .S1, .82
src2 xsint

dst sint

366 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com SADD — Add Two Signed Integers With Saturation
Description srcl is added to src2 and saturated, if an overflow occurs according to the following
rules:
1. Ifthe dstis an int and srcl + src2 > 2% - 1, then the result is 2%* - 1.
2. If the dstis an int and srcl + src2 < -2%, then the result is -2°.
3. Ifthe dstis along and srcl + src2 > 2% - 1, then the result is 2°° - 1.
4. If the dstis a long and srcl + src2 < -2%, then the result is -2°°.
The result is placed in dst. If a saturate occurs, the SAT bit in the control status register
(CSR) is set one cycle after dst is written.
Execution
if (cond) srcl +s src2 — dst
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use L .S
Instruction Type Single-cycle
Delay Slots 0
See Also ADD
Examples Example 1
SADD . L1 A1, A2, A3
Before instruction 1 cycle after instruction
Al | 5A2E 51A3h | 1,512,984,995 Al | 5A2E 51A3h |
A2 | 012A 3FAZN 19,546,018 A2 [012A 3FA2h |
A3 [000 X000 | A3 | 5B58 9145h | 1,532,531,013
CSR |00010100h \ CSR |00010100h |
SSR® | 0000 0000h | SSR | 0000 0000h |

2 cycles after instruction

Al \ 5A2E 51A3h
A2] 012A 3FA2h
A3 \ 5B58 9145h

CSR] 0001 0100h Not saturated

|
|
|
|
|

SSR \ 0000 0000h

@ saturation status register (SSR) is only available on the C64x+ DSP.

SPRU732J-July 2010 Instruction Set 367

Copyright © 2010, Texas Instruments Incorporated

SADD — Add Two Signed Integers With Saturation

13 TEXAS
INSTRUMENTS

www.ti.com

Example 2
SADD . L1 Al, A2, A3

Before instruction

1 cycle after instruction

Al | 4367 71F2h | 1,130,852,850 Al | 4367 71F2h |
A2 | 5A2E 51A3h | 1,512,984,995 A2 | 5A2E 51A3h |
A3 | 0000000 | A3 | 7TFFF FFFFh | 2,147,483,647
CSR | 00010100h | CSR |00010100h |
SSR® | 0000 0000h | SSR | 0000 0000h |
2 cycles after instruction
Al | 4367 71F2h |
A2 | 5A2E 51A3h |
A3 | 7FFF FFFFh |
CSR | 0001 0300h | saturated
SSR | 0000 0001h |
@ Saturation status register (SSR) is only available on the C64x+ DSP.
Example 3
SADD . L1X B2, A5: Ad, A7: A6
Before instruction 1 cycle after instruction
A5:A4 | 0000 0000h | 783 39B1h A5:A4 | 0000 0000h | 7C83 39B1h |
2,088,974,769%
A7:A6 ‘ XXXX XXXxXh ‘ XXXX XXXxXh AT:A6 ’ 0000 0000h ’ 8DAD 7953h ’
2,376,956,243"
B2 | 112A 3FA2h | 287,981,474 B2 | 112A3FAZh |
CSR | 00010100h | CSR |00010100h |
SSR® | 0000 0000h | SSR | 0000 0000h |
2 cycles after instruction
A5:A4 | 0000 0000h | 7C83 39B1h |
AT:A6 | 0000 0000h | 8DAD 7953h |
B2 | 112A 3FA2h |
CSR | 0001 0100h | Not saturated
SSR | 0000 0000h |

@ Signed 40-bit (long) integer

@ saturation status register (SSR) is only available on the C64x+ DSP.

368

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com SADD2 — Add Two Signed 16-Bit Integers on Upper and Lower Register Halves With Saturation
SADD2 Add Two Signed 16-Bit Integers on Upper and Lower Register Halves With
Saturation
Syntax SADD?2 (.unit) srcl, src2, dst
unit = .S1 or .S2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| dst src2 srcl |x|1‘1|0‘0‘0’0’1|1|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s2 .S1,.S2
src2 Xxs2
dst s2
Description Performs 2s-complement addition between signed, packed 16-bit quantities in src1 and
src2. The results are placed in a signed, packed 16-bit format into dst.
For each pair of 16-bit quantities in src1 and src2, the sum between the signed 16-bit
value from srcl and the signed 16-bit value from src2 is calculated and saturated to
produce a signed 16-bit result. The result is placed in the corresponding position in dst.
Saturation is performed on each 16-bit result independently. For each sum, the following
tests are applied:
« If the sumis in the range - 2*° to 2 ** - 1, inclusive, then no saturation is performed
and the sum is left unchanged.
« If the sum is greater than 2% - 1, then the result is set to 2*° - 1.
+ If the sum is less than - 2%5, then the result is set to - 2'5.
31 16 15 0
a_hi ‘ a_lo ‘ «— srcl
SADD2
\ b_hi \ b_lo \ < src2
! !
31 16 15 0
\ sat(a_hi + b_hi) \ sat(a_lo + b_lo) | dst
NOTE: This operation is performed on each halfword separately. This
instruction does not affect the SAT bit in CSR.
SPRU732J-July 2010 Instruction Set 369

Copyright © 2010, Texas Instruments Incorporated

SADD2 — Add Two Signed 16-Bit Integers on Upper and Lower Register Halves With Saturation

13 TEXAS
INSTRUMENTS

www.ti.com

Execution

if (cond)

else nop

Pipeline

Instruction Type
Delay Slots
See Also

Examples

{
sat(msb16(srcl) + msb16(src2)) — msb16(dst);
sat(Isb16(srcl) + Ish16(src2)) — Isb16(dst)

Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use .S
Single-cycle
0

ADD2, SADD, SADDUS2, SADDU4, SUB2

Example 1
SADD2 . S1 A2, A8, A9

Before instruction 1 cycle after instruction
A2 \ 5789 F23Ah | 22409 -3526 A2 \ 5789 F23Ah \
A8 \ 74B8 4975h | 29880 18805 A8 \ 74B8 4975h \
A9 \ x0xx xxxxh | A9 \ 7FFF 3BAFh \ 32767 15279
Example 2
SADD2 . S2 B2, B8, B12
Before instruction 1 cycle after instruction
B2 \ 0124 847Ch | 292 -31260 B2 \ 0124 847Ch \
B8 \ 01A6 AO51h | 422 -24495 B8 \ 01A6 A051h \

B12 ‘ XXXX XXXxh

| B12 \ 02CA 8000h

\ 714 -32768

370 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com SADDSUB — Parallel SADD and SSUB Operations On Common Inputs
SADDSUB Parallel SADD and SSUB Operations On Common Inputs
Syntax SADDSUB (.unit) srcl, src2, dst_o:dst_e
unit=.L1 or .L2
Compatibility C64x+ CPU
Opcode
31 30 29 28 27 24 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lof[ofo]1] dst [0] src2 srcl [x]oJolol1]1]1]of1]1]o]s]p]
4 5 5 1 1 1

Opcode map field used... For operand type... Unit
srcl sint L1, .12
src2 xsint
dst dint
Description The following is performed in parallel:
1. src2 is added with saturation to srcl. The result is placed in dst_o.
2. src2 is subtracted with saturation from srcl. The result is placed in dst_e.
If either result saturates, the L1 or L2 bit in SSR and the SAT bit in CSR are written one
cycle after the results are written to dst_o:dst_e.
This instruction executes unconditionally and cannot be predicated.
Execution

sat(srcl + src2) — dst_o
sat(srcl - src2) — dst_e

Instruction Type Single-cycle

Delay Slots 0

See Also ADDSUB, SADDSUB2
Examples Example 1

SADDSUB . L1 A0, Al, A3: A2

Before instruction

A0 | 0700 C005h |
Al | FFFF FFFFh |
CSR 0001 0100h |
SSR | 0000 0000h |

A2
A3
CSR®

SSR®

1 cycle after instruction

\ 0700 C006h

\ 0700 C004h

\ 0001 0100h

\ 0000 0000h

@ CSR.SAT and SSR.L1 unchanged by operation

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set 371

SADDSUB — Parallel SADD and SSUB Operations On Common Inputs

13 TEXAS
INSTRUMENTS

www.ti.com

Example 2
SADDSUB . L2X BO, Al, B3: B2

Before instruction 1 cycle after instruction
BO | 7FFF FFFFh \ B2 \ 7FFF FFFEh |
Al | 0000 0001h \ B3 \ 7FFF FFFFh |
CSR 0001 0100h | CSRW | 0001 0300h |
SSR | 0000 0000h \ SSR® \ 0000 0002h |
@ CSR.SAT and SSR.L2 set to 1, 2 cycles after instruction
Example 3
SADDSUB . L1X AQ, B1, A3: A2
Before instruction 1 cycle after instruction
A0 | 8000 0000h | A2 | 8000 0000h |
B1 | 0000 0001h \ A3 \ 8000 0001h |
CSR 0001 0100h | CSRW | 0001 0300h |
SSR | 0000 0000h \ SSR® \ 0000 0001h |

@ CSR.SAT and SSR.L1 set to 1, 2 cycles after instruction

372 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com SADDSUB2 — Parallel SADD2 and SSUB2 Operations On Common Inputs
SADDSUB2 Parallel SADD2 and SSUB2 Operations On Common Inputs
Syntax SADDSUB2 (.unit) srcl, src2, dst_o:dst_e
unit=.L1 or .L2
Compatibility C64x+ CPU
Opcode
31 30 29 28 27 24 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lof[ofo]1] dst [0] src2 srcl I xJoJolol1]1]1]a]a]a]o]s]p]
4 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl sint L1, .12
src2 xsint
dst dint
Description A SADD2 and a SSUB2 operation are done in parallel.
For the SADD2 operation, the upper and lower halves of the src2 operand are added
with saturation to the upper and lower halves of the srcl operand. The values in srcl
and src2 are treated as signed, packed 16-bit data and the results are written in signed,
packed 16-bit format into dst_o.
For the SSUB2 operation, the upper and lower halves of the src2 operand are
subtracted with saturation from the upper and lower halves of the srcl operand. The
values in srcl and src2 are treated as signed, packed 16-bit data and the results are
written in signed, packed 16-bit format into dst_e.
This instruction executes unconditionally and cannot be predicated.
NOTE: These operations are performed separately on each halfword. This
instruction does not affect the SAT bit in CSR or the L1 or L2 bits in SSR.
Execution

sat(Isb16(srcl) + Isb16(src2)) — Isb16(dst_o)
sat(msb16(srcl) + msb16(src2)) — msb16(dst_o)
sat(Isb16(srcl) - Ish16(src2)) — Isbh16(dst_e)
sat(msb16(srcl) - msb16(src2)) — msb16(dst_e)

Instruction Type Single-cycle

Delay Slots 0

See Also ADDSUB2, SADDSUB

SPRU732J-July 2010 Instruction Set 373

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
SADDSUB2 — Parallel SADD2 and SSUB2 Operations On Common Inputs www.ti.com
Examples Example 1
SADDSUB2 . L1 AQ, AL, A3: A2
Before instruction 1 cycle after instruction
A0 | 0700 C005h | A2 | 0701 C004h |
Al | FFFF 0001h \ A3 \ 06FF C006h |
CSR 0001 0100h | CSRW | 0001 0100h |
SSR | 0000 0000h \ SSR® \ 0000 0000h |
@ CSR.SAT and SSR.L1 unchanged by operation
Example 2
SADDSUB2 . L2X BO, AL, B3: B2
Before instruction 1 cycle after instruction
BO | 7FFF 8000h \ B2 \ 7FFF 8001h |
Al | FFFF FFFFh \ B3 \ 7FFE 8000h |
CSR 0001 0100h | CSRW | 0001 0100h |
SSR | 0000 0000h \ SSR® \ 0000 0000h |
@ CSR.SAT and SSR.L2 unchanged by operation
374 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

SADDSU2 — Add Two Signed and Unsigned 16-Bit Integers on Register Halves With Saturation

SADDSU2 Add Two Signed and Unsigned 16-Bit Integers on Register Halves With Saturation
Syntax SADDSU2 (.unit) src2, srcl, dst
unit = .S1 or .S2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| src2 srcl |x|l‘1|O‘O‘O‘l‘l|l|0‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl u2 .51, .82
src2 Xs2
dst u2
Description The SADDSU2 pseudo-operation performs 2s-complement addition between unsigned
and signed packed 16-bit quantities. The values in srcl are treated as unsigned packed
16-bit quantities, and the values in src2 are treated as signed packed 16-bit quantities.
The results are placed in an unsigned packed 16-bit format into dst. The assembler uses
the SADDUS2 (.unit) srcl, src2, dst instruction to perform this operation (see
SADDUS?2).
For each pair of 16-bit quantities in srcl and src2, the sum between the unsigned 16-bit
value from srcl and the signed 16-bit value from src2 is calculated and saturated to
produce a signed 16-bit result. The result is placed in the corresponding position in dst.
Saturation is performed on each 16-bit result independently. For each sum, the following
tests are applied:
« If the sum is in the range 0 to 2% - 1, inclusive, then no saturation is performed and
the sum is left unchanged.
+ If the sum is greater than 2'° - 1, then the result is set to 2% - 1.
* If the sum is less than 0, then the result is cleared to 0.
Execution
if (cond) {
sat(smsb16(src2) + umsb16(srcl)) — umsbh16(dst);
sat(slsb16(src2) + ulsb16(srcl)) — ulsb16(dst)
}
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use .S

SPRU732J-July 2010

Instruction Set 375

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
SADDSU2 — Add Two Signed and Unsigned 16-Bit Integers on Register Halves With Saturation www.ti.com
Instruction Type Single-cycle
Delay Slots 0
See Also SADD, SADD2, SADDUS2, SADDU4
376 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

SADDUS2 — Add Two Unsigned and Signed 16-Bit Integers on Register Halves With Saturation

SADDUS2 Add Two Unsigned and Signed 16-Bit Integers on Register Halves With Saturation
Syntax SADDUS2 (.unit) srcl, src2, dst
unit = .S1 or .S2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x|1‘1|0‘0‘0‘1‘1|1|0‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl u2 .S1, .52
src2 Xxs2
dst u2
Description Performs 2s-complement addition between unsigned and signed, packed 16-bit
guantities. The values in srcl are treated as unsigned, packed 16-bit quantities; and the
values in src2 are treated as signed, packed 16-bit quantities. The results are placed in
an unsigned, packed 16-bit format into dst.
For each pair of 16-bit quantities in srcl and src2, the sum between the unsigned 16-bit
value from srcl and the signed 16-bit value from src2 is calculated and saturated to
produce a signed 16-bit result. The result is placed in the corresponding position in dst.
Saturation is performed on each 16-bit result independently. For each sum, the following
tests are applied:
« If the sum is in the range 0 to 2% - 1, inclusive, then no saturation is performed and
the sum is left unchanged.
+ If the sum is greater than 2'° - 1, then the result is set to 2% - 1.
* If the sum is less than 0, then the result is cleared to 0.
31 16 15 0
‘ ua_hi ‘ ua_lo ‘ « srcl
SADDUS2
‘ sb_hi ‘ sb_lo ‘ « src2
! !
31 16 15 0
sat(ua_hi + sb_hi) ‘ sat(ua_lo + sb_lo) ‘ «— dst

NOTE: This operation is performed on each halfword separately. This
instruction does not affect the SAT bit in CSR.

SPRU732J-July 2010

Instruction Set 377

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
SADDUS2 — Add Two Unsigned and Signed 16-Bit Integers on Register Halves With Saturation www.ti.com
Execution
if (cond) {
sat(umsb16(srcl) + smsb16(src2)) — umsb16(dst);
sat(ulsb16(srcl) + slsh16(src2)) — ulsb16(dst)
}
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use .S
Instruction Type Single-cycle
Delay Slots 0
See Also ADD2, SADD, SADD2, SADDU4
Examples Example 1
SADDUS2 .S1 A2, A8, A9
Before instruction 1 cycle after instruction
A2 |5789 F23Ah | 22409 62010 A2 |5789 F23Ah |
unsigned
A8 | 74B8 4975h | 20880 18805 A8 | 74B8 4975h |
signed
A9 [xo0x xooch | A9 | CC41FFFF | 52289 65535
unsigned
Example 2
SADDUS2 .S2 B2, B8, B12
Before instruction 1 cycle after instruction
B2 [147C 0124h | 5244 292 B2 |147C0124h |
unsigned
B8 \ A051 01A6h -24495 422 B8 \ A051 01A6h |
signed
B12 |00 xxxxh | B12 | 0000 02CAh |0714
unsigned
378 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

SADDU4 — Add With Saturation, Four Unsigned 8-Bit Pairs for Four 8-Bit Results

SADDU4 Add With Saturation, Four Unsigned 8-Bit Pairs for Four 8-Bit Results
Syntax SADDU4 (.unit) srcl, src2, dst
unit = .S1 or .S2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
creg |z| dst src2 srcl |x|1‘1|0‘0‘1‘1‘1|1|0‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl u4 .S1, .52
src2 xu4
dst usd
Description Performs 2s-complement addition between unsigned, packed 8-bit quantities. The values
in srcl and src2 are treated as unsigned, packed 8-bit quantities and the results are
written into dst in an unsigned, packed 8-bit format.
For each pair of 8-bit quantities in srcl and src2, the sum between the unsigned 8-bit
value from srcl and the unsigned 8-bit value from src2 is calculated and saturated to
produce an unsigned 8-bit result. The result is placed in the corresponding position in
dst.
Saturation is performed on each 8-bit result independently. For each sum, the following
tests are applied:
« If the sum is in the range 0 to 28 - 1, inclusive, then no saturation is performed and
the sum is left unchanged.
+ If the sum is greater than 28 - 1, then the result is set to 28 - 1.
31 24 23 16 15 8 7 0
‘ ua_3 ‘ ua_2 ‘ ua_1 | ua_0 ‘ < srcl
SADDU4
\ ub_3 \ ub_2 \ ub_1 | ub_0 \ < src2
! ! ! !
31 24 23 16 15 8 7 0
‘ sat(ua_3 + ub_3) ‘ sat(ua_2 + ub_2) ‘ sat(ua_1 + ub_1) | sat(ua_0 + ub_0) ‘ «— dst

NOTE: This operation is performed on each 8-bit quantity separately. This
instruction does not affect the SAT bit in CSR.

SPRU732J-July 2010

Instruction Set 379

Copyright © 2010, Texas Instruments Incorporated

SADDU4 — Add With Saturation, Four Unsigned 8-Bit Pairs for Four 8-Bit Results

13 TEXAS
INSTRUMENTS

www.ti.com

Execution
if (cond) {
sat(ubyteO(srcl) + ubyteO(src2)) — ubyteO(dst);
sat(ubytel(srcl) + ubytel(src2)) — ubytel(dst);
sat(ubyte2(srcl) + ubyte2(src2)) — ubyte2(dst);
sat(ubyte3(srcl) + ubyte3(src2)) — ubyte3(dst)
}
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use .S
Instruction Type Single-cycle
Delay Slots 0
See Also ADD4, SADD, SADD2, SADDUS2, SUB4
Examples Example 1
SADDU4 .S1 A2, A8, A9
Before instruction 1 cycle after instruction
A2 \ 57 89 F2 3Ah \ 87 137 242 58 A2 \ 57 89 F2 3Ah |
unsigned
A8 \ 74 B8 49 75h \ 116 184 73 117 A8 \ 74 B8 49 75h |
unsigned
A9 \ %00 Xxxxh \ A9 \ CB FF FF AFh | 203 255 255 175
unsigned
Example 2
SADDU4 .S2 B2, B8, B12
Before instruction 1 cycle after instruction
B2 \ 14 7C 01 24h \ 20124136 B2 \ 14 7C 01 24h |
unsigned
B8 \ AO 51 01 A6h \ 160 81 1 166 B8 \ A0 51 01 A6h |
unsigned
B12 \ 00K Xxxxh \ B12 \ B4 CD 02 CA | 180 205 2 202
unsigned

380 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com

SAT — Saturate a 40-Bit Integer to a 32-Bit Integer

SAT Saturate a 40-Bit Integer to a 32-Bit Integer
Syntax SAT (.unit) src2_h:src2_|, dst
unit=.L1 or .L2
Compatibility C62x, C64x, and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| creg | z] dst src2 loJoJoJo]o|x|1]ofofo]o]o]o[1]1]0]s]|p]
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 slong L1, .12
dst sint
Description A 40-bit src2 value is converted to a 32-bit value. If the value in src2 is greater than what
can be represented in 32-bits, src2 is saturated. The result is placed in dst. If a saturate
occurs, the SAT bit in the control status register (CSR) is set one cycle after dst is
written.
Execution
if (cond) {
if (src2 > (2% - 1)), (2°* - 1) — dst
else if (src2 < -2%Y), -23! — dst
else src2 5, , — dst
}
else nop
Pipeline
Pipeline Stage El
Read src2
Written dst
Unit in use L
Instruction Type Single-cycle
Delay Slots 0

SPRU732J-July 2010

Instruction Set 381

Copyright © 2010, Texas Instruments Incorporated

SAT — Saturate a 40-Bit Integer to a 32-Bit Integer

I

TEXAS
INSTRUMENTS

www.ti.com

Examples Example 1

SAT . L2 B1:BO, B5

Before instruction

1 cycle after instruction

B1:BO | 0000 001Fh | 3413 539Ah B1:BO | 0000 001Fh | 3413 539Ah
B5 [000 X000 B5 | 7FFF FFFFh |
CSR |00010100h | CSR | 00010100h |
SSR® | 0000 0000h | SSR | 0000 0000h |
2 cycles after instruction
B1:BO | 0000 001Fh | 3413 539Ah
B5 | 7FFF FFFFh |
CSR | 0001 0300h | saturated
SSR | 0000 0002h |
@ Saturation status register (SSR) is only available on the C64x+ DSP.
Example 2
SAT .L2 BI:BO, BS
Before instruction 1 cycle after instruction
B1:BO | 0000 0000h | A190 7321h B1:B0 | 0000 0000h | A190 7321h
B5 [000 x000¢h B5 | 7FFF FFFFh |
CSR |00010100h | CSR | 0001 0100h |
SSR® | 0000 0000h | SSR | 0000 0000h |
2 cycles after instruction
B1:B0 | 0000 0000h | A190 7321h
B5 | 7FFF FFFFh |
CSR | 0001 0300h | saturated
SSR | 0000 0002h |

@ Saturation status register (SSR) is only available on the C64x+ DSP.

382

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com SAT — Saturate a 40-Bit Integer to a 32-Bit Integer
Example 3
SAT . L2 B1:BO, B5
Before instruction 1 cycle after instruction
B1:BO \ 0000 00FFh \ A190 7321h B1:B0 \ 0000 00FFh \ A190 7321h
B5 ‘ XXXX XXXxh ‘ B5 ’ A190 7321h ’

CSR \ 0001 0100h

CSR \ 0001 0100h

SSR®W \oooo 0000h \ SSR]oooo 0000h]

2 cycles after instruction

B1:BO \ 0000 0OFFh \ A190 7321h
B5] A190 7321h]
CSR | 00010100h | Not saturated

SSR] 0000 0000h]

@ Saturation status register (SSR) is only available on the C64x+ DSP.

SPRU732J-July 2010 Instruction Set 383

Copyright © 2010, Texas Instruments Incorporated

SET — Set a Bit Field

13 TEXAS
INSTRUMENTS

www.ti.com

SET (.unit) src2, csta, cstb, dst

SET Set a Bit Field
Syntax
or
SET (.unit) src2, srcl, dst
unit = .S1 or .S2
Compatibility

Compact Instruction Format

C62x, C64x, and C64x+ CPU

Unit Opcode Format Figure
.S Sch Figure F-26
Opcode Constant form:
31 29 28 27 23 22 18 17 13 12 8 7 6 5 4 3 2 1 O
’ creg |z| dst ’ src2 csta cstb ‘1’0’0|0|1‘0|s‘p‘
3 1 5 5 5 5 1 1
Opcode map field used... For operand type... Unit
src2 uint .S1,.S2
csta ucst5
cstb ucst5
dst uint
Opcode Register form;
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
’ creg |z| dst ’ src2 srcl |x|1‘1|1‘0‘1’1’1|0|0‘0|s‘p‘
3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit
src2 xuint .81, .82
srcl uint

dst uint

384 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS

www.ti.com

SET — Set a Bit Field

Description

src2

dst

Execution

if (cond)
else nop

if (cond)
else nop

Pipeline

Instruction Type
Delay Slots

See Also

For cstb = csta, the field in src2 as specified by csta to cstb is set to all 1s in dst. The
csta and cstb operands may be specified as constants or in the 10 LSBs of the srcl
register, with cstb being bits 0-4 (srcl , ;) and csta being bits 5-9 (srcl 4 ¢). csta is the

LSB of the field and cstb is the MSB of the field. In other words, csta and cstb represent
the beginning and ending bits, respectively, of the field to be set to all 1s in dst. The LSB
location of src2 is bit 0 and the MSB location of src2 is bit 31.

