

AMC1204 20-MHz, Second-Order, Isolated Delta-Sigma Modulator for Current-Shunt Measurement

1 Features

- $\pm 250\text{-mV}$ input voltage range optimized for shunt resistors
- Safety-related certifications:
 - 4250-V_{PK} (AMC1204B) basic isolation per DIN VDE V 0884-11: 2017-01
 - 3005-V_{RMS} (AMC1204B) isolation for 1 minute per UL1577
 - CAN/CSA no. 5A-component acceptance service notice and DIN EN 61010-1
 - Working voltage: 1200 V_{PEAK}
 - Transient immunity: 15 kV/μs
- High electromagnetic field immunity (see [SLLA181A application report](#))
- Outstanding AC performance:
 - SNR: 84 dB (minimum)
 - THD: -80 dB (maximum)
- Excellent DC precision:
 - INL: ± 8 LSB (maximum)
 - Gain Error: $\pm 2\%$ (maximum)
- External clock input for easier synchronization
- Fully specified over the extended industrial temperature range

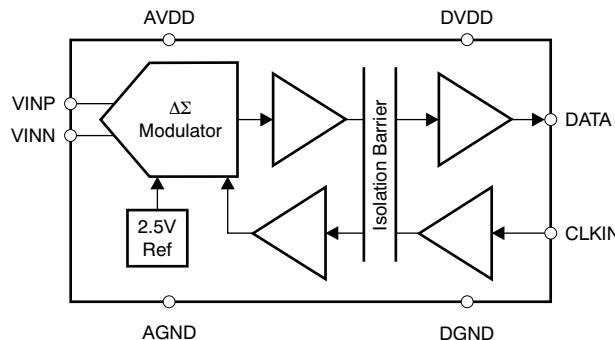
2 Applications

- Shunt resistor based current sensing in:
 - Motor controls
 - Green energy
 - Inverter applications
 - Uninterruptible power supplies

3 Description

The AMC1204 and AMC1204B are 1-bit digital output, isolated delta-sigma ($\Delta\Sigma$) modulators that can be clocked at up to 20 MHz. The digital isolation of the modulator output is provided by a silicon dioxide (SiO_2) barrier that is highly resistant to magnetic interference. This barrier has been certified to provide basic galvanic isolation of up to 4000 V_{PEAK} (AMC1204) and 4250 V_{PEAK} (AMC1204B) according to UL1577, VDE V 0884-11, and CSA standards or specifications.

The AMC1204 and AMC1204B provide a single-chip solution for measuring the small signal of a shunt resistor across an isolated barrier. These types of resistors are typically used to sense currents in motor control inverters, green energy generation systems, and other industrial applications. The AMC1204 and AMC1204B differential inputs easily connect to the shunt resistor or other low-level signal sources. An internal reference eliminates the need for external components. When used with an appropriate external digital filter, an effective number of bits (ENOB) of 14 is achieved at a data rate of 78 kSPS.


A 5-V analog supply (AVDD) is used by the modulator while the isolated digital interface operates from a 3-V, 3.3-V, or 5-V supply (DVDD). The AMC1204 and AMC1204B are available in SOIC-16 (DW) and SOIC-8 (DWV) packages and are specified from -40°C to 105°C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
AMC1204	SOIC (16)	10.30 mm x 7.50 mm
	SOIC (8)	5.85 mm x 7.50 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Device Block Diagram

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

Table of Contents

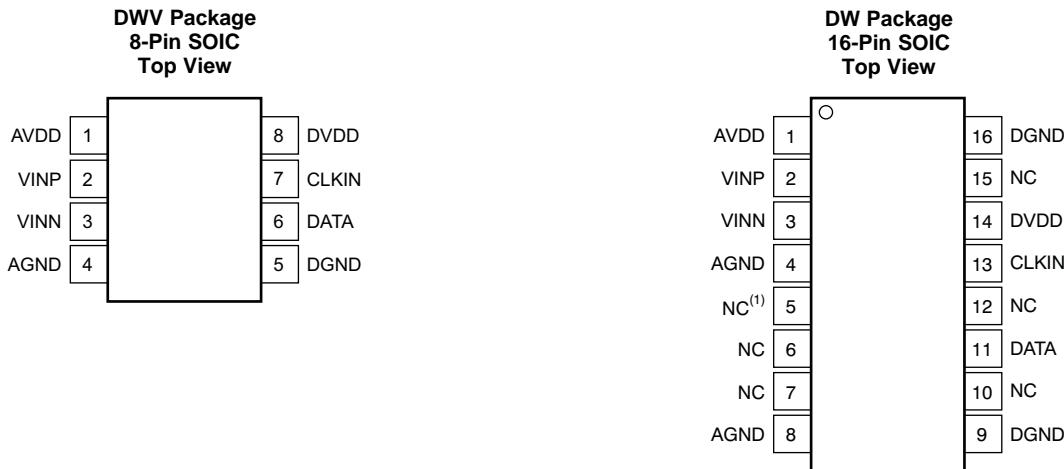
1	Features	1	7.1	Overview	19
2	Applications	1	7.2	Functional Block Diagram	19
3	Description	1	7.3	Feature Description	20
4	Revision History	2	7.4	Device Functional Modes	22
5	Pin Configuration and Functions	4	8	Application and Implementation	23
6	Specifications	5	8.1	Application Information	23
6.1	Absolute Maximum Ratings	5	8.2	Typical Application	25
6.2	ESD Ratings	5	9	Power Supply Recommendations	28
6.3	Recommended Operating Conditions	5	10	Layout	29
6.4	Thermal Information	5	10.1	Layout Guidelines	29
6.5	Power Ratings	6	10.2	Layout Example	29
6.6	Insulation Specifications	6	11	Device and Documentation Support	30
6.7	Safety-Related Certifications	8	11.1	Documentation Support	30
6.8	Safety Limiting Values	8	11.2	Receiving Notification of Documentation Updates	30
6.9	Electrical Characteristics	9	11.3	Support Resources	30
6.10	Timing Requirements	10	11.4	Trademarks	30
6.11	Insulation Characteristics Curves	11	11.5	Electrostatic Discharge Caution	30
6.12	Typical Characteristics	12	11.6	Glossary	30
7	Detailed Description	19	12	Mechanical, Packaging, and Orderable Information	30

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision E (September 2015) to Revision F	Page
• Changed <i>Certified Digital Isolation</i> bullet to <i>Safety-related certifications</i> and changed details as per ISO standard	1
• Deleted <i>Long isolation barrier lifetime</i> bullet from <i>Features</i> section	1
• Changed VDE V 0884-10 to VDE V 0884-11 in <i>Description</i> section	1
• Changed title of <i>Device Block Diagram</i> from <i>Simplified Schematic</i>	1
• Changed <i>Absolute Maximum Ratings</i> condition statement	5
• Added <i>Power Ratings</i> table	6
• Changed <i>Insulation Specifications</i> table per ISO standard	6
• Changed <i>Safety-Related Certification</i> table per ISO standard	8
• Changed <i>Safety Limiting Values</i> table per ISO standard	8
• Added <i>Insulation Characteristics Curves</i> as per ISO standard	11
• Changed <i>Related Documentation</i> section	30
• Deleted <i>Related Links</i> section	30

Changes from Revision D (December 2013) to Revision E	Page
• Added <i>ESD Ratings</i> table, <i>Feature Description</i> section, <i>Device Functional Modes</i> , <i>Application and Implementation</i> section, <i>Power Supply Recommendations</i> section, <i>Layout</i> section, <i>Device and Documentation Support</i> section, and <i>Mechanical, Packaging, and Orderable Information</i> section	1
• Changed first sub-bullet of <i>Certified Digital Isolation</i> Feature bullet: changed IEC60747-5-5 to VDE V 0884-10	1
• Changed IEC60747-5-5 to VDE V 0884-10 in first paragraph of <i>Description</i> section	1


Changes from Revision C (August 2012) to Revision D	Page
• Changed first sub-bullet of <i>Certified Digital Isolation</i> Feature bullet: changed IEC60747-5-2 to IEC60747-5-5.....	1
• Deleted chip photo.....	1
• Added DWV (SSO-8) package to document.....	1
• Changed IEC60747-5-2 to IEC60747-5-5 in first paragraph of <i>Description</i> section	1
• Changed last paragraph of <i>Description</i> section	1
• Added DWV pin out drawing	4
• Added DWV information to Pin Descriptions table	4
• Added DWV package to Thermal Information table	5
• Changed first paragraph of <i>Digital Output</i> section: changed 78.1% to 89.06% and 21.9% to 10.94%	22

Changes from Revision B (August 2011) to Revision C	Page
• Changed Certified digital isolation, isolation voltage Feature bullet.....	1
• Added AMC1204B to document.....	1
• Changed Description section to include AMC1204B.....	1
• Changed package name from TSSOP to SO.....	4
• Changed footnote 1 in <i>Electrical Characteristics</i> table.....	9
• Changed Analog Inputs, V_{CM} parameter minimum specification and unit in <i>Electrical Characteristics</i> table.....	9
• Changed Digital Output, C_{OUT} and C_{LOAD} parameters unit specifications in <i>Electrical Characteristics</i> table	10
• Updated Figure 53	27
• Updated Figure 55	28
• Updated Figure 56	29

5 Pin Configuration and Functions

NC = no internal connection.

Pin Functions

NAME	PIN		I/O	DESCRIPTION		
	NO.					
	8 PINS	16 PINS				
AVDD	1	1	Power	High-side power supply		
VINP	2	2	Analog input	Noninverting analog input		
VINN	3	3	Analog input	Inverting analog input		
AGND	4	4, 8 ⁽¹⁾	Power	High-side ground		
DGND	5	9, 16	Power	Controller-side ground		
DATA	6	11	Digital output	Modulator data output		
CLKIN	7	13	Digital input	Modulator clock input		
DVDD	8	14	Power	Controller-side power supply		
NC	—	5-7, 10, 12, 15	—	No internal connection; can be tied to any potential or left unconnected		

(1) Both pins are connected internally via a low-impedance path; thus, only one of the pins must be tied to the ground plane.

6 Specifications

6.1 Absolute Maximum Ratings

see ⁽¹⁾

	MIN	MAX	UNIT
Supply voltage, AVDD to AGND or DVDD to DGND	–0.3	6	V
Analog input voltage at VINP, VINN	AGND – 0.5	AVDD + 0.5	V
Digital input voltage at CLKIN	DGND – 0.3	DVDD + 0.3	V
Input current to any pin except supply pins	–10	10	mA
Maximum virtual junction temperature, T_J		150	°C
Operating ambient temperature, T_{OA}	–40	125	°C
Storage temperature, T_{stg}	–65	150	°C

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under the *Electrical Characteristics* is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
$V_{(ESD)}$	Electrostatic discharge	Human-body model (HBM), per JEDEC standard 22, test method A114-C.01 ⁽¹⁾	±3000	V
		Charged-device model (CDM), per JEDEC standard 22, test method C101 ⁽²⁾	±1500	
		Machine model (MM), per JEDEC standard 22, test method A115A	±200	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
T_A	Operating ambient temperature	–40		105	°C
AVDD	High-side (analog) supply voltage	4.5	5	5.5	V
DVDD	Controller-side (digital) supply voltage	2.7	3.3	5.5	V

6.4 Thermal Information

THERMAL METRIC ⁽¹⁾		AMC1204, AMC1204B		UNIT
		DW (SOIC)	DWV (SOIC)	
		16 PINS	8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	78.5	106.5	°C/W
$R_{\theta JC(\text{top})}$	Junction-to-case (top) thermal resistance	41.3	53.6	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	50.2	60.3	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	11.5	18.5	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	41.2	58.9	°C/W
$R_{\theta JC(\text{bot})}$	Junction-to-case (bottom) thermal resistance	n/a	n/a	°C/W

(1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC package thermal metrics application report](#).

6.5 Power Ratings

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
P_D	Maximum power dissipation (both sides)	AVDD = DVDD = 5.5 V			115.5	mW
		AVDD = 5.5 V, DVDD = 3.6 V			102.4	
P_{D1}	Maximum power dissipation (high-side supply)	AVDD = 5.5 V			88.0	mW
P_{D2}	Maximum power dissipation (low-side supply)	DVDD = 5.5 V			27.5	mW
		DVDD = 3.6 V			14.4	

6.6 Insulation Specifications

over operating ambient temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	VALUE	UNIT
GENERAL				
CLR	External clearance ⁽¹⁾	Shortest pin-to-pin distance through air, DW package	≥ 8	mm
		Shortest pin-to-pin distance through air, DWV package	≥ 8.5	
CPG	External creepage ⁽¹⁾	Shortest pin-to-pin distance across the package surface, DW package	≥ 8	mm
		Shortest pin-to-pin distance across the package surface, DWV package	≥ 8.5	
DTI	Distance through insulation	Minimum internal gap (internal clearance) of the insulation	≥ 0.014	mm
CTI	Comparative tracking index	DIN EN 60112 (VDE 0303-11); IEC 60112, DW package	≥ 400	V
		DIN EN 60112 (VDE 0303-11); IEC 60112, DWV package	≥ 175	
	Material group	According to IEC 60664-1, DW package	II	
		According to IEC 60664-1, DWV package	III	
	Overvoltage category per IEC 60664-1	Rated mains voltage ≤ 300 V _{RMS}	I-IV	
		Rated mains voltage ≤ 600 V _{RMS}	I-III	
DIN VDE V 0884-11: 2017-01⁽²⁾				
V_{IORM}	Maximum repetitive peak isolation voltage	At ac voltage (bipolar)	1200	V _{PK}
V_{IOWM}	Maximum-rated isolation working voltage	At ac voltage (sine wave)	849	V _{RMS}
		At dc voltage	1200	V _{DC}
V_{IOTM}	Maximum transient isolation voltage	$V_{TEST} = V_{IOTM}$, t = 60 s (qualification test), AMC1204B	4250	V _{PK}
		$V_{TEST} = 1.2 \times V_{IOTM}$, t = 1 s (100% production test), AMC1204B	5100	
		$V_{TEST} = V_{IOTM}$, t = 60 s (qualification test), AMC1204	4000	
		$V_{TEST} = 1.2 \times V_{IOTM}$, t = 1 s (100% production test), AMC1204	4800	
V_{IOSM}	Maximum surge isolation voltage ⁽³⁾	Test method per IEC 60065, 1.2/50- μ s waveform, $V_{TEST} = 1.3 \times V_{IOSM} = 6000$ V _{PK} (qualification)	4615	V _{PK}

- (1) Apply creepage and clearance requirements according to the specific equipment isolation standards of an application. Care must be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed circuit board (PCB) do not reduce this distance. Creepage and clearance on a PCB become equal in certain cases. Techniques such as inserting grooves and ribs on the PCB are used to help increase these specifications.
- (2) This coupler is suitable for *safe electrical insulation* only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.
- (3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.

Insulation Specifications (continued)

over operating ambient temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	VALUE	UNIT
q _{pd}	Apparent charge ⁽⁴⁾	Method a, after input/output safety test subgroup 2 / 3, V _{ini} = V _{IOTM} , t _{ini} = 60 s, V _{pd(m)} = 1.2 × V _{IORM} = 1440 V _{PK} , t _m = 10 s	≤ 5	pC
		Method a, after environmental tests subgroup 1, V _{ini} = V _{IOTM} , t _{ini} = 60 s, V _{pd(m)} = 1.3 × V _{IORM} = 1560 V _{PK} , t _m = 10 s	≤ 5	
		Method b1, at routine test (100% production) and preconditioning (type test), V _{ini} = V _{IOTM} , t _{ini} = 1 s, V _{pd(m)} = 1.5 × V _{IORM} = 1800 V _{PK} , t _m = 1 s	≤ 5	
C _{IO}	Barrier capacitance, input to output ⁽⁵⁾	V _{IO} = 0.5 V _{PP} at 1 MHz	1.2	pF
R _{IO}	Insulation resistance, input to output ⁽⁵⁾	V _{IO} = 500 V at T _A < 85°C	> 10 ¹²	Ω
		V _{IO} = 500 V at 85°C < T _A < 105°C	> 10 ¹¹	
		V _{IO} = 500 V at T _S = 150°C	> 10 ⁹	
	Pollution degree		2	
	Climatic category		40/125/21	
UL1577				
V _{ISO}	Withstand isolation voltage	V _{TEST} = V _{ISO} = 3005 V _{RMS} or 4250 V _{DC} , t = 60 s (qualification), V _{TEST} = 1.2 × V _{ISO} = 3606 V _{RMS} , t = 1 s (100% production test), AMC1204B	3005	V _{RMS}
		V _{TEST} = V _{ISO} = 2500 V _{RMS} or 4000 V _{DC} , t = 60 s (qualification), V _{TEST} = 1.2 × V _{ISO} = 2800 V _{RMS} , t = 1 s (100% production test), AMC1204	2500	

(4) Apparent charge is electrical discharge caused by a partial discharge (pd).

(5) All pins on each side of the barrier are tied together, creating a two-pin device.

