
User's Guide
CC256x TI Bluetooth Stack SPPLEDemo App

ABSTRACT

This document talks about the SPPLE application in detail. The application allows the user to use a console to
use Bluetooth Low Energy (BLE) to establish connection between two BLE devices, send Bluetooth commands
and exchange data overBLE.

Table of Contents
1 Introduction...3
2 Running the Bluetooth Code... 4
3 Demo Application... 5

3.1 Device 1 (Server) Setup on the Demo Application...5
3.2 Device 2 (Client) Setup on the Demo Application.. 5
3.3 Initiating Connection from Device 2... 6
3.4 Identify Supported Services... 6
3.5 Data Transfer Between Client and Server..7
3.6 Multiple SPPLE Connections Guide...8

4 Demonstrating SPP LE on an iOS Device with the LightBlue App.. 9
4.1 LightBlue Overview.. 9
4.2 SPP LE Service Overview..9

5 LightBlue as the Client/SPPLEDemo as the Server.. 10
5.1 Connecting the Devices... 10
5.2 Enabling Notifications...12
5.3 Sending Data from LightBlue/Receiving Data in SPPLEDemo..13
5.4 Sending Data from SPPLEDemo/Receiving Data in LightBlue..14

6 LightBlue as the Server/SPPLEDemo as the Client.. 16
6.1 Connecting the Devices... 16
6.2 Sending Data from LightBlue/Receiving Data in SPPLEDemo..19
6.3 Sending Data from SPPLEDemo/Receiving Data in LightBlue..19

7 Application Commands..21
8 General Commands..22

8.1 Help (DisplayHelp)... 22
8.2 Get Local Address..22
8.3 Set Baud Rate..23
8.4 Quit...23

9 BR/EDR Commands..24
10 GAPLE Commands...25

10.1 Set Discoverability Mode..25
10.2 Set Connectability Mode.. 25
10.3 Set Pairability Mode... 26
10.4 Change Pairing Parameters...26
10.5 Advertise LE...27
10.6 Start Scanning..28
10.7 Stop Scanning..29
10.8 Connect LE.. 29
10.9 Disconnect LE.. 31
10.10 Pair LE... 31
10.11 LE Pass Key Response..32
10.12 LE Query Encryption.. 33
10.13 Set Passkey... 34
10.14 Discover GAPS.. 34
10.15 Get Local Name... 35

www.ti.com Table of Contents

SWRA772 – AUGUST 2023
Submit Document Feedback

CC256x TI Bluetooth Stack SPPLEDemo App 1

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

10.16 Set Local Name..36
10.17 Get Remote Name... 36
10.18 LE User Confirmation Response..37
10.19 Enable SC Only..38
10.20 Regenerate P256 Local Keys.. 39
10.21 SC Generate OOB Local Params.. 40
10.22 Set Local Appearance..41
10.23 Get Local Appearance... 41

11 SPPLE Commands..43
11.1 Discover SPPLE...43
11.2 Register SPPLE..43
11.3 LE Send..44
11.4 Configure SPPLE... 45
11.5 LE Read..46
11.6 Loopback..48
11.7 Display Raw Mode Data...48
11.8 Automatic Read Mode..48

12 References.. 49
13 Revision History... 49

Trademarks
All trademarks are the property of their respective owners.

Trademarks www.ti.com

2 CC256x TI Bluetooth Stack SPPLEDemo App SWRA772 – AUGUST 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

1 Introduction
This application demonstrates a BR/EDR SPP based application as well as a custom application, SPPLE, over
Bluetooth LE that is similar in functionality to the BR/EDR appliacation.The SPPLE Profile is similar to the SPP
profile except the SPPLE uses LE transport compared to BR/EDR transport in the SPP profile. The SPP profile
emulates serial cable connections. There are two roles defined in this profile. The first is the server that has the
SPPLE service running and has open an server port. The client is a device that connects to the server. Both of
these devices can then exchange data with each other.

Visit the TI Dual-Mode Bluetooth® Stack on MSP432™ MCUs or Dual-Mode Bluetooth® Stack on STM32F4
MCUs pages before trying the application described on this page.

Note
The same instructions can be used to run this demo on the Tiva, MSP432 or STM32F4 Platforms.

www.ti.com Introduction

SWRA772 – AUGUST 2023
Submit Document Feedback

CC256x TI Bluetooth Stack SPPLEDemo App 3

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/swru453
https://www.ti.com/lit/pdf/swru428
https://www.ti.com/lit/pdf/swru428
https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

2 Running the Bluetooth Code
Once the code is flashed, connect the board to a PC using a miniUSB or microUSB cable. Once connected,
wait for the driver to install. The driver appears as MSP-EXP430F5438 USB -Serial Port(COM x), Tiva Virtual
COM Port (COM x),XDS110 Class Application/User UART (COM x) for MSP432, under Ports (COM & LPT) in
the Device manager. Attach a Terminal program like PuTTY to the serial port x for the board. Use the serial
parameters 115200 Baud (9600 for MSP430), 8, n, 1. Once connected, reset the device using Reset S3 button
(located next to the mini USB connector for the MSP430) and observe the stack getting initialized on the terminal
and the help screen displays, which shows all of the commands. This device becomes the server. Connect the
second board via miniUSB or microUSB cable and follow the same steps performed before when running the
Bluetooth code on the first board. The second device that is connected to the computer is the client.

Running the Bluetooth Code www.ti.com

4 CC256x TI Bluetooth Stack SPPLEDemo App SWRA772 – AUGUST 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

3 Demo Application
Below is a description on how to use the demo application to connect two configured boards and communicate
over bluetoothLE. The included application registers a custom service on aboard when the stack is initialized.

3.1 Device 1 (Server) Setup on the Demo Application
1. To start, place the device into server mode by typing: Server on the console. The SPP-LE Service can then

be started by running RegisterSPPLE.
2. Next, the device acting as a server needs to advertise to other devices. This can be done by running

AdvertiseLE 1.

3.2 Device 2 (Client) Setup on the Demo Application
1. Place the device into client mode by typing Client on the console.
2. The client LE device can try to find which LE devices are in the vicinity using the command: StartScanning.
3. Once you have found the device, you can stop scanning by using the command: StopScanning.

Note
Steps 2 and 3 are optional if the Bluetooth address is already known.

www.ti.com Demo Application

SWRA772 – AUGUST 2023
Submit Document Feedback

CC256x TI Bluetooth Stack SPPLEDemo App 5

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

3.3 Initiating Connection from Device 2
1. Once the application on the client side knows the Bluetooth address of the device that is advertising, the

application can connect to that device using the command: ConnectLE <BluetoothAddress>

3.4 Identify Supported Services

Demo Application www.ti.com

6 CC256x TI Bluetooth Stack SPPLEDemo App SWRA772 – AUGUST 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

1. After Initialization, the device needs to find out if SPP services are supported. To do this run DiscoverSPPLE
<Server BD-Address> on the client.

2. After finding out support for SPP-LE, we need to configure SPP-LE. This is done by running
ConfigureSPPLE <Server BD-Address> on the client.

3.5 Data Transfer Between Client and Server

1. After configuring we can send data between client and server. To send data, use LESend <Remote Device
BD-Address> <Number of bytes>.

2. Once the other device receives the data, the device also receives a Data Indication event.
3. The receiving device can then read the data that was sent using command: LERead <Remote Device

BD-Address>
4. This prints out the data that was sent. This data was sent over BluetoothLE using a custom service of

SPPLE in the sample application.

www.ti.com Demo Application

SWRA772 – AUGUST 2023
Submit Document Feedback

CC256x TI Bluetooth Stack SPPLEDemo App 7

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

3.6 Multiple SPPLE Connections Guide

Two SPPLE Connections
1. In This version, we test two simultaneous SPPLE connections to the MSP430. The remote devices are used

as a peripheral device while the MSP430 acts as the central device.
2. Connect to the first device, discover and configure services on the first device. When discovering services

and configuring services we have to specify the remote BD_ADDR that weconnected to.
3. Similarly, Connect to the second device, discover and configure services on the second device.
4. To send data to the first remote device data we use LeSend <BD-ADDR> <Number of Bytes to be sent>.
5. To send data to the second remote device data we use LeSend <BD-ADDR> <Number of Bytes to be sent>.
6. To read data from the first remote device data we use LeRead <BD-ADDR>.
7. To read data from the second remote device data we use LeRead <BD-ADDR>.
8. When the Automaticreadmode, DisplayRawmodedata or Loopback turns on, both connections turn on.

One SPP and One SPPLE Connection
1. In this version, test an SPP connection and SPPLE Connection at the same time to the MSP430. One of the

remote devices is used as a peripheral LE device while the remote deviceas SPP Client.
2. Connect to the first device, discover and configure services on the first device. When discovering services

and configuring services we have to specify the remote BD_ADDR that weconnected to.
3. Open an SPP server and let the second remote device connect.
4. To send data to the first remote device data we use LeSend <BD-ADDR> <Number of Bytes to be sent>.
5. To send data to the second remote data we use CBSend <Number of Bytes to be sent> <Serial Port ID> . If

we want to write a small amount of data we use the command Write <Serial Port ID>.
6. To read data from the first remote device data we use LeRead <BD-ADDR>.
7. To read data from the second remote device data we use Read.
8. Turn on Automaticreadmode, DisplayRawmodedata or Loopback (turns on for both connections.)

Demo Application www.ti.com

8 CC256x TI Bluetooth Stack SPPLEDemo App SWRA772 – AUGUST 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

4 Demonstrating SPP LE on an iOS Device with the LightBlue App
4.1 LightBlue Overview
The LightBlue app is a free iOS app that tests and demonstrates the GATT Profile using Bluetooth Low Energy
(BLE).This app creates custom services and also interacts with servers that have custom services. The app
supports both the client and server roles of GATT. The next section explains how to use the app with the
SPPLEDemo application.

4.2 SPP LE Service Overview
SPP LE is not an official Bluetooth service. This is a custom service that is designed to demonstrate using
Bluetooth Low Energy to send and receive data in a similar manner that ClassicBluetooth's SPP profile does.
This uses a credit based protocol to send and receive data. For a device to send data to a remote device with
the SPP LE protocol, the remote device must have provided the device with "credits". These credits specify how
much data the device is allowed to send. When a device has sent the maximum number of credits, the device
must wait for the remote device to provide more credits before sending. In this application 1 credit is equivalent
to 1 byte (octet) of data.

4.2.1 Characteristics

SPP LE implements credit-based protocol using GATT characteristics. The SPP LE service has 4
characteristics:

Name UUID Purpose
Rx Characteristic 0x8B00ACE7-EB0B-49B0-

BBE9-9AEE0A26E1A3
Client sends data to the server using this
characteristic with an ATT Write Request.

Tx Credits Characteristic 0xBA04C4B2-892B-43BE-
B69C-5D13F2195392

Client sends credits to the server using this
characteristic with an ATT Write Request.

Tx Characteristic 0x0734594A-A8E7-4B1A-A6B1-
CD5243059A57

Server sends data to the client using this
characteristic with an ATT Handle Value
Notification.

Rx Credits Characteristic 0xE06D5EFB-4F4A-45C0-9EB1-371AE5A14
AD4

Server sends credits to the client using this
characteristic with an ATT Handle Value
Notification.

The client and server use these characteristics to send and receive data and credits. The following is a
demonstration of the SPPLEDemo as the server and LightBlue as the client. Download the LightBlue app from
the App Store and turn on Bluetooth on an iOS device.

Note

For more information about characteristics, ATT Write Requests, and ATT Handle Value Notifications,
please refer to the Attribute Protocol (ATT) and Generic AttributeProfile (GATT) specifications in the
Bluetooth Core specification, which can be found on the Bluetooth SIG's website

.