In the following example, csta is 15 and cstb is 23. For the register version of the

instruction, only the 10 LSBs of the srcl register are valid. If any of the 22 MSBs are

non-zero, the result is invalid.

B

&

cstb

<

csta

| V. ¥

| |
DX IXIX DX I IxIx o foTo [[fo L4 PXTX IXTX DX X IXIX IX X IXTx X[x []

31 30 29 28 27 26 25 24 23 2221 20191817 161514131211 10 9 8 7 6 5 4 3 2 1 O

DX DX D Ix IxxQafalafafafafo b PafxfxxIx]x[x{x[x[x[x[x[x{x[x]x]

31 30 29 28 27 26 25 24 23 22 212019 1817 16 151413121110 9 8 7 6 5 4 3 2 1 0

For cstb < csta, the src2 register is copied to dst. The csta and cstb operands may be
specified as constants or in the 10 LSBs of the srcl register, with cstb being bits 0-4

(srcl , ,) and csta being bits 5-9 (srcl g ;).

If the constant form is used when cstb = csta:

src2 SET csta, cstb — dst

If the register form is used when cstb = csta:

src2 SET srecl g 5, srcl , , — dst

Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .S

Single-cycle

0

CLR

SPRU732J-July 2010

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

385

SET — Set a Bit Field

13 TEXAS
INSTRUMENTS

www.ti.com

Examples Example 1
SET .S1 A0, 7,21,A1

Before instruction 1 cycle after instruction
A0 \ 4B13 4A1Eh | A0 \ 4B13 4A1Eh \
Al \ X0 xxxxh | Al] 4B3F FF9Eh \
Example 2
SET . S2 BO, B, B2
Before instruction 1 cycle after instruction
BO \ 9ED3 1A31h | BO \ 9ED3 1A31h \
B1 0000 C197h | B1 0000 C197h |
B2 \ %0 xxxxh | B2 \ 9EFF FA31h \

386 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com SHFL — Shuffle
SHFL Shuffle
Syntax SHFL (.unit) src2, dst
unit = .M1 or .M2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| creg | z] dst src2 l1]1]1]o]olx]o]ofofof1]2]2]2]0]o]s]|p]
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 xuint M1, .M2
dst uint
Description Performs an interleave operation on the two halfwords in src2. The bits in the lower
halfword of src2 are placed in the even bit positions in dst, and the bits in the upper
halfword of src2 are placed in the odd bit positions in dst.
As a result, bits 0, 1, 2, ..., 14, 15 of src2 are placed in bits 0, 2, 4, ..., 28, 30 of dst.
Likewise, bits 16, 17, 18, .. 30, 31 of src2 are placed in bits 1, 3, 5, ..., 29, 31 of dst.
31 16 15 0
abcdefghijkimnop ABCDEFGHIJKLMNOP « src2
SHFL
!
31 16 15 0
aAbBcCdDeEfFgGhH iljJJkKILmMnNoOpP « dst
NOTE: The SHFL instruction is the exact inverse of the DEAL instruction
(see DEAL).
Execution
if (cond) {
SIC2 31302016 — USt 3129271
SrCZ 15,14,13...0 - dSt 30,28,26...0
}
else nop
SPRU732J-July 2010 Instruction Set 387

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

SHFL — Shuffle www.ti.com

Pipeline
Pipeline Stage El E2
Read src2
Written dst
Unit in use M
Instruction Type Two-cycle
Delay Slots 1
See Also DEAL
Example SHFL . ML Al, A2
Before instruction 2 cycles after instruction
Al |B174 6CA4h | Al |B174 6CAdh \
A2 | 30000 xoocch | A2 | 9E52 6E30h |
388 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com SHFL3 — 3-Way Bit Interleave On Three 16-Bit Values Into a 48-Bit Result
SHFL3 3-Way Bit Interleave On Three 16-Bit Values Into a 48-Bit Result
Syntax SHFL3 (.unit) srcl, src2, dst_o:dst_e
unit=.L1 or .L2
Compatibility C64x+ CPU
Opcode
31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lof[ofo]1] dst src2 srcl I xJoJ1l1]of1]1]of1][1]o]s]p]
5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl sint L1, .12
src2 xsint
dst dint
Description Performs a 3-way bit interleave on three 16-bit values and creating a 48-bit result.
This instruction executes unconditionally and cannot be predicated.
31 16 15 0
’alS’a14‘al3| |a2’al‘a0|b15’bl4’b13‘ |b2|b1‘b0|esrcl
| c15 | c14a [a3 | | 2 | a | o0 [di5 | di4a | di3 | | d2 | d1 | do [esre2
SHFL3
!
31 16 15 0
0 0 0 | | 0 0 0 | al5 \ b15 \ d15 \ | b1l | d11 \ al0 |edst_o
| b0 | di0 [a9 | | d6 | a5 | b5 [d5 | a4 | b4 | | a0 | b0 | do |dste
Execution
int inp0, inpl, inp2
dword result;
inp0 = src2 & FFFFh;
inpl = srcl & FFFFh;
inp2 = srcl >> 16 & FFFFh;
result = 0;
for (I =0; 1 < 16; I++)
{
result |= (inp0 >>1& 1) << (I x 3) ;
result |= (inpl >>1& 1) << ((I x 3) + 1);
result |= (inp2>>1& 1) << | ((I x3) +2)
}
Instruction Set 389

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
SHFL3 — 3-Way Bit Interleave On Three 16-Bit Values Into a 48-Bit Result www.ti.com
Instruction Type Single-cycle
Delay Slots 0
Example SHFL3 . L1 A0, Al, A3: A2
Before instruction 1 cycle after instruction

A0 | 87654321h | A2 | 7E179306h |

Al [12345678h | A3 [00008C11h |
390 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

SHL — Arithmetic Shift Left

SHL

Syntax

Compatibility

Arithmetic Shift Left

SHL (.unit) src2, srcl, dst

or

SHL (.unit) src2_h:src2_I, srcl, dst_h:dst_|
unit = .S1 or .S2

C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure
.S S3i Figure F-22
Ssh5 Figure F-24
S2sh Figure F-25
Opcode
31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0
’ creg |z| dst src2 srcl |x| op ’1|0|0‘0|s‘p‘
3 1 5 5 1 6 1 1
Opcode map field used... For operand type... Unit Opfield
src2 xsint .81, .S2 11 0011
srcl uint
dst sint
src2 slong .81, .S2 11 0001
srcl uint
dst slong
src2 xuint .81, .S2 010011
srcl uint
dst ulong
src2 xsint .81, .S2 11 0010
srcl ucst5
dst sint
src2 slong .81, .S2 11 0000
srcl ucsts
dst slong
src2 xuint .81, .S2 01 0010
srcl ucst5
dst ulong
Description The src2 operand is shifted to the left by the srcl operand. The result is placed in dst.

When a register is used, the six LSBs specify the shift amount and valid values are 0-40.
When an immediate is used, valid shift amounts are 0-31. If src2 is a register pair, only
the bottom 40 bits of the register pair are shifted. The upper 24 bits of the register pair
are unused.

If 39 < srcl < 64, src2 is shifted to the left by 40. Only the six LSBs of srcl are used by
the shifter, so any bits set above bit 5 do not affect execution.

SPRU732J-July 2010

Instruction Set 391

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
SHL — Arithmetic Shift Left www.ti.com
Execution
if (cond) (src2 & OXFFFFFF) << srcl — dst
else nop
Pipeline
Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .S
Instruction Type Single-cycle
Delay Slots 0
See Also ROTL, SHLMB, SHR, SSHL, SSHVL
Examples Example 1
SHL . S1 A0, 4, Al
Before instruction 1 cycle after instruction
A0 | 29E3 D31Ch | A0 \ 29E3 D31Ch \
Al | 300K Xxxxh | Al \ 9E3D 31C0h \
Example 2
SHL . S2 BO, B, B2
Before instruction 1 cycle after instruction
BO | 4197 51A5h | BO \ 4197 51A5h \
B1 | 0000 0009h | B1 | 0000 0009h |
B2 | X0 Xxh | B2 \ 2EA3 4A00h \
Example 3
SHL .S2 B1:BO, B2, B3: B2
Before instruction 1 cycle after instruction
B1:B0 | 0000 0009h | 4197 51A5h | BLBO | 0000 0009h | 4197 51A5h |
B2 | 0000 0022h | B2 \ 0000 0000h \
B3:B2 | 000 000h | 000 000h | B3B2 | 0000 0094h | 0000 0000h |
Example 4
SHL . S1 AS: A4, 0, Al: AO
Before instruction 1 cycle after instruction
A5:A4 | FFFF FFFFh | FFFF FFFFh | As:A4 | FFFF FFFFh | FFFF FFFFh |
AL:A0 | X000 X00oxh | X000 X00oxh \ AL:A0 \ 0000 00FFh \ FFFF FFFFh \
392 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

SHLMB — Shift Left and Merge Byte

SHLMB Shift Left and Merge Byte
Syntax SHLMB (.unit) srcl, src2, dst
unit = .L1, .L2, .S1, .S2
Compatibility C64x and C64x+ CPU
Opcode .L unit
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| ‘ src2 srcl |x|1‘1|0‘0‘0‘0‘1|1|1‘0|s‘p‘
3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

srcl u4 L1, .L.2

src2 xu4

dst u4
Opcode .S unit
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| ‘ src2 srcl |x|1‘1|1‘0‘0‘1‘1|1|0‘0|s‘p‘

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit
srcl u4 .S1,.S2
src2 p v
dst ud
Description Shifts the contents of src2 left by 1 byte, and then the most-significant byte of srcl is
merged into the least-significant byte position. The result is placed in dst.
31 24 23 16 15 8 7 0
‘ ua_3 ‘ ua_2 ‘ ua_1 | ua_0 ‘ «—srcl
SHLMB
\ ub_3 \ ub_2 \ ub_1 | ub_0 ‘ < src2
!
31 24 23 16 15 8 7 0
‘ ub_2 ‘ ub_1 ‘ ub_0 | ua_3 ‘ «— dst

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set 393

13 TEXAS

INSTRUMENTS
SHLMB — Shift Left and Merge Byte www.ti.com
Execution
if (cond) {
ubyte2(src2) — ubyte3(dst);
ubytel(src2) — ubyte2(dst);
ubyte0O(src2) — ubytel(dst);
ubyte3(srcl) — ubyteO(dst)
}
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use L .S
Instruction Type Single-cycle
Delay Slots 0
See Also ROTL, SHL, SHRMB
Examples Example 1
SHLMB . L1 A2, A8, A9
Before instruction 1 cycle after instruction
A2 3789 F23Ah | A2 3789 F23Ah |
A8 \ 04B8 4975h | A8 \ 04B8 4975h \
A9 | xxxx xxxch | A9 |BBA49 7537h |
Example 2
SHLMB . S2 B2, B8, B12
Before instruction 1 cycle after instruction
B2 [0124 2451h | B2 |0124 2451h \
B8 |01A6 AO51h | B8 | 01A6 A051h \
B12 | 000 xooxh | B12 |A6AO 5101h \
394 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com SHR — Arithmetic Shift Right
SHR Arithmetic Shift Right
Syntax SHR (.unit) src2, srcl, dst
or
SHR (.unit) src2_h:src2_|, srcl, dst
unit = .S1 or .S2
Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure
.S S3i Figure F-22
Ssh5 Figure F-24
S2sh Figure F-25
Opcode
31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0
’ creg |z| dst src2 srcl |x| op ’1|0|0‘0|s‘p‘
3 1 5 5 5 1 6 1 1
Opcode map field used... For operand type... Unit Opfield
src2 xsint .81, .S2 11 0111
srcl uint
dst sint
src2 slong .81, .S2 11 0101
srcl uint
dst slong
src2 xsint .81, .S2 11 0110
srcl ucst5
dst sint
src2 slong .81, .S2 11 0100
srcl ucst5
dst slong
Description The src2 operand is shifted to the right by the src1 operand. The sign-extended result is

placed in dst. When a register is used, the six LSBs specify the shift amount and valid
values are 0-40. When an immediate value is used, valid shift amounts are 0-31. If src2
is a register pair, only the bottom 40 bits of the register pair are shifted. The upper 24
bits of the register pair are unused.

If 39 < srcl < 64, src2 is shifted to the right by 40. Only the six LSBs of srcl are used by
the shifter, so any bits set above bit 5 do not affect execution.

Execution

if (cond) (src2 & OXFFFFFF) >>s srcl — dst
else nop

SPRU732J-July 2010 Instruction Set 395

Copyright © 2010, Texas Instruments Incorporated

SHR — Arithmetic Shift Right

13 TEXAS
INSTRUMENTS

www.ti.com

Pipeline
Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .S
Instruction Type Single-cycle
Delay Slots 0
See Also SHL, SHR2, SHRMB, SHRU, SHRU2, SSHVR
Examples Example 1
SHR . S1 A0, 8, Al
Before instruction 1 cycle after instruction
A0 | F123 63D1h | A0 \ F123 63D1h \
Al | %00x xxxxh | Al \ FFF1 2363h \
Example 2
SHR . S2 BO, B, B2
Before instruction 1 cycle after instruction
BO | 1492 5A41h | BO \ 1492 5A41h \
B1 | 0000 0012h | B1 \ 0000 0012h \
B2 | 300 x0oxxh | B2 \ 0000 0524h \
Example 3
SHR . S2 Bl:BO, B2, B3: B2
Before instruction 1 cycle after instruction
B1:BO | 0000 0012h | 1492 5A41h \ B1:B0 \ 0000 0012h \ 1492 5A41h \
B2 | 0000 0019h | B2 \ 0000 090Ah \
B3:B2 | XXXX XXXXh | XXXX XXXXh ‘ B3:B2 ‘ 0000 0000h ‘ 0000 090Ah ‘
Example 4
SHR . S1 A5: A4, 0, AL: AO
Before instruction 1 cycle after instruction
A5:A4 | FFFF FFFFh | FFFF FFFFh | AsiA4 | FFFF FFFFh | FFFF FFFFh |
AL:AO | %00x xxxxh | %00x xxxxh \ AL:AO \ 0000 00FFh \ FFFF FFFFh \

396 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com

SHR2 — Arithmetic Shift Right, Signed, Packed 16-Bit

SHR2 Arithmetic Shift Right, Signed, Packed 16-Bit
Syntax SHR2 (.unit) src2, srcl, dst
unit = .S1 or .S2
Compatibility C64x and C64x+ CPU
Opcode .S unit (uint form)
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| dst ‘ src2 srcl |x|1‘1|0‘1‘1‘1‘1|1|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl uint .81, .82
src2 Xs2
dst s2
Opcode .S unit (cst form)
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| dst ‘ src2 srcl |x|0‘1|1‘0‘0‘0‘1|0|0‘0|s‘p‘
3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit
srcl ucst5 .S1,.S2
src2 Xs2
dst s2
Description Performs an arithmetic shift right on signed, packed 16-bit quantities. The values in src2
are treated as signed, packed 16-bit quantities. The lower 5 bits of srcl are treated as
the shift amount. The results are placed in a signed, packed 16-bit format into dst.
For each signed 16-bit quantity in src2, the quantity is shifted right by the number of bits
specified in the lower 5 bits of srcl. Bits 5 through 31 of srcl are ignored and may be
non-zero. The shifted quantity is sign-extended, and placed in the corresponding position
in dst. Bits shifted out of the least-significant bit of the signed 16-bit quantity are
discarded.
31 16 15 0
abcdefgh ijkimnop grstuvwx yzABCDEF « src2
SHR2
l
31 16 15 0
aaaaaaaa abcdefgh 0gqggqqaqg grstuvwx «— dst
(for srcl = 8)

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set 397

13 TEXAS
INSTRUMENTS

SHR2 — Arithmetic Shift Right, Signed, Packed 16-Bit www.ti.com

NOTE: If the shift amount specified in srcl is in the range 16 to 31, the behavior
is identical to a shift value of 15.

Execution
if (cond) {
smsb16(src2) >> srcl — smsb16(dst);
slsb16(src2) >> srcl — slsh16(dst)
}
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use .S
Instruction Type Single-cycle
Delay Slots 0
See Also SHL, SHR, SHRMB, SHRU, SHRU2
Examples Example 1
SHR2 .S2 B2, B4, B5
Before instruction 1 cycle after instruction
B2 |A6E2C17%h | B2 |A6E2C17%h \
B4 [1458 3B69h | shift value 9 B4 [1458 3B69h \
B5 | x000¢ xo00¢h | B5 |FFD3 FFEOh \
Example 2
SHR2 .S1 A4,0fh,A5 ; shift value is 15
Before instruction 1 cycle after instruction
A4 |000A 87AFh | A4 | 000A 87AFh \
A5 | w00 xoooh | A5 | 0000 FFFFh |
398 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

SHRMB — Shift Right and Merge Byte

SHRMB Shift Right and Merge Byte
Syntax SHRMB (.unit) srcl, src2, dst
unit = .L1, .L2, .S1, .S2
Compatibility C64x and C64x+ CPU
Opcode .L unit
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| ‘ src2 srcl |x|1‘1|0‘0‘0‘1‘0|1|1‘0|s‘p‘
3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

srcl u4 L1, .L.2

src2 xu4

dst u4
Opcode .S unit
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| ‘ src2 srcl |x|1‘1|1‘0‘1‘0‘1|1|0‘0|s‘p‘

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit
srcl u4 .S1,.S2
src2 p v
dst ud
Description Shifts the contents of src2 right by 1 byte, and then the least-significant byte of srcl is
merged into the most-significant byte position. The result is placed in dst.
31 24 23 16 15 8 7 0
‘ ua_3 ‘ ua_2 ‘ ua_1 | ua_0 ‘ «—srcl
SHRMB
\ ub_3 \ ub_2 \ ub_1 | ub_0 ‘ < src2
!
31 24 23 16 15 8 7 0
‘ ua_0 ‘ ub_3 ‘ ub_2 | ub_1 ‘ «— dst

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set 399

SHRMB — Shift Right an

d Merge Byte

13 TEXAS
INSTRUMENTS

www.ti.com

Execution

if (cond)

else nop

Pipeline

Instruction Type
Delay Slots
See Also

Examples

{
ubyteO(srcl) — ubyte3(dst);
ubyte3(src2) — ubyte2(dst);
ubyte2(src2) — ubytel(dst);
ubytel(src2) — ubyteO(dst)
}

Pipeline Stage E1l

Read srcl, src2

Written dst

Unit in use L, .S
Single-cycle

0

SHL, SHLMB, SHR, SHR2, SHRU, SHRU2

Example 1
SHRVB . L1 A2, A8, A9

Before instruction

1 cycle after instruction

A2 | 3789 F23Ah \ A2 \ 3789 F23Ah
A8 | 04B8 4975h \ A8 \ 04B8 4975h
A9 | X300 xxxxh \ A9 \ 3A04 B849h
Example 2
SHRVB . S2 B2, B8, B12
Before instruction 1 cycle after instruction
B2 | 0124 2451h \ B2 | 0124 2451h
B8 | 01A6 AO51h \ B8 | 01A6 A051h
B12 | xxxx xxxxh \ B12 | 5101 AGACh

400 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com

SHRU — Logical Shift Right

SHRU Logical Shift Right
Syntax SHRU (.unit) src2, srcl, dst
or

SHRU (.unit) src2_h:src2_1, srcl, dst_h:dst_|
unit = .S1 or .S2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure
.S Ssh5 Figure F-24
S2sh Figure F-25
Opcode
31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0
’ creg |z| dst src2 srcl |x| op ’1|0|0‘0|s‘p‘
3 1 5 5 5 1 6 1 1
Opcode map field used... For operand type... Unit Opfield
src2 xuint .81, .S2 100111
srcl uint
dst uint
src2 ulong .81, .S2 100101
srcl uint
dst ulong
src2 xuint .81, .S2 100110
srcl ucst5
dst uint
src2 ulong .81, .S2 10 0100
srcl ucst5
dst ulong
Description The src2 operand is shifted to the right by the src1 operand. The zero-extended result is
placed in dst. When a register is used, the six LSBs specify the shift amount and valid
values are 0-40. When an immediate value is used, valid shift amounts are 0-31. If src2
is a register pair, only the bottom 40 bits of the register pair are shifted. The upper 24
bits of the register pair are unused.
If 39 < srcl < 64, src2 is shifted to the right by 40. Only the six LSBs of srcl are used by
the shifter, so any bits set above bit 5 do not affect execution.
Execution
if (cond) (src2 & OXFFFFFF) >>z srcl — dst
else nop

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set 401

SHRU — Logical Shift Right

13 TEXAS
INSTRUMENTS

www.ti.com

Pipeline

Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .S
Instruction Type Single-cycle
Delay Slots 0
See Also SHL, SHR, SHR2, SHRMB, SHRU2
Examples Example 1
SHRU . S1 A0, 8, Al
Before instruction 1 cycle after instruction
AO | F12363D1h | A0 | F123 63D1h |
Al [0000 x000¢h | Al | 00F1 2363h |
Example 2
SHRU . S1 AS5: A4, 0, Al: AO
Before instruction 1 cycle after instruction
A5:A4 | FFFF FFFFh | FFFF FFFFh | AsA4 | FFFF FFFFh | FFFF FFFFh |
A1:A0 | XXXX Xxxxh | XXXX Xxxxh ‘ A1:A0 ‘ 0000 00FFh ‘ FFFF FFFFh ‘
402 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

SHRU2 — Arithmetic Shift Right, Unsigned, Packed 16-Bit

SHRUZ2 Arithmetic Shift Right, Unsigned, Packed 16-Bit
Syntax SHRU2 (.unit) src2, srcl, dst
unit = .S1 or .S2
Compatibility C64x and C64x+ CPU
Opcode .S unit (uint form)
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| ‘ src2 srcl |x|1‘1|1‘0‘0‘0‘1|1|0‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl uint .81, .82
src2 xu2
dst u2

Opcode .S unit (cst form)
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| dst ‘ src2 srcl |x|0‘1|1‘0‘0‘1‘1|0|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl ucst5 .81, .82
src2 xu2
dst u2
Description Performs an arithmetic shift right on unsigned, packed 16-bit quantities. The values in

src2 are treated as unsigned, packed 16-bit quantities. The lower 5 bits of srcl are
treated as the shift amount. The results are placed in an unsigned, packed 16-bit format
into dst.

For each unsigned 16-bit quantity in src2, the quantity is shifted right by the number of
bits specified in the lower 5 bits of srcl. Bits 5 through 31 of srcl are ignored and may
be non-zero. The shifted quantity is zero-extended, and placed in the corresponding
position in dst. Bits shifted out of the least-significant bit of the signed 16-bit quantity are
discarded.

NOTE: If the shift amount specified in srcl is in the range of 16 to 31, the dst

will be cleared to all zeros.

