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ABSTRACT

This Neural-network Processing Unit Guide provides a comprehensive framework for deploying machine 
learning solutions on the F28P55x NPU, specifically designed for automotive and industrial applications. By 
leveraging this on-chip hardware accelerator, C2000™Ware customers can implement real-time inference for 
predictive maintenance, anomaly detection, sensor fusion, and advanced control systems while maintaining 
deterministic performance critical in these domains. Through a practical sine function approximation example, 
this guide walks engineers through the complete workflow—from architecture design to hardware validation
—highlighting the NPU's capabilities despite memory and computational constraints. The documentation 
addresses quantization techniques essential for effective NPU utilization, compilation procedures using TI's 
toolchain, and integration strategies within CCS projects. Automotive and industrial customers will gain the 
practical knowledge needed to develop efficient embedded ML applications that meet the strict timing, power, 
and reliability requirements of specialized environments.
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1 Introduction
1.1 NPU Definition and Purpose
The F28P55x Neural Processing Unit (NPU) is a dedicated hardware accelerator integrated within TI's C2000 
microcontroller architecture, specifically designed to execute neural network computations with high efficiency. 
This purpose-built silicon enables machine learning inference directly on the embedded device, eliminating the 
need for external processors or cloud connectivity. As an integral component of the C2000 ecosystem, the 
NPU works in concert with the main CPU, analog front-end, and control peripherals to enable sophisticated 
intelligence in real-time control systems. The NPU represents TI's commitment to bringing advanced machine 
learning capabilities to resource-constrained environments where deterministic performance remains paramount.

1.2 Key Capabilities
The F28P55x NPU delivers several critical capabilities that enhance C2000 applications:

• Accelerated Neural Network Inference: Hardware-optimized execution of neural network operations that 
significantly outperforms software implementations on the main CPU, with typical acceleration factors upto 
70x depending on the model architectures.

• Integer-Based Computation: Specialized for efficient fixed-point arithmetic operations, enabling power-
efficient inference processing optimized for embedded constraints.

• Real-Time Processing: Deterministic execution that maintains the predictable timing requirements essential 
for control systems in automotive and industrial applications.

• Peripheral Integration: Seamless operation with ADCs, DACs, and other C2000 peripherals enables complete 
signal processing and control workflows.

• Parallel Operation: Ability to perform neural network computations while the main CPU handles other tasks, 
maximizing system throughput.

• Automotive/Industrial Focus: Designed to meet stringent requirements for reliability, temperature range, and 
long-term availability needed in these demanding domains.

1.3 Technical Limitations
While powerful, the F28P55x NPU operates under several constraints that influence application design:

• Architectural Limitations: Neural Network topologies like CNNs and MLPs with ReLu activations are better 
supported compared to complex architectures such as LSTMs or Transformers.

• Precision Tradeoffs: Quantization necessary for NPU execution introduces precision loss compared to 
floating-point implementations, requiring careful training approaches to maintain accuracy.

• Development Workflow Complexity: Specific toolchain requirements for model compilation and deployment 
add additional development steps compared to standard microcontroller programming.

These capabilities and limitations frame the practical application space for the F28P55x NPU in automotive and 
industrial embedded systems, where balancing computational power with resource constraints is essential for 
successful implementation.

www.ti.com Introduction

SDAA185 – FEBRUARY 2026
Submit Document Feedback

Neural-Network Processing Unit (NPU) Guide 3

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA185
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA185&partnum=


2 Development Flow Overview
The development workflow for F28P55x NPU applications follows a structured process that bridges machine 
learning model development with embedded system deployment. This section provides a high-level overview of 
the complete development cycle, which is explored in greater detail throughout subsequent chapters.

2.1 Model Development Phase
The NPU development journey begins with model design and training specifically optimized for embedded 
deployment:

• Model Architecture Design: Create neural network architectures that balance application requirements with 
NPU hardware constraints, typically favoring smaller networks with optimized layer types.

• Dataset Preparation: Curate representative training data that covers the full operational range expected in 
deployment, with particular attention to input normalization strategies compatible with quantization.

• Quantization-Aware Training: Implement training procedures that incorporate quantization effects during the 
training process, enabling the model to learn parameters that perform well under the integer-only constraints 
of the NPU.

• Model Validation: Verify model performance using metrics relevant to the target application, evaluating both 
accuracy and computational efficiency within the quantized environment.

2.2 Model Compilation Phase
Once trained, models must be transformed into a format compatible with the F28P55x NPU:

• ONNX Export: Convert trained models to the Open Neural Network Exchange (ONNX) format, which serves 
as the interchange standard for the compilation toolchain.

• TI NPU Compiler Configuration: Define compilation parameters through configuration files that specify target 
device, optimization strategies, and I/O requirements.

• Compilation Execution: Process the ONNX model through TI's Neural Network Compiler (TI MCU NNC) to 
generate C/C++ artifacts compatible with the NPU hardware.

• Compilation Output Verification: Validate the generated header files and libraries to ensure proper 
conversion, especially for critical aspects like dequantization in regression tasks.

2.3 Application Integration Phase
The final phase integrates the compiled model into a complete embedded application:

• CCS Project Setup: Establish a Code Composer Studio project incorporating the generated model artifacts 
alongside application-specific code.

• Hardware Peripheral Configuration: Configure necessary peripherals (ADC, DAC, communications 
interfaces) to provide inputs to and process outputs from the neural network.

• Application Logic Implementation: Develop the main application logic that coordinates data flow between 
peripherals and the NPU, including proper scaling of inputs and outputs.

• Hardware Testing: Verify end-to-end functionality on actual F28P55x hardware under realistic operating 
conditions.

• Performance Optimization: Fine-tune the application for optimal balance between inference speed, accuracy, 
and power consumption.

• Deployment Packaging: Prepare the final firmware package for production deployment in automotive or 
industrial environments.
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3 Example Model Creation (Python)
This section demonstrates the practical application of NPU development principles through the creation of a 
sine function approximator. This example serves as a reference implementation that showcases the complete 
workflow from model design to deployment on the F28P55x NPU.

3.1 Model Selection Rationale
The sine function was deliberately chosen as a demonstration example for several compelling reasons:

• Mathematical Complexity: Despite the apparent simplicity, the sine function represents a non-linear 
mathematical relationship that requires neural network modeling capability beyond simple linear 
approximation.

• Bounded Output Range: With outputs constrained between -1 and +1, the sine function presents a well-
defined range suitable for quantization strategies.

• Visual Verification: While this example uses oscilloscope waveform visualization (ideal for the sine function), 
other applications would require different verification methods appropriate to their specific tasks, such as 
confusion matrices for classification, heatmaps for anomaly detection, or error distribution plots for other 
regression tasks appear in control systems, signal processing, and motion control applications common in 
automotive and industrial domains.

• Complete Pipeline Demonstration: The sine function allows demonstration of a complete analog-to-digital-to-
analog signal processing chain with the NPU as the central processing element.