6.7 Safety-Related Certifications

VDE	UL	CSA
Certified according to DIN VDE V 0884-11: 2017-01 and DIN EN 61010-1 (VDE 0411-1): 2011-07	Recognized under 1577 component recognition program	Recognized under CSA component acceptance NO 5 program, IEC 60950-1, and IEC 61010-1
Basic insulation	Single protection	Basic insulation
Certificate number: 40047657	File number: E181974	Certificate number: 2350550

6.8 Safety Limiting Values

Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I_S	DW-package, $R_{0JA} = 78.5^\circ\text{C}/\text{W}$, $T_J = 150^\circ\text{C}$, $T_A = 25^\circ\text{C}$, $AVDD = DVDD = 5.5 \text{ V}$, see Figure 2			289	mA
	DWV-package, $R_{0JA} = 106.5^\circ\text{C}/\text{W}$, $T_J = 150^\circ\text{C}$, $T_A = 25^\circ\text{C}$, $AVDD = DVDD = 5.5 \text{ V}$, see Figure 2			213	
P_S	DW-package, $R_{0JA} = 78.5^\circ\text{C}/\text{W}$, $T_J = 150^\circ\text{C}$, $T_A = 25^\circ\text{C}$, see Figure 3			1592	mW
	DWV-package, $R_{0JA} = 106.5^\circ\text{C}/\text{W}$, $T_J = 150^\circ\text{C}$, $T_A = 25^\circ\text{C}$, see Figure 3			1173	
T_S	Maximum safety temperature			150	°C

(1) The maximum safety temperature, T_S , has the same value as the maximum junction temperature, T_J , specified for the device. The I_S and P_S parameters represent the safety current and safety power, respectively. Do not exceed the maximum limits of I_S and P_S . These limits vary with the ambient temperature, T_A .

The junction-to-air thermal resistance, R_{0JA} , in the [Thermal Information](#) table is that of a device installed on a high-K test board for leaded surface-mount packages. Use these equations to calculate the value for each parameter:

$$T_J = T_A + R_{0JA} \times P, \text{ where } P \text{ is the power dissipated in the device.}$$

$$T_{J(max)} = T_S = T_A + R_{0JA} \times P_S, \text{ where } T_{J(max)} \text{ is the maximum junction temperature.}$$

$$P_S = I_S \times AVDD_{max} + I_S \times DVDD_{max}, \text{ where } AVDD_{max} \text{ is the maximum high-side supply voltage and } DVDD_{max} \text{ is the maximum controller-side supply voltage.}$$

6.9 Electrical Characteristics

All minimum/maximum specifications at $T_A = -40^\circ\text{C}$ to 105°C , $\text{AVDD} = 4.5\text{ V}$ to 5.5 V , $\text{DVDD} = 2.7\text{ V}$ to 5.5 V , $\text{VINP} = -250\text{ mV}$ to 250 mV , $\text{VINN} = 0\text{ V}$, and sinc^3 filter with $\text{OSR} = 256$, unless otherwise noted.

Typical values are at $T_A = 25^\circ\text{C}$, $\text{AVDD} = 5\text{ V}$, and $\text{DVDD} = 3.3\text{ V}$.

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
RESOLUTION						
	Resolution		16			Bits
DC ACCURACY						
INL	Integral linearity error ⁽¹⁾	$T_A = -40^\circ\text{C}$ to 85°C	-8	± 2	8	LSB
		$T_A = -40^\circ\text{C}$ to 105°C	-16	± 5	16	LSB
DNL	Differential nonlinearity		-1		1	LSB
V_{OS}	Offset error ⁽²⁾		-1	± 0.1	1	mV
TCV_{OS}	Offset error thermal drift		-3.5	± 1	3.5	$\mu\text{V}/^\circ\text{C}$
G_{ERR}	Gain error ⁽²⁾		-2%	$\pm 0.5\%$	2%	
TCG_{ERR}	Gain error thermal drift			± 30		$\text{ppm}/^\circ\text{C}$
PSRR	Power-supply rejection ratio		79			dB
ANALOG INPUTS						
FSR	Full-scale differential voltage input range	$\text{VINP} - \text{VINN}$		± 320		mV
	Specified FSR		-250		250	mV
V_{CM}	Operating common-mode signal ⁽³⁾		-160		AVDD	mV
C_I	Input capacitance to AGND	VINP or VINN		7		pF
C_{ID}	Differential input capacitance			3.5		pF
R_{ID}	Differential input resistance			12.5		k Ω
I_{IL}	Input leakage current	$\text{VINP} - \text{VINN} = \pm 250\text{ mV}$	-10		10	μA
		$\text{VINP} - \text{VINN} = \pm 320\text{ mV}$	-50		50	μA
CMTI	Common-mode transient immunity		15			$\text{kV}/\mu\text{s}$
CMRR	Common-mode rejection ratio	V_{IN} from 0 V to 5 V at 0 Hz	108			dB
		V_{IN} from 0 V to 5 V at 100 kHz	114			dB
EXTERNAL CLOCK						
t_{CLKIN}	Clock period		45.5	50	200	ns
f_{CLKIN}	Input clock frequency		5	20	22	MHz
Duty _{CLKIN}	Duty cycle	$5\text{ MHz} \leq f_{\text{CLKIN}} < 20\text{ MHz}$	40%	50%	60%	
		$20\text{ MHz} \leq f_{\text{CLKIN}} \leq 22\text{ MHz}$	45%	50%	55%	
AC ACCURACY						
SINAD	Signal-to-noise + distortion	$f_{\text{IN}} = 1\text{kHz}$, $T_A = -40^\circ\text{C}$ to 85°C	78	87		dB
		$f_{\text{IN}} = 1\text{kHz}$, $T_A = -40^\circ\text{C}$ to 105°C	70	87		dB
SNR	Signal-to-noise ratio	$f_{\text{IN}} = 1\text{kHz}$, $T_A = -40^\circ\text{C}$ to 85°C	84	88		dB
		$f_{\text{IN}} = 1\text{kHz}$, $T_A = -40^\circ\text{C}$ to 105°C	83	88		dB
THD	Total harmonic distortion	$f_{\text{IN}} = 1\text{kHz}$, $T_A = -40^\circ\text{C}$ to 85°C		-96	-80	dB
		$f_{\text{IN}} = 1\text{kHz}$, $T_A = -40^\circ\text{C}$ to 105°C		-96	-70	dB
SFDR	Spurious-free dynamic range	$f_{\text{IN}} = 1\text{kHz}$, $T_A = -40^\circ\text{C}$ to 85°C	82	96		dB
		$f_{\text{IN}} = 1\text{kHz}$, $T_A = -40^\circ\text{C}$ to 105°C	72	96		dB
DIGITAL INPUTS⁽³⁾						
I_{IN}	Input current	$V_{\text{IN}} = \text{DVDD}$ to DGND	-10		10	μA
C_{IN}	Input capacitance			5		pF
CMOS Logic Family (CMOS With Schmitt-Trigger)						
V_{IH}	High-level input voltage	$\text{DVDD} = 4.5\text{V}$ to 5.5V	0.7DVDD		DVDD + 0.3	V
V_{IL}	Low-level input voltage	$\text{DVDD} = 4.5\text{V}$ to 5.5V	-0.3		0.3DVDD	V
LVCMOS Logic Family						
V_{IH}	High-level input voltage	$\text{DVDD} = 2.7\text{ V}$ to 3.6 V	2		DVDD + 0.3	V

(1) Integral nonlinearity is defined as the maximum deviation from a straight line passing through the end-points of the ideal ADC transfer function expressed as number of LSBs or as a percent of the specified 500-mV input range.

(2) Maximum values, including temperature drift, are ensured over the full specified temperature range.

(3) Ensured by design.

Electrical Characteristics (continued)

All minimum/maximum specifications at $T_A = -40^\circ\text{C}$ to 105°C , $\text{AVDD} = 4.5\text{ V}$ to 5.5 V , $\text{DVDD} = 2.7\text{ V}$ to 5.5 V , $\text{VINP} = -250\text{ mV}$ to 250 mV , $\text{VINN} = 0\text{ V}$, and sinc³ filter with $\text{OSR} = 256$, unless otherwise noted.

Typical values are at $T_A = 25^\circ\text{C}$, $\text{AVDD} = 5\text{ V}$, and $\text{DVDD} = 3.3\text{ V}$.

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{IL}	Low-level input voltage	$\text{DVDD} = 2.7\text{ V}$ to 3.6 V	-0.3		0.8	V
DIGITAL OUTPUTS⁽³⁾						
C_{OUT}	Output capacitance			5		pF
C_{LOAD}	Load capacitance			30		pF
CMOS Logic Family						
V_{OH}	High-level output voltage	$\text{DVDD} = 4.5\text{ V}$, $I_{OH} = -100\text{ }\mu\text{A}$	4.4			V
V_{OL}	Low-level output voltage	$\text{DVDD} = 4.5\text{ V}$, $I_{OL} = 100\text{ }\mu\text{A}$			0.5	V
LVCMOS Logic Family						
V_{OH}	High-level output voltage	$I_{OH} = 20\text{ }\mu\text{A}$	$\text{DVDD} - 0.1$			V
		$I_{OH} = -4\text{ mA}$, $2.7\text{ V} \leq \text{DVDD} \leq 3.6\text{ V}$	$\text{DVDD} - 0.4$			V
		$I_{OH} = -4\text{ mA}$, $4.5\text{ V} \leq \text{DVDD} \leq 5.5\text{ V}$	$\text{DVDD} - 0.8$			V
V_{OL}	Low-level output voltage	$I_{OL} = 20\text{ }\mu\text{A}$		0.1		V
		$I_{OL} = 4\text{ mA}$		0.4		V
POWER SUPPLY						
AVDD	High-side supply voltage		4.5	5	5.5	V
DVDD	Controller-side supply voltage		2.7	3.3	5.5	V
I_{AVDD}	High-side supply current	$4.5\text{ V} \leq \text{AVDD} \leq 5.5\text{ V}$		11	16	mA
I_{DVDD}	Controller-side supply current	$2.7\text{ V} \leq \text{DVDD} \leq 3.6\text{ V}$		2	4	mA
		$4.5\text{ V} \leq \text{DVDD} \leq 5.5\text{ V}$		2.8	5	mA
P_D	Power dissipation	$\text{AVDD} = 5.5\text{ V}$, $\text{DVDD} = 3.6\text{ V}$		61.6	102.4	mW

6.10 Timing Requirements

Over recommended ranges of supply voltage and operating free-air temperature, unless otherwise noted. (See Figure 1)

		MIN	NOM	MAX	UNIT
t_{CLK}	CLKIN clock period	45.5	50	200	ns
t_{HIGH}	CLKIN clock high time	20	25	120	ns
t_{LOW}	CLKIN clock low time	20	25	120	ns
t_D	Delayed falling edge of CLKIN to DATA valid	2		15	ns

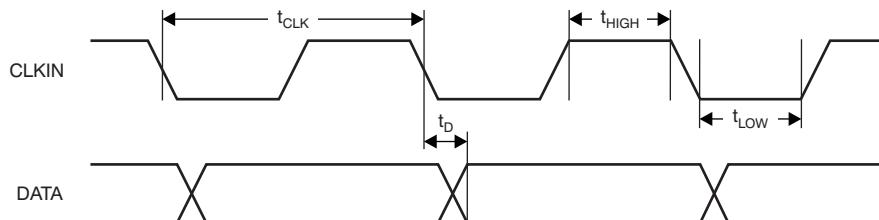
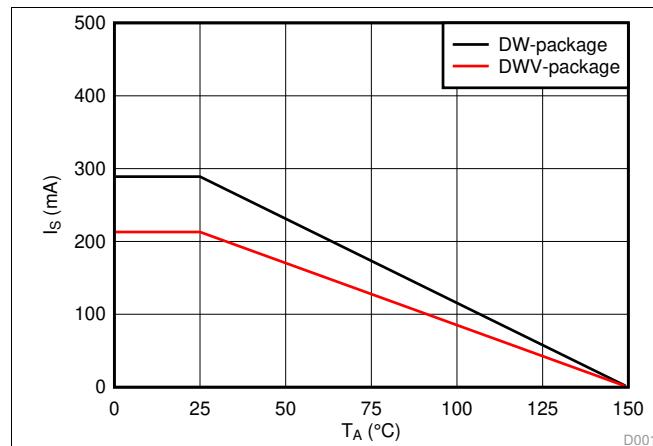
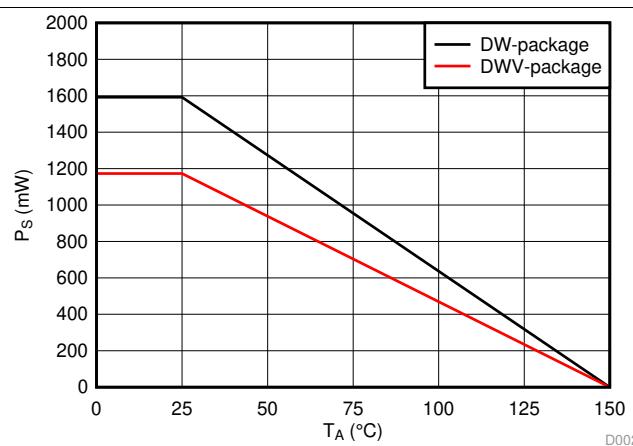




Figure 1. Modulator Output Timing

6.11 Insulation Characteristics Curves

Figure 2. Thermal Derating Curve for Safety-Limiting Current per VDE

Figure 3. Thermal Derating Curve for Safety-Limiting Power per VDE

6.12 Typical Characteristics

at AVDD = 5 V, DVDD = 3.3 V, VINP = –250 mV to 250 mV, VINN = 0 V, and sinc³ filter with OSR = 256 (unless otherwise noted)