Note

The following instructions were confirmed in version 2.2.0 of LightBlue running on an iPhone 5 with
iOS 8.1.3. These instructions can be used with the SPPLEDemo app from any TI Bluetooth SDK, but
in this example the SPPLEDemo app from the Tiva v1.2 R2 SDK.

www.ti.com Demonstrating SPP LE on an iOS Device with the LightBlue App

SWRA772 – AUGUST 2023
Submit Document Feedback

CC256x TI Bluetooth Stack SPPLEDemo App 9

Copyright © 2023 Texas Instruments Incorporated

https://www.bluetooth.org/en-us/specification/adopted-specifications
http://www.ti.com/tool/tibluetoothstack-sdk
https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

5 LightBlue as the Client/SPPLEDemo as the Server
5.1 Connecting the Devices
First establish a connection between the devices. To do this open the LightBlue app, observe a screen similar to
the following:

In the SPPLEDemo terminal start the app as a server, register the SPP LE Service, and begin advertising using
the Server, RegisterSPPLE, and AdvertiseLE 1 commands. Observe the following in the terminal:

OpenStack().
Bluetooth Stack ID: 1.
Device Chipset: 4.1.
BD_ADDR: 0x0017e9d3581a

Command Options: Server, Client, Help

SPP+LE>Server

 Command Options General: Help, GetLocalAddress, SetBaudRate
 Quit,
 Command Options BR/EDR: Inquiry, DisplayInquiryList, Pair,
 EndPairing, PINCodeResponse,
 PassKeyResponse,
 UserConfirmationResponse,
 SetDiscoverabilityMode,
 SetConnectabilityMode,
 SetPairabilityMode,
 ChangeSimplePairingParameters,
 GetLocalName, SetLocalName,
 GetClassOfDevice, SetClassOfDevice,
 GetRemoteName, SniffMode,
 ExitSniffMode, Open, Close, Read,
 Write, GetConfigParams,
 SetConfigParams, GetQueueParams,
 SetQueueParams, Loopback,
 DisplayRawModeData, AutomaticReadMode,
 CBSend.
 Command Options GAPLE: SetDiscoverabilityMode,
 SetConnectabilityMode,
 SetPairabilityMode,
 ChangePairingParameters,
 AdvertiseLE, StartScanning,
 StopScanning, ConnectLE,

LightBlue as the Client/SPPLEDemo as the Server www.ti.com

10 CC256x TI Bluetooth Stack SPPLEDemo App SWRA772 – AUGUST 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

 DisconnectLE, PairLE,
 LEPasskeyResponse,
 QueryEncryptionMode, SetPasskey,
 DiscoverGAPS, GetLocalName,
 SetLocalName, GetLERemoteName,
 SetLocalAppearance,
 GetLocalAppearance,
 GetRemoteAppearance,
 Command Options SPPLE: DiscoverSPPLE, RegisterSPPLE, LESend,
 ConfigureSPPLE, LERead, Loopback,
 DisplayRawModeData, AutomaticReadMode

SPP+LE>RegisterSPPLE
Sucessfully registered SPPLE Service.
SPP+LE>AdvertiseLE 1
GAP_LE_Advertising_Enable success.

Now that SPPLEDemo is advertising, observe the device shown in LightBlue:

Next select the SPPLEDemo device in LightBlue, after doing so, observe the following screen:

www.ti.com LightBlue as the Client/SPPLEDemo as the Server

SWRA772 – AUGUST 2023
Submit Document Feedback

CC256x TI Bluetooth Stack SPPLEDemo App 11

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

In the SPPLEDemo terminal, observe the following:

etLE_Connection_Complete with size 16.
Status: 0x00.
Role: Slave.
Address Type: Random.
BD_ADDR: 0x5cfc3252180b.
SPP+LE>
etGATT_Connection_Device_Connection with size 16:
Connection ID: 2.
Connection Type: LE.
Remote Device: 0x5cfc3252180b.
Connection MTU: 23.

The devices are now connected.

5.2 Enabling Notifications
To enable notifications on the Tx Characteristic and Rx Credits Characteristic in LightBlue do the following:

1. Open the Tx Characteristic (0x0734594A-A8E7-4B1A-A6B1-CD5243059A57).
2. Choose listen for notifications.
3. Press the back button in the top left corner.
4. Open the Rx Credits Characteristic (0xE06D5EFB-4F4A-45C0-9EB1-371AE5A14AD4).
5. Choose listen for notifications.
6. Press the back button in the top left corner.

Observe that after enabling notifications on the Rx Credits Characteristic
(0xE06D5EFB-4F4A-45C0-9EB1-371AE5A14AD4) that SPPLEDemo sends initial credits to LightBlue and
observe the 0x8300 displayed twice in the app:

LightBlue as the Client/SPPLEDemo as the Server www.ti.com

12 CC256x TI Bluetooth Stack SPPLEDemo App SWRA772 – AUGUST 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

Note
The first instance of 0x8300 is seen because LightBlue read the characteristic automatically when the
connection was first established.

Note
The data here is displayed in little-endian byte order, the actual number of credits is 0083 in
hexadecimal, 131 in decimal.

5.3 Sending Data from LightBlue/Receiving Data in SPPLEDemo
At this point the client (LightBlue) can send data to the server (SPPLEDemo). To send data from LightBlue to
SPPLEDemo do the following:

1. Open the Rx Characteristic (0x8B00ACE7-EB0B-49B0-BBE9-9AEE0A26E1A3).
2. Choose write new value.
3. Type 414243(ABC in ASCII).
4. Choose Done.

In the SPPLEDemo terminal, observe a data indication event. To read the data run the LERead 5cfc3252180b
command, obeserve the following in the terminal:

Data Indication Event, Connection ID 1, Received 3 bytes.
SPP+LE>LERead 5cfc3252180b
Read: 3.
ABC

Open the Rx Credits Characteristic (0xE06D5EFB-4F4A-45C0-9EB1-371AE5A14AD4) observe that
SPPLEDemo has credited LightBlue with 3 more credits:

www.ti.com LightBlue as the Client/SPPLEDemo as the Server

SWRA772 – AUGUST 2023
Submit Document Feedback

CC256x TI Bluetooth Stack SPPLEDemo App 13

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

5.4 Sending Data from SPPLEDemo/Receiving Data in LightBlue
Send data from SPPLEDemo to LightBlue. First LightBlue needs to provide SPPLEDemo with transmit credits.
To provide SPPLEDemo with transmit credits do the following in LightBlue:

1. Open the Tx Credits Characteristic (0xBA04C4B2-892B-43BE-B69C-5D13F2195392).
2. Choose "Write new value".
3. Type 6400. (100 credits = 0x0064 little-endian).
4. Choose done.
5. Press the back button in the top left corner.

The SPPLEDemo has 100 credits and can send data in SPPLEDemo using the LESend 5cfc3252180b 100
command. Observe the following in the terminal:

SPP+LE>LESend 5cfc3252180b 100
Send Complete, Sent 100.

To check that LightBlue received the data:
1. Open the Tx Characteristic (0x0734594A-A8E7-4B1A-A6B1-CD5243059A57).
2. Observe a long 0x30313233... string of the received data in the list of NOTIFIED VALUES as seen below:

LightBlue as the Client/SPPLEDemo as the Server www.ti.com

14 CC256x TI Bluetooth Stack SPPLEDemo App SWRA772 – AUGUST 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

LightBlue has received the data and needs to return the transmit credits to SPPLEDemo. This can be done by
repeating the sequence above and re-writing 0x6400 to the TxCredits Characteristic (0xBA04C4B2-892B-43BE-
B69C-5D13F2195392).

www.ti.com LightBlue as the Client/SPPLEDemo as the Server

SWRA772 – AUGUST 2023
Submit Document Feedback

CC256x TI Bluetooth Stack SPPLEDemo App 15

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

6 LightBlue as the Server/SPPLEDemo as the Client
Note

LightBlue in the server role does not support displaying the updated value of a characteristic
even when written to. Therefore LightBlue is not able to send data from LightBlue toSPPLEDemo,
SPPLEDemo is able to send data to LightBlue, but that data is not displayed in the app. This is a
limitation of LightBlue.

6.1 Connecting the Devices
The first step to connecting the devices is to add the SPP LE Service and characteristics to LightBlue. To do this
manually, create a blank virtual peripheral in LightBlue and then add the necessary service and characteristics.
Another option is to clone SPPLEDemo while SPPLEDemo acts as the server. To clone SPPLEDemo first
connect the 2 devices as described above. After the 2 devices are connected, choose the Clone option in the top
right corner of the display. The app returns to the devices list and observe the SPPLEDemo listed as a Virtual
Peripheral as seen below:

Note
Make sure that the check box to the left of SPPLEDemo is checked, as seen in the image. If not
checked, the iDevice is not advertising and SPPLEDemo cannot be able to connect.

After cloning, the SPP LE service can now connect with the devices. Next, restart SPPLEDemo and when
prompted start the app as a client. Next scan for the iOS device using the StartScanning command. When the
iOS device has been found stop the scan using the StopScanning command. Now connect to the iOS device
using the ConnectLE 5c75524c733a 1 command. After this, run the DiscoverSPPLE 5c75524c733a command
within the 10 second timeframe. After the SPP LE service discovery completes, run the ConfigureSPPLE
5c75524c733a within the 25 second timeframe. The iOS device disconnects from SPPLEDemo if the commands
are not run within these timeframes. After the SPP LE characteristics are configured the 2 apps stay connected,
however, note that if the iOS device goes to sleep this closes the connection. After running the commands just
described, observe output similar to the following in SPPLEDemo's terminal:

LightBlue as the Server/SPPLEDemo as the Client www.ti.com

16 CC256x TI Bluetooth Stack SPPLEDemo App SWRA772 – AUGUST 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

OpenStack().
Bluetooth Stack ID: 1.
Device Chipset: 4.1.
BD_ADDR: 0xd03972cdab68

 Command Options: Server, Client, Help

SPP+LE>Client

 Command Options General: Help, GetLocalAddress, SetBaudRate
 Quit,
 Command Options BR/EDR: Inquiry, DisplayInquiryList, Pair,
 EndPairing, PINCodeResponse,
 PassKeyResponse,
 UserConfirmationResponse,
 SetDiscoverabilityMode,
 SetConnectabilityMode,
 SetPairabilityMode,
 ChangeSimplePairingParameters,
 GetLocalName, SetLocalName,
 GetClassOfDevice, SetClassOfDevice,
 GetRemoteName, SniffMode,
 ExitSniffMode, Open, Close, Read,
 Write, GetConfigParams,
 SetConfigParams, GetQueueParams,
 DisplayRawModeData, AutomaticReadMode,
 SetQueueParams, Loopback,
 CBSend.
 Command Options GAPLE: SetDiscoverabilityMode,
 SetConnectabilityMode,
 SetPairabilityMode,
 ChangePairingParameters,
 AdvertiseLE, StartScanning,
 StopScanning, ConnectLE,
 DisconnectLE, PairLE,
 LEPasskeyResponse,
 QueryEncryptionMode, SetPasskey,
 DiscoverGAPS, GetLocalName,
 SetLocalName, GetLERemoteName,
 SetLocalAppearance,
 GetLocalAppearance,
 GetRemoteAppearance,
 Command Options SPPLE: DiscoverSPPLE, RegisterSPPLE, LESend,
 ConfigureSPPLE, LERead, Loopback,
 DisplayRawModeData, AutomaticReadMode

SPP+LE>StartScanning
Scan started successfully.
SPP+LE>
etLE_Advertising_Report with size 36.
1 Responses.
Advertising Type: rtConnectableUndirected.
Address Type: atRandom.
Address: 0x5c75524c733a.
RSSI: -71.
Data Length: 21.
AD Type: 0x01.
AD Length: 0x01.
AD Data: 0x1a
AD Type: 0x07.
AD Length: 0x10.
AD Data: 0x39 0x23 0xcf 0x40 0x73 0x16 0x42 0x9a 0x5c 0x41 0x7e 0x7d 0xc4 0x9a 0x83 0x14
SPP+LE>
etLE_Advertising_Report with size 36.
1 Responses.
Advertising Type: rtScanResponse.
Address Type: atRandom.
Address: 0x5c75524c733a.
RSSI: -71.
Data Length: 11.
AD Type: 0x09.
AD Length: 0x09.
AD Data: 0x53 0x50 0x50 0x4c 0x45 0x44 0x65 0x6d 0x6f
SPP+LE>StopScanning
Scan stopped successfully.
SPP+LE>ConnectLE 5c75524c733a 1
Connection Request successful.
SPP+LE>

www.ti.com LightBlue as the Server/SPPLEDemo as the Client

SWRA772 – AUGUST 2023
Submit Document Feedback

CC256x TI Bluetooth Stack SPPLEDemo App 17

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

etLE_Connection_Complete with size 16.
Status: 0x00.
Role: Master.
Address Type: Random.
BD_ADDR: 0x5c75524c733a.
SPP+LE>
etGATT_Connection_Device_Connection with size 16:
Connection ID: 1.
Connection Type: LE.
Remote Device: 0x5c75524c733a.
Connection MTU: 23.
SPP+LE>
Exchange MTU Response.
Connection ID: 1.
Transaction ID: 1.
Connection Type: LE.
BD_ADDR: 0x5c75524c733a.
MTU: 131.
SPP+LE>
SPP+LE>DiscoverSPPLE 5c75524c733a
GATT_Start_Service_Discovery success.
SPP+LE>
Service 0x000f - 0x001b, UUID: 14839ac47d7e415c9a42167340cf2339.
SPP+LE>
Service Discovery Operation Complete, Status 0x00.
SPP+LE>ConfigureSPPLE 5c75524c733a
SPPLE Service found on remote device, attempting to read Transmit Credits, and configured CCCDs.
SPP+LE>
Write Response.
Connection ID: 1.
Transaction ID: 15.
Connection Type: LE.
BD_ADDR: 0x5c75524c733a.
Bytes Written: 2.
SPP+LE>
Write Response.
Connection ID: 1.
Transaction ID: 16.
Connection Type: LE.
BD_ADDR: 0x5c75524c733a.
Bytes Written: 2.