3.2 Model Architecture Design
The sine function approximator implements a multilayer perceptron (MLP) with a deliberately constrained 
architecture for the F28P55x NPU:

SineApproximator(
  (regressor): Sequential (
    (0): Linear(in_features=1, out_features=64, bias=True)
    (1): ReLU(inplace=True)
    (2): Linear(in_features=64, out_features=64, bias=True)
    (3): ReLU(inplace=True)
    (4): Linear(in_features=64, out_features=1, bias=True)))

Code 1: Sine Approximator Backbone Architecture for Sine_64_Model 

This architecture incorporates several key design decisions specifically for NPU deployment:

• Input Layer: Single neuron input that accepts an angle value (mapped to 0-2π radians).
• Hidden Layers: Two hidden layers with 64 neurons each, chosen as a balance between accuracy and 

resource efficiency, though models with up to 128 neurons per layer can fit on the NPU.
• Activation Functions: ReLU activations selected for computational efficiency and quantization-friendly 

characteristics.
• Output Layer: Single neuron output that produces the predicted sine value (in range -1 to +1).
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Figure 3-1. Sine Approximator Backbone Architecture for Sine_64_Model

The model architecture is deliberately sized based on the F28P55x NPU's memory and computational 
capabilities. The key constraint is the total parameter count, not a specific limit on neurons per layer. Our 
architecture (with layers sized as 1×64, 64×64, and 64×1) results in 4,353 total parameters, which represents 
a balance between accuracy and resource utilization. While models with up to 128 neurons per layer can fit 
on the device, the 64-neuron configuration was selected based on accuracy and latency considerations. Larger 
networks without feature extractor (such as those using 512 or 1024 neurons per layer) exceed the NPU's 
available memory. Engineers need to focus on the total parameter budget when designing models for this 
platform. This resource-constrained model design approach is common across all edge AI implementations, 
where limited memory, processing power, and energy budgets necessitate careful optimization of neural network 
architectures to achieve the best possible performance within the available hardware constraints.

3.3 Training Details
The model training follows a structured approach:

3.3.1 Development Environment Setup

• Example Model Setup: 
– PyTorch® framework for neural network design and training.
– TINPUTinyMLQATFxModule wrapper for quantization-aware training (more information on quantization is 

given in Section 4).
– Supporting libraries for numerical computation and visualization.

• Generic User Setup: 
– Install TI's model optimization tools appropriate for your target hardware.
– Maintain compatibility between your chosen framework version and TI's compilation toolchain.

Example Model Creation (Python) www.ti.com
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– Set up a consistent environment using virtual environments (conda, venv) to avoid dependency conflicts.
– Include visualization libraries specific to your application domain (for example, signal plotting for sensors, 

image display for computer vision).

3.3.2 Dataset Generation

• Example Model Dataset Details: 
– Creation of 100,000 randomly generated angle values between 0 and 2π radians.
– Calculation of corresponding sine values as training targets.
– Train/test split with 80% training data and 20% validation data.

• Generic User Approach:
– Generate or collect data that spans your full input domain to maintain robust model performance.
– For sensor applications, capture data across all operating conditions and environmental variables.
– Balance your dataset to avoid bias in trained models (especially for classification tasks).
– Apply appropriate normalization based on the expected input range of your deployment scenario.
– Use stratified sampling for classification tasks to maintain class distribution in train/test splits.
– Consider adding controlled noise to training data to improve model robustness for real-world deployment.
– For time-series data, maintain proper sequence handling during dataset preparation.

3.3.3 Model Training Configuration

• Example Model Training Parameters:
– Batch size: 512 samples
– Learning rate: 1e-5 (deliberately small for stable convergence)
– Optimizer: Adam
– Loss function: Mean Squared Error (MSE)
– Training epochs: 160

• Generic User Training Flow:
– Adjust batch size based on your model complexity and available memory (smaller for memory-constrained 

environments).
– Select an appropriate learning rate based on your model size and convergence behavior.
– Choose optimizer based on your task requirements: 

• Adam for general-purpose training and fast convergence
• SGD with momentum for potentially better generalization in some cases
• RMSprop for recurrent neural networks

– Select loss function appropriate to your task:
• MSE for regression problems
• Cross-entropy for classification tasks
• Custom loss functions for specialized applications

– Implement learning rate scheduling to improve training stability and final model accuracy.
– Consider early stopping to prevent overfitting, especially with limited training data.
– Monitor both training and validation metrics to verify proper generalization.

3.3.4 Quantization-Aware Training Process

• Example Model Quantization Process:
– Initial model wrapped in TINPUTinyMLQATFxModule to simulate quantization effects.
– Forward passes include weight and activation quantization simulation.
– Gradients account for quantization effects during backpropagation.
– Regular validation to monitor quantized model performance.

model = TINPUTinyMLQATFxModule(
      model,
      total_epochs=(int)(MAX_EPOCH/10),
      output_int=False,
      quantization_weight_bitwidth=2)

Code 2: Wrap model with quantization wrapper for fine tunning 
• Generic User Quantization Flow:

– Select quantization approach:
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• QAT for higher accuracy (longer training)
• PTQ for faster development (potential accuracy tradeoff)

– Configure for target hardware:
• Use hardware-specific wrappers (for example, TINPUTinyMLQATFxModule)
• Set appropriate bit-width (2/4/8 bits) and precision parameters
• Set the number of epochs for finetuning

– Optimize training process:
• Train initially with floating-point, then fine-tune with quantization
• Benchmark against float baseline to assess accuracy impact

– Mitigate quantization issues:
• Monitor activation ranges to prevent clipping
• Maintain proper dequantization for regression outputs
• Use weight/activation histograms to identify distribution problems
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4 Quantization for Embedded Platform
Neural network quantization is the process of converting high-precision floating-point representations of weights 
and activations to lower-precision formats, typically integers. For the F28P55x NPU, this conversion is not 
merely an optimization but a fundamental requirement, as the hardware is designed specifically for integer-
based computation.

In the context of our sine function approximator, quantization translates the continuous mathematical relationship 
into a form that the NPU can efficiently process while preserving the essential characteristics of the sine wave.

4.1 Quantization Approaches: QAT versus PTQ
Two fundamental approaches exist for quantizing neural networks: Post-Training Quantization (PTQ) and 
Quantization-Aware Training (QAT). Understanding the differences between these approaches is crucial for 
selecting the appropriate strategy for F28P55x NPU deployment.

4.1.1 Post-Training Quantization (PTQ)

PTQ applies quantization to a model that has already been trained using floating-point precision. This approach 
offers simplicity but can sacrifice accuracy, particularly for smaller models or precision-sensitive tasks.

Key Characteristics: 

• Process: Train model normally → Calibrate quantization parameters → Convert to quantized format.
• Calibration: Uses a representative dataset to determine scaling factors.
• Development Speed: Faster development cycle (no retraining required).
• Accuracy Impact: Typically, higher accuracy loss compared to QAT.

Advantages: 

• Simpler workflow with existing trained models.
• No need to modify training procedures.
• Faster deployment path.
• Lower computational requirements for development.

Limitations:

• Can result in significant accuracy degradation.
• Less control over quantization effects.
• Particularly challenging for regression tasks like our sine function.
• Limited ability to compensate for quantization artifacts.

4.1.2 Quantization-Aware Training (QAT)

QAT incorporates quantization effects during the training process, allowing the network to learn parameters that 
perform best under quantized conditions. This approach generally preserves accuracy better but requires more 
development effort.

Key Characteristics: 

• Process: Initial training → Insert quantization operations → Continue training → Convert to quantized format.
• Simulation: Simulates quantization effects during both forward and backward passes.
• Development Speed: Longer development cycle (requires additional training).

Advantages: 

• Better preservation of model accuracy.
• Network learns to compensate for quantization effects.
• Particularly valuable for precision-sensitive applications.
• More predictable performance on quantized hardware.

Limitations: 

• More complex development workflow.
• Requires additional training computation.
• Longer time-to-deployment.
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• Requires careful hyperparameter tuning.

For our sine function approximator, we selected QAT due to the accuracy preservation in regression tasks, which 
was critical for maintaining the smooth sine wave characteristics across the entire input domain.

4.2 Quantization Frameworks and Wrapper Modules
The TI toolchain provides specialized wrapper modules that encapsulate different quantization approaches for 
various deployment targets. Understanding these wrappers is essential for selecting the appropriate quantization 
strategy for your application.