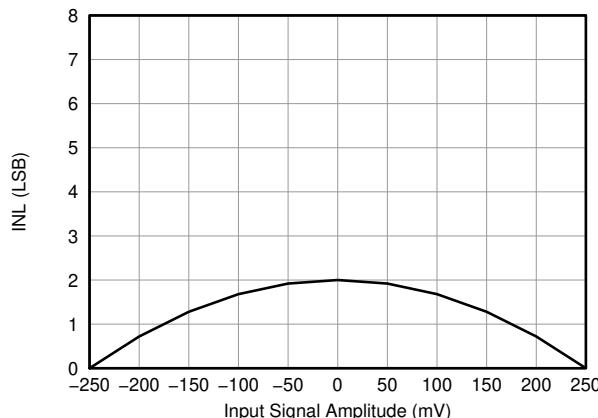


Figure 4. Integral Nonlinearity vs Input Signal Amplitude

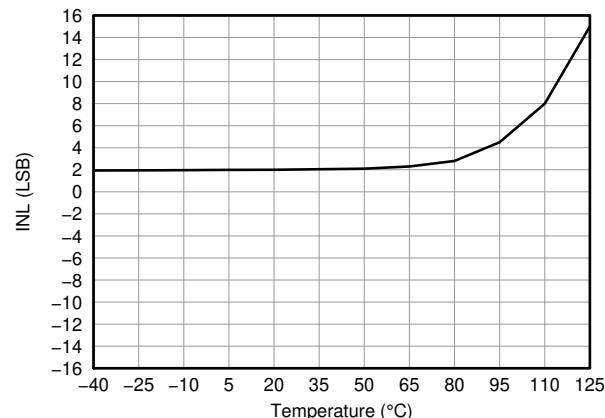


Figure 5. Integral Nonlinearity vs Temperature

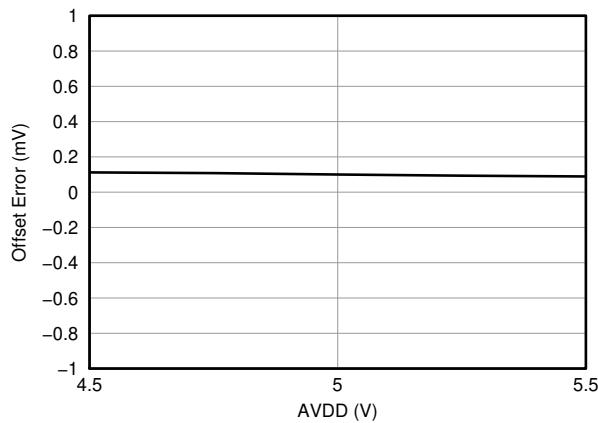


Figure 6. Offset Error vs Analog Supply Voltage

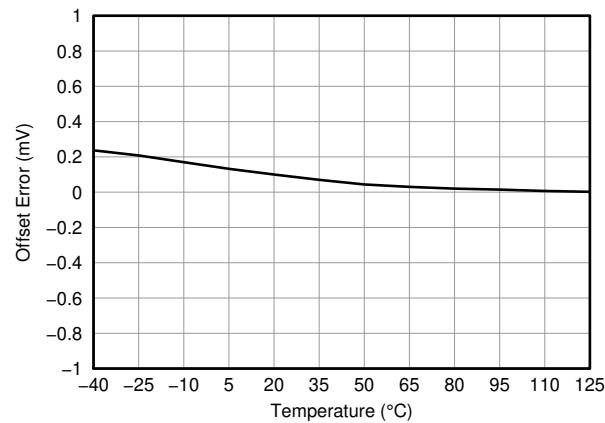


Figure 7. Offset Error vs Temperature

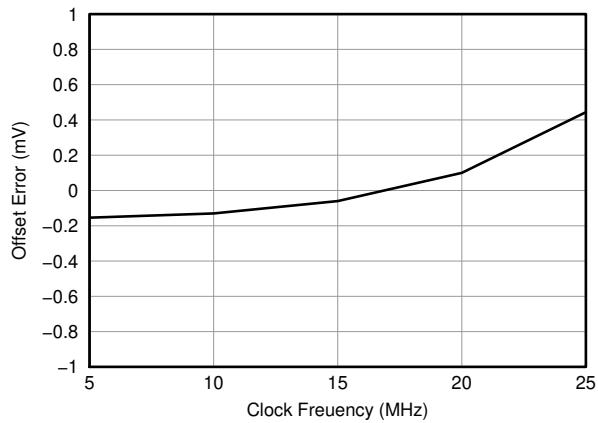


Figure 8. Offset Error vs Clock Frequency

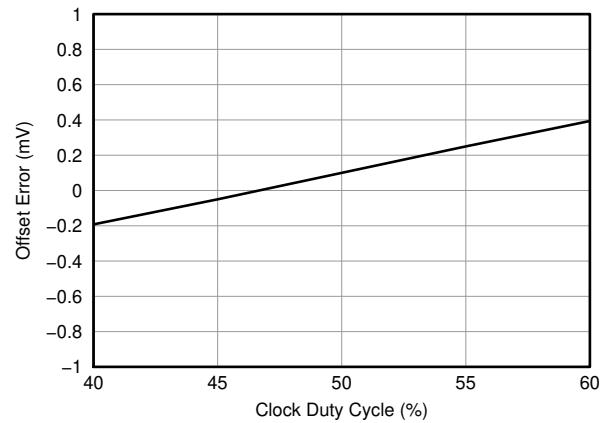
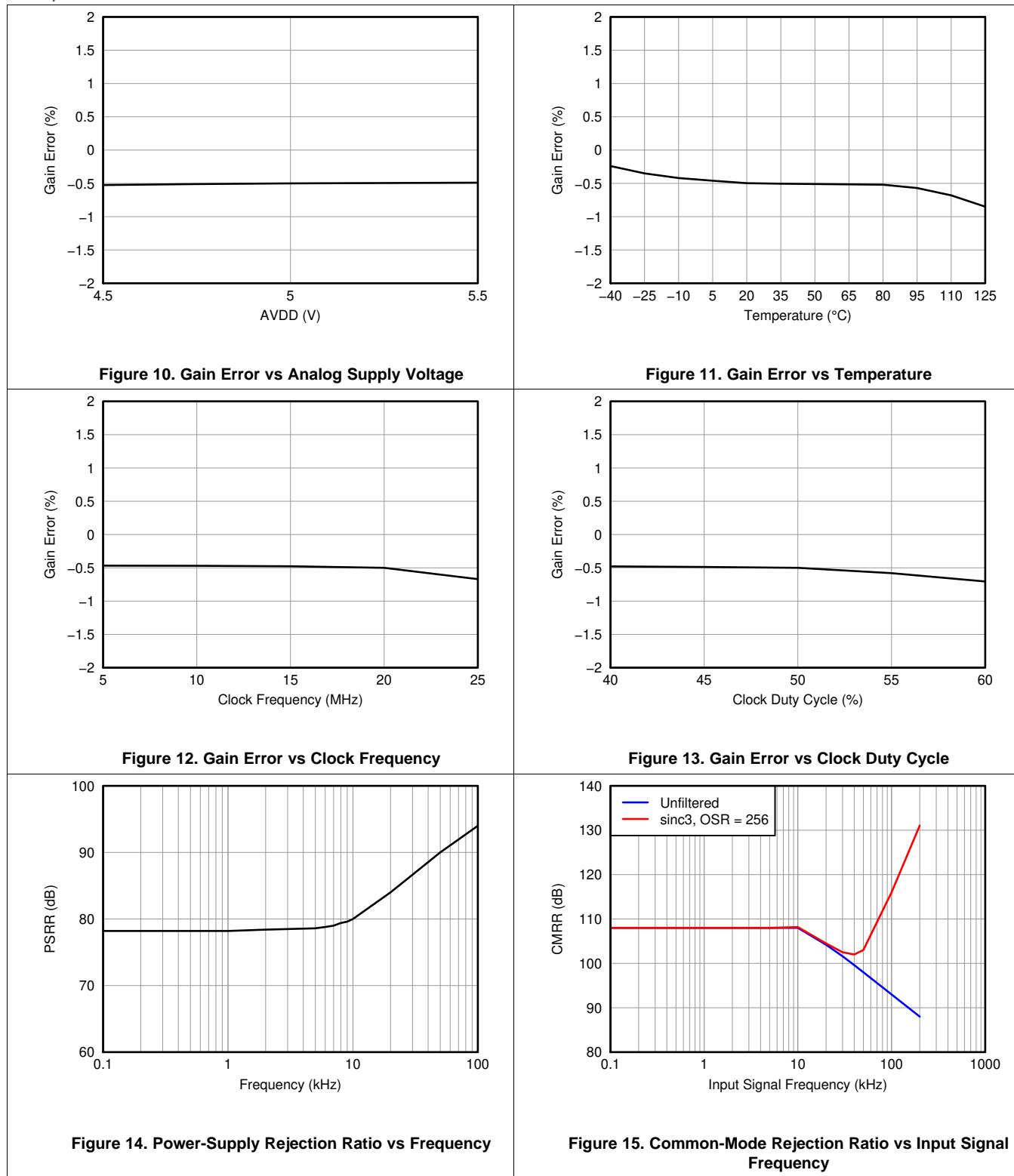
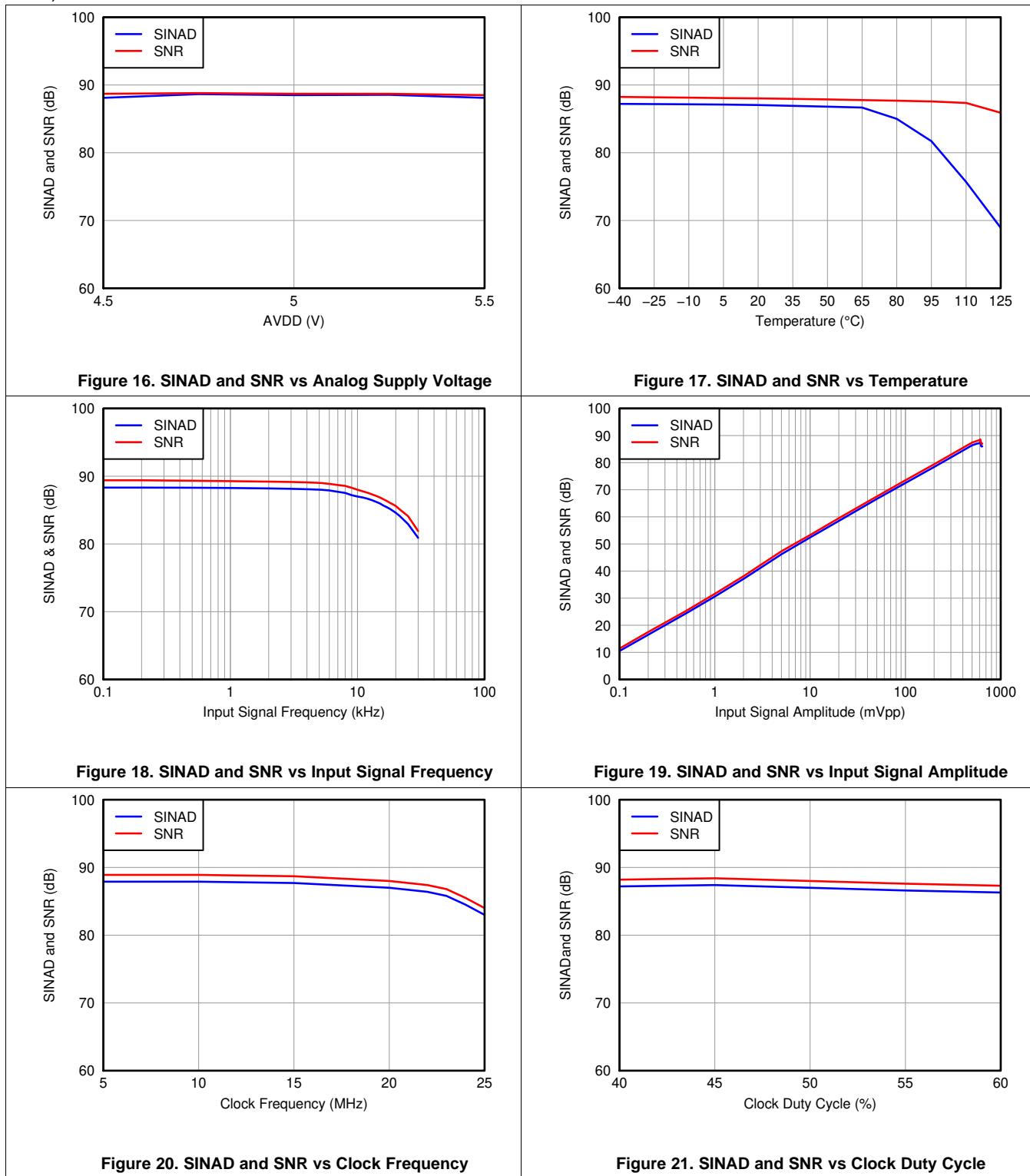
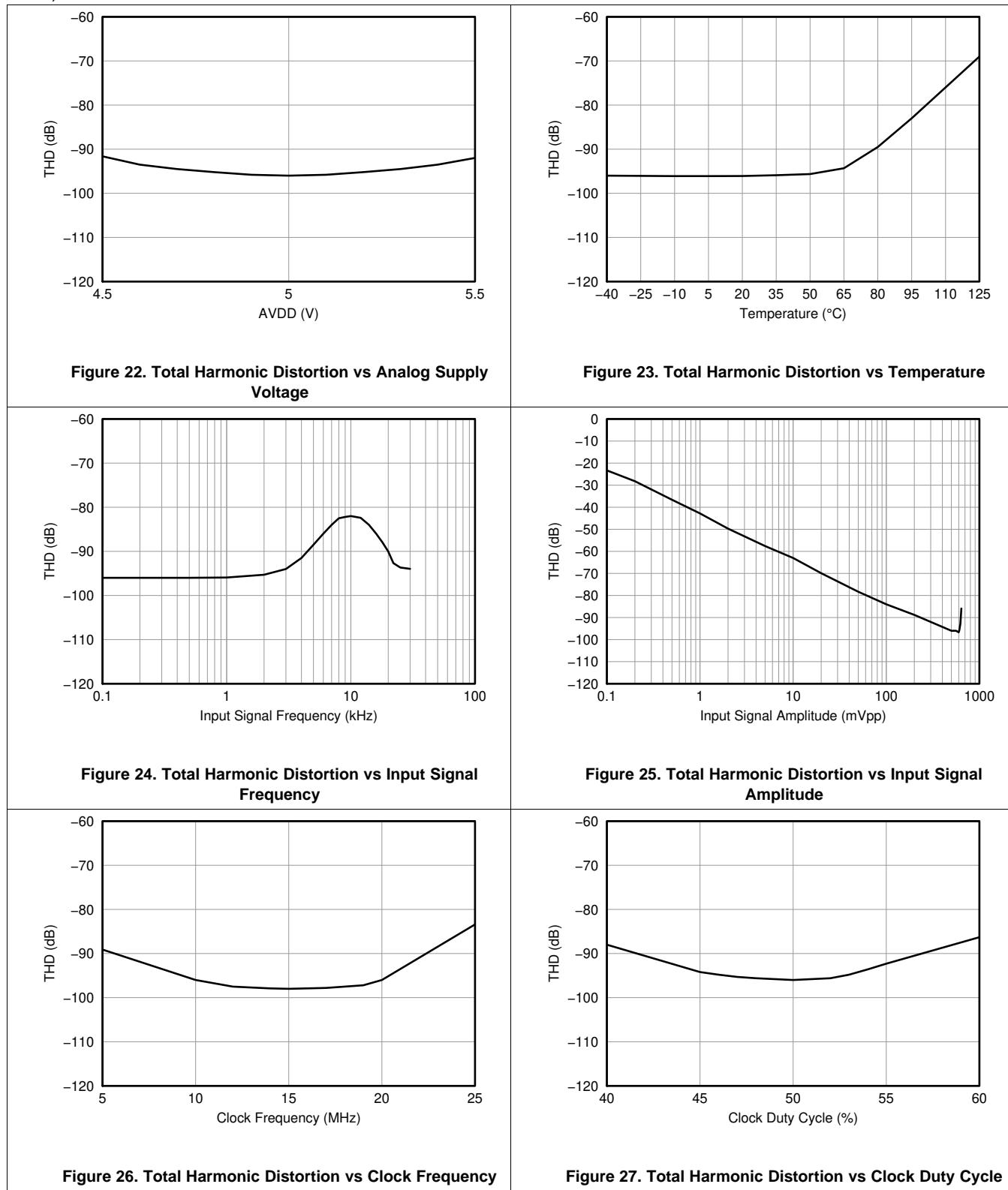



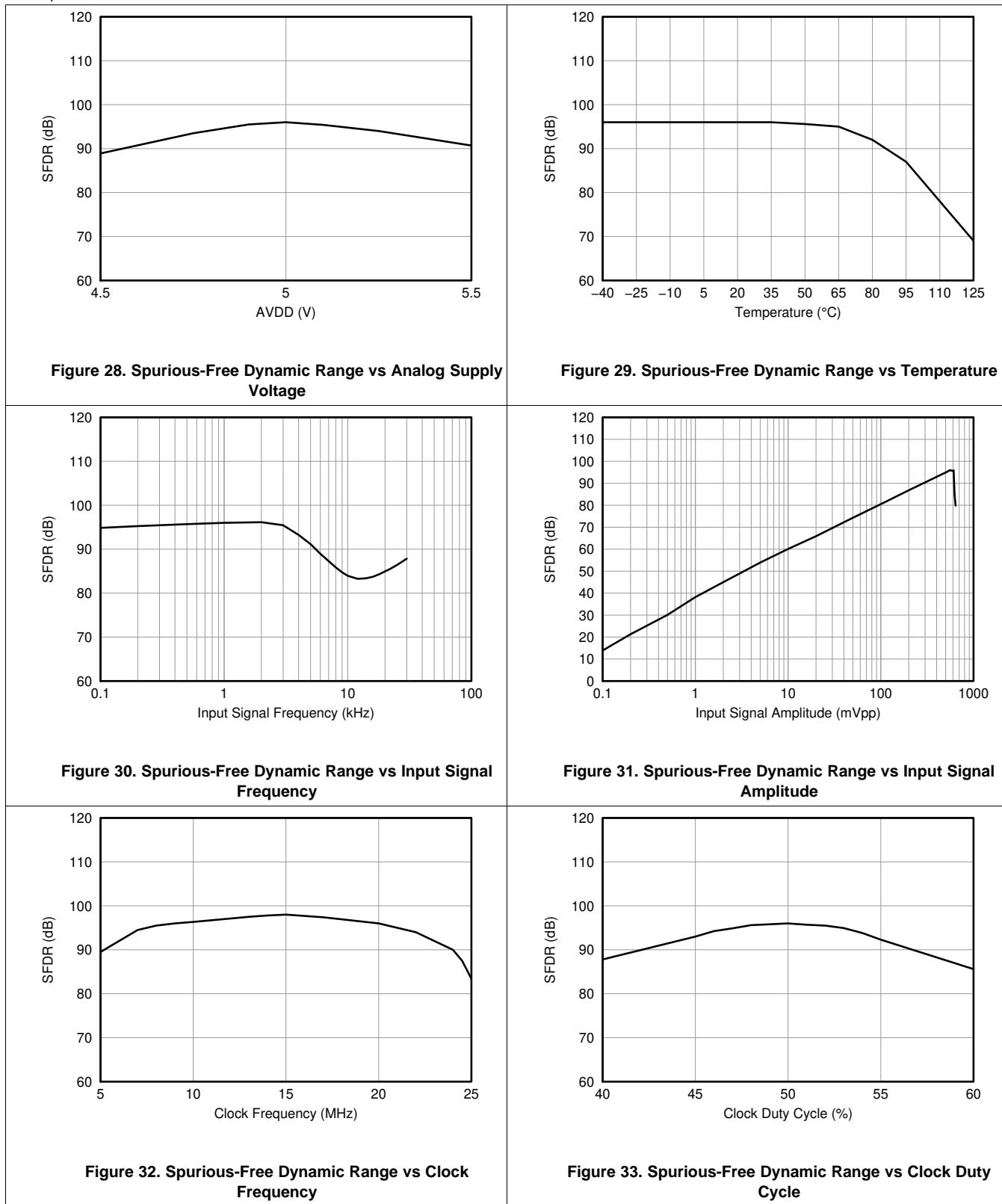
Figure 9. Offset Error vs Clock Duty Cycle