Note
When SPPLEDemo acts as the server the user must manually enable notifications with the LightBlue
app, however, SPPLEDemo handles enabling notifications automatically when the ConfigureSPPLE
command is run.

Now that the 2 devices are connected and configured the devices can send and receive data between them.
Now select the SPPLEDemo Virtual Peripheral in LightBlue to see the virtual peripheral's characteristics.
Observe the following or similar on the iDevice's display:

LightBlue as the Server/SPPLEDemo as the Client www.ti.com

18 CC256x TI Bluetooth Stack SPPLEDemo App SWRA772 – AUGUST 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

6.2 Sending Data from LightBlue/Receiving Data in SPPLEDemo
To confirm that SPPLEDemo has provided LightBlue with the transmit credits after the ConfigureSPPLE has
finished running, open the open the SPPLEDemo Virtual Peripheral and choose the Credits Characteristic
(0xBA04C4B2-892B-43BE-B69C-5D13F2195392). As mentioned above, LightBlue does not show updated
values of characteristics when these are written and the user has no way to confirm that LightBlue received
the data. Even though there is no confirmation that LightBlue has received transmit credits, data can still be sent
from LightBlue to SPPLEDemo because LightBlue is primarily only a GATT Profile demonstration and doesn't
have any knowledge of the SPP LE protocol used. LightBlue is unaware of the transmit credits present, and, for
this reason, data can be sent from LightBlue to SPPLEDemo with or without transmit credits. To send data to
SPPLEDemo, use the Tx Characteristic (0x0734594A-A8E7-4B1A-A6B1-CD5243059A57') and do the following
in LightBlue:

1. Open the Tx Characteristic and choose the No value/hex option.
2. Type in 414243.
3. Choose Done.

In SPPLEDemo observe a data indication. To read the data use theLERead 5c75524c733a command. Observe
the ABC displayed in the terminal, as seen below:

Data Indication Event, Connection ID 1, Received 3 bytes.
SPP+LE>LERead 5c75524c733a
Read: 3.
ABC

6.3 Sending Data from SPPLEDemo/Receiving Data in LightBlue

Note
As previously mentioned, LightBlue does not support showing the updated value of a characteristic
when written. There is currently no way to confirm that LightBlue has received the data.

To send data from SPPLEDemo, LightBlue must first provide the credits. This can be done using the following in
LightBlue:

• Open the Rx Credits Characteristic (0xE06D5EFB-4F4A-45C0-9EB1-371AE5A14AD4).
• Type in 6400. (100 credits = 0x0064 little-endian)
• Choose Done.

www.ti.com LightBlue as the Server/SPPLEDemo as the Client

SWRA772 – AUGUST 2023
Submit Document Feedback

CC256x TI Bluetooth Stack SPPLEDemo App 19

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

SPPLEDemo now has 100 transmit credits. Next, to send data in SPPLEDemo use the LESend 5c75524c733a
100 command. Observe the following in the terminal.

SPP+LE>LESend 5c75524c733a 100
Send Complete, Sent 100.

LightBlue as the Server/SPPLEDemo as the Client www.ti.com

20 CC256x TI Bluetooth Stack SPPLEDemo App SWRA772 – AUGUST 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

7 Application Commands
TI’s Bluetooth stack is implementation of the upper layers of the Bluetooth protocol stack. TI’s Bluetooth
stack provides a robust and flexible software development tool that implements the Bluetooth Protocols and
Profiles above the Host Controller Interface (HCI). TI’s Bluetooth stack's Application Programming Interface
(API) provides access to the upper-layer protocols and profiles and can interface directly with the Bluetooth
chips.

The basic bluetooth application included with MSP-EXP430F5438, Tiva DK-TM4C129X, MSP432and STM32F4
is a Serial Port Profile Application.

Also view the pages TI Dual-Mode Bluetooth® Stack on MSP432™ MCU and Dual-Mode Bluetooth® Stack on
STM32F4 MCUs.

This page describes the various commands that a user of the application can use. Each command is a wrapper
over a TI’s Bluetooth stack API which gets invoked with the parameters selected by the user. This is a subset of
the APIs available to the user. TI’s Bluetooth stack API documentation describes all of the API's in detail.

www.ti.com Application Commands

SWRA772 – AUGUST 2023
Submit Document Feedback

CC256x TI Bluetooth Stack SPPLEDemo App 21

Copyright © 2023 Texas Instruments Incorporated

http://www.ti.com/tool/dk-tm4c129x
https://www.ti.com/tool/MSP-EXP432E401Y
http://www.st.com/en/evaluation-tools/stm3240g-eval.html
https://www.ti.com/lit/pdf/swru453
https://www.ti.com/lit/pdf/swru428
https://www.ti.com/lit/pdf/swru428
https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

8 General Commands
8.1 Help (DisplayHelp)

Description

The Help command is responsible for displaying the current Command Options for either Serial Port Client or
Serial Port Server. The input parameter to this command is completely ignored, and only needs to be passed
in because all Commands that can be entered at the prompt pass in the parsed information. This command
displays the current command options that are available and always returns zero.

Parameters

Including parameters is not necessary when using this command. A parameter has no effect on the outcome of
the command.

Possible Return Values

This command always returns 0.

8.2 Get Local Address

Description

The GetLocalAddress command is responsible for querying the Bluetooth Device Address of the local Bluetooth
Device. This function returns zero on a successful execution and a negative value on all errors. A Bluetooth
Stack ID must exist before attempting to call this command.

Parameters

Including parameters is not necessary when using this command. A parameter has no effect on the outcome of
the Query.

Possible Return Values
• (0) Successfully Query Local Address
• (-1) BTPS_ERROR_INVALID_PARAMETER
• (-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID
• (-4) FUNCTION_ERROR
• (-8) INVALID_STACK_ID_ERROR

API Call

GAP_Query_Local_BD_ADDR(BluetoothStackID, &BD_ADDR)

API Prototype

int BTPSAPI GAP_Query_Local_BD_ADDR(unsigned int BluetoothStackID, BD_ADDR_t *BD_ADDR)

Description of API

This function is responsible for querying (and reporting) the device address of the local Bluetooth device. The
second parameter is a pointer to a buffer that is to receive the device address of the local Bluetooth device. If
this function is successful, the buffer that the BD_ADDR parameter points to is filled with the device address
read from the local Bluetooth device. If this function returns a negative value, then the device address of the
local Bluetooth device was NOT able to be queried (error condition).

General Commands www.ti.com

22 CC256x TI Bluetooth Stack SPPLEDemo App SWRA772 – AUGUST 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

8.3 Set Baud Rate

Description

The SetBaudRate command is responsible for changing the current baud rate used to talk to the radio. This
function ONLY configures the baud rate for a TI Bluetooth chipset. This command requires that a valid Bluetooth
Stack ID exists.

Parameters

This command requires one parameter. The value is an integer representing a value used for the baud rate. The
options are 0 (for Baud Rate of 115200), 1 (for Baud Rate 230400), 2 (for Baud Rate 460800), 3 (for Baud Rate
921600), 4 (for Baud Rate 1843200), or 5 (for Baud Rate 3686400). The maximum baud rate default is 921600
so options 4 and 5 are disabled.

Command Call Examples
• "SetBaudRate 0" Attempts to set the baud rate to 115200.
• "SetBaudRate 1" Attempts to set the baud rate to 230400.
• "SetBaudRate 2" Attempts to set the baud rate to 460800.
• "SetBaudRate 3" Attempts to set the baud rate to 921600.

Possible Return Values
• (0) Successfully Set Baud Rate
• (-4) FUNCTION_ERROR
• (-6) INVALID_PARAMETERS_ERROR
• (-8) INVALID_STACK_ID_ERROR
• (-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

API Call

HCI_Reconfigure_Driver(BluetoothStackID, FALSE, &(Data.DriverReconfigureData))

API Prototype

int BTPSAPI HCI_Reconfigure_Driver(unsigned int BluetoothStackID,Boolean_t
ResetStateMachines,HCI_Driver_Reconfigure_Data_t *DriverReconfigureData)

Description of API

This function issues the appropriate call to an HCI driver to request the HCI Driver to reconfigure itself with the
corresponding configuration information.

8.4 Quit
Use this command to return to the intial command screen.

www.ti.com General Commands

SWRA772 – AUGUST 2023
Submit Document Feedback

CC256x TI Bluetooth Stack SPPLEDemo App 23

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

9 BR/EDR Commands
For BR/EDR Commands refer to the document SPP Profile (http://processors.wiki.ti.com/index.php/
CC256x_MSP430_TI's_Bluetooth_Stack_Basic_SPPDemo_APP) sections GenericAccess Profile Commands
and Serial Port Profile Commands.

BR/EDR Commands www.ti.com

24 CC256x TI Bluetooth Stack SPPLEDemo App SWRA772 – AUGUST 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

10 GAPLE Commands
The Generic Access Profile defines standard procedures related to the discovery and connection of Bluetooth
devices. This defines modes of operation that are generic to all devices and allows for procedures which use
those modes to decide how a device can interact with other Bluetooth devices. Discoverability, Connectability,
Pairability, Bondable Modes, and Security Modes can all be changed using Generic Access Profile procedures.
All of these modes affect the interaction two devices can have with one another. GAP also defines the
procedures for how to bond two Bluetooth devices.

10.1 Set Discoverability Mode

Description

The SetDiscoverabilityMode command is responsible for setting the Discoverability Mode of the local device.
This command returns zero on successful execution and a negative value on all errors. The Discoverability
Mode in LE is only applicable when advertising. If a device is not advertising, then the device is not discoverable.
The value set by this command is used as a parameter in the command AdvertiseLE.

Parameters

This command requires only one parameter which is an integer value that represents a Discoverability Mode.
This value must be specified as 0 (for Non-Discoverable Mode), 1 (forLimited Discoverable Mode), or 2 (for
General Discoverable Mode).

Command Call Examples
• "SetDiscoverabilityMode 0" Attempts to change the Discoverability Mode of the local device to Non-

Discoverable.
• "SetDiscoverabilityMode 1" Attempts to change the DiscoverabilityMode of the local device to Limited

Discoverable.
• "SetDiscoverabilityMode 2" Attempts to change the Discoverability Mode of the local device to General

Discoverable.

Possible Return Values
• (0) Successfully Set Discoverability Mode Parameter
• (-6) INVALID_PARAMETERS_ERROR
• (-8) INVALID_STACK_ID_ERROR

10.2 Set Connectability Mode

Description

The SetConnectabilityMode command is responsible for setting the Connectability Mode of the local device. This
command returns zero on successful execution and a negative value on all errors. The Connectability Mode in
LE is only applicable when advertising. If a device is not advertising, then the device is not connectable. The
value set by this command is used as a parameter in the command AdvertiseLE.