TI's quantization framework offers four distinct wrapper modules, created by combining two key dimensions:

• Target Hardware: 
– Generic: Optimized for CPU execution (standard integer operations)
– TINPU: Optimized specifically for TI's Neural Processing Unit hardware

• Quantization Approach:
– QAT (Quantization-Aware Training): Incorporates quantization effects during training
– PTQ (Post-Training Quantization): Applies quantization after training completes

This creates a matrix of four wrapper options:

Table 4-1. Quantization Wrappers
Target/Approach QAT PTQ
Generic CPU GenericTinyMLQATFxModule GenericTinyMLPTQFxModule

TI NPU TINPUTinyMLQATFxModule TINPUTinyMLPTQFxModule

4.2.1 Generic Wrappers for CPU Quantization

The Generic wrappers (GenericTinyMLQATFxModule and GenericTinyMLPTQFxModule) target CPU-based 
execution and utilize PyTorch's native quantization APIs:

from tinyml_torchmodelopt.quantization import GenericTinyMLQATFxModule
# or
from tinyml_torchmodelopt.quantization import GenericTinyMLPTQFxModule

Code 3: Generic Quantization APIs 

These wrappers are good for:

• Deployment on C2000/ARM MCUs without NPU acceleration.
• Testing quantization effects before NPU-specific optimization.
• Applications with less stringent performance requirements.
• Model prototyping and initial verification.

The Generic wrappers utilize standard PyTorch quantization APIs but simplify the application through a 
consistent interface that requires minimal code changes to existing models.

4.2.2 TINPU Wrappers for NPU Hardware Acceleration

The TINPU wrappers (TINPUTinyMLQATFxModule and TINPUTinyMLPTQFxModule) specifically target TI's 
Neural Processing Unit hardware accelerator:

from tinyml_torchmodelopt.quantization import TINPUTinyMLQATFxModule
# or
from tinyml_torchmodelopt.quantization import TINPUTinyMLPTQFxModule

Code 4: TI NPU Specific Quantization APIs 

These wrappers are essential for:

• Deployment on F28P55x and other TI devices with NPU acceleration.
• Maximizing performance on TI hardware.
• Applications requiring real-time inference.
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• Maintaining compatibility with NPU compilation tools.

The TINPU wrappers incorporate specific constraints of the TI NPU hardware, maintaining that models not only 
benefit from quantization in general but are specifically optimized for execution on the NPU architecture.
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5 Validating the Model
The sine function approximator model underwent a two-phase validation process specifically designed to 
optimize performance on the F28P55x NPU hardware. This section details the validation methodology, 
quantization-aware training approach, and the resulting performance metrics that demonstrate the model's 
effectiveness.

5.1 Two-Phase Training Strategy
The training process employed a deliberate two-phase approach to maximize performance on the quantization-
constrained NPU hardware:

5.1.1 Initial Training Phase

• Model trained with normal floating-point weights.
• Focus on learning the underlying mathematical sine function.
• Establishing fundamental pattern recognition capabilities.
• Building a strong foundation before quantization constraints.

5.1.2 Fine-Tuning Phase

• Model trained with F28P55x-specific quantized weights.
• Simulating the actual integer-only operations of the NPU.
• Optimizing weights specifically for quantized execution.
• Quant_epoch is normally set as max(5,float_epoch/10).

This strategic approach leverages the best of both worlds: initial training with full floating-point precision 
establishes robust feature extraction, while targeted fine-tuning with quantized weights optimizes performance 
specifically for the deployment hardware.

5.2 Training Phase Comparison
Table 5-1 compares the performance metrics from the last epoch of normal floating-point training with those from 
the final epoch after quantization-aware fine-tuning:

Table 5-1. Comparison of Metrics before and after Quantization Process
Metric Float Training metrics after 160 

epochs
QAT Fine-tuning metrics after 16 
epochs

Change (%)

Validation Loss 0.00181 0.00105 Improved by 42%

Validation MAE 0.02031 0.0215 Degraded by 6%

Validation R² Score 0.9963 0.9989 Improved by 0.26%

Standard floating-point models, despite exhibiting excellent performance in conventional environments, 
experience substantial accuracy degradation when constrained to the integer-only operations of the NPU. The 
QAT procedure simulates quantization effects throughout the training process, enabling the neural network 
to adapt parameters accordingly. This optimization verifies that when deployed to the F28P55x NPU, the 
model maintains computational integrity while leveraging the hardware's specialized neural network acceleration 
capabilities.

The observed improvements in Validation Loss (-42.0%) and R² Score (+0.26%) demonstrate that QAT can 
enhance specific performance metrics while simultaneously preparing the model for NPU deployment. The 
modest increase in MAE (+5.9%) illustrates the inherent trade-offs in the quantization process. These results 
validate the effectiveness of the quantization-aware training methodology for achieving optimal performance on 
resource constrained embedded hardware.

5.3 Validation Results and Metrics
The validation process employed a simple methodology to maintain objective performance assessment:

• Validation Dataset: 20% of the generated data held out from training.
• Multiple Metrics: Comprehensive assessment using complementary evaluation metrics.
• Quantization Simulation: Validation performed using the same quantization scheme as the target hardware.

Validating the Model www.ti.com

12 Neural-Network Processing Unit (NPU) Guide SDAA185 – FEBRUARY 2026
Submit Document Feedback

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA185
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA185&partnum=


The quantization-aware trained Sine_64 model achieved good performance metrics, as expected for a simple 
ML model, that validate its effectiveness for NPU deployment:

• Validation Loss is measure by Mean Squared Error (MSE). Mean Squared Error measures the average of 
squared differences between predicted values (ŷi) and actual values (yi). Lower values indicate better model 
performance.

MSE = 1/n∑0n yi − ŷi 2 (1)

• Mean Absolute Error measures the average absolute difference between predicted and actual values. Unlike 
MSE, this does not square the errors, which is less sensitive to outliers.

MAE = 1/n∑0n yi − ŷi (2)

• R² indicates how well the model explains the variance in the data compared to using the mean as a predictor. 
Values range from 0 to 1, with 1 representing perfect prediction. A validation R² score indicates the model 
explanation of variance of given data.

R2 = 1 − ∑0n yi − ŷi 2 / ∑0n yi − ȳ 2 (3)

Variables:

• yi = Actual (true) sine value for the ith sample
• ŷi = Predicted sine value from the neural network for the ith sample
• ȳ = Mean of all actual sine values in the validation dataset

Table 5-2. Training Validation Metrics
Metric Metric Significance
Validation Loss 0.00038 Extremely low mean squared error indicating high prediction accuracy

Validation MAE 0.01305 Mean absolute error of ~1.3% across the sine range (-1 to +1)

Validation R² Score 0.9993 Nearly perfect coefficient of determination, indicating the model explains 99.93% of the variance 
in sine values

These metrics demonstrate several key achievements:

• High Precision: Despite quantization constraints, the model achieves sub-percent accuracy.
• Consistent Performance: Strong R² score indicates reliable prediction across the entire input range.
• Quantization Resilience: Minimal performance degradation despite integer-only operations.
• Deployment Readiness: Metrics validate the model's suitability for NPU implementation.
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6 Testing the Model
After successful training and validation, comprehensive testing of the sine function approximator model is 
essential to verify performance in practical applications. This section details the testing methodologies, inference 
procedures, and results assessment techniques used to evaluate the model's readiness for NPU deployment.

6.1 Inference Setup and Methodology
Our sine function testing methodology uses a dedicated inference notebook with ONNX Runtime to validate the 
model before hardware deployment. The framework implements an encapsulated testing class providing a clean 
interface for predictions while maintaining consistent data handling.

The testing methodology follows a systematic approach:

• Model Loading: The ONNX model is loaded using the ONNX Runtime, providing access to the same model 
that eventually is compiled for the NPU.

• Input Preparation: Test points are generated across the entire input domain from 0 to 2π radians.
• Reference Comparison: Each prediction is compared against the actual mathematical sine function.

