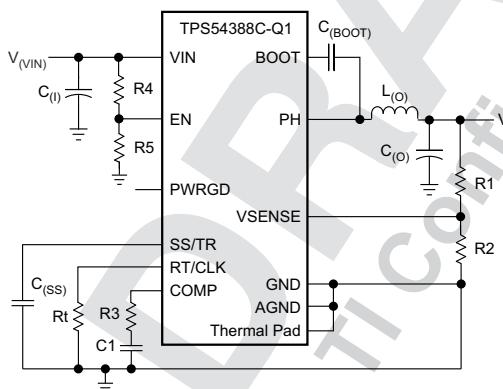


TPS54388C-Q1 車載用 2.95V~6V、3A、2MHz 同期整流降圧型コンバータ

1 特長


- 車載アプリケーション用に AEC-Q100 認定取得済み:
 - 温度グレード 1:-40°C~+125°C、 T_A
- 機能安全対応**
 - 機能安全システムの設計に役立つ資料を利用可能
- 2つの 12mΩ (標準値) MOSFET により 3A の負荷で高効率を実現
- 200kHz~2MHz のスイッチング周波数
- 40°C~+150°C の温度範囲全体で $0.8V \pm 1\%$ の基準電圧
- 外部クロックに同期
- 調整可能なスロー・スタートとシーケンシング
- UV および OV のパワー・グッド出力
- 動作時の接合部温度範囲:-40°C~+150°C
- 熱的に強化された 3mm × 3mm の 16 ピン WQFN
- TPS54418 とピン互換
- 利用可能な新製品: [TPS62813-Q1](#)、6V 降圧コンバータ、2mm × 3mm ウェッタブル・フランク付き QFN パッケージ

2 アプリケーション

- 低電圧、高密度の電源システム
- 高性能 DSP、FPGA、ASIC、マイクロプロセッサのポート・オブ・ロード・レギュレーション
- ブロードバンド、ネットワーク、光通信インフラ

3 概要

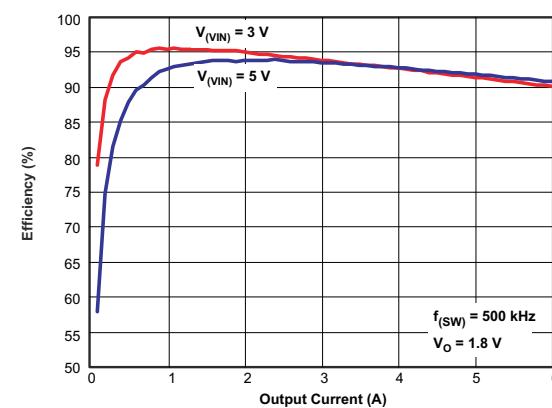
TPS54388C-Q1 は 2 つの MOSFET を内蔵した、フル機能の 6V、3A 同期整流降圧型電流モード・コンバータです。

簡略回路図

TPS54388C-Q1 は MOSFET を内蔵し、電流モード制御の実装により外付け部品数が少なく、スイッチング周波数が最高 2MHz と高いためインダクタを小さくでき、熱的に強化された小型 (3mm × 3mm) の QFN パッケージにより IC の占有面積を最小化できるため、小型の設計を実現できます。

TPS54388C-Q1 は、温度範囲全体で精度 $\pm 1\%$ の基準電圧 (V_{ref}) により、各種の負荷に対して正確なレギュレーションを行います。

内蔵の 12mΩ MOSFET と標準値 515μA の消費電流により、効率が最大化されます。イネーブル・ピンを使用してシャットダウン・モードに移行すると、シャットダウン時の消費電流を 5.5μA (標準値) に低減できます。


内部の低電圧誤動作防止設定は 2.45V ですが、イネーブル・ピンの抵抗回路でスレッショルドをプログラムすることにより、設定値を高くできます。スロースタート・ピンで、出力電圧のスタートアップ・ランプを制御できます。出力が公称電圧の 93%~107% の範囲内にあるとき、オープン・ドレインのパワー・グッド信号で示されます。

周波数のフォールドバックとサーマル・シャットダウンにより、過電流時にデバイスが保護されます。

デバイス情報⁽¹⁾

部品番号	パッケージ	本体サイズ (公称)
TPS54388C-Q1	WQFN (16)	3.00mm × 3.00mm

(1) 利用可能なパッケージについては、このデータシートの末尾にある注文情報を参照してください。

効率曲線

英語版の TI 製品についての情報を翻訳したこの資料は、製品の概要を確認する目的で便宜的に提供しているものです。該当する正式な英語版の最新情報は、必ず最新版の英語版をご参照ください。