Typical Characteristics (continued)

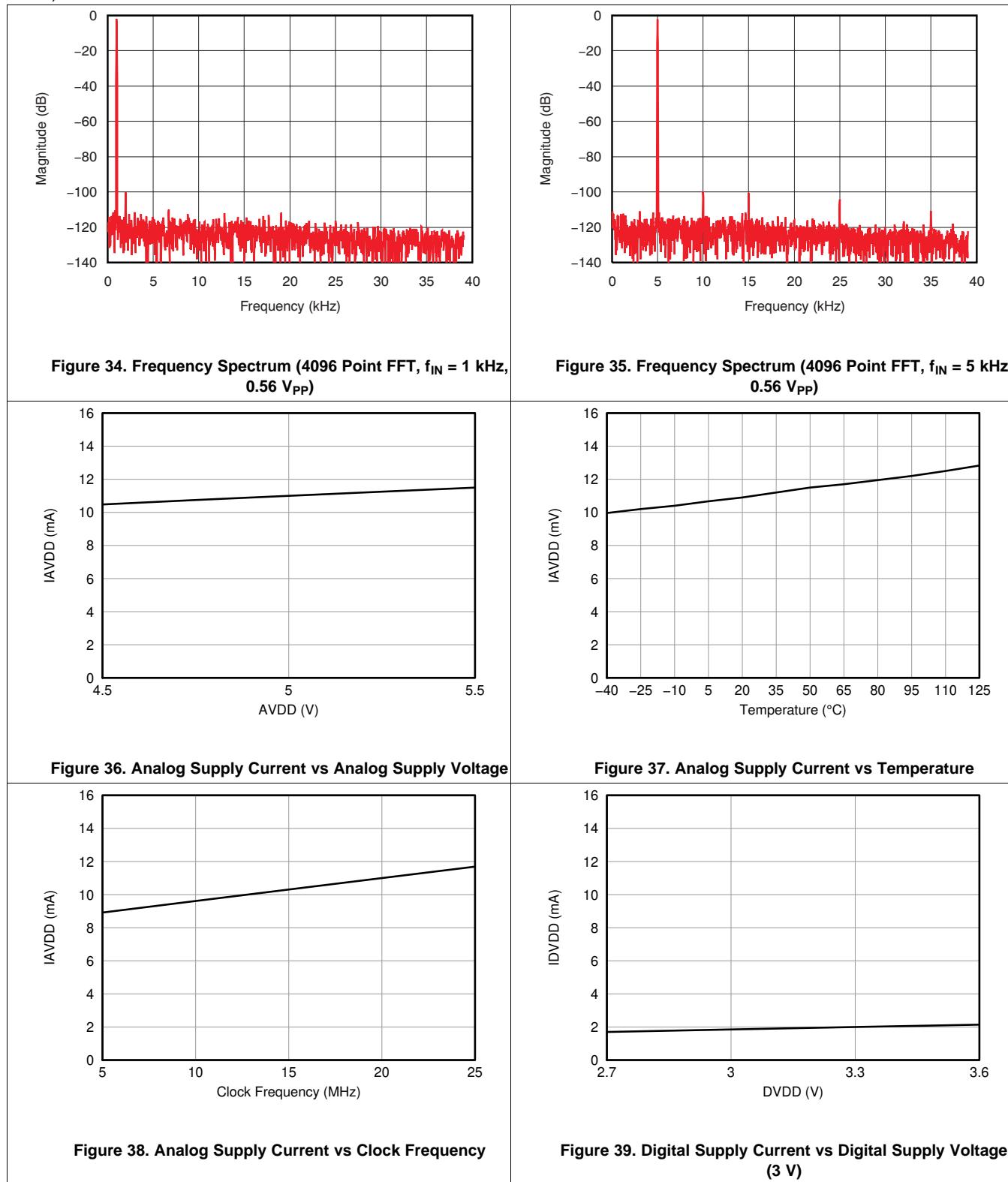
at AVDD = 5 V, DVDD = 3.3 V, VINP = –250 mV to 250 mV, VINN = 0 V, and sinc³ filter with OSR = 256 (unless otherwise noted)


Typical Characteristics (continued)

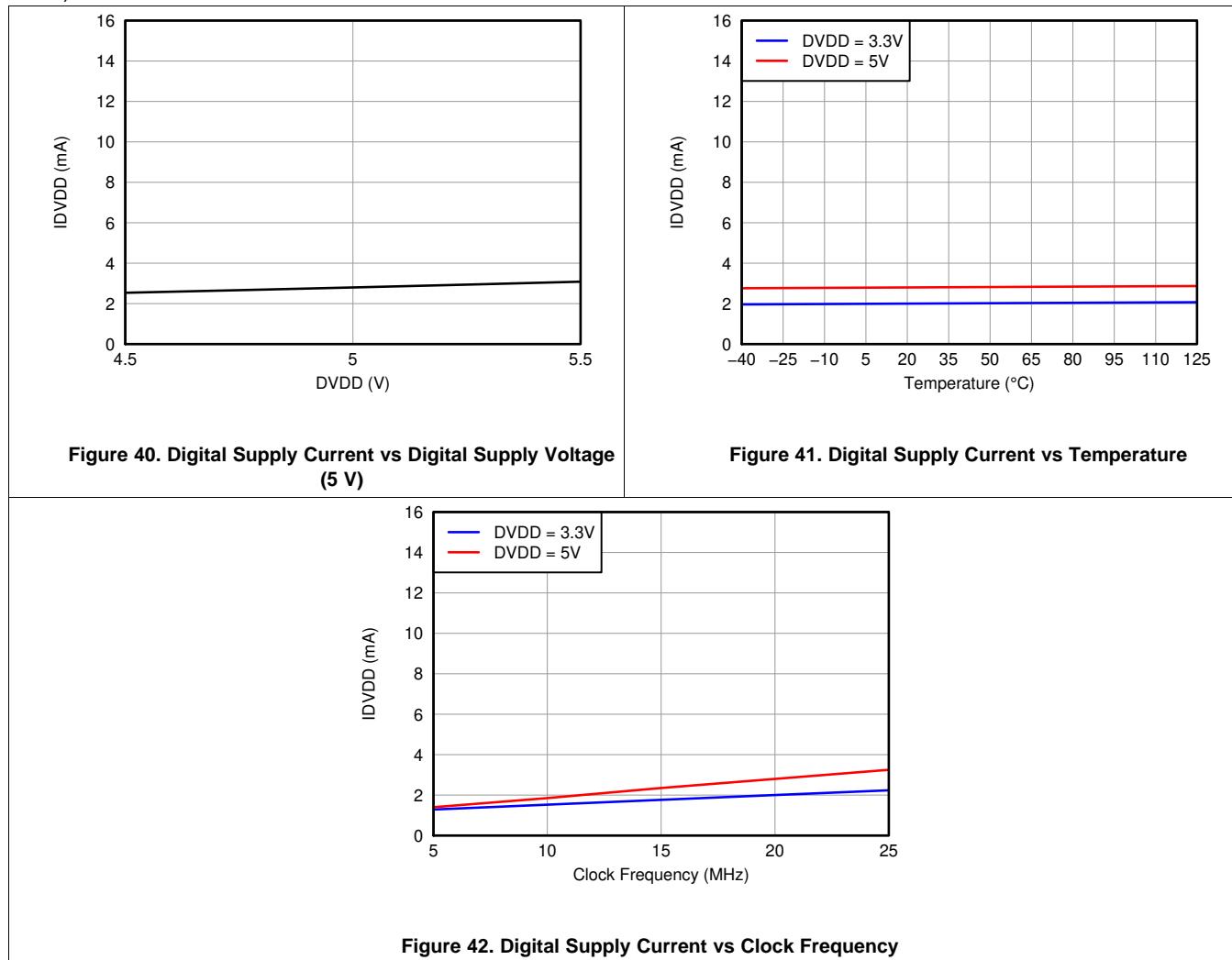
at AVDD = 5 V, DVDD = 3.3 V, VINP = –250 mV to 250 mV, VINN = 0 V, and sinc³ filter with OSR = 256 (unless otherwise noted)


Typical Characteristics (continued)

at AVDD = 5 V, DVDD = 3.3 V, VINP = –250 mV to 250 mV, VINN = 0 V, and sinc³ filter with OSR = 256 (unless otherwise noted)


Typical Characteristics (continued)

at AVDD = 5 V, DVDD = 3.3 V, VINP = –250 mV to 250 mV, VINN = 0 V, and sinc³ filter with OSR = 256 (unless otherwise noted)


Typical Characteristics (continued)

at AVDD = 5 V, DVDD = 3.3 V, VINP = –250 mV to 250 mV, VINN = 0 V, and sinc³ filter with OSR = 256 (unless otherwise noted)

Typical Characteristics (continued)

at AVDD = 5 V, DVDD = 3.3 V, VINP = –250 mV to 250 mV, VINN = 0 V, and sinc³ filter with OSR = 256 (unless otherwise noted)

7 Detailed Description

7.1 Overview

The AMC1204 and AMC1204B are single-channel, second-order, delta-sigma ($\Delta\Sigma$) modulators designed for medium- to high-resolution analog-to-digital conversions. The isolated output of the converter (DATA) provides a stream of digital ones and zeros accurately representing the analog input voltage over time. The time average of this serial output is proportional to the analog input voltage.

The [Functional Block Diagram](#) shows a detailed block diagram of the AMC1204 and AMC1204B. The analog input range is tailored to directly accommodate the voltage drop across a shunt resistor used for current sensing. The SiO_2 -based capacitive isolation barrier supports a high level of magnetic field immunity as described in the [ISO72x Digital Isolator Magnetic-Field Immunity application report](#). The external clock input simplifies the synchronization of multiple current sense channels on system level. The extended frequency range of up to 20 MHz supports higher performance levels compared to the other solutions available on the market.

7.2 Functional Block Diagram

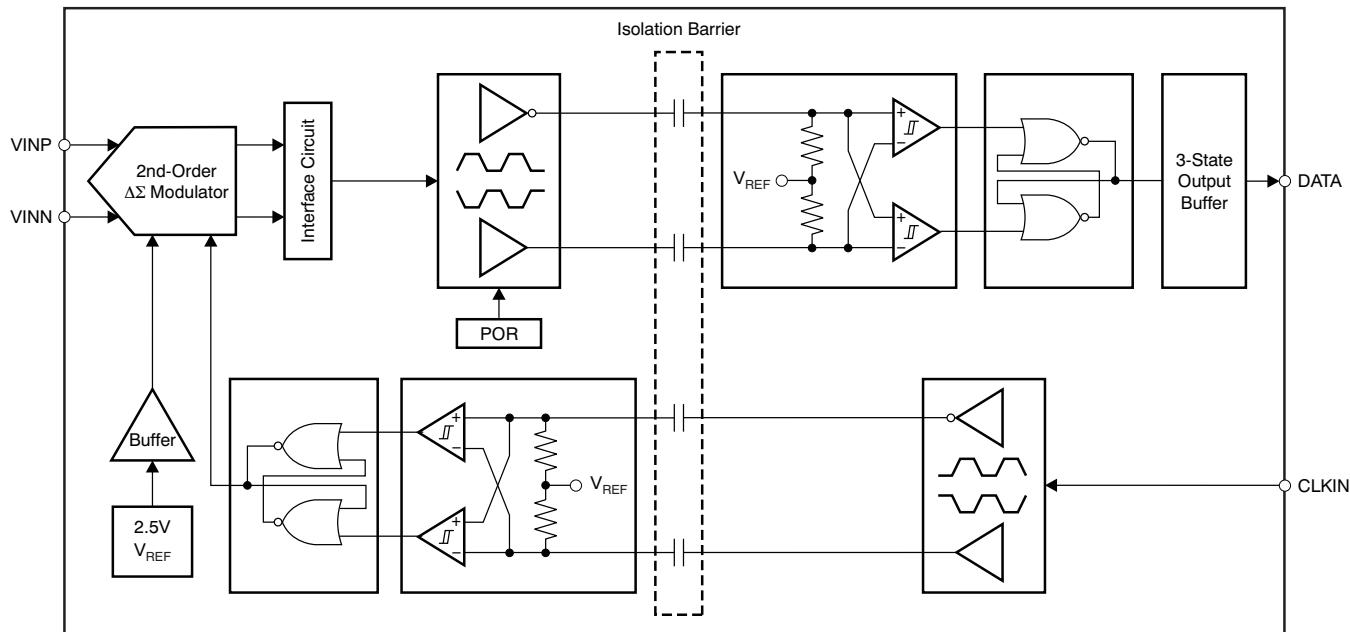


Figure 43. Detailed Block Diagram

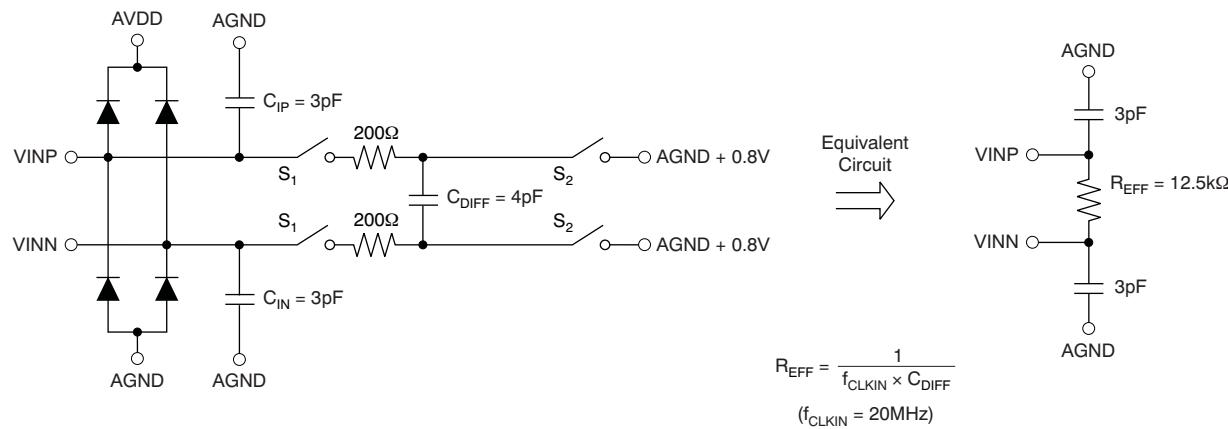
7.3 Feature Description

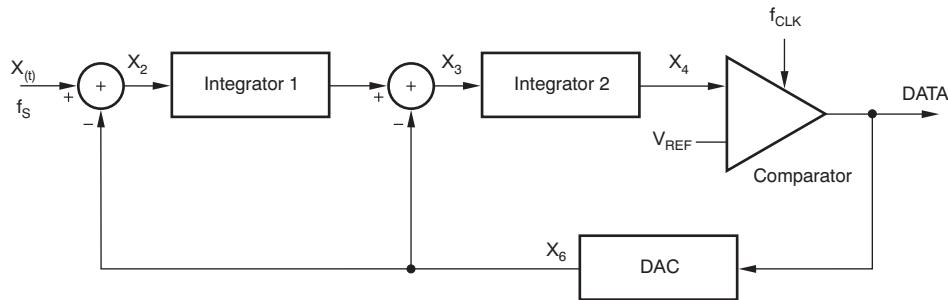
7.3.1 Analog Input

The differential analog input of the AMC1204 and AMC1204B is implemented with a switched-capacitor circuit.

The AMC1204 and AMC1204B measure the differential input signal $V_{IN} = (V_{INP} - V_{INN})$ against the internal reference of 2.5 V using internal capacitors that are continuously charged and discharged. Figure 44 shows the simplified schematic of the AMC1204 and AMC1204B input circuitry; the right side of Figure 44 illustrates the input circuitry with the capacitors and switches replaced by an equivalent circuit.

In Figure 44, the S_1 switches close during the input sampling phase. With the S_1 switches closed, C_{DIFF} charges to the voltage difference across V_{INP} and V_{INN} . For the discharge phase, both S_1 switches open first and then both S_2 switches close. C_{DIFF} discharges approximately to $AGND + 0.8$ V during this phase. This two-phase sample/discharge cycle repeats with a period of $t_{CLKIN} = 1/f_{CLKIN}$. f_{CLKIN} is the operating frequency of the modulator. The capacitors C_{IP} and C_{IN} are of parasitic nature and caused by bonding wires and the internal ESD protection structure.




Figure 44. Equivalent Analog Input Circuit

There are two restrictions on the analog input signals V_{INP} and V_{INN} . First, if the input voltage exceeds the range $AGND - 0.5$ V to $AVDD + 0.3$ V, the input current must be limited to 10 mA because the input protection diodes on the front end of the converter begin to turn on. In addition, the linearity and the noise performance of the device are ensured only when the differential analog input voltage remains within ± 250 mV.