SPRU732J-July 2010 Instruction Set 403

Copyright © 2010, Texas Instruments Incorporated

SHRU2 — Arithmetic Shift Right, Unsigned, Packed 16-Bit

13 TEXAS
INSTRUMENTS

www.ti.com

31 16 15 0
abcdefgh ijkimnop grstuvwx yzABCDEF «— src2
SHRU2
!
31 16 15 0
00000000 abcdefgh 00000000 grstuvwx «— dst
(for srcl = 8)
Execution
if (cond) {
umsb16(src2) >> srcl — umsb16(dst);
ulsb16(src2) >> srcl — ulsb16(dst)
}
else nop
Pipeline
Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .S
Instruction Type Single-cycle
Delay Slots 0
See Also SHL, SHR, SHR2, SHRMB, SHRU
Examples Example 1
SHRU2 .S2 B2, B4, B5
Before instruction 1 cycle after instruction
B2 |A6E2C17%h | B2 |A6E2C179h |
B4 [1458 3B69h | shift value 9 B4 1458 3B69h |
BS |00 xooach | BS | 0053 0060h |
Example 2
SHRU2 .S1 A4,0Fh,A5 ; Shift value is 15
Before instruction 1 cycle after instruction
A4 | 000A 87AFh | A4 | 000A 87AFh \
A5 [x000c xo00ch | A5 [0000 0001h \

404 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com SL — Store Linked Word to Buffer
SL Store Linked Word to Buffer
Syntax SL (.unit) src, *baseR
unit = .D2
Compatibility C64x+ CPU
NOTE: The atomic operations are not supported on all C64x+ devices, see your
device-specific data manual for more information.
Opcode
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| creg | z] src baseR loJofoJoJoJofJof[1][1]o]1][2]o]o]o]o1]p]
3 1 5 5 1
Opcode map field used... For operand type... Unit
baseR address .D2
src int
Description The SL instruction performs a write of the 32-bit word in src to the memory address
specified by baseR. For linked-operation aware systems, the write request is interpreted
as a request to buffer the 32-bit word for use in conjunction with a subsequent CMTL
operation. When initiating the memory write, if the previously buffered address is not
equal to the memory address specified by baseR then the link valid flag is cleared. Other
than this signaling, the operation of the SL instruction from the CPU perspective is
identical to that of STW src, *baseR.
See Chapter 9 for more details.
Execution
if (cond) src — mem
signal store-linked operation
else nop
Instruction Type Store
Delay Slots 0
See Also CMTL, LL
SPRU732J-July 2010 Instruction Set 405

Copyright © 2010, Texas Instruments Incorporated

SMPY — Multiply Signed 16 LSB x Signed 16 LSB With Left Shift and Saturation

13 TEXAS

INSTRUMENTS

www.ti.com

SMPY Multiply Signed 16 LSB x Signed 16 LSB With Left Shift and Saturation

Syntax SMPY (.unit) srcl, src2, dst
unit = .M1 or .M2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure
.M M3 Figure E-5
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
\ creg |z| dst src2 srcl |x|l\1|0\1\0\0\0|0|0\0|s\p\
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl slsb16 M1, .M2
src2 xslsh16
dst sint
Description The 16 least-significant bits of src1 operand is multiplied by the 16 least-significant bits

of the src2 operand. The result is left shifted by 1 and placed in dst. If the left-shifted
result is 8000 0000h, then the result is saturated to 7FFF FFFFh. If a saturate occurs,
the SAT bit in CSR is set one cycle after dst is written. The source operands are signed

by default.
Execution
if (cond) {
if (((Isb16(srcl) x Isb16(src2)) << 1) != 8000 0000h),
((Isb16(srcl) x Isb16(src2)) << 1) — dst
else 7FFF FFFFh — dst
}
else nop
Pipeline
Pipeline Stage El E2
Read srcl, src2
Written dst
Unit in use .M

406 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com SMPY — Multiply Signed 16 LSB x Signed 16 LSB With Left Shift and Saturation
Instruction Type Single-cycle (16 x 16)
Delay Slots 1
See Also MPY, SMPYH, SMPYHL, SMPYLH
Example SWPY . ML Al, A2, A3
Before instruction 2 cycles after instruction
Al 0000 0123h | 2010 Al | 0000 0123h |
A2 | 01E0 FA81h | -1407® A2 | 01E0 FAB1h |
A3 | 0000 000xh | A3 | FFF3 8146h | -818,874
CSR 0001 0100h | CSR | 0001 0100h | Not saturated
SSR® | 0000 0000h | SSR | 0000 0000h |

@ Signed 16-LSB integer
@ saturation status register (SSR) is only available on the C64x+ DSP.

SPRU732J-July 2010 Instruction Set 407

Copyright © 2010, Texas Instruments Incorporated

SMPYH — Multiply Signed 16 MSB x Signed 16 MSB With Left Shift and Saturation

13 TEXAS
INSTRUMENTS

www.ti.com

SMPYH Multiply Signed 16 MSB x Signed 16 MSB With Left Shift and Saturation

Syntax SMPYH (.unit) srcl, src2, dst
unit = .M1 or .M2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure
.M M3 Figure E-5
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
\ creg |z| dst src2 srcl |x|0\0|0\1\0\0\0|0|0\0|s\p\
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl smsbh16 M1, .M2
src2 xsmsb16
dst sint
Description The 16 most-significant bits of src1 operand is multiplied by the 16 most-significant bits
of the src2 operand. The result is left shifted by 1 and placed in dst. If the left-shifted
result is 8000 0000h, then the result is saturated to 7FFF FFFFh. If a saturation occurs,
the SAT bit in CSR is set one cycle after dst is written. The source operands are signed
by default.
Execution
if (cond) {
if (((msb16(srcl) x msb16(src2)) << 1) != 8000 0000h),
((msb16(srcl) x msbh16(src2)) << 1) — dst
else 7FFF FFFFh — dst
}
else nop
Pipeline

Pipeline Stage El E2
Read srcl, src2

Written dst
Unit in use .M

408 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com

SMPYH — Multiply Signed 16 MSB x Signed 16 MSB With Left Shift and Saturation

Instruction Type Single-cycle (16 x 16)
Delay Slots 1
See Also MPYH, SMPY, SMPYHL, SMPYLH

SPRU732J-July 2010 Instruction Set 409

Copyright © 2010, Texas Instruments Incorporated

SMPYHL — Multiply Signed 16 MSB x Signed 16 LSB With Left Shift and Saturation

13 TEXAS
INSTRUMENTS

www.ti.com

SMPYHL

Syntax

Compatibility

Multiply Signed 16 MSB x Signed 16 LSB With Left Shift and Saturation

SMPYHL (.unit) srcl, src2, dst

unit = .M1 or .M2

C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure
.M M3 Figure E-5
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
\ creg |z| dst src2 srcl |x|0\1|0\1\0\0\0|0|0\0|s\p\
3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit
srcl smsbh16 M1, .M2
src2 xslsb16
dst sint
Description The 16 most-significant bits of the src1 operand is multiplied by the 16 least-significant
bits of the src2 operand. The result is left shifted by 1 and placed in dst. If the left-shifted
result is 8000 0000h, then the result is saturated to 7FFF FFFFh. If a saturation occurs,
the SAT bit in CSR is set one cycle after dst is written.
Execution
if (cond) {
if (((msb16(srcl) x Ish16(src2)) << 1) != 8000 0000h),
((msb16(srcl) x Isb16(src2)) << 1) — dst
else 7FFF FFFFh — dst
}
else nop
Pipeline

Pipeline Stage El E2
Read srcl, src2

Written dst
Unit in use .M

410 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com SMPYHL — Multiply Signed 16 MSB x Signed 16 LSB With Left Shift and Saturation
Instruction Type Single-cycle (16 x 16)
Delay Slots 1
See Also MPYHL, SMPY, SMPYH, SMPYLH
Example SMPYHL . ML Al, A2, A3
Before instruction 2 cycles after instruction

Al | 008A 0000h | 138% Al | 008A 0000h |

A2 0000 00A7h | 167@ A2 | 0000 00A7h |

A3 | 0000 000xh | A3 | 0000 B40Ch | 46,002

CSR 0001 0100h | CSR | 0001 0100h | Not saturated

SSR® | 0000 0000h | SSR | 0000 0000h |

@ Signed 16-MSB integer
@ Signed 16-LSB integer
® saturation status register (SSR) is only available on the C64x+ DSP.

SPRU732J-July 2010 Instruction Set 411

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
SMPYLH — Multiply Signed 16 LSB x Signed 16 MSB With Left Shift and Saturation www.ti.com
SMPYLH Multiply Signed 16 LSB x Signed 16 MSB With Left Shift and Saturation
Syntax SMPYLH (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C62x, C64x, and C64x+ CPU
Compact Instruction Format
Unit Opcode Format Figure
.M M3 Figure E-5
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
\ creg |z| dst src2 srcl |x|l\0|0\1\0\0\0|0|0\0|s\p\
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl slsb16 M1, .M2
src2 xsmsb16
dst sint
Description The 16 least-significant bits of the src1 operand is multiplied by the 16 most-significant
bits of the src2 operand. The result is left shifted by 1 and placed in dst. If the left-shifted
result is 8000 0000h, then the result is saturated to 7FFF FFFFh. If a saturation occurs,
the SAT bit in CSR is set one cycle after dst is written.
Execution
if (cond) {
if (((Isb16(srcl) x msb16(src2)) << 1) != 8000 0000h),
((Isb16(srcl) x msb16(src2)) << 1) — dst
else 7FFF FFFFh — dst
}
else nop
Pipeline
Pipeline Stage El E2
Read srcl, src2
Written dst
Unit in use .M
412 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com SMPYLH — Multiply Signed 16 LSB x Signed 16 MSB With Left Shift and Saturation
Instruction Type Single-cycle (16 x 16)
Delay Slots 1
See Also MPYLH, SMPY, SMPYH, SMPYHL
Example SMPYLH . ML Al, A2, A3
Before instruction 2 cycles after instruction
Al | 0000 8000h |-32,768% Al | 0000 8000h |
A2 | 8000 0000h | -32,768? A2 | 8000 0000h |
A3 | 0000 000xh | A3 | 7FFF FFFFh | 2,147,483,647
CSR 0001 0100h | CSR | 0001 0300h | saturated
SSR® | 0000 0000h | SSR | 0000 0010h |

@ Signed 16-LSB integer
@ signed 16-MSB integer
® saturation status register (SSR) is only available on the C64x+ DSP.

SPRU732J-July 2010 Instruction Set 413

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

SMPY2 — Multiply Signed by Signed, 16 LSB x 16 LSB and 16 MSB x 16 MSB With Left Shift and Saturation = www.ti.com

SMPY2 Multiply Signed by Signed, 16 LSB x 16 LSB and 16 MSB x 16 MSB With Left Shift
and Saturation

Syntax SMPY2 (.unit) srcl, src2, dst_o:dst_e
unit = .M1 or .M2

Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
’ creg |z| dst src2 srcl |x|0‘0|0‘0‘0’1’1|1|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s2 M1, .M2
src2 Xs2
dst sllong
Description Performs two 16-bit by 16-bit multiplies between two pairs of signed, packed 16-bit

values, with an additional left-shift and saturate. The values in srcl and src2 are treated
as signed, packed 16-bit quantities. The two 32-bit results are written into a 64-bit
register pair.

The SMPY2 instruction produces two 16 x 16 products. Each product is shifted left by 1.
If the left-shifted result is 8000 0000h, the output value is saturated to 7FFF FFFFh.

The saturated product of the lower halfwords of srcl and src2 is written to the even
destination register, dst_e. The saturated product of the upper halfwords of src1 and
src2 is written to the odd destination register, dst_o.

31 16 15 0
| a_hi | a_lo ‘ «—srcl
X X
SMPY2
| b_hi | b_lo | sre2
63 32 31 0
sat((a_hi x b_hi) << 1) | sat((a_lo x b_lo) << 1) \ — dst_odst_e

NOTE: If either product saturates, the SAT bit is set in CSR one cycle after the
cycle that the result is written to dst_o:dst_e. If neither product saturates,
the SAT bit in CSR remains unaffected.

414 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

SMPY2 — Multiply Signed by Signed, 16 LSB x 16 LSB and 16 MSB x 16 MSB With Left Shift and Saturation

The SMPY2 instruction helps reduce the number of instructions required to perform two
16-bit by 16-bit saturated multiplies on both the lower and upper halves of two registers.

The following code:

SMPY ML A0, Al, A2
SWYH ML A0, Al, A3

may be replaced by:

SMPY2 . ML A0, Al, A3:A2
Execution
if (cond) {
sat((Isb16(srcl) x Isb16(src2)) << 1) — dst_e;
sat((msb16(srcl) x msb16(src2)) << 1) — dst_o
}
else nop
Pipeline
Pipeline Stage El E2 E3 E4
Read srcl, src2
Written dst
Unit in use M
Instruction Type Four-cycle
Delay Slots 3
See Also MPY2, SMPY
Examples Example 1
SMPY2 . ML A5, A6, A9: A8
Before instruction 4 cycles after instruction
A5 | 6A32 1193h | 27186 4499 A5 \ 6A32 1193h \
A | B174 6CA4h | -20108 27812 A6 \ B174 6CA4h \
A9:A8 | XXXX XXxxh | XXXX XXxxh A9:A8 ‘ BEDS5 6150h ‘ OEEA 8C58h
-1,093,312,176 250,252,376
Example 2
SWPY2 . M2 B2, B5, B9: B8
Before instruction 4 cycles after instruction
B2 | 1234 3497h | 4660 13463 B2 \ 1234 3497h \
B5 | 21FF 50A7h | 8703 20647 B5 \ 21FF 50A7h
B9:B8 | xxxx xxxxh | xxxx xxxxh B9:B8S \ 04D5 AB98h \ 2122 FDO2h
81,111,960 555,941,122

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set 415

13 TEXAS

INSTRUMENTS
SMPY32 — Multiply Signed 32-Bit x Signed 32-Bit Into 64-Bit Result With Left Shift and Saturation www.ti.com
SMPY32 Multiply Signed 32-Bit x Signed 32-Bit Into 64-Bit Result With Left Shift and
Saturation
Syntax SMPY32 (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C64x+ CPU
Opcode
31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o]oJo]1] dst src2 srcl [xJo[1]1]oJofr]r]1]o]o]s]p]
5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl int M1, .M2
src2 xint
dst int
Description Performs a 32-bit by 32-bit multiply. src1 and src2 are signed 32-bit values. The 64-bit

result is shifted left by 1 with saturation, and the 32 most-significant bits of the shifted
value are written to dst.

If the result saturates either on the multiply or the shift, the M1 or M2 bit in SSR and the
SAT bit in CSR are written one cycle after the results are written to dst.

This instruction executes unconditionally and cannot be predicated.

NOTE: When both inputs are 8000 0000h, the shifted result cannot be
represented as a 32-bit signed value. In this case, the saturation value
7FFF FFFFh is written into dst.

Execution

msb32(sat((src2 x srcl) << 1)) — dst

Instruction Type Four-cycle

Delay Slots 3

See Also MPY32, SMPY2

416 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

SMPY32 — Multiply Signed 32-Bit x Signed 32-Bit Into 64-Bit Result With Left Shift and Saturation

Examples Example 1
SMPY32 . ML A0, Al, A2
Before instruction 4 cycle after instruction
A0 | 8765 4321h A2 | EED8 ED1Ah
Al | 1234 5678h

CSR \ 0001 0100h

SSR \ 0000 0000h

CSRW \ 0001 0100h

SSR®] 0000 0000h \

@ CSR.SAT and SSR.M1 unchanged by operation

Example 2
SMPY32 . L1 AQ, Al, A2

Before instruction

A0 \ 8000 0000h

CSR \ 0001 0100h

|
Al \ 8000 0000h |
|
|

SSR \ 0000 0000h

4 cycles after instruction

A2 | 7TFFF FFFFh |

CSRW \ 0001 0300h \

SSR® \ 0000 0010h \

@ CSR.SAT and SSR.M1 set to 1, 5 cycles after instruction

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

417

13 TEXAS

INSTRUMENTS
SPACK2 — Saturate and Pack Two 16 LSBs Into Upper and Lower Register Halves www.ti.com
SPACK?2 Saturate and Pack Two 16 LSBs Into Upper and Lower Register Halves
Syntax SPACK2 (.unit) srcl, src2, dst
unit = .S1 or .S2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x|1‘1|0‘0‘1‘0‘1|1|0‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl int .81, .82
src2 xint
dst s2
Description Takes two signed 32-bit quantities in srcl and src2 and saturates them to signed 16-bit
guantities. The signed 16-bit results are then packed into a signed, packed 16-bit format
and written to dst. Specifically, the saturated 16-bit signed value of srcl is written to the
upper halfword of dst, and the saturated 16-bit signed value of src2 is written to the
lower halfword of dst.
Saturation is performed on each input value independently. The input values start as
signed 32-bit quantities, and are saturated to 16-bit quantities according to the following
rules:
« If the value is in the range - 2*° to 2*° - 1, inclusive, then no saturation is performed
and the value is truncated to 16 bits.
« If the value is greater than 2% - 1, then the result is set to 2° - 1.
+ If the value is less than - 2%5, then the result is set to - 2'5.
31 16 15 0
‘ 00000000 ABCDEFGH ‘ IJKLMNOP QRSTUVWX ‘ «— srcl
SPACK2
\ 00000000 00000000 | 00YZ1234 56789ABC | sre2
!
31 16 15 0
‘ 01111111 11111111 ‘ 00YZ1234 56789ABC ‘ «— dst

The SPACK?2 instruction is useful in code that manipulates 16-bit data at 32-bit precision
for its intermediate steps, but that requires the final results to be in a 16-bit
representation. The saturate step ensures that any values outside the signed 16-bit
range are clamped to the high or low end of the range before being truncated to 16 bits.

NOTE: This operation is performed on each 16-bit value separately. This
instruction does not affect the SAT bit in CSR.

418 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com SPACK2 — Saturate and Pack Two 16 LSBs Into Upper and Lower Register Halves
Execution
if (cond) {
if (src2 > 0000 7FFFh), 7FFFh — Isb16(dst) or
if (src2 < FFFF 8000h), 8000h — Ish16(dst)
else truncate(src2) — Isb16(dst);
if (srcl > 0000 7FFFh), 7FFFFh— msb16(dst) or
if (src1 < FFFF 8000h), 8000h— msb16(dst)
else truncate(srcl) — msb16(dst)
}
else nop
Pipeline
Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .S
Instruction Type Single-cycle
Delay Slots 0
See Also PACK2, PACKH2, PACKHL2, PACKLH2, RPACK2, SPACKU4
Examples Example 1
SPACK2 .S1 A2, A8, A9
Before instruction 1 cycle after instruction
A2 3789 F23Ah | 931,787,322 A2 3789 F23Ah |
A8 | 04B8 4975h | 79,186,293 A8 | 04B8 4975h |
A9 | xxxx xch | A9 | 7FFF 7FFFh | 32767 32767
Example 2
SPACK2 .S2 B2, B8, B12
Before instruction 1 cycle after instruction
B2 ‘A124 2451h \ -1,591,466,927 B2 ‘A124 2451h \
B8 \ 01A6 AO51h \ 27,697,233 B8 \ 01A6 AO51h \
B12 \ X0 Xxxxh \ B12 \ 8000 7FFFh \ 32768 32767
SPRU732J-July 2010 Instruction Set 419

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
SPACKU4 — Saturate and Pack Four Signed 16-Bit Integers Into Four Unsigned 8-Bit Halfwords www.ti.com
SPACKU4 Saturate and Pack Four Signed 16-Bit Integers Into Four Unsigned 8-Bit Halfwords
Syntax SPACKU4 (.unit) srcl, src2, dst
unit = .S1 or .S2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x|1‘1|0‘1‘0‘0‘1|1|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s2 .S1, .52
src2 Xxs2
dst usd
Description Takes four signed 16-bit values and saturates them to unsigned 8-bit quantities. The

values in srcl and src2 are treated as signed, packed 16-bit quantities. The results are
written into dst in an unsigned, packed 8-bit format.

Each signed 16-bit quantity in srcl and src2 is saturated to an unsigned 8-bit quantity as
described below. The resulting quantities are then packed into an unsigned, packed 8-bit
format. Specifically, the upper halfword of srcl is used to produce the most-significant
byte of dst. The lower halfword of srcl is used to produce the second most-significant
byte (bits 16 to 23) of dst. The upper halfword of src2 is used to produce the third
most-significant byte (bits 8 to 15) of dst. The lower halfword of src2 is used to produce
the least-significant byte of dst.

Saturation is performed on each signed 16-bit input independently, producing separate
unsigned 8-bit results. For each value, the following tests are applied:

« If the value is in the range 0 to 28 - 1, inclusive, then no saturation is performed and
the result is truncated to 8 bits.

 If the value is greater than 28 - 1, then the result is set to 28 - 1.
» If the value is less than 0, the result is cleared to O.

31 16 15 0

\ 00000000 ABCDEFGH | 00001111 IJKLMNOP | src1

SPACKU4
\ 00000000 YZ123456 \ 11111111 QRSTUVWX ‘ < src2
!
31 24 23 16 15 8 7 0

\ ABCDEFGH 11111111 \ YZ123456 00000000 ‘ — dst

420 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com SPACKU4 — Saturate and Pack Four Signed 16-Bit Integers Into Four Unsigned 8-Bit Halfwords
The SPACKU4 instruction is useful in code that manipulates 8-bit data at 16-bit precision
for its intermediate steps, but that requires the final results to be in an 8-bit
representation. The saturate step ensures that any values outside the unsigned 8-bit
range are clamped to the high or low end of the range before being truncated to 8 bits.
NOTE: This operation is performed on each 8-bit quantity separately. This
instruction does not affect the SAT bit in CSR.
Execution
if (cond) {
if (msb16(srcl) >> 0000 00FFh), FFh — ubyte3(dst) or
if (msb16(srcl) << 0), 0 — ubyte3(dst)
else truncate(msb16(srcl)) — ubyte3(dst);
if (Isb16(srcl) >> 0000 O0FFh), FFh — ubyte2(dst) or
if (Isb16(srcl) << 0), 0 — ubyte2(dst)
else truncate(Isb16(srcl)) — ubyte2(dst);
if (msb16(src2) >> 0000 00FFh), FFh — ubytel(dst) or
if (msb16(src2) << 0), 0 — ubytel(dst)
else truncate(msb16(src2)) — ubytel(dst);
if (Isb16(src2) >> 0000 00FFh), FFh — ubyteO(dst) or
if (Isb16(src2) << 0), 0 — ubyteO(dst)
else truncate(Isb16(src2)) — ubyteO(dst)
}
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use .S
Instruction Type Single-cycle
Delay Slots 0
See Also PACKH4, PACKL4, SPACK2
Examples Example 1
SPACKU4 . S1 A2, A8, A9
Before instruction 1 cycle after instruction
A2 |3789 F23Ah | 14217 -3526 A2 |3789 F23Ah |
A8 | 04B8 4975h | 1208 18805 A8 | 04B8 4975h |
A9 | 00 xooxxh | A9 | FF 00 FF FFh | 255 0 255 255
SPRU732J-July 2010 Instruction Set 421

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
SPACKU4 — Saturate and Pack Four Signed 16-Bit Integers Into Four Unsigned 8-Bit Halfwords www.ti.com
Example 2
SPACKU4 . S2 B2, B8, B12
Before instruction 1 cycle after instruction
B2 |A1242451h -24284 9297 B2 |A124 2451h |
B8 |01A6 A051h | 422 24495 B8 | 01A6 A051h |
B12 | xx00x xxxxh | B12 |00 FF FF 00h | 0255 2550
422 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com SPKERNEL — Software Pipelined Loop (SPLOOP) Buffer Operation Code Boundary
SPKERNEL Software Pipelined Loop (SPLOOP) Buffer Operation Code Boundary
Syntax SPKERNEL (fstg, fcyc)
unit = none
Compatibility C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure
none Uspk Figure H-7
Opcode
31 30 29 28 27 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lo[o]o]o] fstg/fcyc (oJoJoJoJ1]1]o]1]o]o]o]o]o]o]o]o]o]o]o]o]s]p]
6 1 1
Description The SPKERNEL instruction is placed in parallel with the last execute packet of the

SPLOOP code body indicating there are no more instructions to load into the loop buffer.
The SPKERNEL instruction also controls at what point in the epilog the execution of
post-SPLOORP instructions begins. This point is specified in terms of stage and cycle
counts, and is derived from the fstg/fcyc field.

The stage and cycle values for both the post-SPLOOP fetch and reload cases are
derived from the fstg/fcyc field. The 6-bit field is interpreted as a function of the ii value
from the associated SPLOOP(D) instruction. The number of bits allocated to stage and
cycle vary according to ii. The value for cycle starts from the least-significant end; the
value for stage starts from the most-significant end, and they grow together. The number
of epilog stages and the number of cycles within those stages are shown in Table 3-23.
The exact bit allocation to stage and cycle is shown in Table 3-24.

The following restrictions apply to the use of the SPKERNEL instruction:

» The SPKERNEL instruction must be the first instruction in the execute packet
containing it.