Parameters

This command requires only one parameter which is an integer value that represents a Connectability Mode.
This value must be specified as 0 (for Non-Connectable) or 1 (for Connectable).

Command Call Examples
• "SetConnectabilityMode 0" Attempts to set the local device’s Connectability Mode to Non-Connectable.
• "SetConnectabilityMode 1" Attempts to set the local device’s ConnectabilityMode to Connectable.

Possible Return Values
• (0) Successfully Set Connectability Mode Paramet

www.ti.com GAPLE Commands

SWRA772 – AUGUST 2023
Submit Document Feedback

CC256x TI Bluetooth Stack SPPLEDemo App 25

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

• (-6) INVALID_PARAMETERS_ERROR
• (-8) INVALID_STACK_ID_ERROR

10.3 Set Pairability Mode

Description

The SetPairabilityMode command is responsible for setting the pairability mode of the local device. This
command returns zero on successful execution and a negative value on all errors.

Parameters

This command requires only one parameter which is an integer value that represents a pairability mode. This
value must be specified as 0 (for Non-Pairable), 1 (for Pairable) or 2 (for Pairable with Secure Simple Pairing).

Command Call Examples
• “SetPairabilityMode 0” Attempts to set the Local Device’s Pairability Mode to Non-Pairable.
• “SetPairabilityMode 1” Attempts to set the Local Device’s Pairability Mode to Pairable.

Possible Return Values
• (0) Successfully Set Pairability Mode
• (-4) FUNCTION_ERROR
• (-6) INVALID_PARAMETERS_ERROR
• (-8) INVALID_STACK_ID_ERROR

API Call

GAP_LE_Set_Pairability_Mode(BluetoothStackID, PairabilityMode)

API Prototype

int BTPSAPI GAP_LE_Set_Pairability_Mode(unsigned int BluetoothStackID, GAP_LE_Pairability_Mode_t
PairableMode)

Description of API

This function is provided to allow the local host the ability to change the pairability mode used by the local host.
This function returns zero if successful or a negative return error code if there was an error condition.

10.4 Change Pairing Parameters

Description

The ChangePairingParameters command is responsible for changing the LE Pairing Parameters that are
exchanged during the Pairing procedure. This command returns zero on successful execution and a negative
value on all errors.

Parameters

This command requires five parameters which are the I/O Capability, the Bonding Type, the MITM Requirement,
the SC Enable, and the P256 debug mode:

1. The first parameter must be specified as 0 (for Display Only), 1 (for Display Yes/No), 2 (for Keyboard Only),
3 (for No Input/Output) or 4 (for Keyboard/Display).

2. The second parameter must be specified as 0 (for No Bonding) or 1 (for Bonding), when at least one of the
devices is set to No Bonding, the LTK won't be stored.

3. The third parameter must be specified as 0 (for No MITM) or 1 (for MITM required).
4. The fourth parameter must be specified as 0 (for SC disabled) or 1 (for SC enabled), legacy pairing

procedure takes place when using SC disable.

GAPLE Commands www.ti.com

26 CC256x TI Bluetooth Stack SPPLEDemo App SWRA772 – AUGUST 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

5. The fifth parameter must be specified as 0 (for Debug Mode disabled) or 1 (for P256 debug mode enabled),
but only when using SC pairing. P256 debug mode is relevant when set, the values of the P256 private and
public keys are pre-defined according to the Bluetooth specification instead of random.

Command Call Examples
• "ChangeSimplePairingParameters 3 0 0 0 0" Attempts to set the I/O Capability to No Input/Output, Bonding

Type set to No Bonding, turns off MITM Protection, disable secure connections and disable debug mode.
• "ChangeSimplePairingParameters 2 0 1 1 0 " Attempts to set the I/O Capability to Keyboard Only, Bonding

Type set to No Bonding, activates MITM Protection, enabling secure connections and disable debug mode.
• "ChangeSimplePairingParameters 1 1 1 1 1" Attempts to set the I/O Capability to Display Yes/No, bonding

type set to Bonding, activates MITM Protection, enabling secure connections and enabling debug mode.

Possible Return Values
• (0) Successfully Set Pairability Mode
• (-6) INVALID_PARAMETERS_ERROR
• (-8) INVALID_STACK_ID_ERROR

10.5 Advertise LE

Description

The AdvertiseLE command is responsible for enabling LE advertisements. This command returns zero on
successful execution and a negative value on all errors.

Parameters

The only parameter necessary decides whether advertising reports are sent or are disabled. To disable, use 0 as
the first parameter, to enable, use 1 instead.

Command Call Examples
• “AdvertiseLE 1” Attempts to enable Low Energy Advertising on the local Bluetooth device.
• “AdvertiseLE 0” Attempts to disable Low Energy Advertising on the local Bluetooth device.

Possible Return Values
• (0) Successfully Set Pairability Mode
• (-4) FUNCTION_ERROR
• (-6) INVALID_PARAMETERS_ERROR
• (-8) INVALID_STACK_ID_ERROR
• (-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID
• (-1) BTPS_ERROR_INVALID_PARAMETER
• (-56) BTPS_ERROR_GAP_NOT_INITIALIZED
• (-104) BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_SUPPORT_LE
• (-57) BTPS_ERROR_DEVICE_HCI_ERROR

API Calls

Depending on the First Parameter Value:

• GAP_LE_Advertising_Disable(BluetoothStackID)
• GAP_LE_Set_Advertising_Data(BluetoothStackID,

(Advertisement_Data_Buffer.AdvertisingData.Advertising_Data[0] + 1),
&(Advertisement_Data_Buffer.AdvertisingData))

• GAP_LE_Set_Scan_Response_Data(BluetoothStackID,
(Advertisement_Data_Buffer.ScanResponseData.Scan_Response_Data[0] + 1),
&(Advertisement_Data_Buffer.ScanResponseData))

• GAP_LE_Advertising_Enable(BluetoothStackID, TRUE, &AdvertisingParameters,
&ConnectabilityParameters, GAP_LE_Event_Callback, 0)

www.ti.com GAPLE Commands

SWRA772 – AUGUST 2023
Submit Document Feedback

CC256x TI Bluetooth Stack SPPLEDemo App 27

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

API Prototypes
• int BTPSAPI GAP_LE_Advertising_Disable(unsigned int BluetoothStackID)
• int BTPSAPI GAP_LE_Set_Advertising_Data(unsigned int BluetoothStackID, unsigned int Length,

Advertising_Data_t *Advertising_Data)
• int BTPSAPI GAP_LE_Set_Scan_Response_Data(unsigned int BluetoothStackID, unsigned int Length,

Scan_Response_Data_t *Scan_Response_Data)
• int BTPSAPI GAP_LE_Set_Advertising_Data(unsigned int BluetoothStackID, unsigned int Length,

Advertising_Data_t *Advertising_Data)
• int BTPSAPI GAP_LE_Set_Advertising_Data(unsigned int BluetoothStackID, unsigned int Length,

Advertising_Data_t *Advertising_Data)

Description of API
• The GAP_LE_Advertising_Disable function is provided to allow the local host the ability to cancel (stop) an

on-going advertising procedure. This function returns zero if successful or a negative return error code if
there was an error condition.

• The GAP_LE_Set_Advertising_Data is provided to allow the local host the ability to set the advertising data
that is used during the advertising procedure (started via the GAP_LE_Advertising_Enable function). This
function returns zero if successful or a negative return error code if there was an error condition.

• The GAP_LE_Set_Scan_Response_Data function is provided to allow the local host the ability to set the
advertising data that is used during the advertising procedure (started via the GAP_LE_Advertising_Enable
function). This function returns zero if successful or a negative return error code if there was an error
condition.

• TheGAP_LE_Set_Advertising_Data function is provided to allow the local host the ability to set the
advertising data that is used during the advertising procedure (started via theGAP_LE_Advertising_Enable
function). This function returns zero if successful or a negative return error code if there was an error
condition.

10.6 Start Scanning

Description

The StartScanning command is responsible for starting an LE scan procedure. This command returns zero
if successful and a negative value if an error occurred. This command calls the StartScan (unsigned in
BluetoothStackID) function which performs the scan.

Parameters

Including parameters is not necessary when using this command. A parameter has no effect on the outcome of
the scan.

Possible Return Values
• (0) Successfully started the LE Scan Procedure
• (-1) Bluetooth Stack ID is Invalid during the StartScan() call
• (-4) FUNCTION_ERROR
• (-8) INVALID_STACK_ID_ERROR
• (-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID
• (-1) BTPS_ERROR_INVALID_PARAMETER
• (-66) BTPS_ERROR_INSUFFICIENT_RESOURCES
• (-105) BTPS_ERROR_SCAN_ACTIVE
• (-56) BTPS_ERROR_GAP_NOT_INITIALIZED
• (-104) BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_SUPPORT_LE
• (-57) BTPS_ERROR_DEVICE_HCI_ERROR

API Call

GAP_LE_Perform_Scan(BluetoothStackID, stActive, 10, 10, latPublic, fpNoFilter, TRUE,
GAP_LE_Event_Callback, 0)

GAPLE Commands www.ti.com

28 CC256x TI Bluetooth Stack SPPLEDemo App SWRA772 – AUGUST 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

API Prototype

int BTPSAPI GAP_LE_Perform_Scan(unsigned int BluetoothStackID, GAP_LE_Scan_Type_t
ScanType, unsigned int ScanInterval, unsigned int ScanWindow,GAP_LE_Address_Type_t
LocalAddressType, GAP_LE_Filter_Policy_t FilterPolicy, Boolean_t FilterDuplicates, GAP_LE_Event_Callback_t
GAP_LE_Event_Callback, unsignedlong CallbackParameter)

Description of API

The GAP_LE_Perform_Scan function is provided to allow the local host the ability to begin an LE scanning
procedure. This procedure is similar in concept to the inquiry procedure in Bluetooth BR/EDR as this can be
used to discover devices that have been instructed to advertise. This function returns zero if successful or a
negative return error code if there is an error condition.

10.7 Stop Scanning

Description

The StopScanning command is responsible for stopping an LE scan procedure. This command returns zero
if successful and a negative value if an error occurred. This command calls the StopScan (unsigned in
BluetoothStackID) function which performs the scan.

Parameters

Including parameters is not necessary when using this command. A parameter has no effect on the outcome of
the command.

Possible Return Values
• (0) Successfully stopped the LE Scan Procedure
• (-1) Bluetooth Stack ID is Invalid during the StartScan() call
• (-4) FUNCTION_ERROR
• (-8) INVALID_STACK_ID_ERROR
• (-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID
• (-1) BTPS_ERROR_INVALID_PARAMETER
• (-56) BTPS_ERROR_GAP_NOT_INITIALIZED
• (-104) BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_SUPPORT_LE
• (-57) BTPS_ERROR_DEVICE_HCI_ERROR

API Call

GAP_LE_Cancel_Scan(BluetoothStackID)

API Prototype

int BTPSAPI GAP_LE_Cancel_Scan(unsigned int BluetoothStackID)

Description of API

The GAP_LE_Cancel_Scan function is provided to allow the local host the ability to cancel (stop) an on-going
scan procedure. This function returns zero if successful or a negative return error code if there is an error
condition.

10.8 Connect LE

Description

The ConnectLE command is responsible for connecting to an LE device. This command returns zero if
successful and a negative value if an error occurred. This command calls the ConnectLEDevice (unsigned

www.ti.com GAPLE Commands

SWRA772 – AUGUST 2023
Submit Document Feedback

CC256x TI Bluetooth Stack SPPLEDemo App 29

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

in BluetoothStackID, BD_ADDR_t BD_ADDR, Boolean_t UseWhiteList) function using ConnectLEDevice
(BluetoothStackID, BD_ADDR, FALSE).

Parameters

The only parameter required is the Bluetooth Address of the remote device. This can easily be found using the
StartScanning command if the advertising device is in proximity during the scan.

Command Call Examples
• “ConnectLE 001bdc05b617” Attempts to send a connection request to the Bluetooth device with the

BD_ADDR of 001bdc05b617.
• “ConnectLE 000275e126FF” Attempts to send a connection request to the Bluetooth device with the

BD_ADDR of 000275e126FF.