7.3.2 Modulator

The modulator topology of the AMC1204 and AMC1204B is fundamentally a second-order, switched-capacitor, $\Delta\Sigma$ modulator, such as the one conceptualized in Figure 45. The analog input voltage ($X_{(t)}$) and the output of the 1-bit digital-to-analog converter (DAC) are differentiated, providing an analog voltage (X_2) at the input of the first integrator or modulator stage. The output of the first integrator is further differentiated with the DAC output; the resulting voltage (X_3) feeds the input of the second integrator stage. When the value of the integrated signal (X_4) at the output of the second stage equals the comparator reference voltage, the output of the comparator switches from high to low, or vice versa, depending on its previous state. In this case, the 1-bit DAC responds on the next clock pulse by changing its analog output voltage (X_6), causing the integrators to progress in the opposite direction, while forcing the value of the integrator output to track the average of the input.

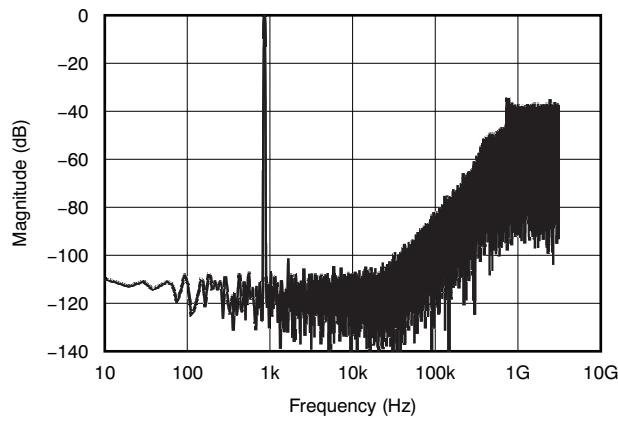
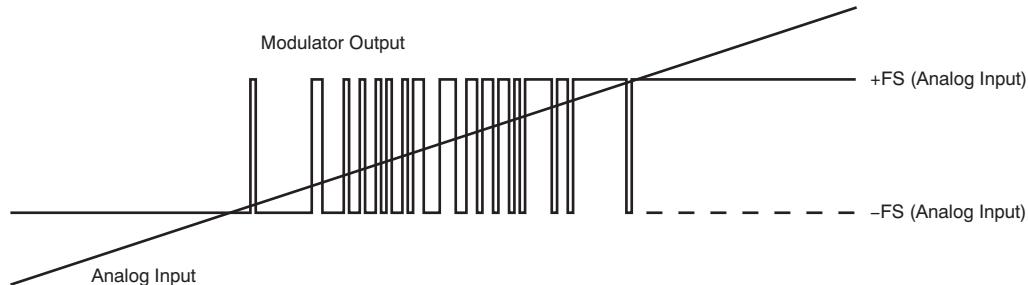

Feature Description (continued)

Figure 45. Block Diagram Of A Second-Order Modulator

The modulator shifts the quantization noise to high frequencies, as shown in [Figure 46](#); therefore, a low-pass digital filter should be used at the output of the device to increase the overall performance. This filter is also used to convert from the 1-bit data stream at a high sampling rate into a higher-bit data word at a lower rate (decimation). A digital signal processor (DSP), microcontroller (μ C), or field programmable gate array (FPGA) can be used to implement the filter.

TI's microcontroller family [TMS320F28x7x](#) offers a suitable programmable, hardwired filter structure termed a *sigma-delta filter module* (SDFM) optimized for usage with the AMC1204, AMC1304 and AMC1305 devices. Also, the SD24_B converters on the [MSP430F677x](#) microcontrollers offer a path to directly access the integrated sinc-filters, thus offering a system-level solution for multichannel isolated current sensing. Another option is to use a suitable application-specific device such as the [AMC1210](#), a four-channel digital sinc-filter.


Figure 46. Quantization Noise Shaping

Feature Description (continued)

7.3.3 Digital Output

A differential input signal of 0 V ideally produces a stream of ones and zeros that are high 50% of the time and low 50% of the time. A differential input of 250 mV produces a stream of ones and zeros that are high 89.06% of the time. A differential input of -250 mV produces a stream of ones and zeros that are high 10.94% of the time. This is also the specified linear input range of the modulator with the performance as specified in this data sheet. The range between 250 mV and 320 mV (absolute values) is the non-linear range of the modulator. The output of the modulator clips with a stream of only zeros with an input less than or equal to -320 mV or with a stream of only ones with an input greater than or equal to 320 mV. The input voltage versus the output modulator signal is shown in [Figure 47](#).

The system clock of the AMC1204 and AMC1204B is typically 20 MHz and is provided externally at the CLKIN pin. The data are synchronously provided at 20 MHz at the DATA output pin. The data are changing at the falling edge of CLKIN; for more details see the [Timing Requirements](#) section.

Figure 47. Analog Input Versus Amc1204 Modulator Output

7.4 Device Functional Modes

The AMC1204 is operational when the power supplies AVDD and DVDD are applied as specified in the [Recommended Operating Conditions](#) section.

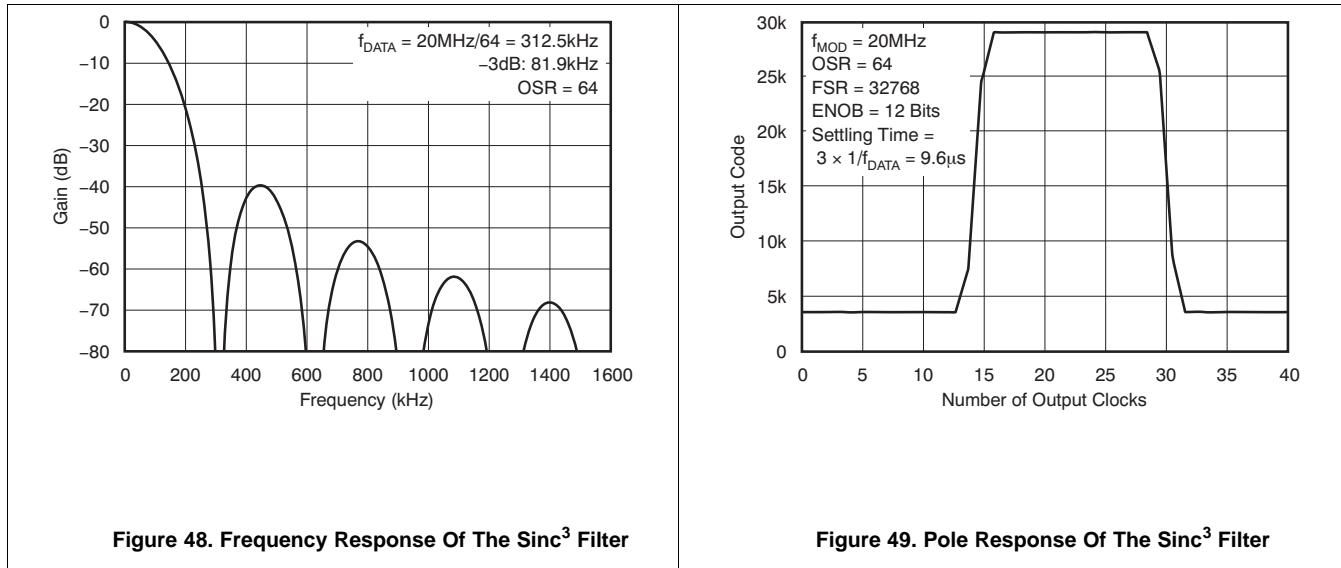
The AMC1204 has no additional functional modes.

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information


8.1.1 Digital Filter Usage

The modulator generates a bit stream that is processed by a digital filter to obtain a digital word similar to a conversion result of a conventional analog-to-digital converter (ADC). A very simple filter, built with minimal effort and hardware, is a sinc^3 -type filter, as shown in [Equation 1](#):

$$H(z) = \left(\frac{1 - z^{-\text{OSR}}}{1 - z^{-1}} \right)^3 \quad (1)$$

This filter provides the best output performance at the lowest hardware size (count of digital gates). For an oversampling rate (OSR) in the range of 16 to 256, this filter is a good choice. All the characterization in this document is also done with a sinc^3 filter with OSR = 256 and an output word width of 16 bits.

In a sinc^3 filter response (shown in [Figure 48](#) and [Figure 49](#)), the location of the first notch occurs at the frequency of output data rate $f_{\text{DATA}} = f_{\text{CLK}}/\text{OSR}$. The -3-dB point is located at half the Nyquist frequency or $f_{\text{DATA}}/4$. For some applications, it may be necessary to use another filter type with different frequency response. Performance can be improved, for example, by using a cascaded filter structure. The first decimation stage could be built of a sinc^3 filter with a low OSR and the second stage using a high-order filter.

The effective number of bits (ENOB) is often used to compare the performance of ADCs and $\Delta\Sigma$ modulators. [Figure 51](#) illustrates the ENOB of the AMC1204 and AMC1204B with different oversampling ratios. In this data sheet, this number is calculated from SNR using [Equation 2](#):

$$\text{SNR} = 1.76\text{dB} + 6.02\text{dB} \times \text{ENOB} \quad (2)$$

An example code for an implementation of a sinc^3 filter in an FPGA follows. For more information, see the [Combining ADS1202 with FPGA Digital Filter for Current Measurement in Motor Control Applications](#) application note, available for download at www.ti.com.

Application Information (continued)

```

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity FLT is
  port(RESN, MOUT, MCLK, CNR : in std_logic;
       CN5 : out std_logic_vector(23 downto 0));
end FLT;

architecture RTL of FLT is
  signal DN0, DN1, DN3, DN5 : std_logic_vector(23 downto 0);
  signal CN1, CN2, CN3, CN4 : std_logic_vector(23 downto 0);
  signal DELTA1 : std_logic_vector(23 downto 0);
begin

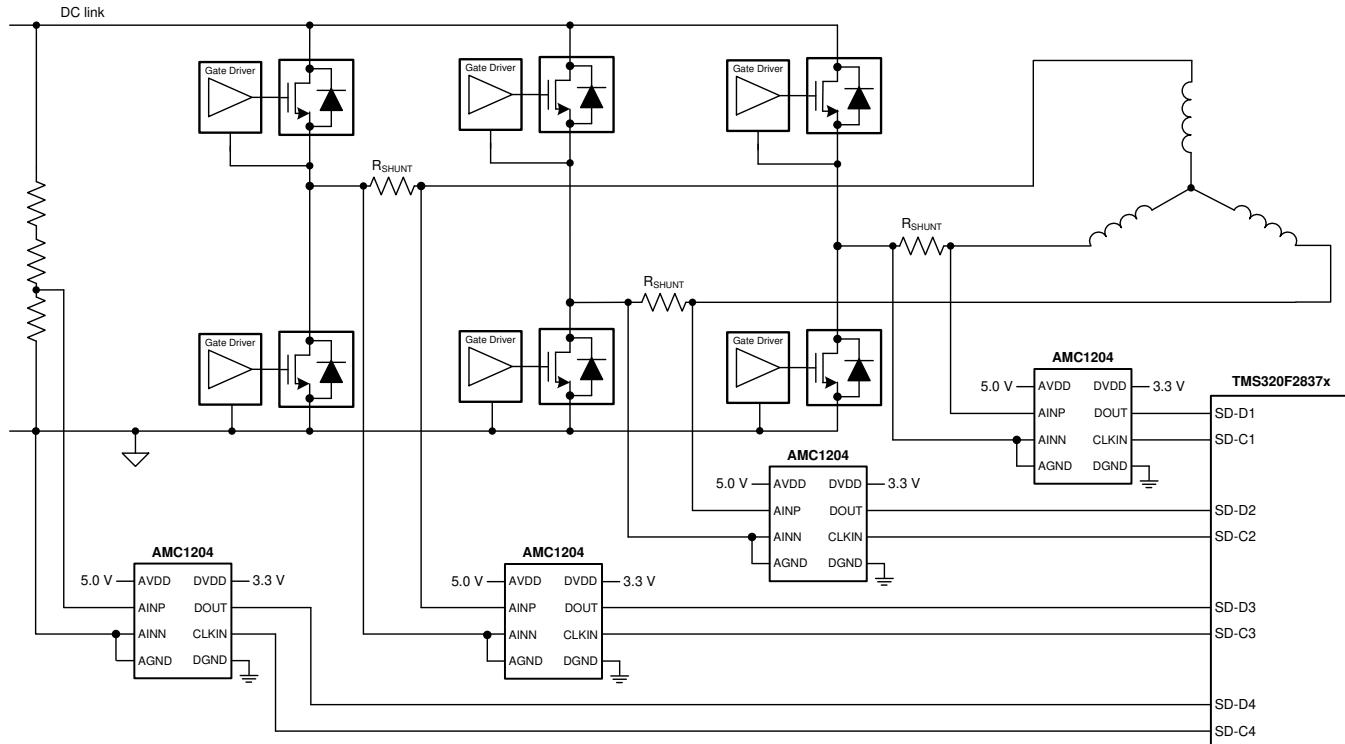
begin

process(MCLK, RESn)
begin
  if RESn = '0' then
    DELTA1 <= (others => '0');
  elsif MCLK'event and MCLK = '1' then
    if MOUT = '1' then
      DELTA1 <= DELTA1 + 1;
    end if;
  end if;
end process;

process(RESN, MCLK)
begin
  if RESN = '0' then
    CN1 <= (others => '0');
    CN2 <= (others => '0');
  elsif MCLK'event and MCLK = '1' then
    CN1 <= CN1 + DELTA1;
    CN2 <= CN2 + CN1;
  end if;
end process;

process(RESN, CNR)
begin
  if RESN = '0' then
    DN0 <= (others => '0');
    DN1 <= (others => '0');
    DN3 <= (others => '0');
    DN5 <= (others => '0');
  elsif CNR'event and CNR = '1' then
    DN0 <= CN2;
    DN1 <= DN0;
    DN3 <= CN3;
    DN5 <= CN4;
  end if;
end process;

CN3 <= DN0 - DN1;
CN4 <= CN3 - DN3;
CN5 <= CN4 - DN5;


end RTL;

```

8.2 Typical Application

8.2.1 Frequency Inverter Application

Because of their high AC and DC performance, isolated $\Delta\Sigma$ modulators are being widely used in new generation frequency inverter designs. Frequency inverters are critical parts of industrial motor drives, photovoltaic inverters (string and central inverters), uninterruptible power supplies (UPS), electrical and hybrid vehicles, and other industrial applications. The input structure of the AMC1204 is optimized for use with low-impedance shunt resistors and is therefore tailored for isolated current sensing using shunts.

Figure 50. AMC1204 in a Frequency Inverter Application

8.2.1.1 Design Requirements

Figure 50 shows a diagram of the AMC1204 in a typical frequency inverter. When the inverter stage is part of a motor drive system, measurement of the motor phase current is done via the shunt resistors (R_{SHUNT}). Depending on the system design, either all three or only two phase currents are sensed.

In this example, an additional AMC1204 is used for isolated sensing of the DC link voltage. This high DC link voltage is reduced using a high-impedance resistive divider before being sensed by the AMC1204 across a smaller resistor. It is important to consider that the value of the resistor in the voltage divider can potentially degrade the performance of the measurement. Such phenomenon is described in the [Isolated Voltage Sensing](#) section.

8.2.1.2 Detailed Design Procedure

For modulator output bit-stream filtering, TI recommends a device from TI's [TMS320F28x7x](#) family of MCUs. This family supports up to eight channels of dedicated hardwired filter structures that significantly simplify system level design by offering two filtering paths per channel: one providing high accuracy results for the control loop and one fast response path for overcurrent detection.

Typical Application (continued)

8.2.1.3 Application Curves

In motor control applications, a very fast response time for overcurrent detection is required. The time for fully settling the filter in case of a step-signal at the input of the modulator depends on its order; that is, a sinc^3 filter requires three data updates for full settling (with $f_{\text{DATA}} = f_{\text{CLK}} / \text{OSR}$). Therefore, for overcurrent protection, filter types other than sinc^3 might be better choices. An alternative is, for example, the sinc^2 filter. Figure 52 compares the settling times of different filter orders.