This testing approach verifies that the exported ONNX model, particularly the version with dequantization 
layers, correctly approximates the sine function across the entire range, serving as a critical quality gate before 
proceeding to hardware implementation.

6.1.1 Generic User Testing Approach

• Model Validation: Use appropriate frameworks to test your exported model.
• Representative Test Data: Create test datasets that reflect your deployment conditions and edge cases.
• Domain-Specific Metrics: Select evaluation metrics that match your application requirements:

– Classification: Accuracy, precision, recall, F1-score.
– Regression: MAE, MSE, R² score.
– Signal processing: SNR, cross-correlation, frequency response.
– Vision: IoU, mAP for object detection, SSIM for image quality.

• Performance Benchmarking: Measure inference speed, memory usage, and power consumption.
• Comparison Baselines: Benchmark against reference algorithms where applicable.
• Environmental Testing: For critical applications, test across temperature ranges, voltage variations, or other 

environmental factors.

This validation serves as a critical quality gate before proceeding to hardware implementation, maintaining that 
your quantized model meets application requirements before investing in hardware deployment.

6.2 Testing Results and Visual Analysis
6.2.1 Visual Performance Assessment

A key component of the testing process is the visual comparison between predicted and actual sine values. The 
notebook generates a comprehensive plot that overlays the model's predictions against the true sine function 
across the entire input domain.

This visualization immediately reveals the quality of the model's approximation. In the sine function example, the 
predicted curve closely follows the actual sine curve, with minimal visible deviation.

Figure 6-1. Neural Network Sine Function Approximation Performance in Python
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This graph, denoted in Figure 6-1, demonstrates the performance of the trained neural network in approximating 
the sine function across the full input domain. The blue line represents the true mathematical sine function, while 
the red line shows the predictions generated by the quantization-aware neural network model when ran as an 
ONNX file. This graph demonstrates the performance of the trained neural network in approximating the sine 
function across the full input domain.

6.3 Quantitative Performance Metrics
Beyond visual inspection, the testing framework calculates comprehensive error metrics to quantify prediction 
accuracy with precision. The model's performance can be precisely quantified through the following error metrics 
obtained during testing:

• Mean Absolute Error (MAE): 0.013827
• Maximum Error: 0.093750
• Minimum Error: 0.000126

These quantitative results complement the visual assessment provided by the graph, offering numerical 
confirmation of the model's excellent approximation capabilities despite the constraints of Quantized training. 
The combination of visual and numerical validation provides complete confidence in the model's performance 
prior to hardware implementation.
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7 Moving the Model to TI MCU (C2000 – F28P55x) [Beginner Level]
Deploying an ONNX model to the F28P55x can be accomplished through two distinct pathways, tailored to 
different user needs and expertise levels.

For those seeking a streamlined, efficient design, the beginner approach offers a simplified workflow with 
minimal configuration requirements. This method abstracts many technical complexities while delivering a 
functional implementation.

Users can follow Sections 1 and 2 of the TI Neural Network Compiler for MCUs User’s Guide - 2.1.0.LTS, which 
provide step-by-step instructions for obtaining the compiled library and header files necessary for deployment.
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8 Moving the Model to TI MCU (C2000 – F28P55x) [Developer Level]
The developer approach caters to engineers who require comprehensive control over the compilation process 
and deeper integration with existing systems. While more involved, this method provides complete visibility into 
each step of the deployment pipeline and allows for extensive customization of the compilation parameters. The 
following sections detail this workflow, empowering developers to optimize neural network implementations for 
specific application requirements.

This section details the complete workflow for transforming the mathematical model into hardware-compatible 
files that can be integrated into a Code Composer Studio project.

8.1 Compilation Prerequisites
Before initiating the model compilation process, several specialized tools and environments must be properly 
configured. This preparatory phase is critical for successful compilation and deployment.

8.1.1 Required TI Software Components

The compilation toolchain relies on several TI-specific repositories and tools:

• tinyml-modelmaker
– Purpose: Provides a consistent interface for model development and compilation.
– Function: Orchestrates the compilation workflow and integrates with other components.

• tinyml- modeloptimization
– Purpose: Model quantization and optimization toolkit.
– Function: Provides wrappers and tools for preparing models specifically for TI-NPU deployment.

• C2000Ware SDK
– Purpose: Platform-specific drivers, libraries and tools for C2000 microcontrollers.
– Function: Provides essential drivers and hardware abstraction for the F28P55x platform.

• tinyml-modelzoo

– Purpose: Provides a curated collection of neural network models optimized for embedded systems.
– Function: Necessary for model compilation via tinyml-modelmaker method.

8.1.2 Environment Setup Process

Setting up the compilation environment follows a structured approach:

• Clone Required Repositories: 
– git clone https://github.com/TexasInstruments/tinyml-tensorlab/tree/main/tinyml-modelmaker
– git clone https://github.com/TexasInstruments/tinyml-tensorlab/tree/main/tinyml-modeloptimization
– git clone https://github.com/TexasInstruments/tinyml-tensorlab/tree/main/tinyml-modelzoo
– Run Initialization Script:

• cd into tinyml-modelmaker repo
• Execute setup_all.sh which orchestrates the complete environment setup
• Execute setup_c2000ware.sh which configures the C2000Ware SDK
• Execute setup_cg_tools.sh which sets up TI Code Generation Tools

• Python Environment Setup: 
– A dedicated Python virtual environment is recommended to avoid dependency conflicts.
– Key Python packages required include:

• ONNX and ONNX Runtime
• TVM (TI MCU NNC) framework
• NumPy and related numerical libraries

8.2 Configuration File Setup
The compilation process is controlled by a config.yaml file that defines critical parameters for transforming 
the ONNX model into NPU-compatible code. This configuration approach provides flexibility while maintaining 
consistency in the compilation workflow.
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8.2.1 Configuration File Structure

A typical config.yaml file for compiling the sine function model includes the following key sections:

common:  # The common section can be plainly copied as it is
    target_module: 'timeseries'
    task_type: 'generic_timeseries_regression'
    target_device: 'F28P55'
    
dataset:
    dataset_name: Sine # Can be anything, used for directory name 
    enable: False      # Please note the 'False'. Since model is already trained. 
training:
enable: False  # Please note the 'False'. Since model is already trained.     model_name: 
'SineModel_1e-05_160_64_Dequant'   # Can be anything, used for  
                                                     directory name 
    output_int: False # We need the model to dequantize the values after 
                              running on NPU and return float value
compilation:
    enable: True
    model_path: "path//to//SineModel_1e-05_160_64_Dequant.onnx"

Code 5: Example Configuration File 

Each configuration section serves a specific purpose in guiding the compilation process:

• Common Settings: Define fundamental task type and target hardware.
– task_type identifies the machine learning task category.
– target_device activates F28P55x-specific optimizations.

• Dataset Settings: Control dataset processing behavior.
– Typically disabled when using pre-trained models.

• Training Settings: Configure training parameters.
– output_int: Setting this as False is critical for regression tasks to verify proper floating-point outputs.
– Training is typically disabled for pre-trained models.

• Compilation Settings: Control model transformation.
– enable: True activates the compilation phase.
– model_path specifies the location of the ONNX model with dequantization layers.

8.2.1.1 Models Requiring Dequantization Flag

The output_int: False setting is essential for:

• Regression Models: Any model predicting continuous values, such as:
– Time-series forecasting (temperature, pressure, voltage predictions)
– Control system modeling (PID coefficient estimation)
– Function approximation (like our sine example)
– Signal filtering applications
– Sensor calibration models

• Normalization-Heavy Models: Applications where output scaling is significant:
– Models with outputs normalized to specific ranges
– Sensor fusion algorithms with calibrated outputs
– Physical quantity estimation (force, torque, etc.)