Possible Return Values
• (0) Successfully Set Pairability Mode
• (-4) FUNCTION_ERROR
• (-6) INVALID_PARAMETERS_ERROR
• (-8) INVALID_STACK_ID_ERROR
• (-116) BTPS_ERROR_RANDOM_ADDRESS_IN_USE
• (-111) BTPS_ERROR_CREATE_CONNECTION_OUTSTANDING
• (-66) BTPS_ERROR_INSUFFICIENT_RESOURCES
• (-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID
• (-1) BTPS_ERROR_INVALID_PARAMETER
• (-56) BTPS_ERROR_GAP_NOT_INITIALIZED
• (-104) BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_SUPPORT_LE
• (-57) BTPS_ERROR_DEVICE_HCI_ERROR
• GAP_LE_ERROR_WHITE_LIST_IN_USE

API Calls
• GAP_LE_Create_Connection(BluetoothStackID, 100, 100, Result?fpNoFilter:fpWhiteList, latPublic, Result?

&BD_ADDR:NULL, latPublic, &ConnectionParameters,GAP_LE_Event_Callback, 0)
• GAP_LE_Remove_Device_From_White_List(BluetoothStackID, 1, &WhiteListEntry, &WhiteListChanged)
• GAP_LE_Add_Device_To_White_List(BluetoothStackID, 1, &WhiteListEntry, &WhiteListChanged)

Note
These two APIs can generally be ignored unless the WhiteList is enabled in the call to
ConnectLEDevice.

API Prototypes
• int BTPSAPI GAP_LE_Create_Connection(unsigned int BluetoothStackID, unsigned

int ScanInterval, unsigned int ScanWindow, GAP_LE_Filter_Policy_t
InitatorFilterPolicy,GAP_LE_Address_Type_t RemoteAddressType, BD_ADDR_t *RemoteDevice,
GAP_LE_Address_Type_t LocalAddressType, GAP_LE_Connection_Parameters_t*ConnectionParameters,
GAP_LE_Event_Callback_t GAP_LE_Event_Callback, unsigned long CallbackParameter)

• int BTPSAPI GAP_LE_Remove_Device_From_White_List(unsigned int BluetoothStackID, unsigned int
DeviceCount, GAP_LE_White_List_Entry_t *WhiteListEntries, unsigned int*RemovedDeviceCount)

• int BTPSAPI GAP_LE_Add_Device_To_White_List(unsigned int BluetoothStackID, unsigned int
DeviceCount, GAP_LE_White_List_Entry_t *WhiteListEntries, unsigned int*AddedDeviceCount)

Description of API

The GAP_LE_Create_Connection function is provided to allow the local host the ability to create a connection
to a remote device using the Bluetooth LE radio. The connection process is asynchronous in nature and
the caller is notified via the GAP LE event callback function (specified in this function) when the connection
completes. This function returns zero if successful, or a negative return error code if there is an error condition.

GAPLE Commands www.ti.com

30 CC256x TI Bluetooth Stack SPPLEDemo App SWRA772 – AUGUST 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

The GAP_LE_Remove_Device_From_White_List function is provided to allow the local host the ability to
remove one (or more) devices from the white list maintained by the local device. This function attempts to
delete as many devices as possible (from the specified list) and returns the number of devices deleted. The
GAP_LE_Read_White_List_Size function can be used to determine how many devices the local device supports
in the white list (simultaneously).

10.9 Disconnect LE

Description

The DisconnectLE command is responsible for disconnecting from an LE device. This command returns zero on
successful execution and a negative value on all errors. This command requires that a valid Bluetooth Stack ID
exists before running.

Parameters

The only parameter required is the Bluetooth Address of the remote device that is connected.

Command Call Examples
• “DisconnectLE 001bdc05b617” Attempts to send a disconnection request to the Bluetooth Device with the

BD_ADDR of 001bdc05b617.
• “DisconnectLE 000275e126FF” Attempts to send a disconnection request to the Bluetooth Device with the

BD_ADDR of 000275e126FF.

Possible Return Values
• (0) Successfully disconnected remote device
• (-4) FUNCTION_ERROR
• (-8) INVALID_STACK_ID_ERROR

API Call

GAP_LE_Disconnect(BluetoothStackID, BD_ADDR)

API Prototype

int BTPSAPI GAP_LE_Disconnect(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR)

API Description

The GAP_LE_Disconnect function provides the ability to disconnect from a remote device. This function returns
zero if successful or a negative return error code if there is an error condition.

10.10 Pair LE

Description

The PairLE command is provided to allow a mechanism of Pairing (or requesting security if a slave)
to the connected device. This command calls the SendPairingRequest (BD_ADDR_tBD_ADDR, Boolean_t
ConnectionMaster) function using SendPairingRequest (ConnectionBD_ADDR, LocalDeviceIsMaster).

Parameters

Including parameters is not necessary when using this command. A parameter has no effect on the outcome of
the command.

Possible Return Values
• (0) Successfully Set Pairability Mode
• (-4) FUNCTION_ERROR

www.ti.com GAPLE Commands

SWRA772 – AUGUST 2023
Submit Document Feedback

CC256x TI Bluetooth Stack SPPLEDemo App 31

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

• (-6) INVALID_PARAMETERS_ERROR
• (-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID
• (-1) BTPS_ERROR_INVALID_PARAMETER
• (-56) BTPS_ERROR_GAP_NOT_INITIALIZED
• (-104) BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_SUPPORT_LE
• (-66) BTPS_ERROR_INSUFFICIENT_RESOURCES
• (-107) BTPS_ERROR_INVALID_DEVICE_ROLE_MODE

API Calls
• GAP_LE_Pair_Remote_Device(BluetoothStackID, BD_ADDR, &Capabilities, GAP_LE_Event_Callback, 0)
• GAP_LE_Request_Security(BluetoothStackID, BD_ADDR, Capabilities.Bonding_Type, Capabilities.MITM,

GAP_LE_Event_Callback, 0)

API Prototypes
• int BTPSAPI GAP_LE_Pair_Remote_Device(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR,

GAP_LE_Pairing_Capabilities_t *Capabilities, GAP_LE_Event_Callback_tGAP_LE_Event_Callback,
unsigned long CallbackParameter)

• int BTPSAPI GAP_LE_Request_Security(unsigned int BluetoothStackID, BD_ADDR_t
BD_ADDR, GAP_LE_Bonding_Type_t Bonding_Type, Boolean_t MITM,GAP_LE_Event_Callback_t
GAP_LE_Event_Callback, unsigned long CallbackParameter)

Description of API

The GAP_LE_Pair_Remote_Device function is provided to allow a means to pair with a remote, connected,
device. This function accepts the device address of the currently connected device to pair with, followed by the
pairing capabilities of the local device. This function also accepts as input the GAP LE event callback information
to use during the pairing process. This function returns zero if successful or a negative error code if there is
an error. This function can only be issued by the master of the connection (the initiator of the connection).
The reason is that a slave can only request a security procedure, it cannot initiate a security procedure. The
GAP_LE_Request_Security function is provided to allow a means for a slave device to request that the master
(of the connection) perform a pairing operation or re-establishing prior security. This function can only be called
by a slave device. The reason for this is that the slave can only request for security to be initiated, it cannot
initiate the security process itself. This function returns zero if successful or a negative error code if there is an
error.

10.11 LE Pass Key Response

Description

The LEPassKeyResponse command is responsible for issuing a GAP Authentication Response with a Pass Key
value specified via the input parameter. This command returns zero on successful execution and a negative
value on all errors.

Parameters

The PassKeyResponse command requires one parameter which is the Pass Key used for authenticating the
connection. This is a string value which can be up to 6 digits long (with a valuebetween 0 and 999999).

Command Call Examples
• "PassKeyResponse 1234" Attempts to set the Pass Key to "1234."
• "PassKeyResponse 999999" Attempts to set the Pass Key to "999999."

This value represents the longest Pass Key value of 6 digits.

Possible Return Values
• (0) Successful Pass Key Response
• (-4) FUNCTION_ERROR

GAPLE Commands www.ti.com

32 CC256x TI Bluetooth Stack SPPLEDemo App SWRA772 – AUGUST 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

• (-6) INVALID_PARAMETERS_ERROR
• (-8) INVALID_STACK_ID_ERROR
• (-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID
• (-1) BTPS_ERROR_INVALID_PARAMETER
• (-118) BTPS_ERROR_PAIRING_NOT_ACTIVE
• (-57) BTPS_ERROR_DEVICE_HCI_ERROR
• (-56) BTPS_ERROR_GAP_NOT_INITIALIZED
• (-104) BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_SUPPORT_LE
• (-66) BTPS_ERROR_INSUFFICIENT_RESOURCES
• (-107) BTPS_ERROR_INVALID_DEVICE_ROLE_MODE

API Call

GAP_LE_Authentication_Response(BluetoothStackID, CurrentRemoteBD_ADDR,
&GAP_LE_Authentication_Response_Information)

API Prototype

int BTPSAPI GAP_LE_Authentication_Response(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR,
GAP_LE_Authentication_Response_Information_t*GAP_LE_Authentication_Information)

Description of API

This function is provided to allow a mechanism for the local device to respond to GAP LE authentication events.
This function is used to specify the authentication information for the specified Bluetooth device. This function
accepts as input, the Bluetooth protocol stack ID of the Bluetooth device that has requested the authentication
action, and the authentication response information (specified by the caller).

10.12 LE Query Encryption

Description

The LEQueryEncryption command is responsible for quering the Encryption Mode for an LE Connection. This
command returns zero on successful execution and a negative value on all errors.

Parameters

Including parameters is not necessary when using this command. A parameter has no effect on the outcome of
the query.

Possible Return Values
• (0) Successfully Queried Encryption Mode
• (-4) FUNCTION_ERROR
• (-8) INVALID_STACK_ID_ERROR
• (-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID
• (-1) BTPS_ERROR_INVALID_PARAMETER
• (-56) BTPS_ERROR_GAP_NOT_INITIALIZED
• (-104) BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_SUPPORT_LE

API Call

GAP_LE_Query_Encryption_Mode(BluetoothStackID, ConnectionBD_ADDR, &GAP_Encryption_Mode)

API Prototype

int BTPSAPI GAP_LE_Query_Encryption_Mode(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR,
GAP_Encryption_Mode_t *GAP_Encryption_Mode)

www.ti.com GAPLE Commands

SWRA772 – AUGUST 2023
Submit Document Feedback

CC256x TI Bluetooth Stack SPPLEDemo App 33

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

Description of API

This function is provided to allow a means to query the current encryption mode for the LE connection that is
specified.

10.13 Set Passkey

Description

The SetPasskey command is responsible for querying the encryption mode for an LE Connection. This
command returns zero on successful execution and a negative value on all errors.

Note
SetPasskey Command works only when pairing.

Parameters

The SetPasskey command requires one parameter which is the Pass Key used for authenticating the
connection. This is a string value which can be up to 6 digits long (with a value between 0 and 999999).

Command Call Examples
• “SetPasskey 0” Attempts to remove the Passkey.
• “SetPasskey 1 987654” Attempts to set the Passkey to 987654.
• “SetPasskey 1” Attempts to set the Passkey to the default Fixed Passkey value.

Possible Return Values
• (0) Successful Pass Key Response
• (-4) FUNCTION_ERROR
• (-6) INVALID_PARAMETERS_ERROR
• (-8) INVALID_STACK_ID_ERROR
• (-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID
• (-1) BTPS_ERROR_INVALID_PARAMETER
• (-56) BTPS_ERROR_GAP_NOT_INITIALIZED
• (-104) BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_SUPPORT_LE

API Calls

One of these is chosen depending on the first parameter:

• GAP_LE_Set_Fixed_Passkey(BluetoothStackID, &Passkey)
• GAP_LE_Set_Fixed_Passkey(BluetoothStackID, NULL)

API Prototype

int BTPSAPI GAP_LE_Set_Fixed_Passkey(unsigned int BluetoothStackID, DWord_t *Fixed_Display_Passkey)

Description of API

This function is provided to allow a means for a fixed passkey to be used whenever the local Bluetooth device is
chosen to display a passkey during a pairing operation. This fixed passkey is only used when the local Bluetooth
device is chosen to display the passkey, based on the remote I/O Capabilities and the local I/O capabilities.