Sincfast is a modified sinc^2 filter whose transfer function follows Equation 3.

$$H(z) = \left(\frac{1 - z^{-\text{OSR}}}{1 - z^{-1}} \right)^2 (1 + z^{-20\text{OSR}}) \quad (3)$$

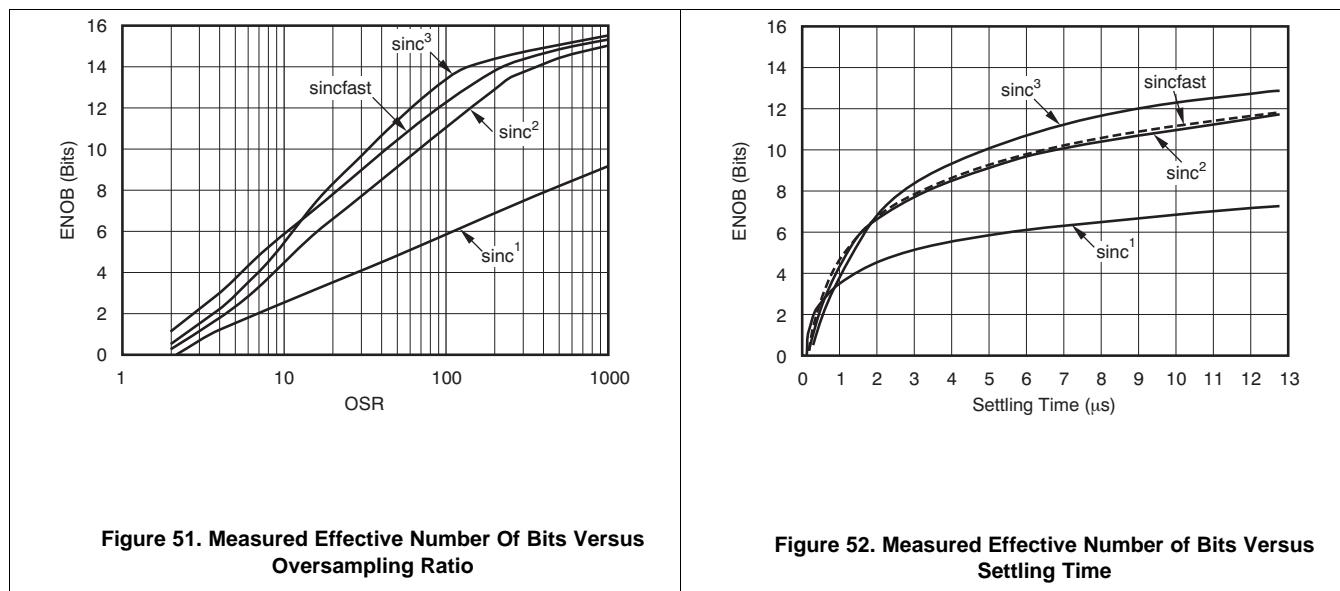
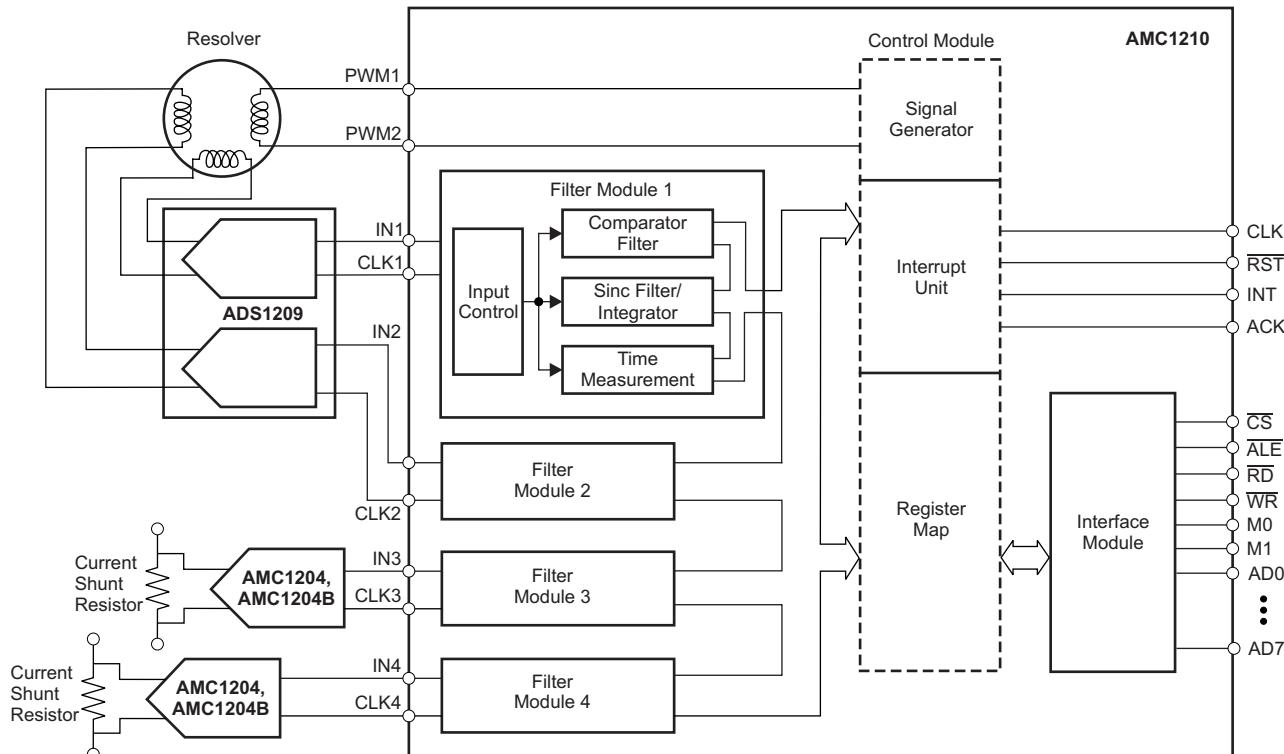


Figure 51. Measured Effective Number Of Bits Versus Oversampling Ratio

Figure 52. Measured Effective Number of Bits Versus Settling Time


In the case of a continuous signal fed into a sinc filter, the time delay for such signal corresponds to half of the settling time shown in Figure 52.

Typical Application (continued)

8.2.2 Example of a Resolver-Based Motor Control Analog Front End

Figure 53 shows an example of two AMC1204 and AMC1204B devices and one [ADS1209](#) (a dual-channel, 10-MHz, non-isolated modulator) connected to an AMC1210, building the entire analog front end of a resolver-based motor control application.

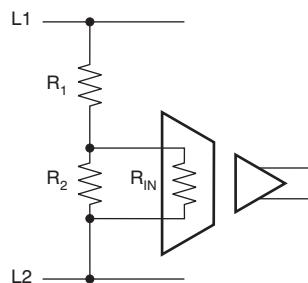

For detailed information on the [ADS1209](#) and [AMC1210](#), visit the respective device product folders at www.ti.com.

Figure 53. Example of a Resolver-Based Motor Control Analog Front End Schematic

8.2.3 Isolated Voltage Sensing

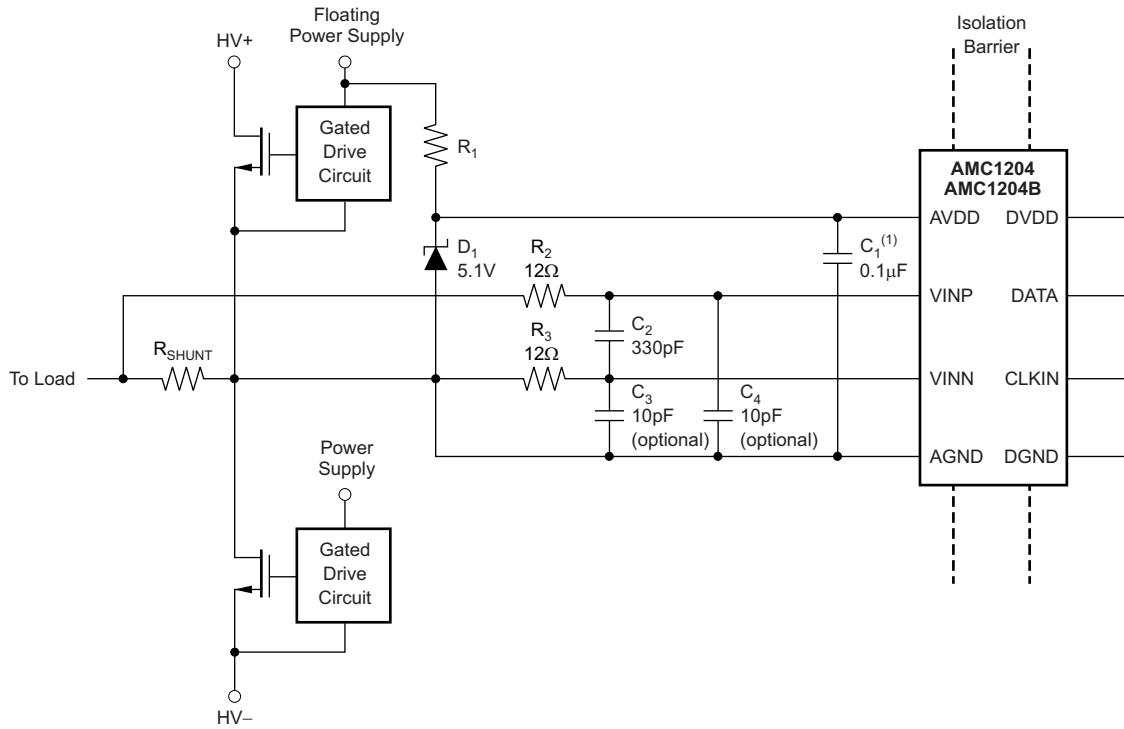
The AMC1204 is optimized for current-sensing applications using low-impedance shunts. However, the device can also be used in isolated voltage-sensing applications if the impact of the (usually higher) impedance of the resistor used in this case is considered. [Figure 54](#) shows a simplified circuit typically used in high-voltage sensing applications.

Figure 54. Voltage Measurement Application

Typical Application (continued)

8.2.3.1 *Design Requirements*

In such applications, a resistor divider (R_1 and R_2) is used to match the relatively small input voltage range of the AMC device. R_2 and the input resistance R_{IN} of the AMC1204 also create a resistor divider resulting in additional gain error. With the assumption that R_1 and R_{IN} have a considerably higher value than R_2 , use [Equation 4](#) to estimate the resulting total gain error.


$$G_{ERRTOT} = G_{ERR} + \frac{R_2}{R_{IN}}$$

where

- G_{ERR} = the gain error of AMC device. (4)

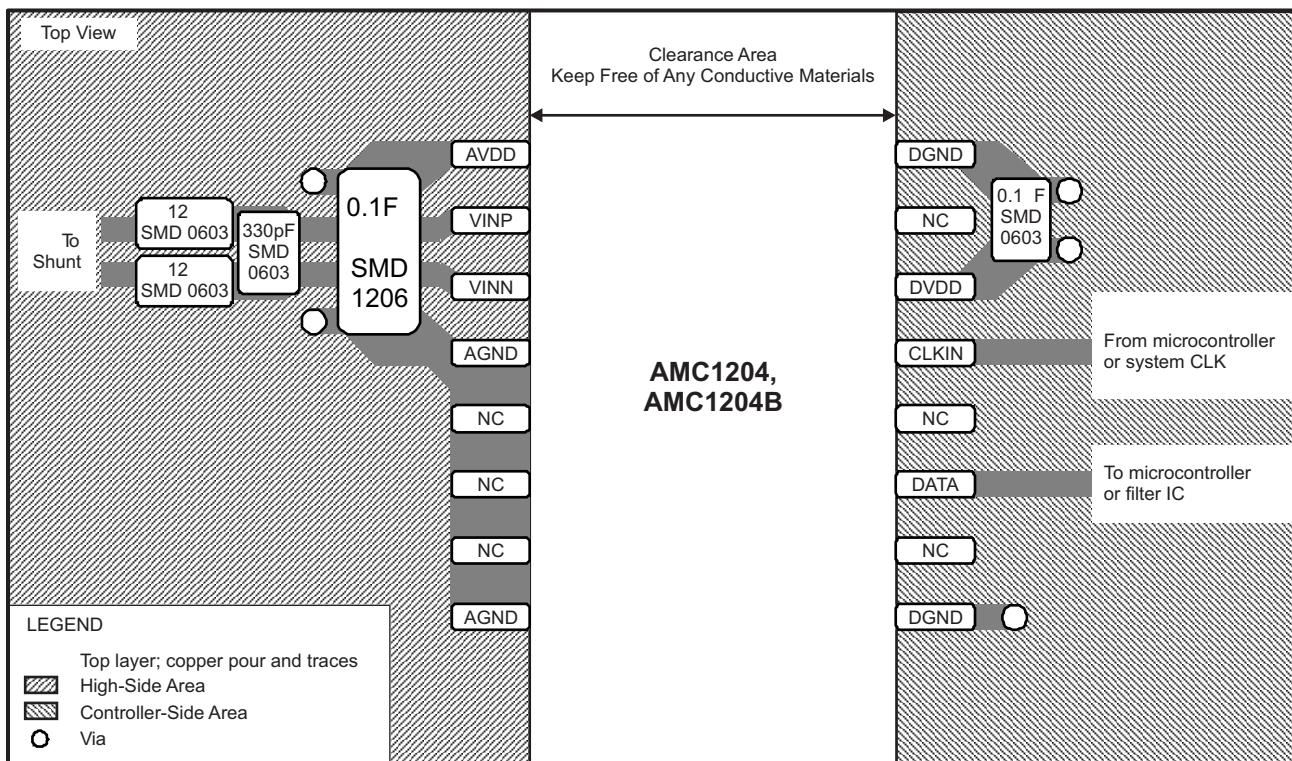
9 Power Supply Recommendations

In a typical frequency inverter application, the high-side power supply (AVDD) for the AMC1204 and AMC1204B is derived from the power supply of the upper gate driver. For lowest cost, a Zener diode can be used to limit the voltage to $5\text{ V} \pm 10\%$. TI recommends a decoupling capacitor of $0.1\text{ }\mu\text{F}$ for filtering this power-supply path. This capacitor (C_1 in [Figure 55](#)) should be placed as close as possible to the AVDD pin for best performance. If better filtering is required, an additional $1\text{-}\mu\text{F}$ to $10\text{-}\mu\text{F}$ capacitor can be used. The floating ground reference AGND is derived from the end of the shunt resistor, which is connected to the negative input (VINN) of the AMC1204 and AMC1204B. If a four-terminal shunt is used, the inputs of AMC1204 and AMC1204B are connected to the inner leads, while AGND is connected to one of the outer leads of the shunt. Both digital signals, CLKIN and DATA, can be directly connected to a digital filter.

(1) Place C₁ close to the AMC1204 and AMC1204B.

Figure 55. Zener-Diode-Based High-Side Power Supply

For better performance, the differential input signal is filtered using RC filters (components R_2 , R_3 , and C_2). Optionally, C_3 and C_4 can be used to reduce charge dumping from the inputs. In this case, care should be taken when choosing the quality of these capacitors: any mismatch in the capacitor values can cause a common-mode error at the input of the modulator.


10 Layout

10.1 Layout Guidelines

- Place the decoupling capacitors for AVDD and DVDD as close as possible to the AMC1204.
- Ensure that the traces that connect the shunt resistor to the RC filter on the VINP terminal are symmetrical to and have the same length as the traces connecting to the VINN terminal.
- The top and bottom PCB layers underneath the AMC1204 must be kept free of any conductive materials in order to comply with the creepage and clearance distances shown in the section.

10.2 Layout Example

Figure 56 shows the recommended layout and placement of the decoupling capacitors and other components required by the AMC1204 and AMC1204B.

Figure 56. Recommended Layout

11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation

For related documentation see the following:

- Texas Instruments, [*TMS320F2837xD Dual-Core Delfino™ Microcontrollers*](#) data sheet
- Texas Instruments, [*MSP430F677x, MSP430F676x, MSP430F674x Polyphase Metering SoCs*](#) data sheet
- Texas Instruments, [*TMS320F2837xD Dual-Core Delfino™ Microcontrollers*](#) data sheet
- Texas Instruments, [*AMC1210 Quad Digital Filter for 2nd-Order Delta-Sigma Modulator*](#) data sheet
- Texas Instruments, [*ADS1209 Two 1-Bit, 10MHz, 2nd-Order Delta-Sigma Modulators*](#) data sheet
- Texas Instruments, [*ISO72x Digital Isolator Magnetic-Field Immunity*](#) application report
- Texas Instruments, [*Combining ADS1202 with FPGA Digital Filter for Current Measurement in Motor Control Applications*](#) application report
- Texas Instruments, [*Isolation Glossary*](#) application report

11.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.3 Support Resources

[**TI E2E™ support forums**](#) are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [**Terms of Use**](#).