• Multi-Output Models: When some outputs require floating-point precision:
– Combined classification/regression models
– Pose estimation (angles require floating-point)
– Coordinate regression (object localization)

Without this flag, these models produce quantized integer outputs unsuitable for applications requiring 
continuous value ranges or precise fractional outputs.

8.2.2 Special Configuration for Regression Models

Regression tasks like sine function approximation require special handling to maintain proper dequantization of 
the integer-only NPU outputs back to floating-point values.
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8.2.2.1 Output Dequantization Flag

• The output_int: False setting is mandatory for regression tasks.
• This instructs the compiler to preserve dequantization operations in the generated code.
• Without this flag, the model produces integer outputs unsuitable for sine approximation.

8.2.2.2 Compiler Constants Modification

In addition to the configuration file, the compiler requires modification to support floating-point outputs.

• Locate and open tinyml-modelmaker/ai_modules/timeseries/constant.py.
• Scroll through the file until you find the COMPILATION_C28_HARD_TINPU dictionary:

COMPILATION_C28_HARD_TINPU= dict(
      target= "c, ti-npu type=hard skip_normalize=true output_int=true",
      target_c_mcpu='c28',
      cross_compiler=CL2000_CROSS_COMPILER,
)

Code 6: Reference Constant for Non- Regression Models 

• This existing constant is configured for classification tasks, where:
– type=hard specifies hardware NPU acceleration (versus CPU)
– skip_normalize=true bypasses normalization/scaling
– output_int=true forces integer outputs

• Create a new constant named COMPILATION_C28_HARD_TINPU_TEMP by duplicating the existing one 
with critical modifications:

COMPILATION_C28_HARD_TINPU_TEMP = dict(
      target= "c, ti-npu type=hard skip_normalize=false output_int=false",
      target_c_mcpu='c28',
      cross_compiler=CL2000_CROSS_COMPILER,
)

Code 7: Extra Constant added to handle Regression Models 

• The following parameters are modified to accommodate a Regression Model:

• type=hard:
– Kept unchanged. This directs compilation to target the NPU hardware accelerator, rather than soft which 

would use the CPU for neural network calculations.
• skip_normalize=false:

– The example application didn't need normalization since it is a simple model created as a demo.
• output_int=false:

– The compiler produces floating-point outputs rather than integers.
– Preserves decimal precision essential for regression tasks.
– Allows representing the full continuous range of values.

• target_c_mcpu='c28': Kept unchanged - Specifies generation of code for the C28x architecture.
• cross_compiler=CL2000_CROSS_COMPILER: Kept unchanged. Defines which compiler toolchain to use.

8.2.2.3 Compilation Dictionary Update

The default compilation dictionary must be modified to use the custom constants:

• Change the constant being used- COMPILATION_C28_HARD_TINPU to 
COMPILATION_C28_HARD_TINPU_TEMP.

TASK_TYPE_GENERIC_TS_REGRESSION: {
      COMPILATION_DEFAULT: dict(
-  compilation=dict(**COMPILATION_C28_HARD_TINPU,      
   cross_compiler_options=CROSS_COMPILER_OPTIONS_F28P55, )
+  compilation=dict(**COMPILATION_C28_HARD_TINPU_TEMP,     
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   cross_compiler_options=CROSS_COMPILER_OPTIONS_F28P55, )
 ),

Code 8: Changes made to accommodate regression models 

8.3 Compilation Process Flow
The transformation of an ONNX model into F28P55x NPU-compatible code involves a multi-stage process 
executed by the TI MCU Neural Network Compiler (TI MCU NNC). This section details the step-by-step 
compilation workflow and internal transformations.

8.3.1 Launching the Compilation

Once the configuration file is properly set up, compilation is initiated using the TinyML modelmaker script:

cd tinyml-modelzoo
/<path/to/run_tinyml_modelzoo.sh> <path/to/config_file>

Code 9: Command to compile ONNX file to embedded compatible file 

For the sine function example, the command is:

./run_tinyml_modelzoo.sh   ./config.yaml

Code 10: Example command to trigger compilation 

This command triggers the complete compilation pipeline that transforms the ONNX model into C/C++ code 
optimized for the F28P55x NPU.

8.3.2 Compilation Phases

The compiler processes the model through three main phases:

• Model Validation
– The compiler checks if the ONNX model can run on the NPU.
– Confirms all operations are supported (like the linear layers and ReLU in our sine model).
– Verifies the model fits within the NPU memory limits.

• Model Transformation
– Converts the ONNX model into a format optimized for the NPU.
– Applies quantization parameters for integer-based computation.
– For regression models like our sine approximator, preserves dequantization information.

• Code Generation
– Creates C/C++ code that can run on the F28P55x
– Generates two main files:

• Header file (tvmgen_default.h) with function declarations
• Library file (mod.a) containing the compiled model

8.3.3 Common Issues to Watch For

While the compiler handles most of the complexity, watch for these common messages:

• Unsupported operation: Your model contains an operation the NPU can't run.
• Memory constraint exceeded: Your model is too large for the edge device.
• Dequantization error: For regression models, output dequantization may need attention.
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9 Setting up the MCU Project
After successfully compiling the neural network model into NPU-compatible files, the next critical phase 
involves integrating these components into a Code Composer Studio (CCS) project for execution on the 
F28P55x microcontroller. This section guides engineers through establishing the project structure, configuring 
the development environment, and implementing the application framework necessary to leverage the NPU's 
capabilities.

9.1 Creating a CCS Project for NPU Applications
• Step 1: Open CCS, click on File and Import Projects.

• Step 2: Import the empty_project from C2000Ware SDK.

• Step 3: Open the f28p55x_generic_flash_lnk.cmd file in the imported project
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• Step 4: Add .rodata.tvm section in FLASH, and place the .bss.noinit.tvm section in global shared SRAM so 
that hardware NPU can access it. For example, RAMGS0, RAMGS1, RAMGS2, or RAMGS3 on an F28P55x 
MCU device.

• Step 5: Create a folder within the project called artifacts and place the compiled library and header file in the 
folder.

• Step 6: Include the header file in the application and proceed to write an application that uses the ML model 
running on the NPU. Use the NPU interface detailed in the next section.
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9.2 Understanding the NPU Interface
The header file (tvmgen_default.h) provides critical structures and functions that serve as the interface between 
your application and the NPU. Understanding these components is essential for successful neural network 
integration.

9.2.1 Key Interface Components

The header file defines several essential elements:

• Input and Output Structures: These structures provide the mechanism to pass data to and from the neural 
network.

struct tvmgen_default_inputs {
    void* input;  // Points to input data (float for sine case)
};
struct tvmgen_default_outputs {
    void* output;  // Points to output buffer for results
};

Code 11: Input and Output structures generated during the compilation process 

• Initialization Function: This function must be called once at application startup to configure the NPU 
hardware.

void TI_NPU_init();

Code 12: NPU initialization API 
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• Execution Function: This function triggers neural network execution on the NPU.

  int32_t tvmgen_default_run(
    struct tvmgen_default_inputs* inputs,
    struct tvmgen_default_outputs* outputs
);

Code 13: API to trigger NPU 

• Completion Flag: This flag indicates when neural network processing is complete.

extern volatile uint8_t tvmgen_default_finished;

Code 14: Flag to denote end of NPU processing 

9.2.2 Basic Usage Pattern

The typical workflow for using the NPU involves:

• One-time Initialization: Call TI_NPU_init() during system startup.
• Input Preparation: Create and populate the input structure with pointers to your data.
• Output Allocation: Create the output structure with pointers to variables that receive results.
• Model Execution: Call tvmgen_default_run() with the input and output structures.
• Completion Monitoring: Monitor the tvmgen_default_finished flag to determine when processing is complete.
• Result Utilization: Once the completion flag is set, the output data is ready for use in your application.
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10 Testing the Model in the Embedded Environment
After successful training and model conversion, comprehensive testing of the sine function approximator directly 
on the F28P55x microcontroller is essential to verify performance in the actual deployment environment. This 
section details the testing methodology and results obtained from running the neural network model on the target 
hardware.