» The SPKERNEL instruction cannot be placed in the same execute packet as any
instruction that initiates multicycle NOPs. This includes BNOP, CALLP, NOP n
(n > 1), and protected loads (see compact instruction discussion in Section 3.9).

 The SPKERNEL instruction cannot be placed in the execute packet immediately
following an execute packet containing any instruction that initiates multicycle NOPs.
This includes BNOP, CALLP, NOP n (n > 1), and protected loads (see compact
instruction discussion in Section 3.9).

» The SPKERNEL instruction cannot be placed in parallel with DINT or RINT
instructions.

 The SPKERNEL instruction cannot be placed in parallel with SPMASK, SPMASKR,
SPLOOP, SPLOOPD, or SPLOOPW instructions.

* When the SPKERNEL instruction is used with the SPLOOPW instruction, fstg and
fcyc should both be zero.

SPRU732J-July 2010 Instruction Set 423

Copyright © 2010, Texas Instruments Incorporated

SPKERNEL — Software Pipelined Loop (SPLOOP) Buffer Operation Code Boundary

13 TEXAS

INSTRUMENTS

www.ti.com

NOTE: The delay specified by the SPKERNEL fstg/fcyc parameters will not
extend beyond the end of the kernel epilog. If the end of the kernel epilog
is reached prior to the end of the delay specified by fstg/fcyc parameters
due to either an excessively large value specified for parameters or due
to an early exit from the loop, program fetch will begin immediately and

the value specified by the fstg/fcyc will be ignored.

Table 3-23. Field Allocation in stg/cyc Field

Number of Bits for Stage

Number of Bits for Cycle

6

N W b O

0

A W N P

Table 3-24. Bit Allocations to Stage and Cycle in stg/cyc Field

i stg/cyc[5] stg/cyc[4] stg/cyc[3] stg/cyc[2] stg/cyc[1] stg/cyc[0]
1 stage[0] stage[1] stage[2] stage[3] stage[4] stage[5]
stage[0] stage[1] stage[2] stage[3] stage[4] cycle[0]
3-4 stage[0] stage[1] stage[2] stage[3] cycle[1] cycle[0]
5-8 stage[0] stage[1] stage[2] cycle[2] cycle[1] cycle[0]
9-14 stage[0] stage[1] cycle[3] cycle[2] cycle[1] cycle[0]

Execution

See Also

See Chapter 7 for more information

SPKERNELR

424 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com

SPKERNELR — Software Pipelined Loop (SPLOOP) Buffer Operation Code Boundary

SPKERNELR

Syntax

Compatibility

Opcode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

Software Pipelined Loop (SPLOOP) Buffer Operation Code Boundary

SPKERNELR

unit = none

C64x+ CPU

4 3 2

0

[ofoJofofofoJofofofofofofofof[1]1]o[s[s]ofofoofofofofofofofo]s]p]

Description

Execution

See Also

The SPKERNELR instruction is placed in parallel with the last execute packet of the

1

SPLOOP code body indicating there are no more instructions to load into the loop buffer.

The SPKERNELR instruction also indicates that the execution of both post-SPLOOP

instructions and instructions reloaded from the buffer begin in the first cycle of the epilog.

The following restrictions apply to the use of the SPKERNELR instruction:

 The SPKERNELR instruction must be the first instruction in the execute packet

containing it.
» The SPKERNELR instruction cannot be placed in the same execute packet as any

instruction that initiates multicycle NOPs. This includes BNOP, CALLP, NOP n
(n > 1), and protected loads (see compact instruction discussion in Section 3.9).

« The SPKERNELR instruction cannot be placed in the execute packet immediately

following an execute packet containing any instruction that initiates multicycle NOPs.

This includes BNOP, CALLP, NOP n (n > 1), and protected loads (see compact

instruction discussion in Section 3.9).

* The SPKERNELR instruction cannot be placed in parallel with DINT or RINT
instructions.

e The SPKERNELR instruction cannot be placed in parallel with SPMASK,

SPMASKR, SPLOOP, SPLOOPD, or SPLOOPW instructions.

* The SPKERNELR instruction can only be used when the SPLOOP instruction that
began the SPLOOP buffer operation was predicated.

* The SPKERNELR instruction cannot be paired with an SPLOOPW instruction.

This instruction executes unconditionally and cannot be predicated.

See Chapter 7 for more information.

SPKERNEL

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

425

13 TEXAS

INSTRUMENTS
SPLOOP — Software Pipelined Loop (SPLOOP) Buffer Operation www.ti.com
SPLOOP Software Pipelined Loop (SPLOOP) Buffer Operation
Syntax SPLOORP ii
unit = none
Compatibility C64x+ CPU
Compact Instruction Format
Unit Opcode Format Figure
none Uspl Figure H-5
Opcode
31 29 28 27 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| creg | z] i - 1 joJoJoJoJof1]1]1]o]o]o]o]o]oJo]o]o]o]o]o]o]s]|p]
3 1 5 1 1
Description The SPLOOP instruction invokes the loop buffer mechanism. See Chapter 7 for more
details.
When the SPLOOP instruction is predicated, it indicates that the loop is a nested loop
using the SPLOOP reload capability. The decision of whether to reload is determined by
the predicate register selected by the creg and z fields.
The following restrictions apply to the use of the SPLOOP instruction:
» The SPLOOP instruction must be the first instruction in the execute packet containing
it.
» The SPLOOP instruction cannot be placed in the same execute packet as any
instruction that initiates multicycle NOPs. This includes BNOP, CALLP, NOP n
(n > 1), and protected loads (see compact instruction discussion in Section 3.9).
e The SPLOOP instruction cannot be placed in parallel with DINT or RINT instructions.
e The SPLOOP instruction cannot be placed in parallel with SPMASK, SPMASKR,
SPKERNEL, or SPKERNELR instructions.
Execution See Chapter 7 for more information.
See Also SPLOOPD, SPLOOPW
426 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com SPLOOPD — Software Pipelined Loop (SPLOOP) Buffer Operation With Delayed Testing
SPLOOPD Software Pipelined Loop (SPLOOP) Buffer Operation With Delayed Testing
Syntax SPLOOPD ii
unit = none
Compatibility C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure
none Uspl Figure H-5
Uspldr Figure H-6
Opcode
31 29 28 27 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| creg | z] i - 1 loJoJoJoJof1]1]1]of1]o]o]o]o]o]o]o]o]o]o]o]s]|p]
3 1 5 1 1
Description The SPLOOPD instruction invokes the loop buffer mechanism. The testing of the

termination condition is delayed for four cycles. See Chapter 7 for more details.

When the SPLOOPD instruction is predicated, it indicates that the loop is a nested loop
using the SPLOOP reload capability. The decision of whether to reload is determined by
the predicate register selected by the creg and z fields.

The following restrictions apply to the use of the SPLOOPD instruction:

» The SPLOOPD instruction must be the first instruction in the execute packet
containing it.

» The SPLOOPD instruction cannot be placed in the same execute packet as any
instruction that initiates multicycle NOPs. This includes BNOP, CALLP, NOP n
(n > 1), and protected loads (see compact instruction discussion in Section 3.9).

e The SPLOOPD instruction cannot be placed in parallel with DINT or RINT
instructions.

» The SPLOOPD instruction cannot be placed in parallel with SPMASK, SPMASKR,
SPKERNEL, or SPKERNELR instructions.

Execution See Chapter 7 for more information.
See Also SPLOOP, SPLOOPW
SPRU732J-July 2010 Instruction Set 427

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
SPLOOPW — Software Pipelined Loop (SPLOOP) Buffer Operation With Delayed Testing and No Epilog www.ti.com
SPLOOPW Software Pipelined Loop (SPLOOP) Buffer Operation With Delayed Testing and
No Epilog
Syntax SPLOOPW ii
unit = none
Compatibility C64x+ CPU
Opcode
31 29 28 27 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[creg [z] i - 1 [oJoJoJoJo[1]a[1]1]1]o]ofo]o]oJo[ofJo]o]o]o[s][p]
3 1 5 1 1
Description The SPLOOPW instruction invokes the loop buffer mechanism. The testing of the
termination condition is delayed for four cycles. See Chapter 7 for more details.
The SPLOOPW instruction is always predicated. The termination condition is the value
of the predicate register selected by the creg and z fields.
The following restrictions apply to the use of the SPLOOPW instruction:
» The SPLOOPW instruction must be the first instruction in the execute packet
containing it.
» The SPLOOPW instruction cannot be placed in the same execute packet as any
instruction that initiates multicycle NOPs. This includes BNOP, NOP n (n > 1), and
protected loads (see compact instruction discussion in Section 3.9).
e The SPLOOPW instruction cannot be placed in parallel with DINT or RINT
instructions.
» The SPLOOPW instruction cannot be placed in parallel with SPMASK, SPMASKR,
SPKERNEL, or SPKERNELR instructions.
Execution See Chapter 7 for more information.
See Also SPLOOP, SPLOOPD
428 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com SPMASK — Software Pipelined Loop (SPLOOP) Buffer Operation Load/Execution Control
SPMASK Software Pipelined Loop (SPLOOP) Buffer Operation Load/Execution Control
Syntax SPMASK unitmask
unit = none
Compatibility C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

none Uspm Figure H-8

Opcode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
loJoJoJofoJo[m2|m |p2]pt]|s2]|st|2[tt[1[1]o]ofofofofofofJoJo]of[oJoJo]o[s][p]
1 1 1 1 1 1 1 1 11

Description The SPMASK instruction serves two purposes within the SPLOOP mechanism:
1. The SPMASK instruction inhibits the execution of specified instructions from the
buffer within the current execute packet.
2. The SPMASK inhibits the loading of specified instructions into the buffer during
loading phase, although the instruction will execute normally.

If the SPLOOP is reloading after returning from an interrupt, the SPMASKed instructions
coming from the buffer execute, but the SPMASKed instructions from program memory
do not execute and are not loaded into the buffer.

An SPMASKed instruction encountered outside of the SPLOOP mechanism shall be
treated as a NOP.

The SPMASKed instruction must be the first instruction in the execute packet containing
it.

The SPMASK instruction cannot be placed in parallel with SPLOOP, SPLOOPD,
SPKERNEL, or SPKERNELR instructions.

The SPMASK instruction executes unconditionally and cannot be predicated.

There are two ways to specify which instructions within the current execute packet will
be masked:

1. The functional units of the instruction can be specified as the SPMASK argument.

2. The instruction to be masked can be marked with a caret (*) in the instruction code.
The following three examples are equivalent:

SPMASK D2, L1

| %Y .D2 BO,B1
|| %Y .L1 A0, Al
SPMASK D2
| %Y .D2 BO,B1
[~ W .L1 A0, Al
SPMASK
1~ W .D2 BO,B1
[~ W .L1 A0, Al
SPRU732J-July 2010 Instruction Set 429

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
SPMASK — Software Pipelined Loop (SPLOOP) Buffer Operation Load/Execution Control www.ti.com
The following two examples mask two MV instructions, but do not mask the MPY
instruction.
SPMASK D1, D2
| v .D1L A0, Al ; This unit is SPMASKed
| w . D2 BO, B1 ;This unit is SPMASKed
| MPY .L1 A0,B1 ; This unit is Not SPMASKed
SPMASK
|1~ W .D1L A0, Al ; This unit is SPMASKed
1~ W . D2 BO, B1 ;This unit is SPMASKed
| MPY .L1 A0,B1 ; This unit is Not SPMASKed

Execution See Chapter 7
See Also SPMASKR
430 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com SPMASKR — Software Pipelined Loop (SPLOOP) Buffer Operation Load/Execution Control
SPMASKR Software Pipelined Loop (SPLOOP) Buffer Operation Load/Execution Control
Syntax SPMASKR unitmask
unit = none
Compatibility C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

none Uspm Figure H-8

Opcode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
loJoJoJo]o]o[m[m]p2[p1]s2]st]tefta[1]1]oJo]1]ofofofJofJoJoJoJo]o[ofJo[s]p]
11 1 1 1 1 1 1 11

Description The SPMASKR instruction serves three purposes within the SPLOOP mechanism.
Similar to the SPMASK instruction:

1. The SPMASKR instruction inhibits the execution of specified instructions from the
buffer within the current execute packet.

2. The SPMASKR instruction inhibits the loading of specified instructions into the buffer
during loading phase, although the instruction will execute normally.

In addition to the functionality of the SPMASK instruction:
3. The SPMASKR instruction controls the reload point for nested loops.
The SPMASKR instruction is placed in the execute packet (in the post-SPKERNEL

code) preceding the execute packet that will overlap with the first cycle of the reload
operation.

The SPKERNELR and the SPMASKR instructions cannot coexist in the same SPLOOP
operation. In the case where reload is intended to start in the first epilog cycle, the
SPKERNELR instruction is used and the SPMASKR instruction is not used for that
nested loop.

The SPMASKR instruction cannot be used in a loop using the SPLOOPW instruction.

An SPMASKR instruction encountered outside of the SPLOOP mechanism shall be
treated as a NOP.

The SPMASKR instruction executes unconditionally and cannot be predicated.

The SPMASKR instruction must be the first instruction in the execute packet containing
it.

The SPMASKR instruction cannot be placed in parallel with SPLOOP, SPLOOPD,
SPKERNEL, or SPKERNELR instructions.

SPRU732J-July 2010 Instruction Set 431

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

SPMASKR — Software Pipelined Loop (SPLOOP) Buffer Operation Load/Execution Control www.ti.com

There are two ways to specify which instructions within the current execute packet will

be masked:

1. The functional units of the instruction can be specified as the SPMASKR argument.
2. The instruction to be masked can be marked with a caret (*) in the instruction code.

The following three examples are equivalent:

SPMASKR D2, L1

%

SPMASKR
Y
[~ w

D2 BO, Bl
L1 A0, Al

.D2 BO, B1
.L1 A0, Al

.D2 BO, Bl
.L1 A0, Al

The following two examples mask two MV instructions, but do not mask the MPY

instruction. The presence of a caret (*) in the instruction code specifies which

instructions are SPMASKed.
SPMASKR D1, D2

| w .D1 A0, Al ; This unit is SPMASKed

| W .D2 BO, Bl ;This unit is SPMASKed

| MPY .L1 AO0,B1 ;This unit is Ned SPMASKed

SPMASKR

[~ W .D1 A0, Al ;This unit i's SPMASKED

1~ W .D2 BO, Bl ;This unit is SPMASKED

| MPY .L1 A0,B1 ;This unit is Not SPMASKed
Execution See Chapter 7
See Also SPMASK
Example SPMASKR

||~ LDW D1 *A0, Al ;This unit is SPMASKed

||~ LDW D2 *BO, Bl ; This unit is SPMASKed

| MPY ML A3, A4, A5 ;This unit is Not SPMASKed
432 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com SSHL — Shift Left With Saturation
SSHL Shift Left With Saturation
Syntax SSHL (.unit) src2, srcl, dst
unit = .S1 or .S2
Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure
.S Sshb Figure F-24
S2sh Figure F-25
Opcode
31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0
\ creg |z| dst src2 srcl |x| op \1|0|0\0|s\p\
3 1 5 5 5 1 6 1 1
Opcode map field used... For operand type... Unit Opfield
src2 xsint .81, .82 10 0011
srcl uint
dst sint
src2 xsint .81, .82 10 0010
srcl ucsts
dst sint
Description The src2 operand is shifted to the left by the srcl operand. The result is placed in dst.

When a register is used to specify the shift, the 5 least-significant bits specify the shift
amount. Valid values are 0 through 31, and the result of the shift is invalid if the shift
amount is greater than 31. The result of the shift is saturated to 32 bits. If a saturate
occurs, the SAT bit in CSR is set one cycle after dst is written.

NOTE: For the C64x and C64x+ DSP, when a register is used to specify the
shift, the 6 least-significant bits specify the shift amount. Valid values are
0 through 63. If the shift count value is greater than 32, then the result is
saturated to 32 bits when src2 is non-zero.

Execution
if (cond) {
if (bit(31) through bit(31 - srcl) of src2 are all 1s or all 0s),
dst = src2 << srcl;
else if (src2 > 0), saturate dst to 7FFF FFFFh;
else if (src2 < 0), saturate dst to 8000 0000h
}
else nop
SPRU732J-July 2010 Instruction Set 433

Copyright © 2010, Texas Instruments Incorporated

SSHL — Shift Left With S

aturation

13 TEXAS
INSTRUMENTS

www.ti.com

Pipeline

Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .S
Instruction Type Single-cycle
Delay Slots 0
See Also ROTL, SHL, SHLMB, SHR, SSHVL
Examples Example 1
SSHL . SL A0, 2, Al
Before instruction 1 cycle after instruction 2 cycles after instruction
A0 | 02E3031Ch | A0 | 02E3031Ch | A0 | 02E3031Ch |
Al | %00 xxxxh | Al | 0B8C 0C70h \ Al \ 0B8C 0C70h \
CSR |00010100h |CSR | 00010100h |CSR | 0001 0100h | Not saturated
SSR® | 0000 0000h | SSR | 0000 0000h \ SSR \ 0000 0000h \

@ saturation status register (SSR) is only available on the C64x+ DSP.

Example 2

SSHL . S1 A0, Al, A2

Saturated

Before instruction 1 cycle after instruction 2 cycles after instruction
A0 | 4719 1925h | A0 | 4719 1925h | A0 | 4719 1925h |
Al | 0000 0006h AL | 0000 0006h AL | 0000 0006h |
A2 | 000 000h A2 | 7FFF FFFFh | A2 | 7FFF FFFFh |
CSR [0001 0100h |csR [0001 0100h |csR [0001 0300h |
SSR® | 0000 0000h |SSR | 0000 0000h |SSR | 0000 0004h |

@ Saturation status register (SSR) is only available on the C64x+ DSP.

434 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com SSHVL — Variable Shift Left
SSHVL Variable Shift Left
Syntax SSHVL (.unit) src2, srcl, dst
unit = .M1 or .M2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x|0‘1|1‘1‘0‘0‘1|1|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl int M1, .M2
src2 xint
dst int
Description Shifts the signed 32-bit value in src2 to the left or right by the number of bits specified by
srcl, and places the result in dst.
The srcl argument is treated as a 2s-complement shift value which is automatically
limited to the range -31 to 31. If srcl is positive, src2 is shifted to the left. If srcl is
negative, src2 is shifted to the right by the absolute value of the shift amount, with the
sign-extended shifted value being placed in dst. It should also be noted that when srcl is
negative, the bits shifted right past bit O are lost.
Saturation is performed when the value is shifted left under the following conditions:
« If the shifted value is in the range -23! to 23! - 1, inclusive, then no saturation is
performed, and the result is truncated to 32 bits.
 If the shifted value is greater than 2% - 1, then the result is saturated to 2% - 1.
« If the shifted value is less than - 2%, then the result is saturated to - 2%
31 0
abcdefgh ijkimnop grstuvwx yzABCDEF « src2
SSHVL
!
31 0
aaaaaaaa abcdefgh ijkimnop grstuvwx «— dst
(for srcl = -8)
NOTE: If the shifted value is saturated, then the SAT bit is set in CSR one cycle
after the result is written to dst. If the shifted value is not saturated, then
the SAT bit is unaffected.
SPRU732J-July 2010 Instruction Set 435

Copyright © 2010, Texas Instruments Incorporated

SSHVL — Variable Shift Left

13 TEXAS

INSTRUMENTS

www.ti.com

Execution
if (cond) {
if (0 <= srcl <= 31), sat(src2 << srcl) — dst;
if (-31 <=srcl < 0), (src2 >> abs(srcl)) — dst;
if (srcl > 31), sat(src2 << 31) — dst;
if (srcl < -31), (src2 >> 31) — dst
}
else nop
Pipeline
Pipeline Stage El E2
Read srcl, src2
Written dst
Unit in use .M
Instruction Type Two-cycle
Delay Slots 1
See Also SHL, SHLMB, SSHL, SSHVR
Examples Example 1
SSHVL . M2 B2, B4, B5
Before instruction 2 cycles after instruction
B2 | FFFF FOOOh | B2 | FFFF FOO0h |
B4 |FFFFFFELh |31 B4 |FFFFFFELh |
B5 | xwoxx xxaeh | B5 |FFFF FFFFh |
Example 2
SSHVL . ML A2, Ad, A5
Before instruction 2 cycles after instruction
A2 |F14C 2108h | A2 |F14C 2108h |
A4 [0000 0001Fh 31 A4 [0000 0001Fh |
A5 | xoox xooch | A5 8000 0000h | saturated to most
negative value
Example 3
SSHVL . M2 B12, B24, B25
Before instruction 2 cycles after instruction
B12 |187A65FCh | B12 | 187A65FCh |
B24 | FFFF FFFFh 1 B24 | FFFF FFFFh |
B25 | xxox xoch | B25 |03CD 32FEh |

436 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com SSHVR — Variable Shift Right
SSHVR Variable Shift Right
Syntax SSHVR (.unit) src2, srcl, dst
unit = .M1 or .M2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
creg |z| dst src2 srcl |x|0‘1|1‘0‘1‘0‘1|1|0‘0|s‘p
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl int M1, .M2
src2 xint
dst int
Description Shifts the signed 32-bit value in src2 to the left or right by the number of bits specified by
srcl, and places the result in dst.
The srcl argument is treated as a 2s-complement shift value that is automatically limited
to the range -31 to 31. If srcl is positive, src2 is shifted to the right by the value specified
with the sign-extended shifted value being placed in dst. It should also be noted that
when srcl is positive, the bits shifted right past bit 0 are lost. If srcl is negative, src2 is
shifted to the left by the absolute value of the shift amount value and the result is placed
in dst.
Saturation is performed when the value is shifted left under the following conditions:
+ If the shifted value is in the range -2% to 23! - 1, inclusive, then no saturation is
performed, and the result is truncated to 32 bits.
« If the shifted value is greater than 2% - 1, then the result is saturated to 2% - 1.
« If the shifted value is less than - 2%, then the result is saturated to - 2%
31 0
abcdefgh ijkimnop grstuvwx yzABCDEF « src2
SSHVR
!
31 0
aaaaaaaa bcdefghi jkimnopq rstuvwxy ‘ «— dst
(for srcl = 7)
NOTE: If the shifted value is saturated, then the SAT bit is set in CSR one cycle
after the result is written to dst. If the shifted value is not saturated, then
the SAT bit is unaffected.
SPRU732J-July 2010 Instruction Set 437

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
SSHVR — Variable Shift Right www.ti.com
Execution
if (cond) {
if (0 <= srcl <= 31), (src2 >> srcl) — dst;
if (-31 <= srcl < 0), sat(src2 << abs(srcl)) — dst;
if (srcl > 31), (src2 >> 31) — dst;
if (srcl < -31), sat(src2 << 31) — dst
}
else nop
Pipeline
Pipeline Stage El E2
Read srcl, src2
Written dst
Unit in use .M
Instruction Type Two-cycle
Delay Slots 1
See Also SHR, SHR2, SHRMB, SHRU, SHRU2, SSHVL
Examples Example 1
SSHVR . M2 B2, B4, B5
Before instruction 2 cycles after instruction
B2 | FFFF FOOOh | B2 | FFFF FOO0h |
B4 |FFFFFFELh |31 B4 |FFFFFFELh |
B5 | XXXX XXxxh | B5 ‘ 8000 0000h ‘ Saturated to most
negative value
Example 2
SSHVR . ML A2, A4, A5
Before instruction 2 cycles after instruction
A2 |F14C 2108h | A2 |F14C 2108h |
A4 [0000 0001Fh 31 A4 [0000 0001Fh |
A5 | xoox xooch | A5 | FFFF FFFFh |
Example 3

SSHVR . M2 Bl12, B24, B25

Before instruction 2 cycles after instruction

B12 |187A65FCh B12 ‘187A65FCh]

|
B24 | FFFF FFFFh 1 B24 | FFFF FFFFh |
|

B25 | XXXX XXXXh B25 ‘ 30F4 CBF8h ’

438 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

SSUB — Subtract Two Signed Integers With Saturation

SSUB

Syntax

Compatibility

Subtract Two Signed Integers With Saturation

SSUB (.unit) srcl, src2, dst

or
SSUB (.unit) srcl, src2_h:src2_|, dst_h:dst_|
unit =.L1 or .L2

C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure
.L L3 Figure D-4
Opcode
31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0
’ creg |z| src2 srcl |x| op |l|1‘0|s‘p‘
3 1 5 5 1 7 1 1
Opcode map field used... For operand type... Unit Opfield
srcl sint L1, L2 000 1111
src2 xsint
dst sint
srcl xsint L1, L2 0011111
src2 sint
dst sint
srcl scst5 L1, L2 000 1110
src2 xsint
dst sint
srcl scst5 L1, L2 010 1100
src2 slong
dst slong
Description src2 is subtracted from srcl and is saturated to the result size according to the following

rules:

1. If the result is an int and srcl - src2 > 2% - 1, then the result is 23! - 1.
2. If the result is an int and srcl - src2 < -2%, then the result is -2,

3. Ifthe resultis a long and srcl - src2 > 2% - 1, then the result is 2°° - 1.
4. If the result is a long and srcl - src2 < -2%°, then the result is -2%.