Table of Contents

1 特長.....	1	8 Application and Implementation.....	22
2 アプリケーション.....	1	8.1 Application Information.....	22
3 概要.....	1	8.2 Typical Application.....	22
4 Revision History.....	2	9 Power Supply Recommendations.....	32
5 Pin Configuration and Functions.....	3	10 Layout.....	33
6 Specifications.....	4	10.1 Layout Guidelines.....	33
6.1 Absolute Maximum Ratings.....	4	10.2 Layout Example.....	34
6.2 ESD Ratings.....	4	11 Device and Documentation Support.....	35
6.3 Recommended Operating Conditions.....	4	11.1 Documentation Support.....	35
6.4 Thermal Information.....	5	11.2 ドキュメントの更新通知を受け取る方法.....	35
6.5 Electrical Characteristics.....	5	11.3 サポート・リソース.....	35
6.6 Typical Characteristics.....	7	11.4 Trademarks.....	35
7 Detailed Description.....	11	11.5 静電気放電に関する注意事項.....	35
7.1 Overview.....	11	11.6 用語集.....	35
7.2 Functional Block Diagram.....	12	12 Mechanical, Packaging, and Orderable Information.....	35
7.3 Feature Description.....	12		
7.4 Device Functional Modes.....	13		

4 Revision History

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

Changes from Revision A (December 2019) to Revision B (June 2021)	Page
• 「特長」に機能安全の箇条書き項目と類似の新製品を追加.....	1
• 文書全体にわたって表、図、相互参照の採番方法を更新.....	1
<hr/>	
Changes from Revision * (October 2016) to Revision A (December 2019)	Page
• 最初の公開リリース.....	1

5 Pin Configuration and Functions

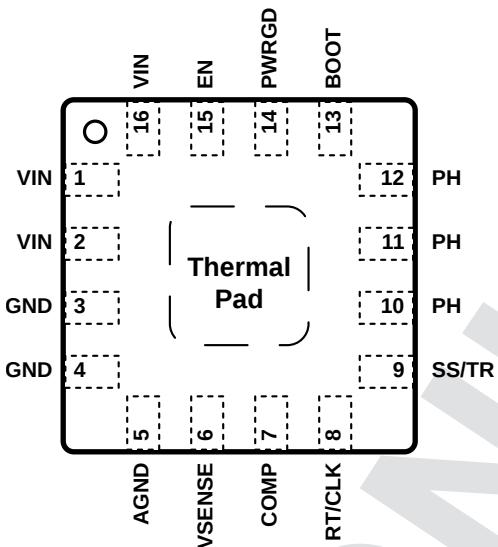


图 5-1. RTE Package 16-Pin WQFN With Exposed Thermal Pad Top View

表 5-1. Pin Functions

PIN		I/O ⁽¹⁾	DESCRIPTION
NAME	NO.		
AGND	5	—	Connect analog ground electrically to GND close to the device.
BOOT	13	O	The device requires a bootstrap capacitor between BOOT and PH. A voltage on this capacitor that is below the minimum required by the BOOT UVLO forces the output to switch off until the capacitor recharges.
COMP	7	O	Error amplifier output, and input to the output-switch current comparator. Connect frequency-compensation components to this pin.
EN	15	I	Enable pin, internal pullup-current source. Pull below 1.2 V to disable. Float to enable. One can use this pin to set the on-off threshold (adjust UVLO) with two additional resistors.
GND	3	—	Power ground. Directly connect this pin electrically to the thermal pad under the device.
	4	—	
PH	10	O	The source of the internal high-side power MOSFET, and drain of the internal low-side (synchronous) rectifier MOSFET
	11		
	12		
PWRGD	14	O	An open-drain output; asserted low if output voltage is low due to thermal shutdown, overcurrent, over- or undervoltage, or EN shutdown.
RT/CLK	8	I	Resistor-timing or external-clock input pin
SS/TR	9	I	Slow start and tracking. An external capacitor connected to this pin sets the output-voltage rise time. Another use of this pin is for tracking.
VIN	1	I	Input supply voltage, 2.95 V to 6 V
	2		
	16		
VSENSE	6	I	Inverting node of the transconductance (g_m) error amplifier
Thermal pad		—	Connect the GND pin to the exposed thermal pad for proper operation. Connect this thermal pad to any internal PCB ground planes using multiple vias for good thermal performance.