10.1 Visual Performance Assessment
A critical component of the testing process is the visual comparison between predicted and actual sine values. 
The CCS graphing tool was used to plot both the neural network predictions and the true sine function across 
the entire input domain.

Figure 10-1 presents the visual comparison between the NPU-generated sine approximation and the true sine 
function values:

Figure 10-1. Neural Network Sine Function Approximation Performance on F28p55x

The visualization demonstrates several key aspects of the model's performance on the actual hardware:

• Consistent Performance: The model maintains high accuracy throughout the entire waveform, including at 
critical points such as extrema (peaks and troughs) and zero-crossings.

• Smooth Transitions: Despite the quantized nature of the NPU's computations, the approximation maintains 
smooth transitions throughout the curve, with no visible discontinuities or artifacts.

• Complete Cycle Coverage: The test evaluates a complete cycle of the sine function from 0 to 360 degrees, 
confirming consistent performance across all phases of the waveform.

The visual results provide compelling evidence that the model successfully transfers from training to the 
F28P55x hardware with minimal degradation in accuracy. The nearly indistinguishable overlay of predicted and 
actual values demonstrates the effectiveness of the quantization-aware training approach in preserving model 
fidelity through the compilation process.

10.2 Quantitative Performance Metrics
Beyond visual inspection, comprehensive quantitative metrics were calculated to provide objective assessment 
of the model's performance on the F28P55x NPU hardware. The quantitative evaluation generated the following 
key performance metrics:

• Mean Absolute Error (MAE): 0.01214
• Maximum Error: 0.0973
• Latency (ms): 0.214
• R2 Score: 0.9997
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These metrics provide a comprehensive evaluation of both accuracy and performance. The error metrics 
quantify the precision of the model's approximation, while the timing measurements demonstrate the efficiency of 
the NPU hardware compared to software-based execution on the main CPU. This combination of accuracy and 
speed enables real-time applications with stringent timing and precision requirements common in automotive 
and industrial control systems.
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11 NPU Integration in a Real-Time Signal Chain
While initial model validation using pre-defined datasets provides valuable insights into neural network 
performance, the true test of an NPU application lies in the ability to process real-time data. This section 
explores the implementation of a complete real-time signal processing chain that transforms live analog inputs 
into meaningful outputs through neural network inference on the F28P55x NPU.

11.1 Application Block Diagram
Figure 11-1 presents a comprehensive diagram of the simulation environment created for validating the Neural 
Processing Unit (NPU) implementation on the F28P55x microcontroller. This architectural diagram illustrates the 
complete signal flow from generation through processing to visualization, demonstrating how the neural network 
model transforms a sawtooth wave into a sine wave in real-time.

• Signal Generation: The leftmost section shows the CMPSS module configured as a DAC, generating a 
sawtooth waveform with an amplitude range of 0-360 units. This waveform, visually represented by the 
zigzag pattern in the box above, serves as the input stimulus for the system.

• Signal Acquisition: The sawtooth wave feeds into an ADC (Analog-to-Digital Converter) block, which digitizes 
the analog signal. The output maintains the same numerical range (0-360) but is now in the digital domain.

• Neural Network Processing: The central portion of the diagram shows the F28P55x microcontroller containing 
the NPU and the sine model. The input value (labeled as 'x') is passed to the sine model, which computes the 
corresponding sine value.

• Output Generation: The neural network output, ranging from -1 to 1 (the natural range of sine values), is 
directed to a second DAC for conversion back to the analog domain.

• Visualization: The rightmost section shows the final output being displayed on an oscilloscope, revealing a 
smooth sine wave pattern that visually confirms the successful transformation from sawtooth to sinusoidal 
waveform.

Figure 11-1. Flow of data on application side

11.2 Application Code Implementation
The following code demonstrates how to implement the complete signal processing pipeline, integrating the 
CMPSS, ADC, NPU, and DAC components to transform a sawtooth wave into a sine wave using the neural 
network model:

while(1){
   for(i = 0; i < MAX_ADC_VALUE; i++)
   {
      // Set the CMPSS low DAC value to generate sawtooth waveform
      CMPSS_setDACValueLow(CMPSS1_BASE, i);
      // Trigger ADC conversion to read back the analog signal
      ADC_forceSOC(myADC0_BASE, myADC0_SOC0);
      // Read the result from the ADC
      adcResult = ADC_readResult(myADC0_RESULT_BASE, myADC0_SOC0);
      // Scale ADC value to phase angle in range [0, 2π)
      input = (float)adcResult * (2.0f * M_PI / (MAX_ADC_VALUE + 1));
      // Prepare input/output structures for the neural network
      struct tvmgen_default_inputs inputs = { (void*)input_arr };
      struct tvmgen_default_outputs outputs = { output_arr };
      // Execute the neural network model to predict sine value
      tvmgen_default_run(&inputs, &outputs);
      // For NPU mode, wait until the neural network processing is complete
      #if defined(TVMGEN_DEFAULT_TI_NPU)
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         while (!tvmgen_default_finished);
      #endif
      // Scale the sine output from [-1, 1] to DAC range [0, 4095]
      dacValue = (uint16_t)((output + 1.0f) * (MAX_DAC_VALUE / 2.0f));
      // Output the predicted sine wave to the DAC
      DAC_setShadowValue(myDAC0_BASE, dacValue);
      // Delay to control the wave frequency
      DEVICE_DELAY_US(WAVE_DELAY_US);  // Delay between samples
   }
}

Code 15: Main Application Code for Real-Time Neural Network-Based Sine Wave Generation on F28P55x 

11.3 Hardware Components Utilized
The simulation environment leverages several key hardware components of the F28P55x platform:

• CMPSS DAC (Comparator Subsystem): Although typically used for comparator functions, this block 
is repurposed as a signal generator. The CMPSS modules include internal 12-bit DACs that are 
programmatically incremented to create the sawtooth pattern. This approach demonstrates the flexibility of 
the F28P55x peripherals for test signal generation without requiring external hardware.

• ADC Module: The F28P55x's integrated 12-bit Analog-to-Digital Converter samples the generated waveform. 
In real-world applications, this typically connects to external sensors or signal sources, but in this simulation 
environment, it samples the internally generated waveform to create a complete signal path.

• NPU Hardware Accelerator: The dedicated Neural Processing Unit within the F28P55x executes the sine 
model computations with higher performance and efficiency than is possible using the main CPU alone. The 
diagram shows how the NPU is integrated into the processing chain, receiving digital inputs and producing 
computed outputs. 'Sine Model' represents the neural network model that has been trained, compiled, and 
deployed to the NPU. The model contains the weights and structure necessary to transform input values to 
corresponding sine values.

• Buffered DAC: A separate DAC channel converts the neural network's floating-point outputs back to analog 
signals for observation. This DAC differs from the CMPSS DAC in the typical usage pattern and in 
performance characteristics.

11.4 Hardware Validation Results
The oscilloscope capture shown in Figure 11-2 provides definitive validation of the entire NPU application, 
demonstrating the successful real-time transformation from sawtooth to sine wave through neural network 
inference on the F28P55x platform.

Figure 11-2. Application Validation on Oscilloscope

11.4.1 Input Signal Characteristics

The top trace (Channel 0) displays the sawtooth waveform generated by the CMPSS DAC:
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• Clean, linear ramps from 0V to 3.3V with sharp resets.
• Consistent period and amplitude across all cycles, indicating stable signal generation.
• The sharp transitions at the reset points provide challenging test conditions for the neural network, as these 

represent discontinuities in the input function.