The result is placed in dst. If a saturate occurs, the SAT bit in CSR is set one cycle after
dst is written.

SPRU732J-July 2010

Instruction Set 439

Copyright © 2010, Texas Instruments Incorporated

SSUB — Subtract Two Signed Integers With Saturation

13 TEXAS
INSTRUMENTS

www.ti.com

Execution
if (cond) srcl -s src2 — dst
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use L
Instruction Type Single-cycle
Delay Slots 0
See Also SUB, SSUB2
Examples Example 1
SSUB . L2 B1, B2, B3
Before instruction 1 cycle after instruction
B1 \ 5A2E 51A3h \ 1,512,984,995 B1 \ 5A2E 51A3h \
B2 \ 802A 3FA2h \ -2,144,714,846 B2 \ 802A 3FA2h \
B3 \ Xxxx xxxxh \ B3 \ 7FFF FFFFh \ 2,147,483,647
CSR \ 0001 0100h \ CSR \ 0001 0100h \
SSR® | 0000 0000h | SSR | 0000 0000h |
2 cycles after instruction
B1 \ 5A2E 51A3h \
B2 \ 802A 3FA2h \
B3 | 7FFF FFFFh |
CSR | 0001 0300h | saturated
SSR \ 0000 0002h \

@ saturation status register (SSR) is only available on the C64x+ DSP.

440 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com SSUB — Subtract Two Signed Integers With Saturation

Example 2
SSUB . L1 AQ, AL, A2

Before instruction 1 cycle after instruction

A0 \ 4367 71F2h \ 1,130,852,850 A0 \ 4367 71F2h
Al \ 5A2E 51A3h \ 1,512,984,995 Al] 5A2E 51A3h]
A2 \ xxxx xxxxh A2 \ E939 204Fh -382,132,145

CSR] 0001 0100h]

CSR \ 0001 0100h

SSR \ 0000 0000h

SSR®W \ 0000 0000h

2 cycles after instruction

AO] 4367 71F2h
Al \ 5A2E 51A3h

CSR \ 0001 0100h Not saturated

|
|
A2 | E939 204Fh |
|
|

SSR] 0000 0000h

@ Saturation status register (SSR) is only available on the C64x+ DSP.

SPRU732J-July 2010 Instruction Set 441

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
SSUB2 — Subtract Two Signed 16-Bit Integers on Upper and Lower Register Halves With Saturation www.ti.com
SSuUB2 Subtract Two Signed 16-Bit Integers on Upper and Lower Register Halves With
Saturation
Syntax SSUBZ2 (.unit) srcl, src2, dst
unit =.L1 or .L2
Compatibility C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| src2 srcl |x|1‘1|0‘0‘1’0’0|1|1‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s2 L1, .L.2
src2 Xxs2
dst s2
Description Performs 2s-complement subtraction between signed, packed 16-bit quantities in srcl
and src2. The results are placed in a signed, packed 16-bit format into dst.
For each pair of 16-bit quantities in srcl and src2, the difference between the signed
16-bit value from srcl and the signed 16-bit value from src2 is calculated and saturated
to produce a signed 16-bit result. The result is placed in the corresponding position in
dst.
Saturation is performed on each 16-bit result independently. For each sum, the following
tests are applied:
« If the difference is in the range - 2'° to 2 *® - 1, inclusive, then no saturation is
performed and the sum is left unchanged.
+ If the difference is greater than 2%° - 1, then the result is set to 2%° - 1.
« If the difference is less than - 2*°, then the result is set to - 2%,
31 16 15 0
a_hi ‘ a_lo ‘ « srcl
SSUB2
\ b_hi \ b_lo ‘ < src2
31 16 15 0
\ sat(a_hi - b_hi) \ sat(a_lo - b_lo) \ — dst

NOTE: This operation is performed on each halfword separately. This
instruction does not affect the SAT bit in CSR or the L1 or L2 bit in SSR.

442 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com SSUB2 — Subtract Two Signed 16-Bit Integers on Upper and Lower Register Halves With Saturation
Execution
if (cond) {
sat(msb16(srcl) - msb16(src2)) — msb16(dst);
sat(Isb16(srcl) - Isb16(src2)) — Isbh16(dst)
}
else nop
Instruction Type Single-cycle
Delay Slots 0
See Also ADD2, SUB, SUB4, SSUB2
Examples Example 1
SSUB2 . L1 A0, Al, A2
Before instruction 1 cycle after instruction
A0 | 0007 0005h | A2 0008 0006h
Al | FFFFFFFFh |
Example 2
SSUB2 . L1 A0, Al, A2
Before instruction 1 cycle after instruction
A0 [0007 0005h | A2 7FFF 0006h
Al 8000 FFFFh |
SPRU732J-July 2010 Instruction Set 443

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

STB — Store Byte to Memory With a 5-Bit Unsigned Constant Offset or Register Offset www.ti.com

STB Store Byte to Memory With a 5-Bit Unsighed Constant Offset or Register Offset
Syntax

Register Offset Unsigned Constant Offset
STB (.unit) src, *+baseR[offsetR] STB (.unit) src, *+baseR[ucst5]

unit = .D1 or .D2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.D Doff4 Figure C-9
Dind Figure C-11
Dinc Figure C-13
Ddec Figure C-15

Opcode

31 29 28 27 23 22 18 17 13 12 9 8 7 6 5 4 3 2 1 O
\ creg | z | src baseR offsetR/ucst5 mode \ 0 \ y \ 0 \ 1 | 1 | 0 \ 1 | s \ p \
3 1 5 5 5 4 1 1 1

Description Stores a byte to memory from a general-purpose register (src). Table 3-6 describes the
addressing generator options. The memory address is formed from a base address
register (baseR) and an optional offset that is either a register (offsetR) or a 5-bit
unsigned constant (ucstb).

offsetR and baseR must be in the same register file and on the same side as the .D unit
used. The y bit in the opcode determines the .D unit and register file used: y = 0 selects
the .D1 unit and baseR and offsetR from the A register file, and y = 1 selects the .D2 unit
and baseR and offsetR from the B register file.

offsetR/ucst5 is scaled by a left-shift of 0 bits. After scaling, offsetR/ucst5 is added to or
subtracted from baseR. For the preincrement, predecrement, positive offset, and
negative offset address generator options, the result of the calculation is the address to
be accessed in memory. For postincrement or postdecrement addressing, the value of
baseR before the addition or subtraction is sent to memory.

The addressing arithmetic that performs the additions and subtractions defaults to linear
mode. However, for A4-A7 and for B4-B7, the mode can be changed to circular mode by
writing the appropriate value to the AMR (see Section 2.8.3).

For STB, the 8 LSBs of the src register are stored. src can be in either register file,
regardless of the .D unit or baseR or offsetR used. The s bit determines which file src is
read from: s = 0 indicates src will be in the A register file and s = 1 indicates src will be
in the B register file.

Increments and decrements default to 1 and offsets default to zero when no bracketed
register or constant is specified. Stores that do no modification to the baseR can use the
syntax *R. Square brackets, [], indicate that the ucst5 offset is left-shifted by 0.
Parentheses, (), can be used to set a nonscaled, constant offset. You must type either
brackets or parentheses around the specified offset, if you use the optional offset
parameter.

444 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com STB — Store Byte to Memory With a 5-Bit Unsigned Constant Offset or Register Offset
Execution
if (cond) src — mem
else nop
Pipeline
Pipeline Stage E1l
Read baseR, offsetR, src
Written baseR
Unit in use .D2
Instruction Type Store
Delay Slots 0
For more information on delay slots for a store, see Chapter 4.
See Also STH, STW
Examples Example 1

STB . D1 A1, *Al0

Before instruction 1 cycle after 3 cycles after
instruction instruction

Al 9A32 7634h Al | 9A32 7634h | Al 9A32 7634h
A10 0000 0100h A10 0000 0100h | A0 0000 0100h

mem 100h 11h mem 100h | 11h | mem 100h 34h

Example 2
STB . DL A8, *++A4[5]

Before instruction 1 cycle after 3 cycles after
instruction instruction

A4 0000 4020h A4 | 0000 4025h | A4 0000 4025h
A8 0123 4567h A8 | 0123 4567h | A8 0123 4567h
mem 4024:27h XXXX XXXxh mem 4024:27h | XXXX XXXxh | mem 4024:27h XXXX 67xxh

Example 3
STB . D1 A8, * Ad++[5]

Before instruction 1 cycle after 3 cycles after
instruction instruction

Ad 0000 4020h Ad 0000 4025h A4 0000 4025h
A8 0123 4567h A8 0123 4567h I 0123 4567h
mem 4020:23h XXXX XXxxh mem 4020:23h XXXX XXXxh mem 4020:23h XXXX XX67h

SPRU732J-July 2010 Instruction Set 445

Copyright © 2010, Texas Instruments Incorporated

STB — Store Byte to Memory With a 5-Bit Unsigned Constant Offset or Register Offset

13 TEXAS
INSTRUMENTS

www.ti.com

Example 4
STB . D1 A8, *++Ad[A12]

Before instruction 1 cycle after
instruction

v [o0004020n | A4 0000 4026h |
A8 (012345670 | A8 (01234567h |
A12 [ooo00006h | A12 0000 0006h |
mem 4024:27h [xoocxooh | mem 402427 [xoocooooh |

A4
A8
Al12

mem 4024:27h

3 cycles after
instruction

loov0a026n |
0123 4567h
o000 0006n |

446

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS

www.ti.com

STB — Store Byte to Memory With a 15-Bit Unsigned Constant Offset

STB

Syntax

Compatibility
Opcode

31 29 28 27

Store Byte to Memory With a 15-Bit Unsigned Constant Offset

STB(.unit) src, *+B14/B15[ucst15]
unit = .D2

C62x, C64x, and C64x+ CPU

23 22 8 7 6 5 4 3 2 1 0

‘ creg | z |

src ucstl5

[yfofafafsfa]s]p]

3 1

Description

Execution

if (cond)
else nop

Pipeline

Instruction Type
Delay Slots

See Also

15 1 1 1

Stores a byte to memory from a general-purpose register (src). The memory address is
formed from a base address register B14 (y = 0) or B15 (y = 1) and an offset, which is a
15-bit unsigned constant (ucst15). The assembler selects this format only when the
constant is larger than five bits in magnitude. This instruction executes only on the .D2
unit.

The offset, ucstl5, is scaled by a left-shift of 0 bits. After scaling, ucstl5 is added to
baseR. The result of the calculation is the address that is sent to memory. The
addressing arithmetic is always performed in linear mode.

For STB, the 8 LSBs of the src register are stored. src can be in either register file. The
s bit determines which file src is read from: s = 0 indicates src is in the A register file and
s = 1 indicates src is in the B register file.

Square brackets, [], indicate that the ucst15 offset is left-shifted by 0. Parentheses, (),
can be used to set a nonscaled, constant offset. You must type either brackets or
parentheses around the specified offset, if you use the optional offset parameter.

Src — mem

NOTE: This instruction executes only on the B side (.D2).

Pipeline Stage E1l
Read B14/B15, src
Written
Unit in use .D2
Store
0
STH, STW

SPRU732J-July 2010

Instruction Set 447

Copyright © 2010, Texas Instruments Incorporated

STB — Store Byte to Memory With a 15-Bit Unsigned Constant Offset

13 TEXAS
INSTRUMENTS

www.ti.com

Example STB . D2 B1, *+B14[40]
Before instruction 1 cycle after 3 cycles after
instruction instruction
B1 \ 1234 5678h \ B1 \ 1234 5678h B1 | 1234 5678h |
B14 \ 0000 1000h \ B14 \ 0000 1000h B14 | 0000 1000h |
mem 1028h \ 42h \ mem 1028h \ 42h mem 1028h | 78h |
448 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com STDW — Store Doubleword to Memory With a 5-Bit Unsigned Constant Offset or Register Offset
STDW Store Doubleword to Memory With a 5-Bit Unsigned Constant Offset or
Register Offset
Syntax
Register Offset Unsigned Constant Offset
STDW (.unit) src, *+baseR[offsetR] STDW (.unit) src, *+baseR[ucst5]

unit = .D1 or .D2

Compatibility C64x and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure
.D DoffADW Figure C-10
DindDW Figure C-12
DincDW Figure C-14
DdecDW Figure C-16
Dpp Figure C-22
Opcode
31 29 28 27 23 22 18 17 13 12 9 8 7 6 5 4 3 2 1 0
\ creg | z | src baseR offsetR/ucst5 mode \ 1 \ y \ 1 \ 0 | 0 | 0 \ 1 | S \ p \
3 1 5 5 5 4 1 1 1
Opcode map field used... For operand type... Unit
src ullong .D1, .D2
baseR uint
offsetR uint
src ullong .D1, .D2
baseR uint
offsetR ucsts
Description Stores a 64-bit quantity to memory from a 64-bit register, src. Table 3-6 describes the

addressing generator options. Alignment to a 64-bit boundary is required. The memory
address is formed from a base address register (baseR) and an optional offset that is
either a register (offsetR) or a 5-bit unsigned constant (ucst5). If an offset is not given,
the assembler assigns an offset of zero.

Both offsetR and baseR must be in the same register file, and on the same side, as the
.D unit used. The y bit in the opcode determines the .D unit and register file used: y =0
selects the .D1 unit and baseR and offsetR from the A register file, and y = 1 selects the
.D2 unit and baseR and offsetR from the B register file.

The offsetR/ucst5 is scaled by a left shift of 3 bits. After scaling, offsetR/ucst5 is added
to, or subtracted from, baseR. For the preincrement, predecrement, positive offset, and
negative offset address generator options, the result of the calculation is the address to
be accessed in memory. For postincrement or postdecrement addressing, the value of
baseR before the addition or subtraction is the address to be accessed from memory.

SPRU732J-July 2010 Instruction Set 449

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

STDW — Store Doubleword to Memory With a 5-Bit Unsigned Constant Offset or Register Offset www.ti.com

Assembler Notes

Execution

if (cond)
else nop

Pipeline

Instruction Type
Delay Slots

See Also

The addressing arithmetic that performs the additions and subtractions defaults to linear
mode. However, for A4-A7 and for B4-B7, the mode can be changed to circular mode by
writing the appropriate value to the AMR (see Section 2.8.3).

The src pair can be in either register file, regardless of the .D unit or baseR or offsetR
used. The s bit determines which file src will be loaded from: s = 0 indicates src will be in
the A register file and s = 1 indicates src will be in the B register file.

When no bracketed register or constant is specified, the assembler defaults increments
and decrements to 1 and offsets to 0. Stores that do no modification to the baseR can
use the assembler syntax *R. Square brackets, [], indicate that the ucst5 offset is
left-shifted by 3 for doubleword stores.

Parentheses, (), can be used to tell the assembler that the offset is a non-scaled,
constant offset. The assembler right shifts the constant by 3 bits for doubleword stores
before using it for the ucst5 field. After scaling by the STDW instruction, this results in
the same constant offset as the assembler source if the least-significant three bits are
zeros.

For example, STDW (.unit) src, *+baseR (16) represents an offset of 16 bytes (2
doublewords), and the assembler writes out the instruction with ucst5 = 2. STDW (.unit)
src, *+baseR [16] represents an offset of 16 doublewords, or 128 bytes, and the
assembler writes out the instruction with ucst5 = 16.

Either brackets or parentheses must be typed around the specified offset if the optional
offset parameter is used. The register pair syntax always places the odd-numbered
register first, a colon, followed by the even-numbered register (that is, A1:A0, B1:BO,
A3:A2, B3:B2, etc.).

Src — mem

Pipeline Stage El
Read baseR, offsetR, src
Written baseR
Unit in use .D

Store

0

LDDW, STW

450 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com STDW — Store Doubleword to Memory With a 5-Bit Unsigned Constant Offset or Register Offset
Examples Example 1
STDW . D1 A3: A2, * AO++
Before instruction 1 cycle after instruction
AO | 0000 1000h | AO | 0000 1008h |
A3:A2 | A176 3B28h 6041 AD65h A3:A2 | A176 3B28h | 6041 ADB5h
Byte Memory Address 1009 1008 1007 1006 1005 1004 1003 1002 1001 1000
Data Value Before Store 00 00 00 00 00 00 00 00 00 00
Data Value After Store 00 00 Al 76 3B 28 60 41 AD 65
Example 2
STDW . D1l A3: A2, *A0++
Before instruction 1 cycle after instruction
AO | 0000 1004h \ A0 0000 100Ch |
A3:A2 \ A176 3B28h \ 6041 AD65h A3:A2 \ A176 3B28h \ 6041 AD65h
Byte Memory Address 100D 100C 100B 100A 1009 1008 1007 1006 1005 1004 1003
Data Value Before Store 00 00 00 00 00 00 00 00 00 00 00
Data Value After Store 00 00 Al 76 3B 28 60 41 AD 65 00
Example 3
STDW . D1 A9: A8, *++A4[5]
Before instruction 1 cycle after instruction
A4 | 0000 4020h | A4 | 0000 4048h |
A9:A8 | ABCD EF98h 0123 4567h A9:A8 | ABCD EF98h | 0123 4567h
Byte Memory Address 4051 4050 404F 404E 404D 404C 404B 404A 4049 4048 4047
Data Value Before Store 00 00 00 00 00 00 00 00 00 00 00
Data Value After Store 00 00 AB CD EF 98 01 23 45 67 00
SPRU732J-July 2010 Instruction Set 451

Copyright © 2010, Texas Instruments Incorporated

STDW — Store Doubleword to Memory With a 5-Bit Unsigned Constant Offset or Register Offset

13 TEXAS
INSTRUMENTS

www.ti.com

Example 4
STDW . DL AQ: A8, *++Ad(16)
Before instruction 1 cycle after instruction
A4 | 0000 4020h | A4 | 0000 4030h |
A9:A8 \ ABCD EF98h \ 0123 4567h A9:A8] ABCD EF98h \ 0123 4567h
Byte Memory Address 4039 4038 4037 4036 4035 4034 4033 4032 4031 4030 402F
Data Value Before Store 00 00 00 00 00 00 00 00 00 00 00
Data Value After Store 00 00 AB cD EF 98 o1 23 45 67 00
Example 5
STDW . DL A9: A8, *++Ad[A12]
Before instruction 1 cycle after instruction
A4 \ 0000 4020h \ A4] 0000 4030h \
A9:A8 \ ABCD EF98h \ 0123 4567h A9:A8 \ ABCD EF98h \ 0123 4567h
A12 \ 0000 0006h \ A12] 0000 0006h \
Byte Memory Address 4059 4058 4057 4056 4055 4054 4053 4052 4051 4050 404F
Data Value Before Store 00 00 00 00 00 00 00 00 00 00 00
Data Value After Store 00 00 AB cD EF 98 o1 23 45 67 00

452

Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com STH — Store Halfword to Memory With a 5-Bit Unsigned Constant Offset or Register Offset
STH Store Halfword to Memory With a 5-Bit Unsigned Constant Offset or
Register Offset
Syntax
Register Offset Unsigned Constant Offset
STH (.unit) src, *+baseR[offsetR] STH (.unit) src, *+baseR[ucst5]

unit = .D1 or .D2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure
.D Doff4 Figure C-9
Dind Figure C-11
Dinc Figure C-13
Ddec Figure C-15
Opcode
31 29 28 27 23 22 18 17 13 12 9 8 7 6 5 4 3 2 1 O
‘ creg | z | src baseR offsetR/ucst5 mode ‘ 0 ‘ y ‘ 1 ‘ 0 | 1 | 0 ‘ 1 | S ‘ p ‘
3 1 5 5 5 4 1 1 1
Description Stores a halfword to memory from a general-purpose register (src). Table 3-6 describes

the addressing generator options. The memory address is formed from a base address
register (baseR) and an optional offset that is either a register (offsetR) or a 5-bit
unsigned constant (ucstb).

offsetR and baseR must be in the same register file and on the same side as the .D unit
used. The y bit in the opcode determines the .D unit and register file used: y = 0 selects
the .D1 unit and baseR and offsetR from the A register file, and y = 1 selects the .D2 unit
and baseR and offsetR from the B register file.

offsetR/ucst5 is scaled by a left-shift of 1 bit. After scaling, offsetR/ucst5 is added to or
subtracted from baseR. For the preincrement, predecrement, positive offset, and
negative offset address generator options, the result of the calculation is the address to
be accessed in memory. For postincrement or postdecrement addressing, the value of
baseR before the addition or subtraction is sent to memory.

The addressing arithmetic that performs the additions and subtractions defaults to linear
mode. However, for A4-A7 and for B4-B7, the mode can be changed to circular mode by
writing the appropriate value to the AMR (see Section 2.8.3).

For STH, the 16 LSBs of the src register are stored. src can be in either register file,
regardless of the .D unit or baseR or offsetR used. The s bit determines which file src is
read from: s = 0 indicates src will be in the A register file and s = 1 indicates src will be
in the B register file.

Increments and decrements default to 1 and offsets default to zero when no bracketed
register or constant is specified. Stores that do no modification to the baseR can use the
syntax *R. Square brackets, [], indicate that the ucst5 offset is left-shifted by 1.
Parentheses, (), can be used to set a nonscaled, constant offset. You must type either
brackets or parentheses around the specified offset, if you use the optional offset
parameter.

Halfword addresses must be aligned on halfword (LSB is 0) boundaries.

SPRU732J-July 2010 Instruction Set 453

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
STH — Store Halfword to Memory With a 5-Bit Unsigned Constant Offset or Register Offset www.ti.com
Execution
if (cond) src — mem
else nop
Pipeline
Pipeline Stage El
Read baseR, offsetR, src
Written baseR
Unit in use .D2
Instruction Type Store
Delay Slots 0
For more information on delay slots for a store, see Chapter 4.
See Also STB, STW
Examples Example 1
STH . D1 Al, *+A10(4)
Before instruction 1 cycle after 3 cycles after
instruction instruction
Al \ 9A32 7634h \ Al \ 9A32 7634h \ Al | 9A32 7634h |
B10 | 0000 1000h | A0 | 0000 1000h | A0 | 0000 1000h |
mem 104h \ 1134h \ mem 104h \ 1134h \ mem 104h | 7634h |
Example 2
STH . D1 Al, *A10--[All]
Before instruction 1 cycle after 3 cycles after
instruction instruction
Al \ 9A32 2634h \ Al \ 9A32 2634h \ Al | 9A32 2634h |
A10 \ 0000 0100h \ A10 \ 0000 00F8h \ A10 | 0000 00F8h |
All | 0000 0004h I | 0000 0004h I | 0000 0004h |
mem F8h \ 0000h \ mem F8h \ 0000h \ mem F8h | 0000h |
mem 100h | 0000h | mem 100h | 0000h | mem 100h 2634h |
454 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS

www.ti.com

STH — Store Halfword to Memory With a 15-Bit Unsigned Constant Offset

STH

Syntax

Compatibility
Opcode

31 29 28 27

Store Halfword to Memory With a 15-Bit Unsigned Constant Offset

STH(.unit) src, *+B14/B15[ucst15]
unit = .D2

C62x, C64x, and C64x+ CPU

23 22 8 7 6 5 4 3 2 1 0

‘ creg | z |

src ucst15 ‘y‘1‘0|1|1‘1|s‘p‘

3 1

Description

Execution

if (cond)
else nop

Pipeline

Instruction Type
Delay Slots

See Also

5 15 1 1 1

Stores a halfword to memory from a general-purpose register (src). The memory
address is formed from a base address register B14 (y = 0) or B15 (y = 1) and an offset,
which is a 15-bit unsigned constant (ucst15). The assembler selects this format only
when the constant is larger than five bits in magnitude. This instruction executes only on
the .D2 unit.