11.4 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution

 This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

 ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.6 Glossary

[**SLYZ022 — TI Glossary**](#)

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
AMC1204BDW	Active	Production	SOIC (DW) 16	40 TUBE	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	1204B
AMC1204BDW.A	Active	Production	SOIC (DW) 16	40 TUBE	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	1204B
AMC1204BDWR	Active	Production	SOIC (DW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	1204B
AMC1204BDWR.A	Active	Production	SOIC (DW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	1204B
AMC1204BDWV	Active	Production	SOIC (DWV) 8	64 TUBE	Yes	SN	Level-3-260C-168 HR	-40 to 125	AMC1204B
AMC1204BDWV.A	Active	Production	SOIC (DWV) 8	64 TUBE	Yes	SN	Level-3-260C-168 HR	-40 to 125	AMC1204B
AMC1204BDWVR	Active	Production	SOIC (DWV) 8	1000 LARGE T&R	Yes	SN	Level-3-260C-168 HR	-40 to 125	AMC1204B
AMC1204BDWVR.A	Active	Production	SOIC (DWV) 8	1000 LARGE T&R	Yes	SN	Level-3-260C-168 HR	-40 to 125	AMC1204B
AMC1204DW	Active	Production	SOIC (DW) 16	40 TUBE	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	AMC1204
AMC1204DW.A	Active	Production	SOIC (DW) 16	40 TUBE	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	AMC1204
AMC1204DWR	Active	Production	SOIC (DW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	AMC1204
AMC1204DWR.A	Active	Production	SOIC (DW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	AMC1204

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

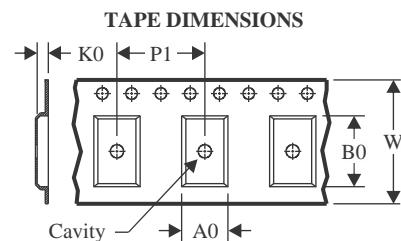
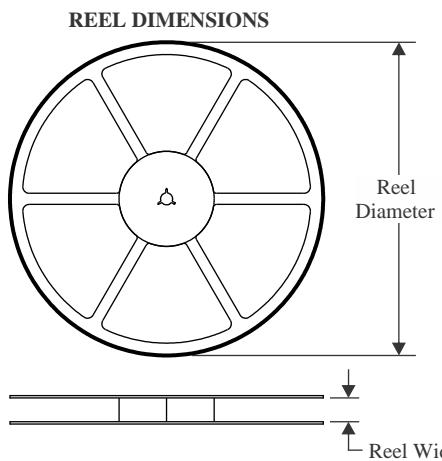
⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

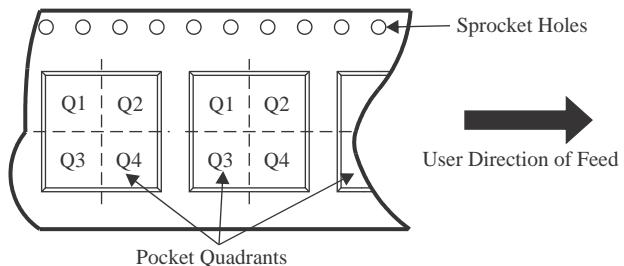
⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

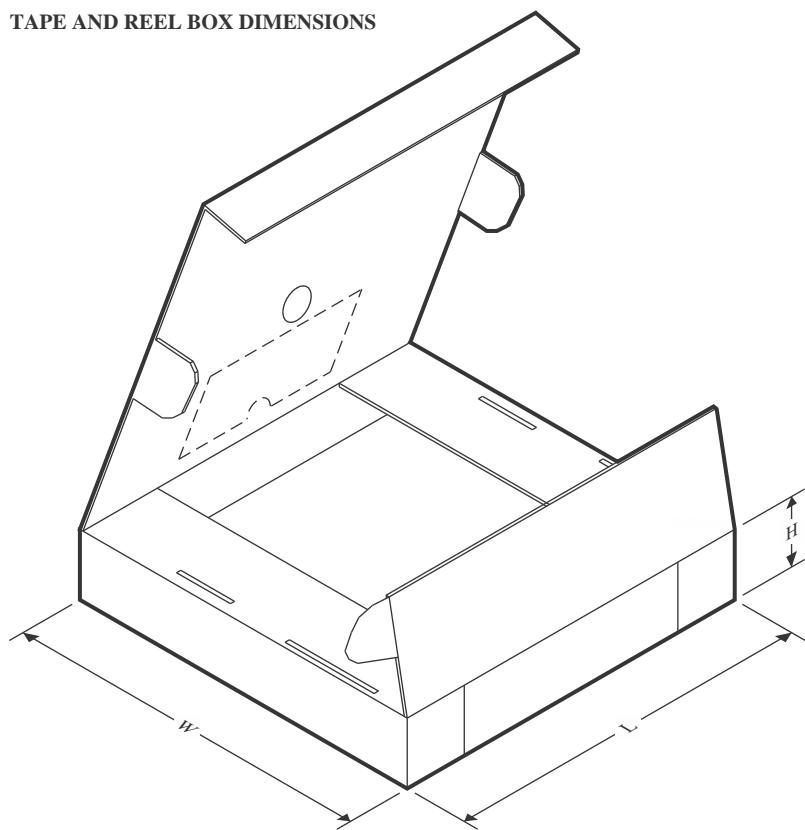


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF AMC1204 :


- Automotive : [AMC1204-Q1](#)

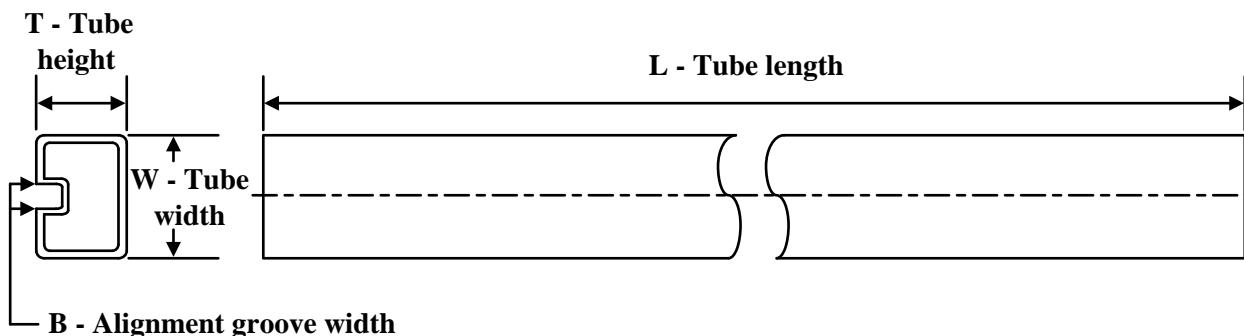
NOTE: Qualified Version Definitions:

- Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
AMC1204BDWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
AMC1204BDWVR	SOIC	DWV	8	1000	330.0	16.4	12.05	6.15	3.3	16.0	16.0	Q1
AMC1204DWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1

TAPE AND REEL BOX DIMENSIONS

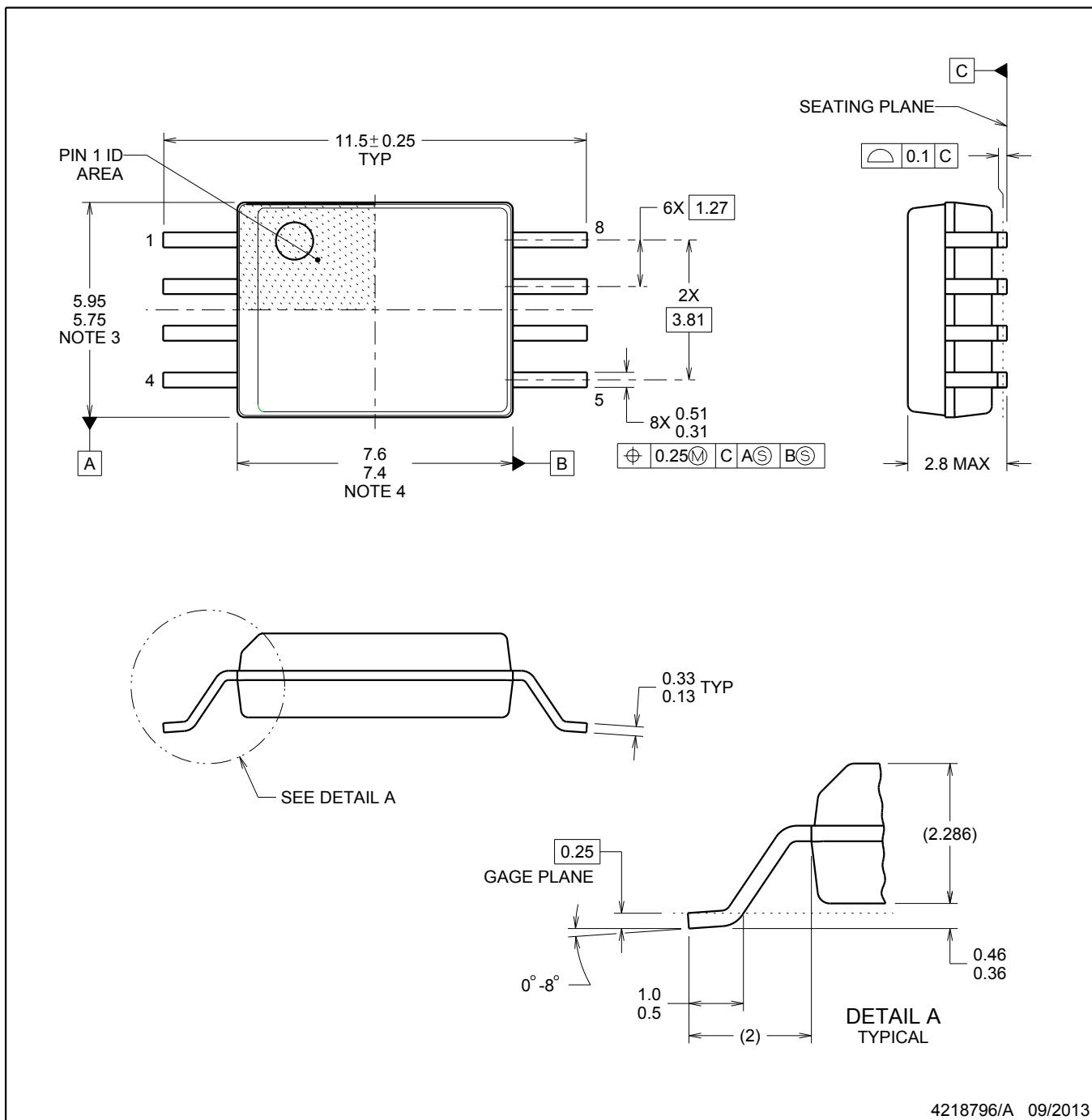
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
AMC1204BDWR	SOIC	DW	16	2000	353.0	353.0	32.0
AMC1204BDWVR	SOIC	DWV	8	1000	350.0	350.0	43.0
AMC1204DWR	SOIC	DW	16	2000	353.0	353.0	32.0

TUBE

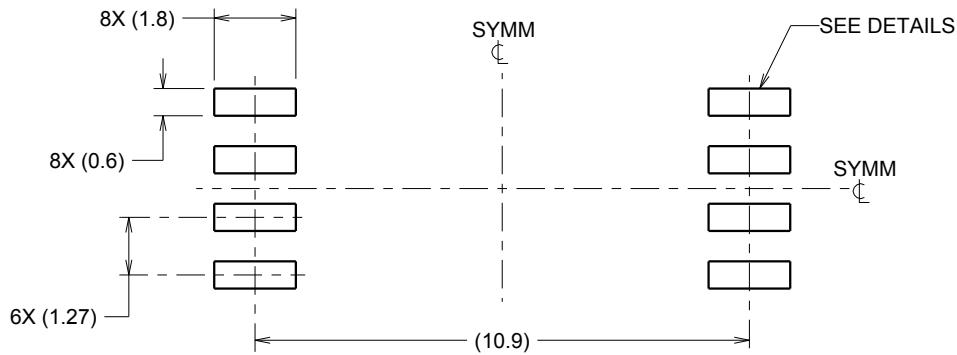
*All dimensions are nominal

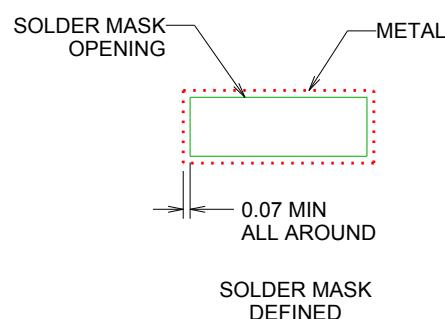
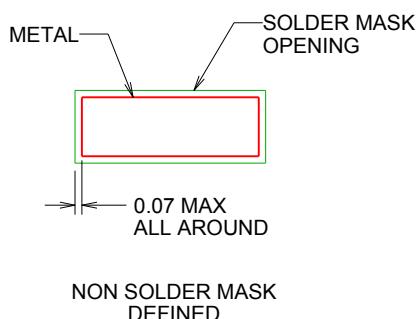
Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (μ m)	B (mm)
AMC1204BDW	DW	SOIC	16	40	507	12.83	5080	6.6
AMC1204BDW	DW	SOIC	16	40	506.98	12.7	4826	6.6
AMC1204BDW.A	DW	SOIC	16	40	507	12.83	5080	6.6
AMC1204BDW.A	DW	SOIC	16	40	506.98	12.7	4826	6.6
AMC1204BDWV	DWV	SOIC	8	64	505.46	13.94	4826	6.6
AMC1204BDWV.A	DWV	SOIC	8	64	505.46	13.94	4826	6.6
AMC1204DW	DW	SOIC	16	40	506.98	12.7	4826	6.6
AMC1204DW	DW	SOIC	16	40	507	12.83	5080	6.6
AMC1204DW.A	DW	SOIC	16	40	506.98	12.7	4826	6.6
AMC1204DW.A	DW	SOIC	16	40	507	12.83	5080	6.6


PACKAGE OUTLINE

DWV0008A

SOIC - 2.8 mm max height


SOIC



4218796/A 09/2013

NOTES:

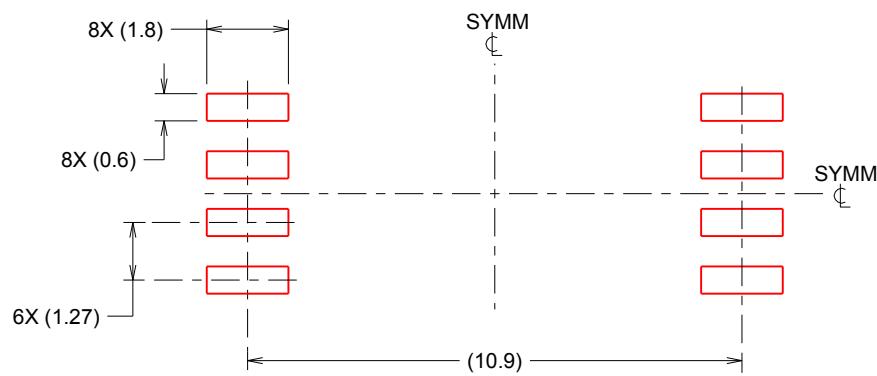
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.

LAND PATTERN EXAMPLE
9.1 mm NOMINAL CLEARANCE/CREEPAGE
SCALE:6X

SOLDER MASK DETAILS

4218796/A 09/2013

NOTES: (continued)


5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

DWV0008A

SOIC - 2.8 mm max height

SOIC

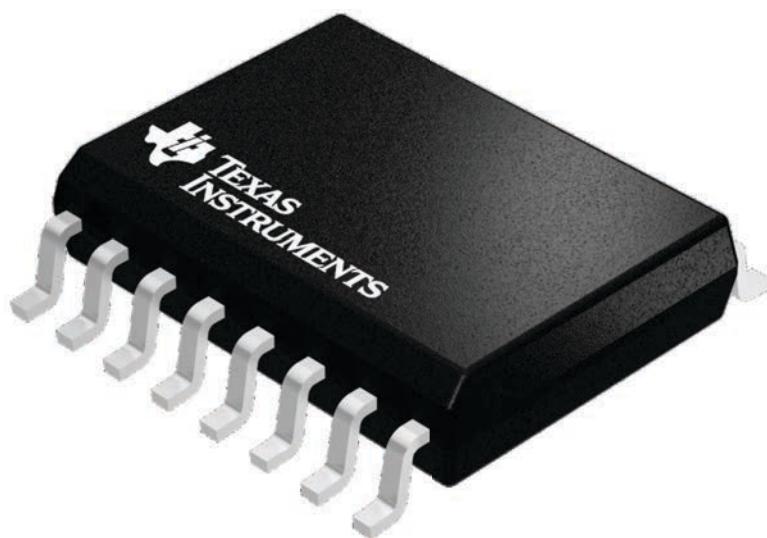
SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:6X

4218796/A 09/2013

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
8. Board assembly site may have different recommendations for stencil design.