10.14 Discover GAPS

Description

The DiscoverGAPS command is provided to allow an easy mechanism to start a service discovery procedure to
discover the Generic Access Profile Service on the connected remote device.

GAPLE Commands www.ti.com

34 CC256x TI Bluetooth Stack SPPLEDemo App SWRA772 – AUGUST 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

Parameters

Including parameters is not necessary when using this command. A parameter has no effect on the outcome of
the service discovery.

Possible Return Values
• (0) Successfully discovered the Generic Access Profile Service.
• (-4) Function Error (on failure).

API Call

GDIS_Service_Discovery_Start(BluetoothStackID, ConnectionID, (sizeof(UUID)/sizeof(GATT_UUID_t)), UUID,
GDIS_Event_Callback, sdGAPS)

API Prototypes

int BTPSAPI GDIS_Service_Discovery_Start(unsigned int BluetoothStackID, unsigned int ConnectionID,
unsigned int NumberOfUUID, GATT_UUID_t *UUIDList,GDIS_Event_Callback_t ServiceDiscoveryCallback,
unsigned long ServiceDiscoveryCallbackParameter)

Description of API

The GDIS_Service_Discover_Start is in an application module called GDIS that is provided to allow an easy way
to perform GATT service discovery. This module can be modified for customer use. This function is called to start
a service discovery operation by the GDIS module.

10.15 Get Local Name

Description

The GetLocalName command is responsible for querying the name of the local Bluetooth Device. This command
returns zero on a successful execution and a negative value on all errors. A Bluetooth Stack ID must exist before
attempting to call this command.

Parameters

Including parameters is not necessary when using this command. A parameter has no effect on the outcome of
thequery.

Possible Return Values
• (0) Successfully Queried Local Device Name
• (-8) INVALID_STACK_ID_ERROR
• (-4) FUNCTION_ERROR
• (-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID
• (-1) BTPS_ERROR_INVALID_PARAMETER
• (-57) BTPS_ERROR_DEVICE_HCI_ERROR
• (-65) BTPS_ERROR_INSUFFICIENT_BUFFER_SPACE

API Call

GAP_Query_Local_Device_Name(BluetoothStackID, 257, (char *)LocalName)

API Prototype

int BTPSAPI GAP_Query_Local_Device_Name(unsigned int BluetoothStackID, unsigned int NameBufferLength,
char *NameBuffer)

www.ti.com GAPLE Commands

SWRA772 – AUGUST 2023
Submit Document Feedback

CC256x TI Bluetooth Stack SPPLEDemo App 35

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

Description of API

This function is responsible for querying (and reporting) the user friendly name of the local Bluetooth device.
The final parameters to this function specify the buffer and the buffer length of the buffer that is to receive the
local device name. The NameBufferLength parameter is at least MAX_NAME_LENGTH+1 to hold the maximum
allowable device name plus a single character to hold the NULL terminator. If this function is successful,
this function returns zero, and the buffer that NameBuffer points to is filled with a NULL terminated ASCII
representation of the local device name. If this function returns a negative value, then the local device name was
NOT able to be queried (error condition).

10.16 Set Local Name

Description

The SetLocalName command is responsible for setting the name of the local Bluetooth device to a specified
name. This command returns zero on a successful execution and a negative value on all errors. A Bluetooth
Stack ID must exist before attempting to call this command.

Parameters

One parameter is necessary for this command. The specified device name must be the only parameter (which
means there are no spaces in the name. If spaces are in the name, only the first section of the name is set.)

Command Call Examples
• "SetLocalName New_Bluetooth_Device_Name" Attempts to set the local device name to

"New_Bluetooth_Device_Name."
• "SetLocalName New Bluetooth Device Name" Attempts toset the local device name to "New Bluetooth

Device Name" but only sets the first parameter, which makes the local device name "New."
• "SetLocalName MSP430" Attempts to setthe local device name to "MSP430."

Possible Return Values
• (0) Successfully Set Local Device Name
• (-1) BTPS_ERROR_INVALID_PARAMETER
• (-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID
• (-8) INVALID_STACK_ID_ERROR
• (-4) FUNCTION_ERROR
• (-57) BTPS_ERROR_DEVICE_HCI_ERROR

API Call

GAP_Set_Local_Device_Name(BluetoothStackID, TempParam->Params[0].strParam)

API Prototype

int BTPSAPI GAP_Set_Local_Device_Name(unsigned int BluetoothStackID, char *Name)

Description of API

This function is provided to allow the changing of the device name of the local Bluetooth device. The name
parameter must be a pointer to a NULL terminated ASCII string of at most MAX_NAME_LENGTH (not counting
the trailing NULL terminator). This function returns zero if the local device name was successfully changed, or a
negative return error code if there is an error condition.

10.17 Get Remote Name

Description

The GetRemoteName command is responsible for querying the Bluetooth Device Name of a Remote Device.
This command returns zero on a successful execution and a negative value on all errors. The command

GAPLE Commands www.ti.com

36 CC256x TI Bluetooth Stack SPPLEDemo App SWRA772 – AUGUST 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

requires that a valid Bluetooth Stack ID exists before running and is called after using the Inquiry command.
The DisplayInquiryList command is useful in this situation to find which Remote Device goes with which Inquiry
Index.

Parameters

The GetRemoteName command requires one parameter which is the Inquiry Index of the Remote Bluetooth
Device. This value can be found after an Inquiry or displayed when the command DisplayInquiryList is used.
Command Call Examples "GetRemoteName 5" attempts to query the Device Name for the Remote Device that
is at the fifth Inquiry Index. "GetRemoteName 8" attempts to query the Device Name for the Remote Device that
is at the eighth Inquiry Index.

Possible Return Values
• (0) Successfully Queried Remote Name
• (-6) INVALID_PARAMETERS_ERROR
• (-6) INVALID_PARAMETERS_ERROR
• (-8) INVALID_STACK_ID_ERROR
• (-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID
• (-1) BTPS_ERROR_INVALID_PARAMETER
• (-59) BTPS_ERROR_ADDING_CALLBACK_INFORMATION
• (-57) BTPS_ERROR_DEVICE_HCI_ERROR

API Call

GAP_Query_Remote_Device_Name(BluetoothStackID, InquiryResultList[(TempParam->Params[0].intParam –
1)], GAP_Event_Callback, (unsigned long)0)

API Prototype

int BTPSAPI GAP_Query_Remote_Device_Name(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR,
GAP_Event_Callback_t GAP_Event_Callback, unsigned longCallbackParameter)

Description of API

This function is provided to allow a mechanism to query the user-friendly Bluetooth device name of the specified
remote Bluetooth device. This function accepts as input the Bluetooth device address of the remote Bluetooth
device to query the name of and the GAP event callback information that is to be used when the remote
device name process has completed. This function returns zero if successful, or a negative return error code
if the remote name request was unable to be submitted. If this function returns successful, then the caller
is notified via the specified callback when the remote name information has been determined (or if there is
an error). This function cannot be used to determine the user-friendly name of the local Bluetooth device.
The GAP_Query_Local_Name function is used to query the user-friendly name of the local Bluetooth device.
Because this function is asynchronous in nature (specifying a remote device address), this function notifies
the caller of the result via the specified callback. The caller is free to cancel the remote name request at any
time by issuing the GAP_Cancel_Query_Remote_Name function and specifying the Bluetooth device address of
the Bluetooth device that was specified in the original call to this function. When the callback is cancelled, the
operation is still attempted and then the callback is cancelled (i.e. the GAP module can still perform the remote
name request, but no callback is ever issued).

10.18 LE User Confirmation Response

Description

The LEUserConfirmationResponse command is responsible for issuing a GAP LE Authentication Response with
a user confirmation value specified via the input parameter. This function returns zero on successful execution
and a negative value on all errors.

www.ti.com GAPLE Commands

SWRA772 – AUGUST 2023
Submit Document Feedback

CC256x TI Bluetooth Stack SPPLEDemo App 37

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

Parameters

This command requires one parameter which indicates if confirmation is accepted or not. 0 = decline, 1 = accept.

Command Call Examples
• “LEUserConfirmationResponse 0” Attempts to respond with a decline value.
• “LEUserConfirmationResponse 1” Attempts to respond with a accept value.

Possible Return Values
• (0) Success.
• (-4) FUNCTION_ERROR.
• (-6) INVALID_PARAMETERS_ERROR.
• (-1) BTPS_ERROR_INVALID_PARAMETER.
• (-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID.
• (-56) BTPS_ERROR_GAP_NOT_INITIALIZED.
• (-57) BTPS_ERROR_DEVICE_HCI_ERROR.
• (-66) BTPS_ERROR_INSUFFICIENT_RESOURCES.
• (-98) BTPS_ERROR_DEVICE_NOT_CONNECTED.
• (-103) BTPS_ERROR_FEATURE_NOT_AVAILABLE.
• (-104) BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_SUPPORT_LE.
• (-107) BTPS_ERROR_INVALID_DEVICE_ROLE_MODE.
• (-118) BTPS_ERROR_PAIRING_NOT_ACTIVE.
• (-119) BTPS_ERROR_INVALID_STATE.
• (-120) BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE.
• (-122) BTPS_ERROR_NUMERIC_COMPARISON_FAILED.

API Call

GAP_LE_Authentication_Response(BluetoothStackID, CurrentLERemoteBD_ADDR,
&GAP_LE_Authentication_Response_Information)

API Prototype

int BTPSAPI GAP_LE_Authentication_Response(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR,
GAP_LE_Authentication_Response_Information_t*GAP_LE_Authentication_Information)

Description

The following function is provided to allow a mechanism for the local device to respond to GAP LE authentication
events. This function is used to set the authentication information for the specified Bluetooth device. This
function accepts as input, the Bluetooth protocol stack ID followed by the remote Bluetooth device address that
is currently executing apairing/authentication process, followed by the authentication response information. This
function returns zero if successful, or a negative return error code if there is an error.

10.19 Enable SC Only

Description

The EnableSCOnly command enables LE Secure Connections (SC) only mode. In case this mode is enabled,
pairing request from peers that support legacy pairing only is rejected. Please note that in case this mode is
enabled, the SC flag in the LE_Parameters must be set to TRUE. This function returns zero on successful
execution and a negative value on all errors.

Parameters

This command requires one parameter which indicates if Secure connections only mode is set or not. 0 = SC
Only mode is off, 1 = SC Only mode is on.

GAPLE Commands www.ti.com

38 CC256x TI Bluetooth Stack SPPLEDemo App SWRA772 – AUGUST 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

Command Call Examples
• “EnableSCOnly 0” Disable secure connections only mode.
• “EnableSCOnly 1” Enable secure connections only mode.

Possible Return Values
• (0) Success.
• (-4) FUNCTION_ERROR.
• (-6) INVALID_PARAMETERS_ERROR.
• (-8) INVALID_STACK_ID_ERROR.
• (-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID.
• (-56) BTPS_ERROR_GAP_NOT_INITIALIZED.
• (-103) BTPS_ERROR_FEATURE_NOT_AVAILABLE.
• (-104) BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_SUPPORT_LE.
• (-120) BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE.

API Call

GAP_LE_SC_Only_Mode(BluetoothStackID, EnableSCOnly)

API Prototype

int BTPSAPI GAP_LE_SC_Only_Mode (unsigned int BluetoothStackID, Boolean_t EnableSCOnly)

Description of API

The following function is provided to allow a configuration of LE Secure Connecions only mode. The upper
layer uses this function before the beginning of LE SC pairing, in case the function asks to reject a device
that supports only a legacy pairing. This mode can be used when it is more important for a device to have
high security than for the device to maintain backwards compatibility with devices that do not support SC. This
function accepts as parameters the Bluetooth stack ID of the Bluetooth device, and a boolean EnableSCOnly
that enable or disable the SC only mode. This function is used once, before the first pairing process. This
function returns zero if successful or a negative error code.