The offset, ucstl5, is scaled by a left-shift of 1 bit. After scaling, ucstl15 is added to
baseR. The result of the calculation is the address that is sent to memory. The
addressing arithmetic is always performed in linear mode.

For STH, the 16 LSBs of the src register are stored. src can be in either register file. The
s bit determines which file src is read from: s = 0 indicates src is in the A register file and
s = 1 indicates src is in the B register file.

Square brackets, [], indicate that the ucst15 offset is left-shifted by 1. Parentheses, (),
can be used to set a nonscaled, constant offset. You must type either brackets or
parentheses around the specified offset, if you use the optional offset parameter.

Halfword addresses must be aligned on halfword (LSB is 0) boundaries.

Src — mem

NOTE: This instruction executes only on the B side (.D2).

Pipeline Stage E1l
Read B14/B15, src
Written
Unit in use .D2
Store
0
STB, STW

SPRU732J-July 2010

Instruction Set 455

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

STNDW — Store Nonaligned Doubleword to Memory With a 5-Bit Unsigned Constant Offset or Register Offset www.ti.com

STNDW

Syntax

Register Offset

Store Nonaligned Doubleword to Memory With a 5-Bit Unsigned Constant Offset or
Register Offset

Unsigned Constant Offset

STNDW (.unit) src, *+baseR[offsetR] STNDW (.unit) src, *+baseR[ucst5]

unit = .D1 or .D2

Compatibility

C64x and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure
.D DoffADW Figure C-10
DindDW Figure C-12
DincDW Figure C-14
DdecDW Figure C-16
Opcode
31 29 28 27 24 23 22 18 17 13 12 9 8 7 6 5 4 3 2 1 O
\ creg | z | src \sc\ baseR offsetR/ucst5 mode \ 1 \ y \ 1 \ 1 | 1 | 0 \ 1 | s \ p \
3 1 4 1 5 5 4 1 1 1
Opcode map field used... For operand type... Unit
src ullong .D1, .D2
baseR uint
offsetR uint
src ullong .D1, .D2
baseR uint
offsetR ucst5
Description Stores a 64-bit quantity to memory from a 64-bit register pair, src. Table 3-6 describes

the addressing generator options. The STNDW instruction may write a 64-bit value to
any byte boundary. Thus alignment to a 64-bit boundary is not required. The memory
address is formed from a base address register (baseR) and an optional offset that is
either a register (offsetR) or a 5-bit unsigned constant (ucst5).

Both offsetR and baseR must be in the same register file and on the same side as the .D
unit used. The y bit in the opcode determines the .D unit and register file used: y =0
selects the .D1 unit and baseR and offsetR from the A register file, and y = 1 selects the
.D2 unit and baseR and offsetR from the B register file.

The STNDW instruction supports both scaled offsets and non-scaled offsets. The sc field
is used to indicate whether the offsetR/ucst5 is scaled or not. If sc is 1 (scaled), the
offsetR/ucst5 is shifted left 3 bits before adding or subtracting from the baseR. If sc is 0
(nonscaled), the offsetR/ucst5 is not shifted before adding to or subtracting from the
baseR. For the preincrement, predecrement, positive offset, and negative offset address
generator options, the result of the calculation is the address to be accessed in memory.
For postincrement or post-decrement addressing, the value of baseR before the addition
or subtraction is the address to be accessed from memory.

456 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com STNDW — Store Nonaligned Doubleword to Memory With a 5-Bit Unsigned Constant Offset or Register Offset

Assembler Notes

Execution

if (cond)
else nop

Pipeline

Instruction Type
Delay Slots

See Also

The addressing arithmetic that performs the additions and subtractions defaults to linear
mode. However, for A4-A7 and for B4-B7, the mode can be changed to circular mode by
writing the appropriate value to the AMR (see Section 2.8.3).

The src pair can be in either register file, regardless of the .D unit or baseR or offsetR
used. The s bit determines which file src will be loaded from: s = 0 indicates src will be in
the A register file and s = 1 indicates src will be in the B register file.

NOTE: No other memory access may be issued in parallel with a nonaligned
memory access. The other .D unit can be used in parallel, as long as it is
not performing a memory access.

When no bracketed register or constant is specified, the assembler defaults increments
and decrements to 1, and offsets to 0. Loads that do no modification to the baseR can
use the assembler syntax *R. Square brackets, [], indicate that the ucst5 offset is
left-shifted by 3 for doubleword stores.

Parentheses, (), can be used to indicate to the assembler that the offset is a nonscaled
offset.

For example, STNDW (.unit) src, *+baseR (12) represents an offset of 12 bytes and the
assembler writes out the instruction with offsetC = 12 and sc = 0.

STNDW (.unit) src, *+baseR [16] represents an offset of 16 doublewords, or 128 bytes,
and the assembler writes out the instruction with offsetC = 16 and sc = 1.

Either brackets or parentheses must be typed around the specified offset if the optional
offset parameter is used.

Src — mem
Pipeline Stage E1l
Read baseR, offsetR, src
Written baseR
Unit in use .D
Store
0

LDNW, LDNDW, STNW

SPRU732J-July 2010

Instruction Set 457

Copyright © 2010, Texas Instruments Incorporated

STNDW — Store Nonaligned Doubleword to Memory With a 5-Bit Unsigned Constant Offset or Register Offset

13 TEXAS
INSTRUMENTS

www.ti.com

Examples Example 1
STNDW . D1 A3: A2, *AQ++
Before instruction 1 cycle after instruction
A0 | 0000 1001h | A0 | 0000 1009h |
A3 \ A176 3B28h \ 6041 AD65h A3:A2] A176 3B28h \ 6041 AD65h
Byte Memory Address 1009 1008 1007 1006 1005 1004 1003 1002 1001 1000
Data Value Before Store 00 00 00 00 00 00 00 00 00 00
Data Value After Store 00 Al 76 3B 28 60 41 AD 65 00
Example 2
STNDW . DL A3: A2, *AQ++
Before instruction 1 cycle after instruction
AQ \ 0000 1003h \ AQ] 0000 100Bh \
A3:A2 \ A176 3B28h \ 6041 AD65h A3:A2 \ A176 3B28h \ 6041 AD65h
Byte Memory Address 1008 100A 1009 1008 1007 1006 1005 1004 1003 1002 1001 1000
Data Value Before Store 00 00 00 00 00 00 00 00 00 00 00 00
Data Value After Store 00 Al 76 3B 28 60 41 AD 65 00 00 00

458 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

STNW — Store Nonaligned Word to Memory With a 5-Bit Unsigned Constant Offset or Register Offset

STNW
Register Offset

Store Nonaligned Word to Memory With a 5-Bit Unsigned Constant Offset or

Syntax

Register Offset
STNW (.unit) src, *+baseR[offsetR]

unit = .D1 or .D2

Compatibility C64x and C64x+ CPU

Compact Instruction Format

Unsigned Constant Offset
STNW (.unit) src, *+baseR[ucst5]

Unit Opcode Format Figure
.D Doff4 Figure C-9
Dind Figure C-11
Dinc Figure C-13
Ddec Figure C-15
Opcode
31 29 28 27 23 22 18 17 13 12 9 8 7 6 5 4 3 2 1 0
\ creg | z | src baseR offsetR/ucst5 mode \ 1 \ y \ 1 \ 0 | 1 | 0 \ 1 | S \ p \
3 1 5 5 4 1 1 1
Opcode map field used... For operand type... Unit
src uint .D1, .D2
baseR uint
offsetR uint
src uint .D1, .D2
baseR uint
offsetR ucst5
Description Stores a 32-bit quantity to memory from a 32-bit register, src. Table 3-6 describes the

addressing generator options. The STNW instruction may write a 32-bit value to any byte
boundary. Thus alignment to a 32-bit boundary is not required. The memory address is
formed from a base address register (baseR) and an optional offset that is either a
register (offsetR) or a 5-bit unsigned constant (ucst5).

Both offsetR and baseR must be in the same register file, and on the same side, as the
.D unit used. The y bit in the opcode determines the .D unit and register file used: y =0
selects the .D1 unit and baseR and offsetR from the A register file, and y = 1 selects the
.D2 unit and baseR and offsetR from the B register file.

The offsetR/ucst5 is scaled by a left shift of 2 bits. After scaling, offsetR/ucst5 is added
to, or subtracted from, baseR. For the preincrement, predecrement, positive offset, and
negative offset address generator options, the result of the calculation is the address to
be accessed in memory. For postincrement or postdecrement addressing, the value of
baseR before the addition or subtraction is the address to be accessed from memory.

SPRU732J-July 2010

Instruction Set 459

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

STNW — Store Nonaligned Word to Memory With a 5-Bit Unsigned Constant Offset or Register Offset www.ti.com

Assembler Notes

Execution

if (cond)
else nop

Pipeline

Instruction Type
Delay Slots

See Also

The addressing arithmetic that performs the additions and subtractions defaults to linear
mode. However, for A4-A7 and for B4-B7, the mode can be changed to circular mode by
writing the appropriate value to the AMR (see Section 2.8.3).

The src can be in either register file, regardless of the .D unit or baseR or offsetR used.
The s bit determines which file src will be loaded from: s = 0 indicates src will be in the A
register file and s = 1 indicates src will be in the B register file.

NOTE: No other memory access may be issued in parallel with a nonaligned
memory access. The other .D unit can be used in parallel as long as it is
not performing memory access.

When no bracketed register or constant is specified, the assembler defaults increments
and decrements to 1 and offsets to 0. Loads that do no modification to the baseR can
use the assembler syntax *R. Square brackets, [], indicate that the ucst5 offset is
left-shifted by 2 for word stores.

Parentheses, (), can be used to tell the assembler that the offset is a non-scaled,
constant offset. The assembler right shifts the constant by 2 bits for word stores before
using it for the ucst5 field. After scaling by the STNW instruction, this results in the same
constant offset as the assembler source if the least-significant two bits are zeros.

For example, STNW (.unit) src,*+baseR (12) represents an offset of 12 bytes (3 words),
and the assembler writes out the instruction with ucst5 = 3.

STNW (.unit) src,*+baseR [12] represents an offset of 12 words, or 48 bytes, and the
assembler writes out the instruction with ucst5 = 12.

Either brackets or parentheses must be typed around the specified offset if the optional
offset parameter is used.

Src — mem
Pipeline Stage El
Read baseR, offsetR, src
Written baseR
Unit in use .D
Store

0
LDNW, LDNDW, STNDW

460 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com STNW — Store Nonaligned Word to Memory With a 5-Bit Unsigned Constant Offset or Register Offset
Examples Example 1
STNW . D1 A3, *AO0++
Before instruction 1 cycle after instruction
AO | 0000 1001h | AO | 0000 1005h |
A3 | A176 3B28h | A3 | A176 3B28h |
Byte Memory Address 1007 1006 1005 1004 1003 1002 1001 1000
Data Value Before Store 00 00 00 00 00 00 00 00
Data Value After Store 00 00 00 Al 76 3B 28 00
Example 2
STNW . D1 A3, *AQ0++
Before instruction 1 cycle after instruction
AO | 0000 1003h | A0 0000 1007h |
A3 | A176 3B28h | A3 | A176 3B28h |
Byte Memory Address 1007 1006 1005 1004 1003 1002 1001 1000
Data Value Before Store 00 00 00 00 00 00 00 00
Data Value After Store 00 Al 76 3B 28 00 00 00
SPRU732J-July 2010 Instruction Set 461

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

STW — Store Word to Memory With a 5-Bit Unsigned Constant Offset or Register Offset www.ti.com

STW Store Word to Memory With a 5-Bit Unsigned Constant Offset or Register Offset
Syntax

Register Offset Unsigned Constant Offset
STW (.unit) src, *+baseR[offsetR] STW (.unit) src, *+baseR[ucst5]

unit = .D1 or .D2

Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure

.D Doff4 Figure C-9
Dind Figure C-11
Dinc Figure C-13
Ddec Figure C-15

Opcode

31 29 28 27 23 22 18 17 13 12 9 8 7 6 5 4 3 2 1 O
‘ creg | z | src ‘ baseR | offsetR/ucst5 | mode ‘ 0 ‘ y ‘ 1 ‘ 1 | 1 | 0 ‘ 1 | S ‘ p ‘
3 1 5 5 5 4 1 1 1

Description Stores a word to memory from a general-purpose register (src). Table 3-6 describes the
addressing generator options. The memory address is formed from a base address
register (baseR) and an optional offset that is either a register (offsetR) or a 5-bit
unsigned constant (ucstb).

offsetR and baseR must be in the same register file and on the same side as the .D unit
used. The y bit in the opcode determines the .D unit and register file used: y = 0 selects
the .D1 unit and baseR and offsetR from the A register file, and y = 1 selects the .D2 unit
and baseR and offsetR from the B register file.

offsetR/ucst5 is scaled by a left-shift of 2 bits. After scaling, offsetR/ucst5 is added to or
subtracted from baseR. For the preincrement, predecrement, positive offset, and
negative offset address generator options, the result of the calculation is the address to
be accessed in memory. For postincrement or postdecrement addressing, the value of
baseR before the addition or subtraction is sent to memory.

The addressing arithmetic that performs the additions and subtractions defaults to linear
mode. However, for A4-A7 and for B4-B7, the mode can be changed to circular mode by
writing the appropriate value to the AMR (see Section 2.8.3).

For STW, the entire 32-bits of the src register are stored. src can be in either register
file, regardless of the .D unit or baseR or offsetR used. The s bit determines which file
src is read from: s = 0 indicates src will be in the A register file and s = 1 indicates src
will be in the B register file.

Increments and decrements default to 1 and offsets default to zero when no bracketed
register or constant is specified. Stores that do no modification to the baseR can use the
syntax *R. Square brackets, [], indicate that the ucst5 offset is left-shifted by 2.
Parentheses, (), can be used to set a nonscaled, constant offset. For example,

STW (.unit) src, *+baseR(12) represents an offset of 12 bytes; whereas,

STW (.unit) src, *+baseR[12] represents an offset of 12 words, or 48 bytes. You must
type either brackets or parentheses around the specified offset, if you use the optional
offset parameter.

Word addresses must be aligned on word (two LSBs are 0) boundaries.

462 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS

www.ti.com

STW — Store Word to Memory With a 5-Bit Unsigned Constant Offset or Register Offset

Execution

if (cond)
else nop

Pipeline

Src — mem

Pipeline Stage El
Read baseR, offsetR, src
Written baseR
Unit in use .D2
Instruction Type Store
Delay Slots 0
For more information on delay slots for a store, see Chapter 4.
See Also STB, STH
Examples Example 1
STW. D1 Al, *++A10[1]
Before instruction 1 cycle after 3 cycles after
instruction instruction
Al \ 9A32 7634h \ Al \ 9A32 7634h \ Al | 9A32 7634h |
A10 | 0000 0100h | A0 | 0000 0104h | A0 0000 0104h |
mem 100h \ 1111 1134h \ mem 100h \ 1111 1134h \ mem 100h | 1111 1134h |
mem 104h \ 0000 1111h \ mem 104h \ 0000 1111h \ mem 104h | 9A32 7634h |
Example 2
STW. DL A8, *++A4[5]
Before instruction 1 cycle after 3 cycles after
instruction instruction
A4 \ 0000 4020h \ A4 \ 0000 4034h \ A4 | 0000 4034h |
A8 \ 0123 4567h \ A8 \ 0123 4567h \ A8 | 0123 4567h |
mem 4020h ‘ XXXX XXxxh ‘ mem 4020h ‘ XXXX XXxXh ‘ mem 4020h | XXXX XXXxh |
mem 4034h \ xxxx xxxxh \ mem 4034h \ XX Xxxxh \ mem 4034h | 0123 4567h |

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

463

13 TEXAS

INSTRUMENTS
STW — Store Word to Memory With a 5-Bit Unsigned Constant Offset or Register Offset www.ti.com
Example 3
STW . D1 A8, *++A4(8)
Before instruction 1 cycle after 3 cycles after
instruction instruction
A4 | 0000 4020h | na | 0000 4028h | A4 0000 4028h |
A8 \ 0123 4567h \ A8 \ 0123 4567h \ A8 | 0123 4567h |
mem 4020h ‘ XXXX XXxxh ‘ mem 4020h ‘ XXXX XXxXh ‘ mem 4020h | XXXX XXxxh |
mem 4028h \ x0xx xxxxh \ mem 4028h \ xx0xx xxxxh \ mem 4028h | 0123 4567h |
Example 4
STW. D1 A8, *++Ad4[Al2]
Before instruction 1 cycle after 3 cycles after
instruction instruction
A4 \ 0000 4020h \ A4 \ 0000 4038h \ A4 | 0000 4038h |
A8 \ 0123 4567h \ A8 \ 0123 4567h \ A8 | 0123 4567h |
A12 \ 0000 0006h \ A12 \ 0000 0006h \ A12 | 0000 0006h |
mem 4020h ‘ XXXX XXXxh ‘ mem 4020h ‘ XXXX XXXXh ‘ mem 4020h | XXXX XXXxh |
mem 4038h ‘ XXXX XXxxh ‘ mem 4038h ‘ XXXX XXxXh ‘ mem 4038h | 0123 4567h |
464 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

STW — Store Word to Memory With a 15-Bit Unsigned Constant Offset

STW

Syntax

Compatibility

Store Word to Memory With a 15-Bit Unsighed Constant Offset

STW(.unit) src, *+B14/B15[ucst15]
unit = .D2

C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit

Opcode Format Figure

.D

Dstk Figure C-17
Dpp Figure C-22

Opcode

31 29 28 27

23 22 8 7 6 5 4 3 2 1

0

| creg | z]

src

ucst15 [y[a]a]a]1]1]s]

p |

3 1

Description

Execution

if (cond)
else nop

15 1 1

Stores a word to memory from a general-purpose register (src). The memory address
formed from a base address register B14 (y = 0) or B15 (y = 1) and an offset, which is
15-bit unsigned constant (ucst15). The assembler selects this format only when the

1

is
a

constant is larger than five bits in magnitude. This instruction executes only on the .D2

unit.

The offset, ucstl5, is scaled by a left-shift of 2 bits. After scaling, ucstl5 is added to
baseR. The result of the calculation is the address that is sent to memory. The
addressing arithmetic is always performed in linear mode.

For STW, the entire 32-bits of the src register are stored. src can be in either register
file. The s bit determines which file src is read from: s = 0 indicates src is in the A
register file and s = 1 indicates src is in the B register file.

Square brackets, [], indicate that the ucst15 offset is left-shifted by 2. Parentheses, ()
can be used to set a nonscaled, constant offset. For example,
STW (.unit) src, *+B14/B15(60) represents an offset of 12 bytes; whereas,

STW (.unit) src, *+B14/B15[60] represents an offset of 60 words, or 240 bytes. You must

type either brackets or parentheses around the specified offset, if you use the optional
offset parameter.

Word addresses must be aligned on word (two LSBs are 0) boundaries.

Src — mem

NOTE: This instruction executes only on the B side (.D2).

SPRU732J-July 2010

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

465

STW — Store Word to Memory With a 15-Bit Unsigned Constant Offset

13 TEXAS
INSTRUMENTS

www.ti.com

Pipeline
Pipeline Stage El
Read B14/B15, src
Written
Unit in use .D2
Instruction Type Store
Delay Slots 0
See Also STB, STH

466 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com SUB — Subtract Two Signed Integers Without Saturation
SUB Subtract Two Signed Integers Without Saturation
Syntax SUB (.unit) srcl, src2 , dst
or
SUB (.L1 or .L2) srcl, src2, dst_h:dst_|
or
SUB (.D1 or .D2) src2, srcl, dst (if the cross path form is not used)
or
SUB (.D1 or .D2) srcl, src2, dst (if the cross path form is used)
unit = .D1, .D2, .L1, .L2, .S1, .S2
Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure
L L3 Figure D-4
Lx1 Figure D-11
.S S3 Figure F-21
Sx2op Figure F-28
Sx1 Figure F-30
.D Dx2op Figure C-18
Dx1 Figure C-21

NOTE: Subtraction with a signed constant on the .L and .S units allows either
the first or the second operand to be the signed 5-bit constant.

SUB (.unit) srcl, scstb, dst is encoded as ADD (.unit) —scst5, src2, dst
where the srcl register is now src2 and scst5 is now —scstb.

The .D unit, when the cross path form is not used, provides only the
second operand as a constant since it is an unsigned 5-bit constant.
ucst5 allows a greater offset for addressing with the .D unit.

SPRU732J-July 2010 Instruction Set 467

Copyright © 2010, Texas Instruments Incorporated

SUB — Subtract Two Signed Integers Without Saturation

13 TEXAS
INSTRUMENTS

www.ti.com

Opcode .L unit
31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0
’ creg |z| dst ’ src2 srcl |x| op |1|1‘0|s‘p‘
1 5 5 5 1 7 1 1
Opcode map field used... For operand type... Unit Opfield
srcl sint L1, L2 0000111
src2 xsint
dst sint
srcl xsint L1, L2 0010111
src2 sint
dst sint
srcl sint L1, L2 0100111
src2 xsint
dst slong
srcl xsint L1, L2 0110111
src2 sint
dst slong
srcl scstb L1, .L2 000 0110
src2 xsint
dst sint
srcl scstb L1, .L2 010 0100
src2 slong
dst slong

468

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com

SUB — Subtract Two Signed Integers Without Saturation

Opcode .S unit
31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0
’ creg |z| dst ’ src2 srcl |x| op ’1|0|0‘0|s‘p‘
3 1 5 5 5 1 6 1 1
Opcode map field used... For operand type... Unit Opfield
srcl sint .81, .82 010111
src2 xsint
dst sint
srcl scsts .81, .82 010110
src2 xsint
dst sint
src2 - srcl:
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
creg |z| dst ’ src2 srcl |x|1‘1|O‘1‘0’l’1|1|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 xsint .S1, .82
srcl sint
dst sint
Description for .L1, .L2 and .S1, .S2 Opcodes src2 is subtracted from srcl. The result is placed in dst.
Execution for .L1, .L2 and .S1, .S2 Opcodes
if (cond) srcl - src2 — dst
else nop
Instruction Set 469

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
SUB — Subtract Two Signed Integers Without Saturation www.ti.com
Opcode .D unit (if the cross path form is not used)
31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0
’ creg |z| dst ’ src2 | srcl | op ’l’0|0|0‘0|s‘p‘
3 1 5 5 5 6 1 1
Opcode map field used... For operand type... Unit Opfield
src2 sint .D1, .D2 010001
srcl sint
dst sint
src2 sint .D1, .D2 010011
srcl ucsts
dst sint
Description srcl is subtracted from src2. The result is placed in dst.
Execution
if (cond) src2 - srcl — dst
else nop
Opcode .D unit (if the cross path form is used)
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
\ creg |z| dst \ src2 | srcl |x|1\0|1\1\0\0\1|1|0\0|s\p\
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl sint .D1, .D2
src2 xsint
dst sint
Description src2 is subtracted from srcl. The result is placed in dst.
Execution
if (cond) srcl - src2 — dst
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use .L,.S,or.D
470 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS

www.ti.com SUB — Subtract Two Signed Integers Without Saturation

Instruction Type Single-cycle

Delay Slots 0

See Also ADD, NEG, SUBC, SUBU, SSUB, SUB2

Example SUB . L1 A1, A2, A3

Before instruction 1 cycle after instruction

Al | 0000 325Ah | 12,890 Al | 0000 325Ah |
A2 | FFFF FF12h | 238 A2 \ FFFF FF12h \
A3 | X000 000h | A3 | 0000 3348h | 13,128

SPRU732J-July 2010 Instruction Set 471

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
SUBAB — Subtract Using Byte Addressing Mode www.ti.com
SUBAB Subtract Using Byte Addressing Mode
Syntax SUBAB (.unit) src2, srcl, dst
unit = .D1 or .D2
Compatibility C62x, C64x, and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl op ‘1‘0|0|0‘0|s‘p‘
3 1 5 5 5 6 1 1
Opcode map field used... For operand type... Unit Opfield
src2 sint .D1, .D2 11 0001
srcl sint
dst sint
src2 sint .D1, .D2 11 0011
srcl ucsts
dst sint
Description srcl is subtracted from src2 using the byte addressing mode specified for src2. The
subtraction defaults to linear mode. However, if src2 is one of A4-A7 or B4-B7, the mode
can be changed to circular mode by writing the appropriate value to the AMR (see
Section 2.8.3).The result is placed in dst.
Execution
if (cond) src2 - srcl — dst
else nop
Pipeline

Instruction Type
Delay Slots

See Also

Pipeline Stage E1l

Read srcl, src2

Written dst

Unit in use .D
Single-cycle

0
SUB, SUBAH, SUBAW

472 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

SUBAB — Subtract Using Byte Addressing Mode

Example SUBAB . D1 A5, A0, A5

Before instruction @

AQ | 0000 0004h |
A5 | 0000 4000h |
AMR | 0003 0004h |

1 cycle after instruction

AO \ 0000 0004h \
A5 \ 0000 400Ch \
AMR \ 0003 0004h \

@ BKO=3 - size=16
A5 in circular addressing mode using BKO

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

473

13 TEXAS

INSTRUMENTS
SUBABS4 — Subtract With Absolute Value, Four 8-Bit Pairs for Four 8-Bit Results www.ti.com
SUBABS4 Subtract With Absolute Value, Four 8-Bit Pairs for Four 8-Bit Results
Syntax SUBABS4 (.unit) srcl, src2, dst
unit=.L1 or .L2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x|1‘0|1‘1‘0‘1‘0|1|1‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl ud L1, L2
src2 xu4
dst u4
Description Calculates the absolute value of the differences between the packed 8-bit data contained

in the source registers. The values in srcl and src2 are treated as unsigned, packed
8-bit quantities. The result is written into dst in an unsigned, packed 8-bit format.