GENERIC PACKAGE VIEW


DW 16

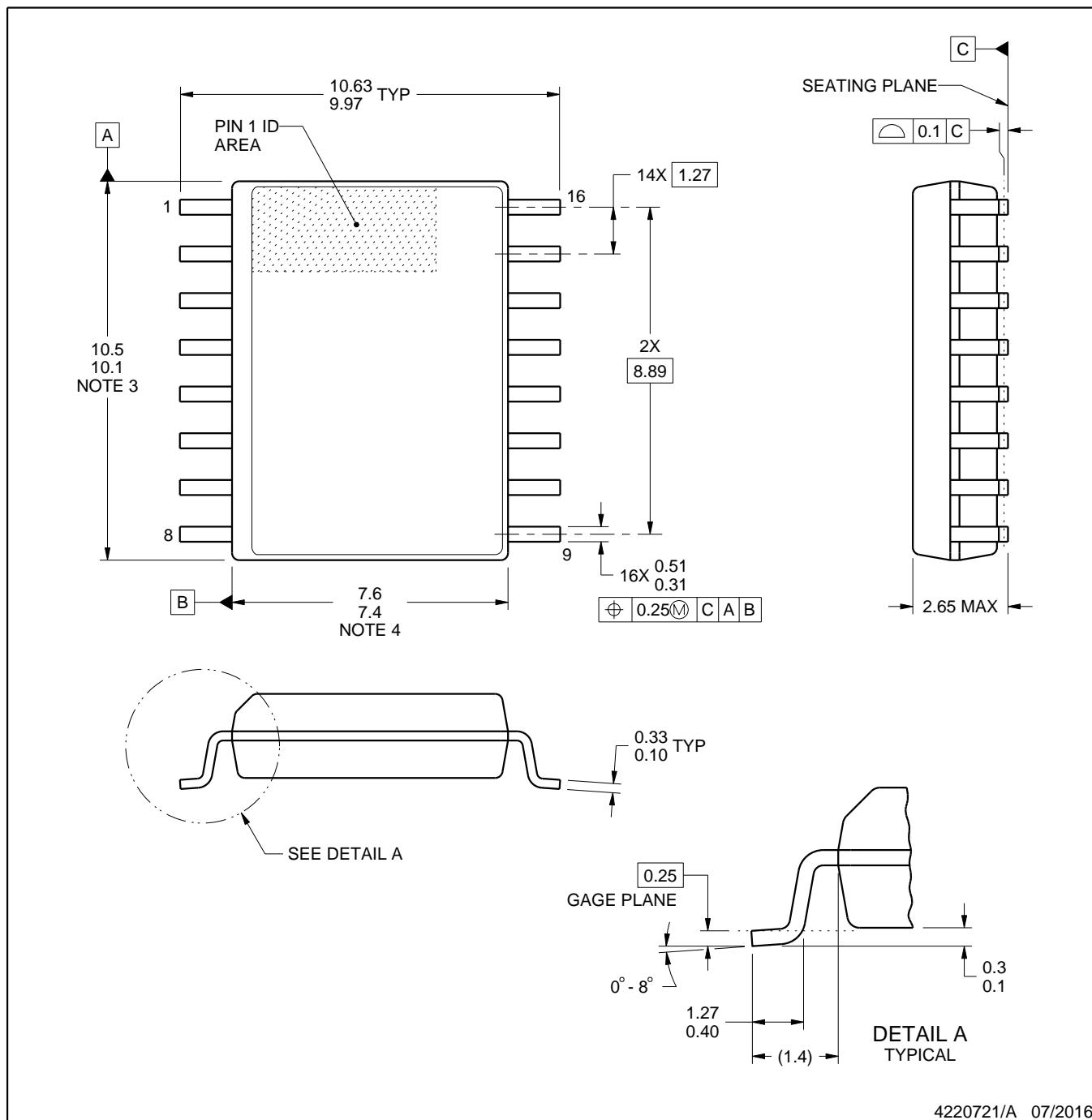
SOIC - 2.65 mm max height

7.5 x 10.3, 1.27 mm pitch

SMALL OUTLINE INTEGRATED CIRCUIT

This image is a representation of the package family, actual package may vary.
Refer to the product data sheet for package details.

4224780/A



PACKAGE OUTLINE

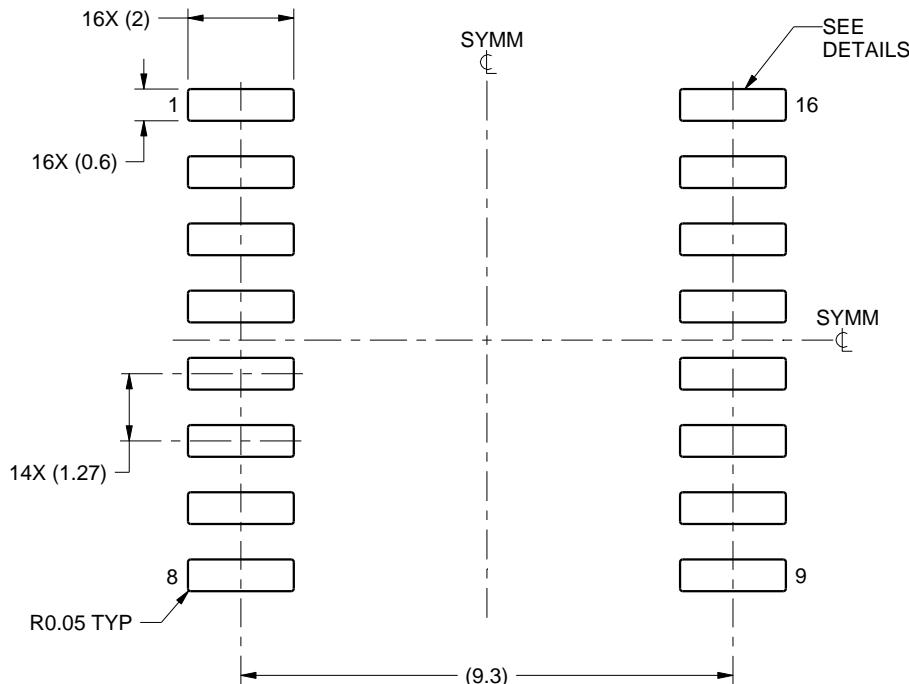
DW0016A

SOIC - 2.65 mm max height

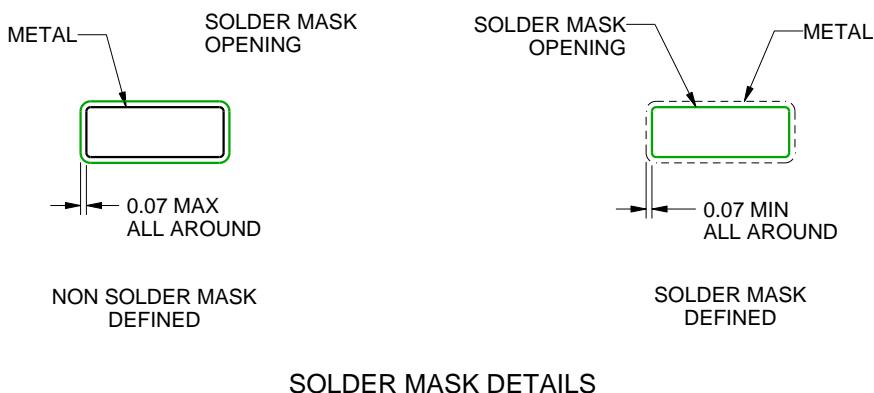
SOIC

4220721/A 07/2016

NOTES:


1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.
5. Reference JEDEC registration MS-013.

EXAMPLE BOARD LAYOUT


DW0016A

SOIC - 2.65 mm max height

SOIC

LAND PATTERN EXAMPLE
SCALE:7X

4220721/A 07/2016

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

DW0016A

SOIC - 2.65 mm max height

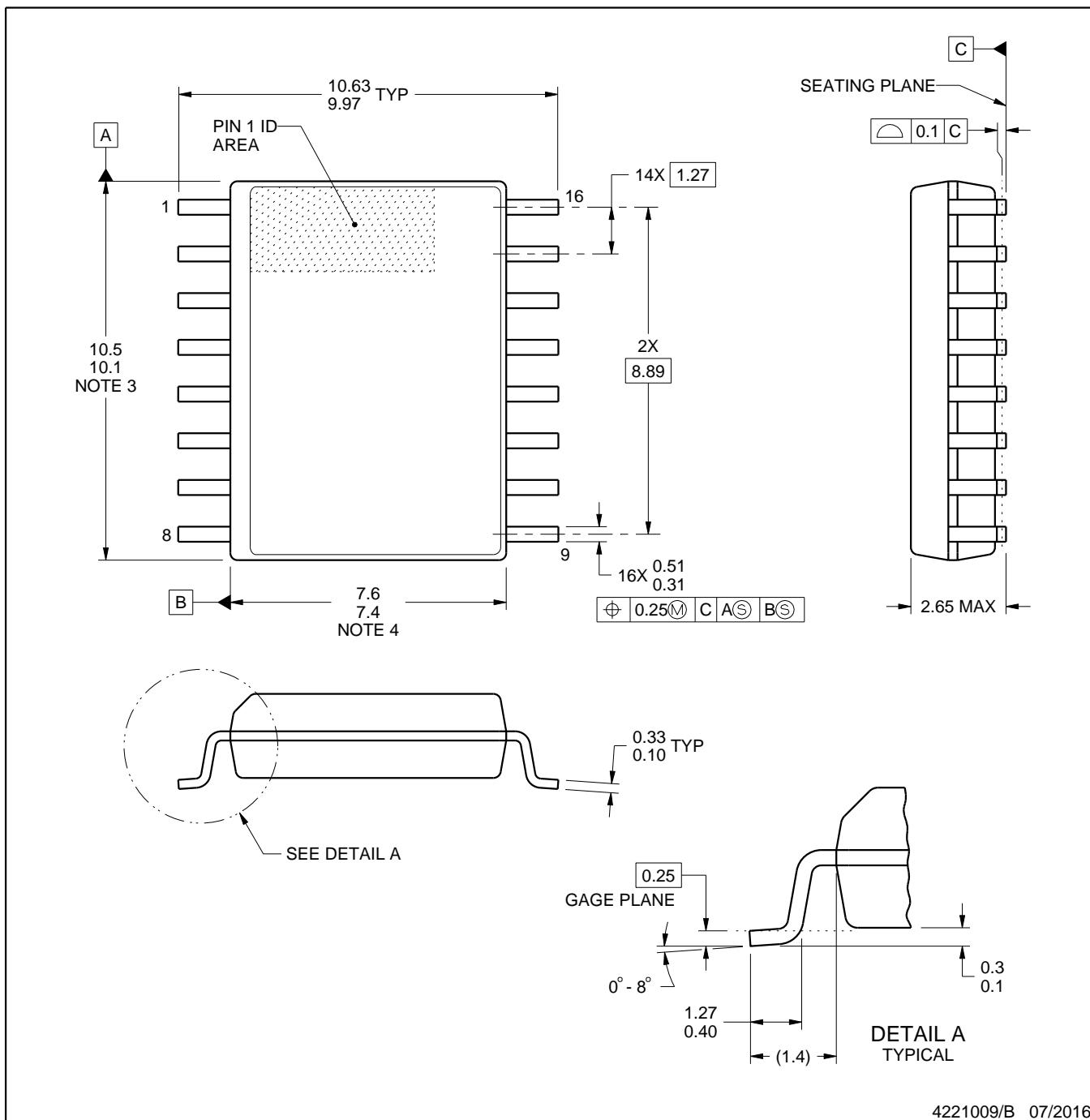
SOIC

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:7X

4220721/A 07/2016

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.



PACKAGE OUTLINE

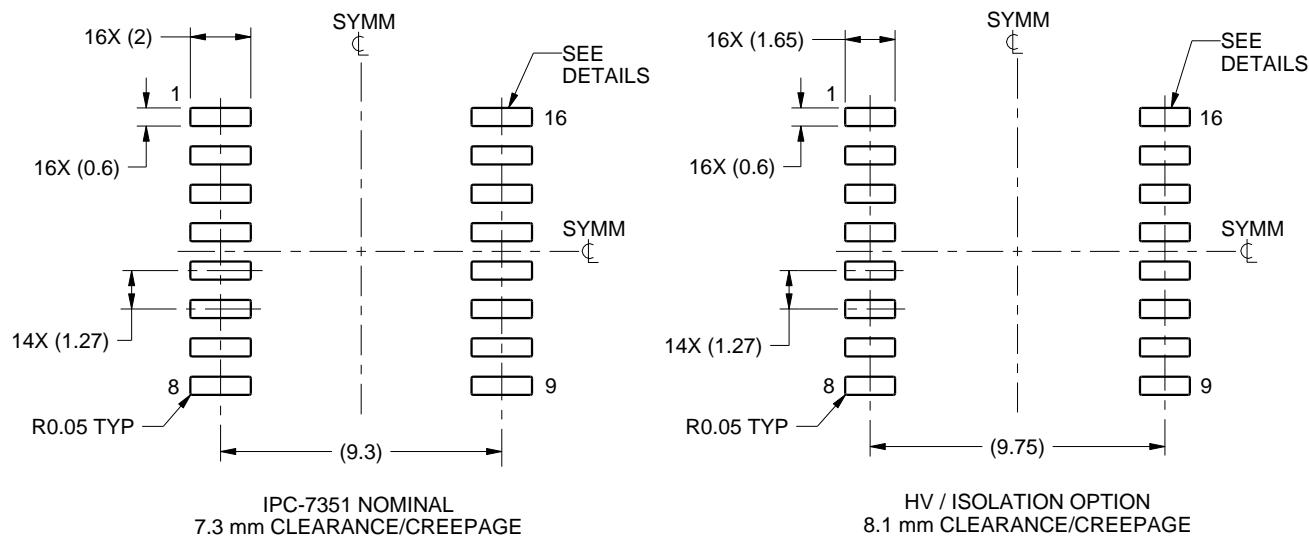
DW0016B

SOIC - 2.65 mm max height

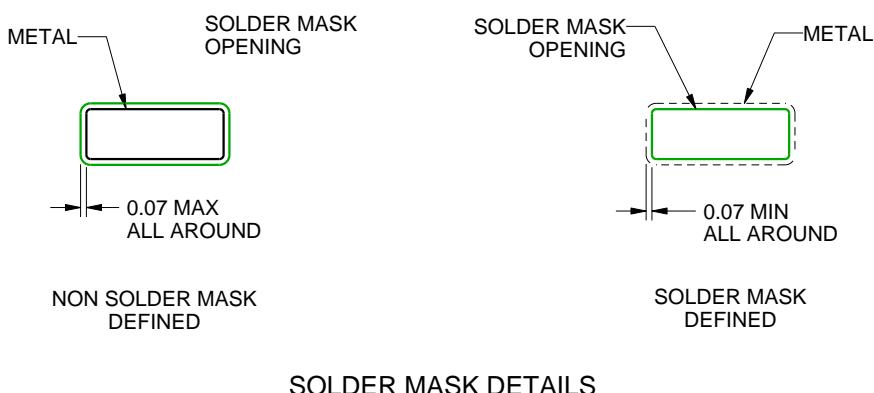
SOIC

4221009/B 07/2016

NOTES:


1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.
5. Reference JEDEC registration MS-013.

EXAMPLE BOARD LAYOUT


DW0016B

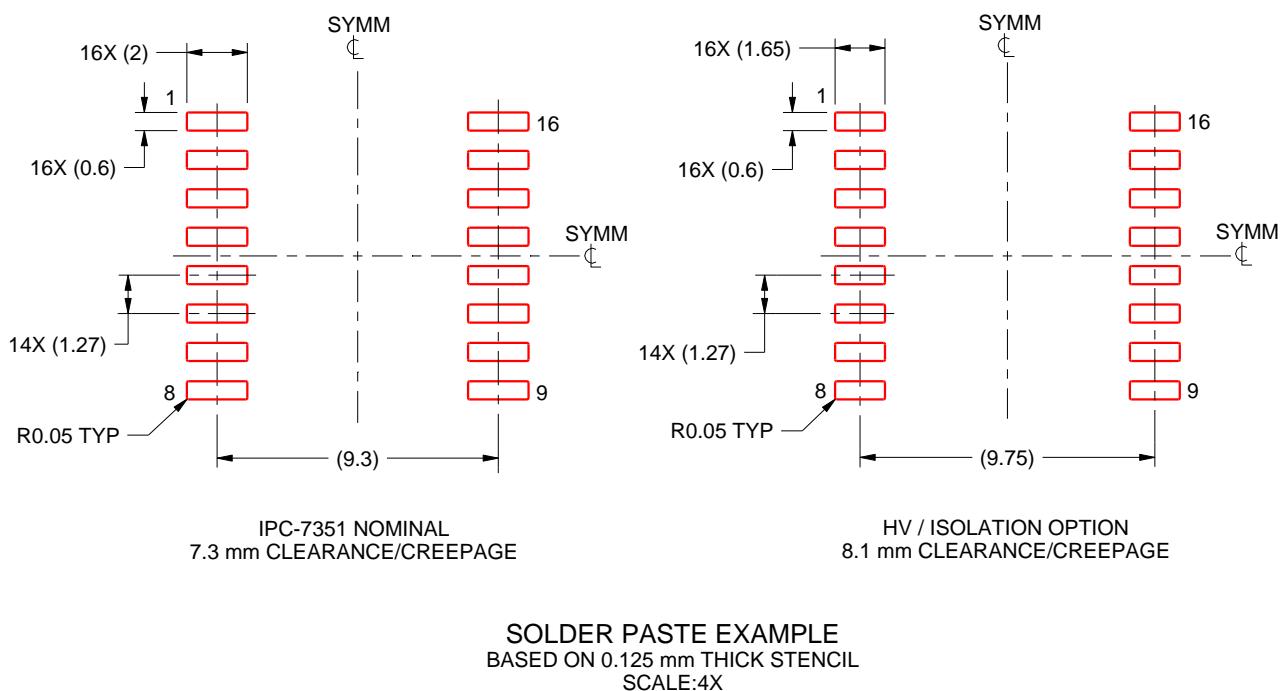
SOIC - 2.65 mm max height

SOIC

LAND PATTERN EXAMPLE
SCALE:4X

4221009/B 07/2016

NOTES: (continued)


6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

DW0016B

SOIC - 2.65 mm max height

SOIC

4221009/B 07/2016

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025