10.20 Regenerate P256 Local Keys

Description

The following function allows the user to generate new P256 private and local keys. This function shall NOT be
used in the middle of a pairing process. This is relevant for LE SecureConenctions pairing only. This function
returns zero on successful execution and a negative value on all errors.

Parameters

No parameters are necessary.

Command Call Examples

“RegenerateP256LocalKeys” Attempts to generate new P256 private and local keys.

Possible Return Values
• (0) Success.
• (-4) FUNCTION_ERROR.
• (-8) INVALID_STACK_ID_ERROR.
• (-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID.
• (-56) BTPS_ERROR_GAP_NOT_INITIALIZED.
• (-104) BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_SUPPORT_LE.
• (-117) BTPS_ERROR_PAIRING_ACTIVE.
• (-120) BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE.

www.ti.com GAPLE Commands

SWRA772 – AUGUST 2023
Submit Document Feedback

CC256x TI Bluetooth Stack SPPLEDemo App 39

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

API Call

GAP_LE_SC_Regenerate_P256_Local_Keys (BluetoothStackID)

API Prototype

int BTPSAPI GAP_LE_SC_Regenerate_P256_Local_Keys (unsigned int BluetoothStackID)

Description of API

The following function is provided to allow a regeneration of the P-256 private and local puclic keys. This
function is relevant only in case of LE SC pairing. This function accepts as parameters the Bluetooth stack ID
of the Bluetooth device. This functions shall NOT be used while performing pairing. This function returns zero if
successful or a negative error code.

10.21 SC Generate OOB Local Params

Description

To perform LE SC pairing in OOB method, generate local random and confirmation values before the pairing
process starts. The following function allows the user to generate OOB local parameters. This function shall NOT
be used in the middle of a pairing process. This is relevant for LE SC pairing only. This function returns zero on
successful execution and a negative value on all errors.

Parameters

No parameters are necessary.

Command Call Examples

“SCGenerateOOBLocalParams” Attempts to generate local random and confirmation values before the pairing
process starts.

Possible Return Values
• (0) Success.
• (-4) FUNCTION_ERROR.
• (-8) INVALID_STACK_ID_ERROR.
• (-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID.
• (-56) BTPS_ERROR_GAP_NOT_INITIALIZED.
• (-104) BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_SUPPORT_LE.
• (-117) BTPS_ERROR_PAIRING_ACTIVE.
• (-120) BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE.

API Call

GAP_LE_SC_OOB_Generate_Parameters(BluetoothStackID, &OOBLocalRandom, &OOBLocalConfirmation)

API Prototype

int BTPSAPI GAP_LE_SC_OOB_Generate_Parameters(unsigned int BluetoothStackID, SM_Random_Value_t
*OOB_Local_Rand_Result, SM_Confirm_Value_t*OOB_Local_Confirm_Result)

Description of API

The following function is provided to allow the use of LE Secure Connections (SC) pairing in Out Of Band
(OOB) association method. The upper layer uses this function to generate the the local OOB random value, and
OOB confirmation value (ra/rb and Ca/Cb) as defined in the Bluetooth specification. This function accepts as
parameters the Bluetooth stack ID of the Bluetooth device, and pointers to buffers that recieve the generated

GAPLE Commands www.ti.com

40 CC256x TI Bluetooth Stack SPPLEDemo App SWRA772 – AUGUST 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

local OOB random, and OOB confirmation values. This function returns zero if successful or a negative error
code.

10.22 Set Local Appearance

Description

The SetLocalAppearence command is provided to set the local device appearance that is exposed by the GAP
Service (GAPS).

Parameters

The one parameter the SetLocalAppearence command requires is the Local Device Appearance.

Possible Return Values
• (0) Success.
• (-4) Function error (on failure).

API Call

GAPS_Set_Device_Appearance(BluetoothStackID, GAPSInstanceID, Appearance)

API Prototype

int BTPSAPI GAPS_Set_Device_Appearance (unsigned int BluetoothStackID, unsigned int InstanceID, Word_t
DeviceAppearance)

Description of API

This function allows a mechanism of setting the local device appearance that is exposed as part of the GAP
Service API (GAPS).

10.23 Get Local Appearance

Description

The GetLocalAppearence command is provided to read the local device appearance that is exposed by the GAP
Service (GAPS).

Parameters

Including parameters is not necessary when using this command. A parameter has no effect on the outcome.

Possible Return Values
• (0) Success.
• (-4) Function error (on failure).

API Call

GAPS_Query_Device_Appearance(BluetoothStackID, GAPSInstanceID, &Appearance)

API Prototype

int BTPSAPI GAPS_Query_Device_Appearance(unsigned int BluetoothStackID, unsigned int InstanceID,
Word_t *DeviceAppearance)

www.ti.com GAPLE Commands

SWRA772 – AUGUST 2023
Submit Document Feedback

CC256x TI Bluetooth Stack SPPLEDemo App 41

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

Description of API

This function allows a mechanism of reading the local device appearance that is exposed as part of the GAP
Service API (GAPS).

GAPLE Commands www.ti.com

42 CC256x TI Bluetooth Stack SPPLEDemo App SWRA772 – AUGUST 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

11 SPPLE Commands

11.1 Discover SPPLE

Description

The following function is responsible for performing a SPPLE Service Discovery Operation. This function returns
zero on successful execution and a negative value on errors.

Parameters

The only parameter required is the Bluetooth Address of the remote device that is connected.

Command Call Examples
• “DiscoverSPPLE 001bdc05b617” Attempts to discover services of the Bluetooth Device with the BD_ADDR

of 001bdc05b617.
• “DiscoverSPPLE 000275e126FF” Attempts to discover services of the Bluetooth Device with the BD_ADDR

of 000275e126FF.

Possible Return Values
• (0) Successfully started a SPP LE Service Discovery.
• (-4) Function Error (on failure).

API Call

GDIS_Service_Discovery_Start(BluetoothStackID, ConnectionID, (sizeof(UUID)/sizeof(GATT_UUID_t)), UUID,
GDIS_Event_Callback, 0)

API Prototype

int BTPSAPI GDIS_Service_Discovery_Start(unsigned int BluetoothStackID, unsigned int ConnectionID,
unsigned int NumberOfUUID, GATT_UUID_t *UUIDList,GDIS_Event_Callback_t ServiceDiscoveryCallback,
unsigned long ServiceDiscoveryCallbackParameter)

Description of API

The GDIS_Service_Discover_Start is in an application module called GDIS that is provided to allow an easy way
to perform GATT service discovery. This function is called to start a service discovery operation by the GDIS
module.

11.2 Register SPPLE

Description

The following function is responsible for registering a SPPLE Service. This function returns zero on successful
execution and a negative value on errors.

Parameters

Including parameters is not necessary when using this command. A parameter has no effect on the outcome of
registering a SPPLE Service.

Possible Return Values
• (0) Successfully registered a SPPLE Service.
• (-4) Function Error (on failure).

www.ti.com SPPLE Commands

SWRA772 – AUGUST 2023
Submit Document Feedback

CC256x TI Bluetooth Stack SPPLEDemo App 43

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

API Call

GATT_Register_Service(BluetoothStackID, SPPLE_SERVICE_FLAGS,
SPPLE_SERVICE_ATTRIBUTE_COUNT, (GATT_Service_Attribute_Entry_t
*)SPPLE_Service,&ServiceHandleGroup, GATT_ServerEventCallback, 0)

API Prototype

int BTPSAPI GATT_Register_Service(unsigned int BluetoothStackID, Byte_t ServiceFlags,
unsigned int NumberOfServiceAttributeEntries, GATT_Service_Attribute_Entry_t*ServiceTable,
GATT_Attribute_Handle_Group_t *ServiceHandleGroupResult, GATT_Server_Event_Callback_t
ServerEventCallback, unsigned long CallbackParameter)

Description of API

The following function is provided to allow a means to add a GATT Service to the local GATT Database. The
first parameter is Bluetooth stack ID of the Bluetooth Device. The second parameter is a bit mask field that
specifies the type of service being registered, which must be non-zero (i.e. at least one bit must be set). The
third parameter is the number of entries in the service attribute array that is pointed to by the fourth parameter.
The fourth parameter is an array that contains the attributes for the service being registered. The next parameter
is a pointer to a buffer that stores the attribute handle range of the registered service. The final two parameters
specify the GATT server callback and callback parameter that can be used whenever a client request to the
GATT server cannot be satisified internally by the local GATT module. This function returns a positive non-zero
service ID if successful, or a negative return error code if there is an error. If this function returns successfully
then the ServiceHandleGroupResult buffer contains the service's attribute handle range.

11.3 LE Send

Description

The following function is responsible for sending a number of characters to a remote device to which a
connection exists. The function receives a parameter that indicates the number of bytes to be transferred. This
function returns zero on successful execution and a negative value on errors. Depending on what the device
role for SPPLE is, server or client, the APIfunction that is called is either a GATT_Handle_Value_Notification or a
GATT_Write_Without_Response_Request; which notifies the receiving credit characteristic or sends a write with
out response packet to the transmission credit characteristic respectively.

Parameters

LESend requires two parameters. The first is the remote Bluetooth address of the device you are sending to.
The second is the number of bytes to send. This value has to be greater than 10.

Command Call Examples
• "LeSend 0017E7FEFD7C 100" Attempts to send 100 bytes of data to 0017E7FEFD7C.
• "LeSend B8FFFEAF1CAD 25" Attempts to send 25 bytes of data to B8FFFEAF1CAD.

Possible Return Values
• (0) Successfully Sent Data
• (-1) BTPS_ERROR_INVALID_PARAMETER
• (-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID
• (-67) BTPS_ERROR_RFCOMM_NOT_INITIALIZED
• (-85) BTPS_ERROR_SPP_NOT_INITIALIZED

API Call

GATT_Handle_Value_Notification(BluetoothStackID, SPPLEServiceID, ConnectionID,
SPPLE_TX_CHARACTERISTIC_ATTRIBUTE_OFFSET, (Word_t)DataCount, SPPLEBuffer)

Or

SPPLE Commands www.ti.com

44 CC256x TI Bluetooth Stack SPPLEDemo App SWRA772 – AUGUST 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

GATT_Write_Without_Response_Request(BluetoothStackID, ConnectionID, DeviceInfo-
>ClientInfo.Rx_Characteristic, (Word_t)DataCount, SPPLEBuffer)

API Prototype

int BTPSAPI GATT_Handle_Value_Notification(unsigned int BluetoothStackID, unsigned int ServiceID, unsigned
int ConnectionID, Word_t AttributeOffset, Word_tAttributeValueLength, Byte_t *AttributeValue)

Or

int BTPSAPI GATT_Write_Without_Response_Request(unsigned int BluetoothStackID, unsigned int
ConnectionID, Word_t AttributeHandle, Word_t AttributeLength, void*AttributeValue)

Description of API

The first of these API functions allows a means of sending a Handle/Value notification to a remote GATT client.
The first parameter to this function is the Bluetooth stack ID of the localBluetooth stack. The second parameter
is the service ID of the service that is sending the Handle/Value notification. The third parameter specifies the
connection ID of the connection to send the Handle/Value notification to. The fourth parameter specifies the
offset in the service table (registered via the call to the GATT_Register_Service() function) of the attribute that
is being notified. The fifth parameter is the length (in bytes) of the attribute value that is being notified. The
sixth parameter is a pointer to the actual attribute value to notify. This function returns a non-negative value that
represents the actual length of the attribute value that is notified, or a negative return error code if there is an
error.

The second of these API functions is provided to allow a means of performing a write without response request
to remote device for a specified attribute. The first parameter to this function is the Bluetooth stack ID of the local
Bluetooth stack, followed by the connection ID of the connected remote device, followed by the handle of the
attribute to write, followed by the length of the value data to write (in bytes), followed by the actual value to write.
This function returns the number of bytes written on success or a negative error code.

11.4 Configure SPPLE

Description

The following function is responsible to configure a SPPLE Service on a remote device. This function
returns zero on successful execution and a negative value on errors. The following function enables
notifications of the proper characteristics based on a specified handle; depending what the device role for
SPPLE is, server or client, the API function that is called is either a GATT_Handle_Value_Notification or a
GATT_Write_Without_Response_Request; which notifies the receiving credit characteristic or sends a write with
out response packet to the transmission credit characteristic respectively.