For each pair of unsigned 8-bit values in srcl and src2, the absolute value of the

difference is calculated. This result is then placed in the corresponding position in dst.

» The absolute value of the difference between srcl byte0 and src2 byteO is placed in
byteO of dst.

» The absolute value of the difference between srcl bytel and src2 bytel is placed in
bytel of dst.

» The absolute value of the difference between srcl byte2 and src2 byte2 is placed in
byte2 of dst.

» The absolute value of the difference between srcl byte3 and src2 byte3 is placed in
byte3 of dst.

The SUBABS4 instruction aids in motion-estimation algorithms, and other algorithms,
that compute the "best match" between two sets of 8-bit quantities.

31 24 23 16 15 8 7 0
‘ ua_3 ‘ ua_2 ‘ ua_1 | ua_0 ‘ «— srcl
SUBABS4
‘ ub_3 ‘ ub_2 ‘ ub_1 | ub_0 ‘ « src2
31 24 23 16 15 8 7 0
\ abs(ua_3 - ub_3) \ abs(ua_2 - ub_2) \ abs(ua_1 - ub_1) | abs(ua_0 - ub_0) ‘ — dst
474 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com SUBABS4 — Subtract With Absolute Value, Four 8-Bit Pairs for Four 8-Bit Results
Execution
if (cond) {
abs(ubyteO(srcl) - ubyteO(src2)) — ubyteO(dst);
abs(ubytel(srcl) - ubytel(src2)) — ubytel(dst);
abs(ubyte2(srcl) - ubyte2(src2)) — ubyte2(dst);
abs(ubyte3(srcl) - ubyte3(src2)) — ubyte3(dst)
}
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use .L
Instruction Type Single-cycle
Delay Slots 0
See Also ABS, SUB, SUB4
Example SUBABS4 . L1 A2, A8, A9
Before instruction 1 cycle after instruction
A2 |3789F23Ah | 55 137 242 58 A2 |3789 F23Ah |
unsigned
A8 | 04B8 49 75h | 4184 73 117 A8 | 04B8 49 75h |
unsigned
A9 | xo0xx xoxxxh | A9 |33 2F A9 3Bh | 5147 169 59
unsigned
SPRU732J-July 2010 Instruction Set 475

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
SUBAH — Subtract Using Halfword Addressing Mode www.ti.com
SUBAH Subtract Using Halfword Addressing Mode
Syntax SUBAH (.unit) src2, srcl, dst
unit = .D1 or .D2
Compatibility C62x, C64x, and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl op ‘1‘0|0|0‘0|s‘p‘
3 1 5 5 5 6 1 1
Opcode map field used... For operand type... Unit Opfield
src2 sint .D1, .D2 11 0101
srcl sint
dst sint
src2 sint .D1, .D2 11 0111
srcl ucsts
dst sint
Description srcl is subtracted from src2 using the halfword addressing mode specified for src2. The
subtraction defaults to linear mode. However, if src2 is one of A4-A7 or B4-B7, the mode
can be changed to circular mode by writing the appropriate value to the AMR (see
Section 2.8.3). srcl is left shifted by 1. The result is placed in dst.
Execution
if (cond) src2 - srcl<<l — dst
else nop
Pipeline

Instruction Type
Delay Slots

See Also

Pipeline Stage E1l

Read srcl, src2

Written dst

Unit in use .D
Single-cycle

0
SUB, SUBAB, SUBAW

476 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com SUBAW — Subtract Using Word Addressing Mode
SUBAW Subtract Using Word Addressing Mode
Syntax SUBAW (.unit) src2, srcl, dst
unit = .D1 or .D2
Compatibility C62x, C64x, and C64x+ CPU

Compact Instruction Format

Unit Opcode Format Figure
.D Dx5p Figure C-20
Opcode
31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0
\ creg |z| dst src2 srcl op \1\0|0|0\0|s\p\
3 1 5 5 5 6 1 1
Opcode map field used... For operand type... Unit Opfield
src2 sint .D1, .D2 111001
srcl sint
dst sint
src2 sint .D1, .D2 111011
srcl ucsts
dst sint
Description srcl is subtracted from src2 using the word addressing mode specified for src2. The

subtraction defaults to linear mode. However, if src2 is one of A4-A7 or B4-B7, the mode
can be changed to circular mode by writing the appropriate value to the AMR (see
Section 2.8.3). srcl is left shifted by 2. The result is placed in dst.

Execution
if (cond) src2 - srcl<<2 — dst
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use .D
Instruction Type Single-cycle
Delay Slots 0
See Also SUB, SUBAB, SUBAH
SPRU732J-July 2010 Instruction Set 477

Copyright © 2010, Texas Instruments Incorporated

SUBAW — Subtract Using Word Addressing Mode

13 TEXAS
INSTRUMENTS

www.ti.com

Example SUBAW . D1 A5, 2, A3

Before instruction @

A3 | XXXX XXXxh |
A5 0000 0100h |
AMR | 0003 0004h |

1 cycle after instruction

A3 \ 0000 0108h
A5 \ 0000 0100h \
AMR \ 0003 0004h

@ BKO=3 - size=16
A5 in circular addressing mode using BKO

478 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com SUBC — Subtract Conditionally and Shift—Used for Division
SUBC Subtract Conditionally and Shift—Used for Division
Syntax SUBC (.unit) srcl, src2, dst
unit=.L1 or .L2
Compatibility C62x, C64x, and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl |x|1‘0|0‘1‘0‘1‘1|1|1‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl uint L1, .12
src2 xuint
dst uint
Description Subtract src2 from srcl. If result is greater than or equal to 0, left shift result by 1, add 1
to it, and place it in dst. If result is less than 0, left shift src1 by 1, and place it in dst. This
step is commonly used in division.
Execution
if (cond) {
if (srcl - src2 2 0), ((srcl - src2) << 1) + 1 — dst
else (srcl << 1) — dst
}
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use L
Instruction Type Single-cycle
Delay Slots 0
See Also ADD, SSUB, SUB, SUBU, SUB2
SPRU732J-July 2010 Instruction Set 479

Copyright © 2010, Texas Instruments Incorporated

SUBC — Subtract Conditionally and Shift—Used for Division

13 TEXAS
INSTRUMENTS

www.ti.com

Examples Example 1
SUBC . L1 A0, Al, A
Before instruction 1 cycle after instruction
A0 0000 125Ah | 4698 A0 | 0000 024B4h | 9396
Al | 0000 1F12h | 7954 Al \
Example 2
SUBC . L1 A0, Al, AO
Before instruction 1 cycle after instruction
AQ | 0002 1A31h | 137,777 AO \ 18,405
Al | 0001 F63Fh | 128,575 Al \

480 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com

SUBU — Subtract Two Unsigned Integers Without Saturation

SuUBU Subtract Two Unsigned Integers Without Saturation
Syntax SUBU (.unit) srcl, src2, dst
or
SUBU (.unit) srcl, src2, dst_h:dst_|
unit =.L1 or .L2
Compatibility C62x, C64x, and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0
’ creg |z| dst src2 srcl |x| op |1|1‘0|s‘p‘
3 1 5 5 5 1 7 1 1
Opcode map field used... For operand type... Unit Opfield
srcl uint L1, L2 0101111
src2 xuint
dst ulong
srcl xuint L1, L2 0111111
src2 uint
dst ulong
Description src2 is subtracted from srcl. The result is placed in dst.
Execution
if (cond) srcl - src2 — dst
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use L
Instruction Type Single-cycle
Delay Slots 0
See Also ADDU, SSUB, SUB, SUBC, SUB2
SPRU732J-July 2010 Instruction Set 481

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
SUBU — Subtract Two Unsigned Integers Without Saturation www.ti.com
Example SUBU . L1 Al, A2, A5: A4
Before instruction 1 cycle after instruction
A1[0000 325Ah | 12,800% A1 0000 325Ah |
A2 | FFFF FF12h | 4,294,967,058% A2 | FFFF FF12h |
A5:A4 | 0006 x000¢h [x000¢ x000h A5:A4 [0000 00FFh | 0000 3348h -4,294,954,168@
@ Unsigned 32-bit integer
@ signed 40-bit (long) integer
482 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

SUB2 — Subtract Two 16-Bit Integers on Upper and Lower Register Halves

SUB2 Subtract Two 16-Bit Integers on Upper and Lower Register Halves
Syntax SUB2 (.unit) srcl, src2, dst
unit = .L1, .L2, .81, .S2, .D1, .D2
Compatibility C62x, C64x, and C64x+ CPU
Opcode .L unit
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| dst ‘ src2 srcl |x|0‘0|0‘0‘1‘0‘0|1|1‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl i2 L1, L2
src2 Xi2
dst i2
Opcode .S unit
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| dst ‘ src2 srcl |x|0‘1|0‘0‘0‘1‘1|0|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl i2 .S1,.S2
src2 Xi2
dst i2
Opcode .D unit
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| dst ‘ src2 srcl |x|1‘0|0‘1‘0‘1‘1|1|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl i2 .D1, .D2
src2 Xi2
dst i2

SPRU732J-July 2010

Instruction Set 483

Copyright © 2010, Texas Instruments Incorporated

SUB2 — Subtract Two 16-Bit Integers on Upper and Lower Register Halves

13 TEXAS
INSTRUMENTS

www.ti.com

Description The upper and lower halves of src2 are subtracted from the upper and lower halves of
srcl and the result is placed in dst. Any borrow from the lower-half subtraction does not
affect the upper-half subtraction. Specifically, the upper-half of src2 is subtracted from
the upper-half of srcl and placed in the upper-half of dst. The lower-half of src2 is
subtracted from the lower-half of src1 and placed in the lower-half of dst.

31 16 15 0
‘ a_hi ‘ a_lo ‘ «—srcl
SUB2
\ b_hi | b_lo | sre2
31 16 15 0
\ a_hi- b_hi \ alo-b_lo ‘ — dst
NOTE: Unlike the SUB instruction, the argument ordering on the .D unit form of
.S2 is consistent with the argument ordering for the .L and .S unit forms.
Execution
if (cond) {
(Isb16(srcl) - Isb16(src2)) — Isb16(dst);
(msb16(srcl) - msb16(src2)) — msh16(dst)
}
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use .L,.S,.D
Instruction Type Single-cycle
Delay Slots 0
See Also ADD2, SUB, SUBU, SUB4, SSUB2

484 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com SUB2 — Subtract Two 16-Bit Integers on Upper and Lower Register Halves
Examples Example 1
SUB2 .Sl A3, A4, AS
Before instruction 1 cycle after instruction
A3 | 1105 6E30h | 4357 28208 A3 | 1105 6E30h |
A4 \ 1105 6980h | 4357 27008 A4 \ 1105 6980h |
A5 | w00k xoooh | A5 | 0000 04BOh 01200
Example 2
SUB2 .D2 B2, B8, B15
Before instruction 1 cycle after instruction
B2 \ F23A 3789h | -3526 14217 B2 \ F23A 3789h |
B8 \ 04B8 6732h | 1208 26418 B8 \ 04B8 6732h |
B15 \ xxxx xxxxh | B15 \ EDS82 D057h | -4734 -12201
Example 3
SUB2 . S2X BL, A0, B2
Before instruction 1 cycle after instruction
AO \ 0021 3271h | 33 12913@ AO \ 0021 3271h |
B1 \ 003A 1B48h | 58 6984 B1 \ 003A 1B48h |
B2 \ %0 xxxxh | B2 \ 0019 E8D7h | 250 5929

@ Signed 16-MSB integer
@ Signed 16-LSB integer

SPRU732J-July 2010 Instruction Set 485

Copyright © 2010, Texas Instruments Incorporated

SUB4 — Subtract Without Saturation, Four 8-Bit Pairs for Four 8-Bit Results

13 TEXAS

INSTRUMENTS

www.ti.com

SuB4 Subtract Without Saturation, Four 8-Bit Pairs for Four 8-Bit Results
Syntax SUB4 (.unit) srcl, src2, dst
unit=.L1 or .L2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 4 3 2 1 0
‘ creg |z| src2 srcl |x|1‘1|0‘0‘1‘1‘0|1|1‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl i4 L1, .12
src2 xi4
dst i4
Description Performs 2s-complement subtraction between packed 8-bit quantities. The values in srcl

and src2 are treated as packed 8-bit data and the results are written into dst in a packed

8-bit format.

For each pair of 8-bit values in srcl and src2, the difference between the 8-bit value from
srcl and the 8-bit value from src2 is calculated to produce an 8-bit result. No saturation

is performed. The result is placed in the corresponding position in dst:

» The difference between srcl byteO and src2 byteO is placed in byteO of dst.
» The difference between srcl bytel and src2 bytel is placed in bytel of dst.
» The difference between srcl byte2 and src2 byte2 is placed in byte2 of dst.
« The difference between srcl byte3 and src2 byte3 is placed in byte3 of dst.

31

24 23 16 15
‘ a2 ‘ al
SUB4
\ b 2 \ b1
24 23 16 15
\ a2-b2 \ al-bl

486 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com SUB4 — Subtract Without Saturation, Four 8-Bit Pairs for Four 8-Bit Results
Execution
if (cond) {
(byteO(srcl) - byteO(src2)) — byteO(dst);
(bytel(srcl) - bytel(src2)) — bytel(dst);
(byte2(srcl) - byte2(src2)) — byte2(dst);
(byte3(srcl) - byte3(src2)) — byte3(dst)
}
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use L
Instruction Type Single-cycle
Delay Slots 0
See Also ADD4, SUB, SUB2
Example SuB4 . L1 A2, A8, A9
Before instruction 1 cycle after instruction
A2 \ 37 89 F2 3Ah \ 55 137 242 58 A2 \ 37 89 F2 3Ah \
A8 \ 04 B8 49 75h \ 04 184 73 117 A8 \ 04 B8 49 75h
A9 | xo0xx xoxxxh | A9 |33D1A9C5h | 51 -47 169 -59
SPRU732J-July 2010 Instruction Set 487

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
SWAP2 — Swap Bytes in Upper and Lower Register Halves www.ti.com
SWAP2 Swap Bytes in Upper and Lower Register Halves
Syntax SWAP2 (.unit) src2, dst
unit = .L1, .L2, .S1, .S2
Compatibility C64x and C64x+ CPU
Opcode .L unit
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| dst ‘ src2 srcl |x|0‘0|1‘1‘0‘1‘1|1|1‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 s2 L1, .L2
dst s2
Opcode .S unit
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| dst ‘ src2 srcl |x|0‘1|0‘0‘0‘0‘1|0|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 s2 .S1, .52
dst s2
Description The SWAP2 pseudo-operation takes the lower halfword from src2 and places it in the

upper halfword of dst, while the upper halfword from src2 is placed in the lower halfword
of dst. The assembler uses the PACKLH2 (.unit) srcl, src2, dst instruction to perform
this operation (see PACKLH2).

31 16 15 0
b_hi b_lo « src2
SWAP2
l
31 16 15 0
b_lo \ b_hi \ < dst

The SWAP2 instruction can be used in conjunction with the SWAP4 instruction (see
SWAPA4) to change the byte ordering (and therefore, the endianess) of 32-bit data.

488 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS

www.ti.com

SWAP2 — Swap Bytes in Upper and Lower Register Halves

Execution
if (cond) {
msb16(src2) — Isb16(dst);
Isb16(src2) — msh16(dst)
}
else nop
Pipeline
Pipeline Stage E1l
Read src2
Written dst
Unit in use L, .S
Instruction Type Single-cycle
Delay Slots 0
See Also SWAP4
Examples Example 1
SWAP2 . L1 A2, A9
Before instruction 1 cycle after instruction
A2 \ 3789 F23Ah | 14217 -3526 A2 \ 3789 F23Ah \
A9 o0 xo0ah | A9 |F23A378%h | -3526 14217
Example 2
SWAP2 . S2 B2, B12
Before instruction 1 cycle after instruction
B2 \ 0124 2451h | 292 9297 B2 \ 0124 2451h \
B12 \ %000 x00xch | B12 \ 2451 0124h \ 9297 292

SPRU732J-July 2010

Instruction Set 489

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
SWAP4 — Swap Byte Pairs in Upper and Lower Register Halves www.ti.com
SWAP4 Swap Byte Pairs in Upper and Lower Register Halves
Syntax SWAP4 (.unit) src2, dst
unit=.L1 or .L2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| creg | z] dst src joJoJoJo|1]x]o]of1][a]o]zr]of2]1]0o]s]|p]
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 p v L1, .L2
dst ud
Description Exchanges pairs of bytes within each halfword of src2, placing the result in dst. The

values in src2 are treated as unsigned, packed 8-bit values.

Specifically the upper byte in the upper halfword is placed in the lower byte in the upper
halfword, while the lower byte of the upper halfword is placed in the upper byte of the
upper halfword. Also the upper byte in the lower halfword is placed in the lower byte of
the lower halfword, while the lower byte in the lower halfword is placed in the upper byte
of the lower halfword.

31 24 23 16 15 8 7 0
ub_3 ub_2 ub_1 ub_0 « src2
SWAP4
!
31 24 23 16 15 8 7 0
ub_2 ‘ ub_3 ‘ ub_0 | ub_1 ‘ «— dst

By itself, this instruction changes the ordering of bytes within halfwords. This effectively
changes the endianess of 16-bit data packed in 32-bit words. The endianess of full 32-bit
guantities can be changed by using the SWAP4 instruction in conjunction with the
SWAP?2 instruction (see SWAP2).

Execution
if (cond) {
ubyte0O(src2) — ubytel(dst);
ubytel(src2) — ubyteO(dst);
ubyte2(src2) — ubyte3(dst);
ubyte3(src2) — ubyte2(dst)
}
else nop
490 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS

www.ti.com

SWAP4 — Swap Byte Pairs in Upper and Lower Register Halves

Pipeline

Instruction Type
Delay Slots
See Also

Example

Pipeline Stage El
Read src2
Written dst
Unit in use L

Single-cycle

0

SWAP2

SWAP4 . L1 Al, A2

Before instruction

Al \ 9E 52 6E 30h

A2 ‘ XXXX XXXxh

| 158 82 110 48

1 cycle after instruction

Al \ 9E 52 6E 30h \

A2 \ 52 9E 30 6Eh \ 82 158 48 110

SPRU732J-July 2010

Instruction Set 491

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
SWE — Software Exception www.ti.com
SWE Software Exception
Syntax SWE
unit = none
Compatibility C64x+ CPU
Opcode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofoJofs[ofofofofofofofofofofofofoofofofofo[ofofofofofof[ofo]o]p]
1

Description Causes an internal exception to be taken. It can be used as a mechanism for User mode
programs to request Supervisor mode services. Execution of the SWE instruction results
in an exception being recognized in the E1 pipeline phase containing the SWE
instruction. The SXF bit in EFR is set to 1. The HWE bit in NTSR is cleared to 0. If
exceptions have been globally enabled, this causes an exception to be recognized
before execution of the next execute packet. The address of that next execute packet is
placed in NRP.

Execution

1 — SXF bitin EFR
0 — HWE bit in TSR

Instruction Type Single-cycle

Delay Slots 0

See Also SWENR

492 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com SWENR — Software Exception—No Return
SWENR Software Exception—No Return
Syntax SWENR
unit = none
Compatibility C64x+ CPU
Opcode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofoJofs]ofofofofofofofofofofofofofofz][ofofoofofofofofof[ofofo]p]
1

Description Causes an internal exception to be taken. It is intended for use in systems supporting a
secure operating mode. It can be used as a mechanism for User mode programs to
request Supervisor mode services. It differs from the SWE instruction in four ways:

1. TSR is not copied into NTSR.
2. No return address is placed in NRP (it remains unmodified).

3. The IB bitin TSR is set to 1. This will be observable only in the case where another
exception is recognized simultaneously.

4. A branch to REP (restricted entry point register) is forced in the context switch rather
than the ISTP-based exception (NMI) vector.
This instruction executes unconditionally.

If another exception (internal or external) is recognized simultaneously with the
SWENR-raised exception then the other exception(s) takes priority and normal exception
behavior occurs; that is, NTSR and NRP are used and execution is directed to the NMI
vector.

Execution

1 — SXF bitin EFR
0 — HWE bit in TSR

Instruction Type Single-cycle

Delay Slots 0

See Also SWE

SPRU732J-July 2010 Instruction Set 493

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
UNPKHU4 — Unpack 16 MSB Into Two Lower 8-Bit Halfwords of Upper and Lower Register Halves www.ti.com
UNPKHU4 Unpack 16 MSB Into Two Lower 8-Bit Halfwords of Upper and Lower Register
Halves
Syntax UNPKHU4 (.unit) src2, dst
unit =.L1, .L2, .S1, .S2
Compatibility C64x and C64x+ CPU
Opcode .L unit
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[creg [z] dst] src2 loJoJof1]s]xJofJof1]s]o[2]Jo]1][1]o]s]p]
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 xud L1, .L.2
dst u2
Opcode .S unit
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[creg [z] dst] src2 loJofo 1 a]x[a[1]1]2]ofo]2r]o]o]o]s][p]
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 xud .S1,.S2
dst u2
Description Moves the two most-significant bytes of src2 into the two low bytes of the two halfwords
of dst.

Specifically the upper byte in the upper halfword is placed in the lower byte in the upper
halfword, while the lower byte of the upper halfword is placed in the lower byte of the
lower halfword. The src2 bytes are zero-extended when unpacked, filling the two high
bytes of the two halfwords of dst with zeros.

31 24 23 16 15 8 7 0
ub_3 ub_2 ub_1 ub_0 « src2
UNPKHU4
l
31 24 23 16 15 8 7 0
00000000 ub_3 00000000 ub_2 «— dst
494 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com UNPKHU4 — Unpack 16 MSB Into Two Lower 8-Bit Halfwords of Upper and Lower Register Halves
Execution
if (cond) {
ubyte3(src2) — ubyte2(dst);
0 — ubyte3(dst);
ubyte2(src2) — ubyteO(dst);
0 — ubytel(dst)
}
else nop
Pipeline
Pipeline Stage E1l
Read src2
Written dst
Unit in use L, .S
Instruction Type Single cycle
Delay Slots 0
See Also UNPKLU4
Examples Example 1
UNPKHU4 . L1 A1, A2
Before instruction 1 cycle after instruction
AL | 9E 52 6E 30h | Al |9E 526E 30h |
A2 [o000 xoooch | A2 |00 9E 0052h |
Example 2
UNPKHU4 . L2 Bl17, B18
Before instruction 1 cycle after instruction
B17 110569 34h | B17 |11056934h |
B18 | xxxx xxxxh | B18 |00 1100 05h |
SPRU732J-July 2010 Instruction Set 495

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
UNPKLU4 — Unpack 16 LSB Into Two Lower 8-Bit Halfwords of Upper and Lower Register Halves www.ti.com
UNPKLU4 Unpack 16 LSB Into Two Lower 8-Bit Halfwords of Upper and Lower Register
Halves
Syntax UNPKLU4 (.unit) src2, dst
unit =.L1, .L2, .S1, .S2
Compatibility C64x and C64x+ CPU
Opcode .L unit
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[creg [z] dst] src2 loJoJo]1]o[xJofJof1]1]o[2]Jo]1][1]o]s]p]
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 xud L1, .L.2
dst u2
Opcode .S unit
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[creg [z] dst] src2 JoJofof1]o[x[r[1]1]1]ofo]1]o]o]o]s][p]
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 xud .S1,.S2
dst u2
Description Moves the two least-significant bytes of src2 into the two low bytes of the two halfwords
of dst.