This linear ramp input serves as the ideal test signal, as it systematically sweeps through the entire input domain 
of the neural network in each cycle, providing comprehensive coverage of the model's operational range.

11.4.2 Neural Network Output Analysis

The bottom trace (Channel 1) shows the sine waveform produced by the neural network and output through the 
DAC:

• Smooth sinusoidal waveform with amplitude ranging from 0V to 3.3V.
• Consistent amplitude and frequency across all visible cycles.
• Minimal distortion at the peaks and troughs, indicating excellent approximation at critical points.
• Proper phase relationship with the input sawtooth wave, with each sawtooth cycle corresponding to exactly 

one sine cycle.

• Slight visible imperfections at some zero-crossing is due to linearity constraints of CMP1_DACL effectively 
using only a 10-bit accurate source.

The quality of the sine output is remarkable, displaying smooth transitions and well-formed waveforms that 
closely match the theoretical sine function. The consistency across multiple cycles demonstrates that the neural 
network is producing reliable, repeatable results in continuous operation.
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12 Key Design Decisions and Impact
12.1 NPU Handling of Numbers
The f28p55x NPU is fundamentally designed for integer-based processing, which presents challenges when 
working with both negative values and floating-point data. However, with appropriate modifications to the neural 
network architecture and compilation process, the NPU can effectively handle these data types. This document 
provides comprehensive designs for addressing these limitations.

12.1.1 Integer-Only Architecture

• The NPU hardware is optimized exclusively for integer arithmetic operations.
• Native support exists only for unsigned integer calculations.
• This core design choice maximizes processing efficiency for embedded applications but requires special 

handling for other data types.

12.1.2 Working with Negative and Floating-Point Values

• Quantization Process: Both negative values and floating-point data require quantization to map them to the 
NPU's integer representation

• Automatic Conversion Layers: The compilation process automatically inserts quantization layers for inputs 
and dequantization layers for outputs

• Configuration Requirements: The compilation pipeline must be explicitly configured to preserve the full range 
of values:

output_int: False  # Enables float output from integer NPU processing

Code 16: Flag to enable dequantized float output 
• Special Compiler Flags: For applications requiring floating-point or negative outputs (like our sine function), 

additional compilation flags are needed:

skip_normalize=false output_int=false

Code 17: Flag to disable normalization 
• Processing Overhead: The additional quantization/dequantization layers add minor computational overhead.

12.2 Supported Neural Network Layers and Constraints
The F28p55x NPU supports a specific set of neural network layer types with particular constraints. 
Understanding these capabilities is essential for designing models that can be successfully compiled and 
deployed on this hardware.

12.2.1 Supported Layer Types
12.2.1.1 Convolution Layers

• First Convolution (FCONV): Supports single-channel input feature maps (not depth-wise, not point-wise).
• Generic Convolution (GCONV): Handles multi-channel inputs in multiples of 4 (not depth-wise, not point-

wise).
• Depth-Wise Convolution (DWCONV): Applies filters to individual input channels.
• Point-Wise Convolution (PWCONV): Implements 1×1 convolution for channel-wise mixing.
• Point-Wise Convolution with Residual (PWCONVRES): Includes skip connections for residual learning.
• Transposed Convolution (TCONV): Supports upsampling operations.

12.2.1.2 Other Core Layers

• Fully-Connected (FC): Supports dense/linear operations.
• Average Pooling (AVGPOOL): Downsamples using averaging.
• Max Pooling (MAXPOOL): Downsamples by selecting maximum values.

12.2.1.3 Flexibilities

• Input, output, and residual tensor data (feature maps) are 8-bit integers, signed or unsigned.
• Weights can be 2, 4, or 8-bit and are always signed.
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• Further combinations of 4-bit data and 4-bit weights will be supported in the future.
• Only a batch size of 1 is supported for inference.
• The number of groups in the convolution layers is always 1, except for the DWCONV layer. Grouped 

convolution will be supported in the future.
• The number of input/output channels should be a multiple of 4, except for FCONV input.
• The TCONV layer's strides must be the same as the kernel size.
• There is no limit on the number of layers in the model.
• A layer's input can have different sign-ness and bit-width than the layer's output.
• Layers can have mixed precision, for example, one layer may use 8-bit weights, while another layer uses 

2-bit weights.

12.3 Model Complexity and Size Limitations
The experimentation revealed significant constraints on model complexity when targeting the f28p55x NPU. 
Understanding these limitations is essential for developing effective neural network applications on this platform.

12.3.1 Memory Constraints and Model Size

• PC versus Embedded Development: Our initial models with 1024 and 512 neurons per layer were 2.5-4.2MB 
in size. While these models ran successfully on PC, the models completely failed to fit on the F28p55x.

• Successful Architecture: We ultimately settled on a much smaller model with 64 neurons per hidden layer as 
the best balance between accuracy and performance:
– Input layer: 1×64 weights + 64 bias = 128 parameters
– Hidden layer: 64×64 weights + 64 bias = 4,160 parameters
– Output layer: 64×1 weights + 1 bias = 65 parameters
– Total: 4,353 parameters (dramatically smaller than larger architectures)

• Physical Constraints: As with all edge computing devices, the F28P55x is constrained by limited on-chip 
resources, making model size optimization a critical consideration when developing neural network designs 
for this platform.

12.3.2 Optimization Process and Performance Trade-offs

• Progressive Size Reduction: We systematically tested different model sizes and found that while models with 
up to 128 neurons per layer can fit on the device, the 64-neuron configuration emerged as the best balance 
point for accuracy and latency.

• Memory versus. Accuracy: Memory constraints became our primary design consideration, forcing us to work 
backward from hardware limitations rather than forward from accuracy goals.

• Implementation Considerations: The final model not only fit on the device but also:
– Compiled reliably with the NPU toolchain
– Maintained adequate precision for sine wave approximation
– Delivered consistent inference times below 1ms
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13 Benchmarks
To quantify the performance trade-offs involved in deploying neural networks on the f28p55x NPU, we conducted 
comprehensive benchmarking across different model configurations, deployment platforms, and optimization 
approaches. These benchmarks provide valuable insights into the practical considerations when selecting model 
architectures for embedded applications.

13.1 Model Performance Comparison
The performance evaluation employs the following key metrics:

• Latency (ms): The time required to process a single inference, measured in milliseconds. Lower values 
indicate faster response times critical for real-time applications.

• Throughput (samples/sec): The number of inferences that can be processed per second. Higher values 
indicate better processing capacity, particularly important for streaming data applications.

• Mean Absolute Error (MAE): The average of the absolute differences between predictions and actual values. 
Lower values indicate higher prediction accuracy.

• R² Score: Coefficient of determination, measuring how well the model fits the data. Values closer to 1.0 
indicate better predictive performance, with 1.0 representing perfect prediction.

• Maximum Error: The largest absolute difference between any prediction and the corresponding actual value. 
Lower values indicate better worst-case performance.

Three model variants were evaluated for each neuron configuration:

• Reference Python Model: Standard implementation that can only run on PC.
• Quantization-Aware ONNX Model: Trained with quantization awareness and validated as ONNX on PC.
• Deployed f28p55x Model: The ONNX model compiled and deployed on the f28p55x hardware.