Parameters

The only parameter required is the Bluetooth Address of the remote device that is connected.

Command Call Examples
• “ConfigureSPPLE 001bdc05b617” Attempts to configure services of the Bluetooth Device with the BD_ADDR

of 001bdc05b617.
• “ConfigureSPPLE 000275e126FF” Attempts to configure services of the Bluetooth Device with the BD_ADDR

of 000275e126FF.

Possible Return Values
• (0) Successfully configured a SPPLE Service.
• (-4) Function Error (on failure).

www.ti.com SPPLE Commands

SWRA772 – AUGUST 2023
Submit Document Feedback

CC256x TI Bluetooth Stack SPPLEDemo App 45

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

API Call

GATT_Write_Request(BluetoothStackID, ConnectionID, ClientConfigurationHandle, sizeof(Buffer), &Buffer,
ClientEventCallback, 0)

And

GATT_Handle_Value_Notification(BluetoothStackID, SPPLEServiceID, ConnectionID,
SPPLE_RX_CREDITS_CHARACTERISTIC_ATTRIBUTE_OFFSET, WORD_SIZE, (Byte_t*)&Credits)

Or

GATT_Write_Without_Response_Request(BluetoothStackID, ConnectionID, DeviceInfo-
>ClientInfo.Tx_Credit_Characteristic, WORD_SIZE, &Credits)

API Prototype

int BTPSAPI GATT_Write_Request(unsigned int BluetoothStackID, unsigned int ConnectionID,
Word_t AttributeHandle, Word_t AttributeLength, void *AttributeValue,GATT_Client_Event_Callback_t
ClientEventCallback, unsigned long CallbackParameter)

And

int BTPSAPI GATT_Handle_Value_Notification(unsigned int BluetoothStackID, unsigned int ServiceID, unsigned
int ConnectionID, Word_t AttributeOffset, Word_tAttributeValueLength, Byte_t *AttributeValue)

Or

int BTPSAPI GATT_Write_Without_Response_Request(unsigned int BluetoothStackID, unsigned int
ConnectionID, Word_t AttributeHandle, Word_t AttributeLength, void*AttributeValue)

Description of API

The first of these API functions is provided to allow a means of performing a write request to a remote device
for a specified attribute. The first parameter to this function is the Bluetoothstack ID of the local Bluetooth stack,
followed by the connection ID of the connected remote device, followed by the handle of the attribute to write
the value of, followed by the length of the value (in bytes), followed by the the actual value data to write. The
final two parameters specify the GATT client event callback function and callback parameter (respectively) that
can be called when a response is received from the remote device. This function returns the positive, non-zero,
Transaction ID of the request or a negative error code.

The second of these API functions allows a means of sending a Handle/Value notification to a remote GATT
client. The first parameter to this function is the Bluetooth stack ID of the local Bluetooth stack. The second
parameter is the service ID of the service that is sending the Handle/Value notification. The third parameter
specifies the connection ID of the connection to send the Handle/Value notification to. The fourth parameter
specifies the offset in the service table (registered via the call to the GATT_Register_Service() function) of
the attribute that is being notified. The fifth parameter is the length (in bytes) of the attribute value that is
being notified. The sixth parameter is a pointer to the actual attribute value to notify. This function returns a
non-negative value that represents the actual length of the attribute value that was notified, or a negative return
error code if there is an error.

The third of these API functions is provided to allow a means of performing a write without response request to
remote device for a specified attribute. The first parameter to this function is the Bluetooth stack ID of the local
Bluetooth stack, followed by the connection ID of the connected remote device, followed by the handle of the
attribute to write, followed by the length of the value data to write (in bytes), followed by the actual value to write.
This function returns the number of bytes written successfully or a negative error code.

11.5 LE Read

Description

The following function is responsible for reading data sent by a remote device to which a connection exists.
This function returns zero on successful execution and a negative value on errors. Depending what the device

SPPLE Commands www.ti.com

46 CC256x TI Bluetooth Stack SPPLEDemo App SWRA772 – AUGUST 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

role for SPPLE is, server or client, the API function that is called is either a GATT_Handle_Value_Notification
or aGATT_Write_Without_Response_Request; which notifies the receiving credit characteristic or sends a write
with out response packet to the transmission credit characteristic respectively.

Parameters

The only parameter required is the Bluetooth Address of the remote device that is connected.

Command Call Examples
• “LeRead 001bdc05b617” Attempts to read data of the Bluetooth Device with the BD_ADDR of

001bdc05b617.
• “LeRead 000275e126FF” Attempts to read data of the Bluetooth Device with the BD_ADDR of

000275e126FF.

Possible Return Values
• (0) Successfully Read Data
• (-6) INVALID_PARAMETERS_ERROR
• (-1) BTPS_ERROR_INVALID_PARAMETER
• (-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID
• (-67) BTPS_ERROR_RFCOMM_NOT_INITIALIZED
• (-85) BTPS_ERROR_SPP_NOT_INITIALIZED
• (-86) BTPS_ERROR_SPP_PORT_NOT_OPENED

API Call

GATT_Handle_Value_Notification(BluetoothStackID, SPPLEServiceID, ConnectionID,
SPPLE_RX_CREDITS_CHARACTERISTIC_ATTRIBUTE_OFFSET, WORD_SIZE, (Byte_t*)&Credits)

Or

GATT_Write_Without_Response_Request(BluetoothStackID, ConnectionID, DeviceInfo-
>ClientInfo.Tx_Credit_Characteristic, WORD_SIZE, &Credits)

API Prototype

int BTPSAPI GATT_Handle_Value_Notification(unsigned int BluetoothStackID, unsigned int ServiceID, unsigned
int ConnectionID, Word_t AttributeOffset, Word_tAttributeValueLength, Byte_t *AttributeValue)

Or

int BTPSAPI GATT_Write_Without_Response_Request(unsigned int BluetoothStackID, unsigned int
ConnectionID, Word_t AttributeHandle, Word_t AttributeLength, void*AttributeValue)

Description of API

The first of these API functions allows a means of sending a Handle/Value notification to a remote GATT client.
The first parameter to this function is the Bluetooth stack ID of the localBluetooth stack. The second parameter
is the service ID of the service that is sending the Handle/Value notification. The third parameter specifies the
connection ID of the connection to send the Handle/Value notification to. The fourth parameter specifies the
offset in the service table (registered via the call to the GATT_Register_Service() function) of the attribute that
is being notified. The fifth parameter is the length (in bytes) of the attribute value that is being notified. The
sixth parameter is a pointer to the actual attribute value to notify. This function returns a non-negative value that
represents the actual length of the attribute value that was notified, or a negative return error code if there was
an error.

The second of these API functions is provided to allow a means of performing a write without response request
to remote device for a specified attribute. The first parameter to this function is the Bluetooth stack ID of the local
Bluetooth stack, followed by the connection ID of the connected remote device, followed by the handle of the

www.ti.com SPPLE Commands

SWRA772 – AUGUST 2023
Submit Document Feedback

CC256x TI Bluetooth Stack SPPLEDemo App 47

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

attribute to write, followed by the length of the value data to write (in bytes), followed by the actual value to write.
This function returns the number of bytes written on success or a negative error code.

11.6 Loopback

Description

The Loopback command is responsible for setting the application state to support loopback mode. This
command returns zero on successful execution and a negative value on errors.

Parameters

This command requires one parameter which indicates if loopback can be supported. 0 = loopback not active, 1
= loopback active.

Command Call Examples
• "Loopback 0" sets loopback support to inactive.
• "loopback 1" sets loopback support to active.

Possible Return Values
• (0) Successfully set loopback support.
• (-6) INVALID_PARAMETERS_ERROR.

11.7 Display Raw Mode Data

Description

The following function is responsible for setting the application state to support displaying Raw Data. This
function returns zero on successful execution and a negative value on errors.

Parameters

This command accepts one parameter which indicates if displaying raw data mode can be supported. 0 =
Display Raw Data Mode inactive, 1 = Display Raw Data active.

Command Call Examples
• "DisplayRawModeData 0" sets Display Raw Mode support inactive.
• "DisplayRawModeData 1" sets Display Raw Mode support active.

Possible Return Values
• (0) Successfully sets Display Raw Data Mode support.
• (-6) INVALID_PARAMETERS_ERROR.

11.8 Automatic Read Mode

Description

The AutomaticReadMode command is responsible for setting the application state to support Automatically
reading all data that is received through SPP. This function returns zeroon successful execution and a negative
value on errors.

Parameters

This command accepts one parameter which indicates if automatic read mode can be supported. 0 = Automatic
Read Mode inactive, 1 = Automatic Read Mode active.

SPPLE Commands www.ti.com

48 CC256x TI Bluetooth Stack SPPLEDemo App SWRA772 – AUGUST 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

Command Call Examples
• "AutomaticReadMode 0" sets Automatic Read Mode support to inactive.
• "AutomaticReadMode 1" sets Automatic Read Mode support to active.

Possible Return Values
• (0) Successfully set Automatic Read Mode support.
• (-6) INVALID_PARAMETERS_ERROR

12 References
• Texas Instruments, TI Dual-Mode Bluetooth® Stack on MSP432™ MCUs, User's Guide.
• Texas Instruments, Dual-Mode Bluetooth® Stack on STM32F4 MCUs, User's Guide.

13 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DATE REVISION NOTES
August 2023 * Initial Release

www.ti.com References

SWRA772 – AUGUST 2023
Submit Document Feedback

CC256x TI Bluetooth Stack SPPLEDemo App 49

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/swru453
https://www.ti.com/lit/pdf/swru428
https://www.ti.com
https://www.ti.com/lit/pdf/SWRA772
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA772&partnum=CC2564C,

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	2 Running the Bluetooth Code
	3 Demo Application
	3.1 Device 1 (Server) Setup on the Demo Application
	3.2 Device 2 (Client) Setup on the Demo Application
	3.3 Initiating Connection from Device 2
	3.4 Identify Supported Services
	3.5 Data Transfer Between Client and Server
	3.6 Multiple SPPLE Connections Guide

	4 Demonstrating SPP LE on an iOS Device with the LightBlue App
	4.1 LightBlue Overview
	4.2 SPP LE Service Overview
	4.2.1 Characteristics

	5 LightBlue as the Client/SPPLEDemo as the Server
	5.1 Connecting the Devices
	5.2 Enabling Notifications
	5.3 Sending Data from LightBlue/Receiving Data in SPPLEDemo
	5.4 Sending Data from SPPLEDemo/Receiving Data in LightBlue

	6 LightBlue as the Server/SPPLEDemo as the Client
	6.1 Connecting the Devices
	6.2 Sending Data from LightBlue/Receiving Data in SPPLEDemo
	6.3 Sending Data from SPPLEDemo/Receiving Data in LightBlue

	7 Application Commands
	8 General Commands
	8.1 Help (DisplayHelp)
	8.2 Get Local Address
	8.3 Set Baud Rate
	8.4 Quit

	9 BR/EDR Commands
	10 GAPLE Commands
	10.1 Set Discoverability Mode
	10.2 Set Connectability Mode
	10.3 Set Pairability Mode
	10.4 Change Pairing Parameters
	10.5 Advertise LE
	10.6 Start Scanning
	10.7 Stop Scanning
	10.8 Connect LE
	10.9 Disconnect LE
	10.10 Pair LE
	10.11 LE Pass Key Response
	10.12 LE Query Encryption
	10.13 Set Passkey
	10.14 Discover GAPS
	10.15 Get Local Name
	10.16 Set Local Name
	10.17 Get Remote Name
	10.18 LE User Confirmation Response
	10.19 Enable SC Only
	10.20 Regenerate P256 Local Keys
	10.21 SC Generate OOB Local Params
	10.22 Set Local Appearance
	10.23 Get Local Appearance

	11 SPPLE Commands
	11.1 Discover SPPLE
	11.2 Register SPPLE
	11.3 LE Send
	11.4 Configure SPPLE
	11.5 LE Read
	11.6 Loopback
	11.7 Display Raw Mode Data
	11.8 Automatic Read Mode

	12 References
	13 Revision History