Specifically, the upper byte in the lower halfword is placed in the lower byte in the upper
halfword, while the lower byte of the lower halfword is kept in the lower byte of the lower
halfword. The src2 bytes are zero-extended when unpacked, filling the two high bytes of
the two halfwords of dst with zeros.

31 24 23 16 15 8 7 0
ub_3 ub_2 ub_1 ub_0 « src2
UNPKLU4
l
31 24 23 16 15 8 7 0
00000000 ub_1 00000000 ub_0 «— dst
496 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com UNPKLU4 — Unpack 16 LSB Into Two Lower 8-Bit Halfwords of Upper and Lower Register Halves
Execution
if (cond) {
ubyteO(src2) — ubyteO(dst);
0 — ubytel(dst);
ubytel(src2) — ubyte2(dst);
0 — ubyte3(dst);
}
else nop
Pipeline
Pipeline Stage E1l
Read src2
Written dst
Unit in use L, .S
Instruction Type Single cycle
Delay Slots 0
See Also UNPKHU4
Examples Example 1
UNPKLU4 . L1 AL, A2
Before instruction 1 cycle after instruction
Al | 9E 52 6E 30h | Al | 9E 52 6E 30h |
A2 | xxx x00¢h | A2 | 00 6E 00 30h |
Example 2
UNPKLU4 . L2 Bl17, B18
Before instruction 1 cycle after instruction
B17 |110569 34h | B17 |110569 34h |
BI8 |00 xooxxh | B18 [0069 00 34h |
SPRU732J-July 2010 Instruction Set 497

Copyright © 2010, Texas Instruments Incorporated

XOR — Bitwise Exclusive OR

13 TEXAS
INSTRUMENTS

www.ti.com

XOR Bitwise Exclusive OR

Syntax

XOR (.unit) srcl, src2, dst

unit = .L1, .L2, .S1, .S2, .D1, .D2

Compatibility

Compact Instruction Format

C62x, C64x, and C64x+ CPU

Unit Opcode Format Figure
L L2c Figure D-7
.L,.S,.D LSDx1 Figure G-4
Opcode .L unit
31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0
\ creg |z| dst \ src2 srcl |x| op |1|1\0|s\p\
3 1 5 5 5 1 7 1 1
Opcode map field used... For operand type... Unit Opfield
srcl uint L1, .L2 1101111
src2 xuint
dst uint
srcl scstb L1, L2 110 1110
src2 xuint
dst uint
Opcode .S unit
31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0
’ creg |z| dst ’ src2 srcl |x| op ’1|0|0‘0|s‘p‘
3 1 5 5 5 1 6 1 1
Opcode map field used... For operand type... Unit Opfield
srcl uint .81, .S2 001011
src2 xuint
dst uint
srcl scstb .S1, .82 00 1010
src2 xuint
dst uint

498 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com XOR — Bitwise Exclusive OR
Opcode .D unit
31 29 28 27 23 22 18 17 13 12 11 10 9 6 5 4 3 2 1 0
creg |z| dst src2 srcl |x|1‘0| op ‘1|1|0‘0|s‘p‘
3 1 5 5 1 4 1 1
Opcode map field used... For operand type... Unit Opfield
srcl uint .D1, .D2 1110
src2 xuint
dst uint
srcl scstb .D1, .D2 1111
src2 xuint
dst uint
Description Performs a hitwise exclusive-OR (XOR) operation between srcl and src2. The result is
placed in dst. The scst5 operands are sign extended to 32 bits.
Execution
if (cond) srcl XOR src2 — dst
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use .L,.S,or.D
Instruction Type Single-cycle
Delay Slots 0
See Also AND, ANDN, NOT, OR
Examples Example 1
XOR .S1 A3, A4, A5
Before instruction 1 cycle after instruction
A3 |0721325Ah | A3 |0721325Ah |
A4 | 0019 OF12h | A4 | 0019 OF12h |
A5 | xxx xocch | A5 0738 3D48h |
SPRU732J-July 2010 Instruction Set 499

Copyright © 2010, Texas Instruments Incorporated

XOR — Bitwise Exclusive OR

13 TEXAS
INSTRUMENTS

www.ti.com

Example 2
XOR . D2 Bl, ODh, B8

Before instruction

B1 \ 0000 1023h | B1

B8 ‘ XXXX XXXXh | B8

1 cycle after instruction

\ 0000 1023h

\ 0000 102Eh

500

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com XORMPY — Galois Field Multiply With Zero Polynomial
XORMPY Galois Field Multiply With Zero Polynomial
Syntax XORMPY (.unit) srcl, src2, dst
unit = .M1 or .M2
Compatibility C64x+ CPU
Opcode
31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
lof[ofo]1] dst src2 srcl I xJol1la]of1]1]1]1]o]o]s]p]
5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl uint M1, .M2
src2 xuint
dst uint
Description Performs a Galois field multiply, where srcl is 32 bits and src2 is limited to 9 bits. This
multiply connects all levels of the gmpy4 together and only extends out by 8 bits. The
XORMPY instruction is identical to a GMPY instruction executed with a zero-value
polynomial.
uword xormpy(uword srcl, uword src2)
/1 the multiply is always between GF(27"9) and GF(2"32)
/1l so no size information is needed
ui nt pp;
ui nt mask, tpp;
uint I;
pp = 0;
mask = 0x00000100; // multiply by conputing
/'l partial products.
for (1=0; i<8; I++){
if (src2 & mask) pp "= srcl;
mask >>= 1;
pp <<= l’
}
if (src2 & 0x1) pp "= srcil;
return (pp) ; /Il leave it asserted left.
Execution
GMPY _poly =0
(Isb9(src2) gmpy uint(srcl)) — uint(dst)
Instruction Type Four-cycle
Delay Slots 3
See Also GMPY, GMPY4, XOR
SPRU732J-July 2010 Instruction Set 501

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
XORMPY — Galois Field Multiply With Zero Polynomial www.ti.com
Example XORWPY . ML A0, Al, A2 GPLYA = FFFFFFFF (i gnored)
Before instruction 1 cycle after instruction
A0 [12345678h | A2 |1E654210h
AL [00000126h |
502 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

i3 TEXAS

INSTRUMENTS
www.ti.com XPND2 — Expand Bits to Packed 16-Bit Masks
XPND2 Expand Bits to Packed 16-Bit Masks
Syntax XPND2 (.unit) src2, dst
unit = .M1 or .M2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| creg | z] dst src2 l1]1]ofof1]x]o]ofofof1]2]2]2]0]o]s]|p]
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 xuint M1, .M2
dst uint
Description Reads the two least-significant bits of src2 and expands them into two halfword masks
written to dst. Bit 1 of src2 is replicated and placed in the upper halfword of dst. Bit O of
src2 is replicated and placed in the lower halfword of dst. Bits 2 through 31 of src2 are
ignored.
31 24 23 16 15 8 7 0
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXX10 «— src2
XPND2
1
31 24 23 16 15 8 7 0
11111111 \ 11111111 | 00000000 | 00000000 | dst
The XPND?2 instruction is useful, when combined with the output of the CMPGT2 or
CMPEQ?2 instruction, for generating a mask that corresponds to the individual halfword
positions that were compared. That mask may then be used with ANDN, AND, or OR
instructions to perform other operatlons like compositing. This is an example
CMPGT2 . S1 A3, A4, A5 ; Conpare two registers, both upper
; and | ower hal ves.
XPND2 . ML A5, A2 ; Expand the conpare results into
; two 16-bit nasks.
NOP
AND .DL A2, A7, A8 ; Apply the nask to a value to create result.
Because the XPND2 instruction only examines the two least-significant bits of src2, it is
possible to store a large bit mask in a single 32-bit word and expand it using multiple
SHR and XPND?2 instruction pairs. This can be useful for expanding a packed
1-bit-per-pixel bitmap into full 16-bit pixels in imaging applications.
SPRU732J-July 2010 Instruction Set 503

Copyright © 2010, Texas Instruments Incorporated

XPND2 — Expand Bits to Packed 16-Bit Masks

13 TEXAS
INSTRUMENTS

www.ti.com

Execution

if (cond)

else nop

Pipeline

{
XPND2(src2 & 1) — Isb16(dst);

XPND2(src2 & 2) — msb16(dst)
}

Pipeline Stage El E2
Read src2
Written dst
Unit in use M
Instruction Type Two-cycle
Delay Slots 1
See Also CMPEQ2, CMPGT2, XPND4
Examples Example 1
XPND2 . ML Al, A2
Before instruction 2 cycles after instruction
Al |B174 6CAlh | 2LSBs are 01 Al |B1746CAlh |
A2 ’ XXXX XXXXh ‘ A2 ‘ 0000 FFFFh |
Example 2
XPND2 . M2 B1, B2
Before instruction 2 cycles after instruction
BL [00000003h | 2 LsBs are 11 BL 0000 0003h |
B2 |00 xoocch | B2 |FFFF FFFFh |

504 Instruction Set

SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

XPND4 — Expand Bits to Packed 8-Bit Masks

XPND4 Expand Bits to Packed 8-Bit Masks
Syntax XPND4 (.unit) src2, dst
unit = .M1 or .M2
Compatibility C64x and C64x+ CPU
Opcode
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| creg | z] dst src2 |1]1]ofofo|x]o]ofofof1]2]2]2]0]0o]s]p]
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 xuint M1, .M2
dst uint
Description Reads the four least-significant bits of src2 and expands them into four-byte masks
written to dst. Bit 0 of src2 is replicated and placed in the least-significant byte of dst. Bit
1 of src2 is replicated and placed in second least-significant byte of dst. Bit 2 of src2 is
replicated and placed in second most-significant byte of dst. Bit 3 of src2 is replicated
and placed in most-significant byte of dst. Bits 4 through 31 of src2 are ignored.
31 24 23 16 15 8 7 0
XXXXXXXX XXXXXXXX XXXXXXXX XXXX1001 « src2
XPND4
!
31 24 23 16 15 8 7 0
11111111 \ 00000000 | 00000000 | 11111111 | dst

The XPND4 instruction is useful, when combined with the output of the CMPGT4 or
CMPEQ4 instruction, for generating a mask that corresponds to the individual byte
positions that were compared. That mask may then be used with ANDN, AND, or OR
instructions to perform other operations like compositing.

This is an example:

CVWPEQ4 . S1 A3, A4, A5 ; Conpare two 32-bit registers all four bytes.
XPND4 . ML A5, A2 ; Expand the conpare results into
; four 8-bit nasks.
NOP
AND . D1 A2, A7, A8 ; Apply the nask to a value to create result.

Because the XPND4 instruction only examines the four least-significant bits of src2, it is
possible to store a large bit mask in a single 32-bit word and expand it using multiple
SHR and XPND4 instruction pairs. This can be useful for expanding a packed,
1-bit-per-pixel bitmap into full 8-bit pixels in imaging applications.

SPRU732J-July 2010

Instruction Set 505

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
XPND4 — Expand Bits to Packed 8-Bit Masks www.ti.com
Execution
if (cond) {
XPND4(src2 & 1) — byteO(dst);
XPNDA4(src2 & 2) — bytel(dst):
XPNDA4(src2 & 4) — byte2(dst);
XPNDA4(src2 & 8) — byte3(dst)
}
else nop
Pipeline
Pipeline Stage El E2
Read src2
Written dst
Unit in use M
Instruction Type Two-cycle
Delay Slots 1
See Also CMPEQ4, CMPGTU4, XPND2
Examples Example 1
XPND4 . ML A1, A2
Before instruction 2 cycles after instruction
Al |B174 6CA4h | 4 LSBs are 0100 Al |B174 6CA4h |
A2 | xox xocch | A2 |00 FF 00 00h |
Example 2
XPND4 . M2 B1, B2
Before instruction 2 cycles after instruction
B1 | 0000 000Ah | 4 LSBs are 1010 B1 | 000000 0Ah |
B2 |00 xoockh \ B2 | FF 00 FF 00h |
506 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com ZERO — Zero a Register
ZERO Zero a Register
Syntax ZERO (.unit) dst
or
ZERO (.unit) dst_o:dst_e
unit = .L1, .L2, .D1, .D2, .S1, .S2
Compatibility C62x, C64x, and C64x+ CPU
Opcode
Opcode map field used... For operand type... Unit Opfield
dst sint L1, L2 0010111
dst slong L1, L2 0110111
dst sint D1, .D2 01 0001
dst sint .81, .82 010111
Description This is a pseudo-operation used to fill the destination register or register pair with 0s.
When the destination is a single register, the assembler uses the MVK instruction to load
it with zeros: MVK (.unit) 0, dst (see MVK).
When the destination is a register pair, the assembler uses the SUB instruction (see
SUB) to subtract a value from itself and store the result in the destination pair.
Execution
if (cond) 0 — dst
else nop
or
if (cond) src — src — dst_o:dst_e
else nop
Instruction Type Single-cycle
Delay Slots 0
See Also MVK, SUB
Examples Example 1
ZERO . D1 Al
Before instruction 1 cycle after instruction
Al B174 6CAlh Al 0000 0000h
SPRU732J-July 2010 Instruction Set 507

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
ZERO — Zero a Register www.ti.com
Example 2
ZERO . L1 Al: AO
Before instruction 1 cycle after instruction
A0 |B174 6CAlh | A0 | 0000 0000h |
Al |12345678h | A1 | 0000 0000h |
508 Instruction Set SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

. Chapter 4
I, —{IE)S(’?IgUMENTS SPRU732J—July 2010

Pipeline

The C64x/C64x+ DSP pipeline provides flexibility to simplify programming and improve performance.
These two factors provide this flexibility:

1. Control of the pipeline is simplified by eliminating pipeline interlocks.

2. Increased pipelining eliminates traditional architectural bottlenecks in program fetch, data access, and
multiply operations. This provides single-cycle throughput.

This chapter starts with a description of the pipeline flow. Highlights are:

» The pipeline can dispatch eight parallel instructions every cycle.

» Parallel instructions proceed simultaneously through each pipeline phase.

» Serial instructions proceed through the pipeline with a fixed relative phase difference between
instructions.

* Load and store addresses appear on the CPU boundary during the same pipeline phase, eliminating
read-after-write memory conflicts.

All instructions require the same number of pipeline phases for fetch and decode, but require a varying
number of execute phases. This chapter contains a description of the number of execution phases for
each type of instruction.

Finally, this chapter contains performance considerations for the pipeline. These considerations include
the occurrence of fetch packets that contain multiple execute packets, execute packets that contain
multicycle NOPs, and memory considerations for the pipeline. For more information about fully optimizing
a program and taking full advantage of the pipeline, see the TMS320C6000 Programmer's Guide

(SPRU198).
Topic Page
4.1 Pipeline Operation OVEIVIEWuiuiuiueiieisiueeatinieeateeiseaeaeatinsneneatassnseaeasenanenenens 510
4.2 Pipeline Execution of INSTrUCtioN TYPES ...veiiiiiiieiii et eeeaens 518
4.3 Performance CoNSIAEratiONS ...uuiuiiieieieieiee ettt aeta e s aeanaaeaaearaeaaananennanns 527
O 0107 5 G B 1S I (= =Y o TP 531
SPRU732J-July 2010 Pipeline 509

Copyright © 2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spru198

13 TEXAS

INSTRUMENTS
Pipeline Operation Overview www.ti.com
4.1 Pipeline Operation Overview
The pipeline phases are divided into three stages:
* Fetch
» Decode
* Execute
All instructions in the C64x/C64x+ DSP instruction set flow through the fetch, decode, and execute stages
of the pipeline. The fetch stage of the pipeline has four phases for all instructions, and the decode stage
has two phases for all instructions. The execute stage of the pipeline requires a varying number of
phases, depending on the type of instruction. The stages of the C64x/C64x+ DSP pipeline are shown in
Figure 4-1.
Figure 4-1. Pipeline Stages
| | I T
Feltch Deciode I?xecutle
510 Pipeline SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Pipeline Operation Overview

41.1 Fetch

The fetch phases of the pipeline are:
* PG: Program address generate

* PS: Program address send

e PW: Program access ready wait
» PR: Program fetch packet receive

The C64x/C64x+ DSP uses a fetch packet (FP) of eight words. All eight of the words proceed through
fetch processing together, through the PG, PS, PW, and PR phases. Figure 4-2(a) shows the fetch
phases in sequential order from left to right. Figure 4-2(b) is a functional diagram of the flow of instructions
through the fetch phases. During the PG phase, the program address is generated in the CPU. In the PS
phase, the program address is sent to memory. In the PW phase, a memory read occurs. Finally, in the
PR phase, the fetch packet is received at the CPU. Figure 4-2(c) shows fetch packets flowing through the
phases of the fetch stage of the pipeline. In Figure 4-2(c), the first fetch packet (in PR) is made up of four
execute packets, and the second and third fetch packets (in PW and PS) contain two execute packets
each. The last fetch packet (in PG) contains a single execute packet of eight instructions.

Figure 4-2. Fetch Phases of the Pipeline
CPU

(a)| PG| Ps|Pw|PR| (b) Functional
units

PW

PR Memory
PS

PG

(c)
Fetch 256

[tow | Low | sHR | SHR [sMPYH|sMPYH| mv | NoP |pG

[tow | tbw [swPyH| smPy | sADD | saDD | B | MvK |ps

[tow | Low [mvkiH| mv [swPyH| swPy | B | MvK |pw

[tow | tow | mvk | ADD | sHL | tow | Low | mMvk |pR
1

Decode

SPRU732J-July 2010 Pipeline 511

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Pipeline Operation Overview www.ti.com

4.1.2 Decode

The decode phases of the pipeline are:
» DP: Instruction dispatch
» DC: Instruction decode

In the DP phase of the pipeline, the fetch packets are split into execute packets. Execute packets consist
of one instruction or from two to eight parallel instructions. During the DP phase, the instructions in an
execute packet are assigned to the appropriate functional units. In the DC phase, the source registers,
destination registers, and associated paths are decoded for the execution of the instructions in the
functional units.

Figure 4-3(a) shows the decode phases in sequential order from left to right. Figure 4-3(b) shows a fetch
packet that contains two execute packets as they are processed through the decode stage of the pipeline.
The last six instructions of the fetch packet (FP) are parallel and form an execute packet (EP). This EP is
in the dispatch phase (DP) of the decode stage. The arrows indicate each instruction's assigned functional
unit for execution during the same cycle. The NOP instruction in the eighth slot of the FP is not dispatched
to a functional unit because there is no execution associated with it.

The first two slots of the fetch packet (shaded below) represent an execute packet of two parallel
instructions that were dispatched on the previous cycle. This execute packet contains two MPY
instructions that are now in decode (DC) one cycle before execution. There are no instructions decoded
for the .L, .S, and .D functional units for the situation illustrated.

Figure 4-3. Decode Phases of the Pipeline

(@) DP | DC

(b) N

Decode 32 32 32 32 32 32 32 32
| | | ADD | ADD | STW | STW | ADDK | NOP® | DP

I | | | [MPYH | | | I | [MPYH | | | | | oC
Y Y Y Y Y Y Y Y
Functional
L1 .S1 M1 .D1 units .D2 M2 .S2 L2
A NOP is not dispatched to a functional unit.
512 Pipeline SPRU732J-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Pipeline Operation Overview

4.1.3 Execute

The execute portion of the pipeline is subdivided into five phases (E1-E5). Different types of instructions
require different numbers of these phases to complete their execution. These phases of the pipeline play
an important role in your understanding the device state at CPU cycle boundaries. The execution of

different types of instructions in the pipeline is described in Section 4.2. Figure 4-4(a) shows the execute

phases of the pipeline in sequential order from left to right. Figure 4-4(b) shows the portion of the
functional block diagram in which execution occurs.

Figure 4-4. Execute Phases of the Pipeline

(a) | E1|E2| E3| E4] E5|

(b)

Execute

E1

SADD B SMPY SMPY STH SMPYH SUB SADD
L1 S1 M1 M1 .D2 M2 .S2 L2

G-I T0TT00000 | e { JUEE- 99000

31302928 10

o[]

31302928 10 5 3210
Register file A 64 64 64 64 Register file B
ST1 LD1 LD2 ST2
82 DA1 DA1 32
Data address 1 [h 4 h 4 ! Data address 2
g | L1 Data cache control <

SPRU732J-July 2010 Pipeline 513

Copyright © 2010, Texas Instruments Incorporated

Pipeline Operation Overview

I

TEXAS

INSTRUMENTS

www.ti.com

4.1.4 Pipeline Operation Summary

Figure 4-5 shows all the phases in each stage of the pipeline in sequential order, from left to right.

<4— Fetch ——— >4 Decode P4¢— Execute ——»

Figure 4-5. Pipeline Phases

PG

PS

PW

PR

DP

DC

E1

E2

E3

E4

E5

Figure 4-6 shows an example of the pipeline flow of consecutive fetch packets that contain eight parallel
instructions. In this case, where the pipeline is full, all instructions in a fetch packet are in parallel and split
into one execute packet per fetch packet. The fetch packets flow in lockstep fashion through each phase
of the pipeline.

For example, examine cycle 7 in Figure 4-6. When the instructions from FPn reach E1, the instructions in
the execute packet from FP n +1 are being decoded. FP n + 2 is in dispatch while FPsn+ 3, n +4,n + 5,
and n + 6 are each in one of four phases of program fetch. See Section 4.3 for additional detail on code

flowing through the pipeline. Table 4-1 summarizes the pipeline phases and what happens in each phase.

Fetch packet
n
n+l
n+2
n+3
n+4
n+5
n+6
n+7
n+8
n+9

n+10

1
PG

Figure 4-6. Pipeline Operation: One Execute Packet per Fetch Packet

PS
PG

PW
PS
PG

PR
PW
PS
PG

DP

PW
PS
PG

DC
DP
PR
PW
PS
PG

Clock cycle

DC
DP

PW
PS
PG

E2
El
DC
DP
PR

PW

PS
PG

E3
E2
El
DC
DP

PW
PS
PG

10
E4
E3
E2
El
DC
DP
PR
PW
PS
PG

11
E5
E4
E3
E2
El
DC
DP
PR
PW
PS
PG

12

ES5
E4
E3
E2
El
DC
DP
PR
PW
PS

13

E5
E4
E3
E2
El
DC
DP
PR
PW

514 Pipeline

Copyright © 2010, Texas Instruments Incorporated

SPRU732J-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com Pipeline Operation Overview
Table 4-1. Operations Occurring During Pipeline Phases
Stage Phase Symbol During This Phase
Program Program address PG The address of the fetch packet is determined.
fetch generate
Program address send PS The address of the fetch packet is sent to memory.
Program wait PwW A program memory access is performed.
Program data receive PR The fetch packet is at the CPU boundary.
Program Dispatch DP The next execute packet in the fetch packet is determined and sent to the
decode appropriate functional units to be decoded.
Decode DC Instructions are decoded in functional units.
Execute Execute 1 El For all instruction types, the conditions for the instructions are evaluated and
operands are read.
For load and store instructions, address generation is performed and address
modifications are written to a register file.®
For branch instructions, branch fetch packet in PG phase is affected.®
For single-cycle instructions, results are written to a register file.®
Execute 2 E2 For load instructions, the address is sent to memory. For store instructions, the
address and data are sent to memory.®
Single-cycle instructions that saturate results set the SAT bit in the control
status register (CSR) if saturation occurs.®
For single 16 x 16 multiply instructions, results are written to a
register file.®
Fo