13.1.1 128 - Neuron Model

Table 13-1. Benchmark for Sine_128_Model
Metrics F28p55x CPU F28p55x NPU
Latency [ms] 1.012 0.7116

Samples/sec 987 1405

MAE 0.0015 0.0097

R2 Score 0.9999 0.9996

Max Error 0.01583 0.04407

13.1.2 64 - Neuron Model

Table 13-2. Benchmark for Sine_64_Model
Metric F28p55x CPU F28p55x NPU
Latency [ms] 0.2706 0.2146

Samples/sec 3695 4659

MAE 0.017525 0.012144

R2 Score 0.997 0.9993

Max Error 0.19085 0.0979

13.1.3 16 - Neuron Model

Table 13-3. Benchmark for Sine_16_Model
Metric F28p55x CPU F28p55x NPU
Latency [ms] 0.0223 0.0252

Samples/sec 44643 39557

MAE 0.1588 0.02029

R2 Score 0.88812 0.8451

Max Error 0.86379 0.9618
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13.1.4 Reference Benchmark

For comparison, a large-scale reference model was tested on PC to establish an accuracy baseline:

Table 13-4. Benchmark for 1024 Neuron Model (Reference Model)
Metric Reference Python Model (1024 Neurons)
Latency [ms] 0.149

Samples/sec 7188

MAE 0.002171

R2 Score 1

Max Error 0.0054

This reference model achieved near-perfect accuracy but exceeded the f28p55x's memory capacity by a 
significant margin (3.5-4.2MB).

13.2 Performance Analysis
The performance evaluation employs several key metrics to quantify model performance across different 
configurations:

13.2.1 Model Selection Trade-offs

The 128-neuron model represents the highest accuracy configuration for this application. This model achieves 
impressive precision with an R² score of 0.9996 and a mean absolute error (MAE) of only 0.0097 when running 
on the NPU. However, this accuracy comes at a significant cost in terms of processing speed, with latency of 
0.7116ms and throughput of only 1,405 samples/sec.

The 64-neuron model balances accuracy with hardware constraints. This model maintains excellent accuracy 
(R²>0.99) while significantly improving processing speed. When running on the NPU, the 64-neuron model 
delivers 4,659 samples/sec—more than three times the throughput of the 128-neuron configuration—with only a 
minimal reduction in prediction quality.

Smaller models offer dramatically improved throughput but at substantial accuracy cost. The 16-neuron model 
executes at 39,557 samples/sec on the NPU—28 times faster than the 128-neuron model—but the R² score 
drops to 0.8451, representing a significant decline in prediction quality that is unacceptable for many precision-
critical applications.

13.2.2 CPU versus NPU Performance

The comparison between CPU and NPU execution reveals important insights that should guide implementation 
decisions:

NPU Advantages for Complex Models: For larger models, the NPU delivers significant performance 
improvements. The 128-neuron model runs 29.7% faster on the NPU than on the CPU (0.7116ms vs 1.012ms 
latency), while the 64-neuron model shows a 20.7% latency reduction. This advantage stems from the NPU's 
specialized architecture for parallel neural network computations.

CPU Advantage for Simple Models: Interestingly, for very small models like the 16-neuron configuration, the 
CPU actually outperforms the NPU. The CPU achieves 44,643 samples/sec compared to the NPU's 39,557 
samples/sec—a 12.9% performance advantage. This counterintuitive result stems from the overhead associated 
with transferring data to and from the NPU. For the 16-neuron model, the computational workload is so minimal 
that the CPU can process it directly within its native execution environment, avoiding multiple data transfer 
steps. With such a small model, the CPU completes the entire inference in a single execution context without 
the memory transfer penalties that the NPU incurs. Every NPU inference requires setting up DMA transfers, 
configuring the accelerator, waiting for completion, and retrieving results—operations that collectively consume 
more time than the actual neural network computation for this lightweight model. Essentially, when the model is 
this small, the "cost" of using the specialized hardware exceeds its computational benefit.
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13.3 Pipeline Stage Timing Measurements
The timing for each stage of the signal processing pipeline was measured using hardware timers on the 
F28P55x. Measurements were conducted with precise instrumentation to understand the contribution of each 
component to overall system latency.

Table 13-5. Pipeline Stage Timing for Different Components
Pipeline Stage Timing (ms)
Software Write Delay for CMPSS DAC Module 0.0006

Hardware Delay for ADC Conversion 0.00084

NPU Processing (64-neuron model) 0.21

Software Write Delay for Buffer DAC 0.000593

Total Pipeline Latency 0.212

These precise measurements reveal that:

• Peripheral Operations: The CMPSS module, ADC conversion, and DAC output operations are extremely fast, 
each taking less than one microsecond.

• NPU Dominance: The neural network inference time completely dominates the pipeline, accounting for 
99.04% of the total latency. With the 64-neuron model, the NPU processing time is approximately 210 times 
longer than all other pipeline components combined.

• Fixed Costs: The combined time for all peripheral operations (CMPSS, ADC, DAC) is just 0.002033ms, 
representing less than 1% of the total pipeline latency.
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14 Summary
The F28P55x Neural Processing Unit (NPU) represents a significant advancement in embedded machine 
learning capabilities for automotive and industrial applications, enabling on-device inference without 
compromising the deterministic performance essential in these domains. This guide has provided a 
comprehensive exploration of the NPU's capabilities, constraints, and implementation methodology through a 
practical sine function approximation example.

14.1 Key Capabilities and Constraints
The NPU delivers hardware-accelerated neural network execution that significantly outperforms software 
implementations on the main CPU, with performance improvements of 20-30% for larger models. This integer- 
based computation engine enables real-time processing with deterministic execution while maintaining seamless 
integration with other C2000 peripherals.

However, these capabilities come with important constraints, including limited memory that restricts model 
complexity, architectural preferences for specific network topologies, and precision tradeoffs introduced by 
quantization. Our benchmarking revealed that while the NPU excels with larger models, very small neural 
networks

Smaller model such as the 16 neurons model can actually run more efficiently on the CPU due to the overhead 
of data transfers to and from the NPU.

14.2 Development Workflow
The implementation process follows a structured workflow encompassing model development, compilation, 
and application integration. The methodology begins with quantization-aware training that prepares models for 
the NPU's integer-only processing, followed by compilation through TI's Neural Network Compiler to generate 
hardware-compatible artifacts. These components are then integrated into a CCS project with appropriate 
peripheral configuration to create a complete signal processing pipeline.

14.3 Model Design Considerations
Through systematic experimentation, this guide has demonstrated that successful NPU implementations require 
careful architecture design that balances accuracy requirements with hardware constraints. The sine function 
example revealed critical insights about model sizing:

• The optimal 64-neuron architecture achieved excellent accuracy (R² > 0.99) while fitting within memory 
constraints.

• Larger models (128 neurons) offered marginally better accuracy at the cost of significantly reduced 
throughput, while still benefiting from NPU acceleration compared to CPU execution.

• Smaller models (8-16 neurons) provided higher throughput but at significant accuracy cost.

14.4 Implementation Challenges and Solutions
This guide addressed several practical challenges encountered during NPU implementation:

• Negative and Floating-Point Values: Using proper dequantization techniques and compilation settings to 
handle sine values in the range [-1, 1].

• Neural Network Layer Support: Designing models that leverage supported layer types while avoiding 
unsupported operations.

• Memory Limitations: Systematically reducing model size to fit within hardware constraints.

14.5 Broader Applications
While demonstrated through a sine function approximator, the techniques and approaches in this guide extend to 
a variety of automotive and industrial applications, including:

• Predictive maintenance through vibration or acoustic signal analysis.
• Anomaly detection in sensor data streams.
• Advanced control systems with neural network-based modeling.
• Sensor fusion for enhanced perception and decision making.
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The F28P55x NPU brings machine learning directly into embedded control systems, creating intelligent 
applications that work independently at the edge while maintaining the reliability needed in automotive and 
industrial settings. By running neural networks right on the microcontroller, systems can make complex decisions 
locally without sending data elsewhere. This approach keeps response times predictable – crucial for safety 
systems – while using less power than traditional solutions. Applications like predictive maintenance, sensor 
fusion, and anomaly detection become practical even in harsh environments where cloud connectivity isn't 
reliable. The NPU strikes a balance between advanced capabilities and the strict operational requirements of 
critical control systems, allowing intelligence to be added without sacrificing the deterministic behavior that these 
applications demand.
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