(1) I = input, O = output

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
Input voltage	VIN	-0.3	7	V
	EN	-0.3	7	
	BOOT	-0.3	PH + 7	
	VSENSE	-0.3	3	
	COMP	-0.3	3	
	PWRGD	-0.3	7	
	SS/TR	-0.3	3	
	RT/CLK	-0.3	7	
Output voltage	BOOT-PH	-0.3	7	V
	PH	-0.6	7	
	PH 10-ns transient	-2	10	
Source current	EN		100	μA
	RT/CLK		100	
Sink current	COMP		100	μA
	PWRGD		10	mA
	SS/TR		100	μA
Junction temperature, T_J		-40	150	°C
Ambient temperature, T_A		-40	125	°C
Storage temperature, T_{stg}		-65	150	°C

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
$V_{(ESD)}$	Electrostatic discharge	Human body model (HBM), per AEC Q100-002 ⁽¹⁾	±2000	V
		Charged device model (CDM), per AEC Q100-011	Corner pins (1, 16, 4, 5, 8, 9, 12, and 13)	
			Other pins	
			±750	
			±500	

(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

over operating free-air temperature (unless otherwise noted)

		MIN	NOM	MAX	UNIT
$V_{(VIN)}$	Input voltage	2.95		6	V
T_A	Operating ambient temperature	-40		125	°C

6.4 Thermal Information

THERMAL METRIC ⁽¹⁾		TPS54388C-Q1	UNIT
		RTE (WQFN)	
		16 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	43.5	°C/W
$R_{\theta JC(\text{top})}$	Junction-to-case(top) thermal resistance	46.1	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	15.5	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	0.7	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	15.5	°C/W
$R_{\theta JC(\text{bot})}$	Junction-to-case(bottom) thermal resistance	3.8	°C/W

(1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC Package Thermal Metrics](#) application report (SPRA953).

6.5 Electrical Characteristics

$T_J = -40^{\circ}\text{C}$ to 150°C , $V_{(\text{VIN})} = 2.95$ to 6 V (unless otherwise noted)

DESCRIPTION	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY VOLTAGE (VIN PIN)					
Internal undervoltage lockout threshold	VIN UVLO start	2.28	2.5	2.6	V
	VIN UVLO stop	2.45	2.6	2.6	
Shutdown supply current	$V_{(\text{EN})} = 0$ V, 25°C , 2.95 V $\leq V_{(\text{VIN})} \leq 6$ V	5.5	15	15	μA
Quiescent current, $I_{(q)}$	$V_{(\text{SENSE})} = 0.9$ V, $V_{(\text{VIN})} = 5$ V, 25°C , $R_t = 400$ kΩ	515	750	750	μA
ENABLE AND UVLO (EN PIN)					
Enable threshold	Rising	1.25	1.25	1.25	V
	Falling	1.18	1.18	1.18	
Input current	Enable threshold + 50 mV	-1.6	-1.6	-1.6	μA
	Enable threshold - 50 mV	-1.6	-1.6	-1.6	
VOLTAGE REFERENCE (VSENSE PIN)					
Voltage reference	2.95 V $\leq V_{(\text{VIN})} \leq 6$ V, $-40^{\circ}\text{C} < T_J < 150^{\circ}\text{C}$	0.79	0.8	0.811	V
MOSFET					
High-side switch resistance	$V_{(\text{BOOT-PH})} = 5$ V	12	30	30	mΩ
	$V_{(\text{BOOT-PH})} = 2.95$ V	16	30	30	
Low-side switch resistance	$V_{(\text{VIN})} = 5$ V	13	30	30	mΩ
	$V_{(\text{VIN})} = 2.95$ V	17	30	30	
ERROR AMPLIFIER					
Input current		2	2	2	nA
Error-amplifier transconductance (g_m)	-2 μA $< I_{(\text{COMP})} < 2$ μA, $V_{(\text{COMP})} = 1$ V	245	245	245	μS
Error-amplifier transconductance (g_m) during slow start	-2 μA $< I_{(\text{COMP})} < 2$ μA, $V_{(\text{COMP})} = 1$ V, $V_{(\text{VSENSE})} = 0.4$ V	79	79	79	μS
Error amplifier source and sink	$V_{(\text{COMP})} = 1$ V, 100-mV overdrive	±20	±20	±20	μA
COMP to high-side FET current g_m		25	25	25	S

$T_J = -40^\circ\text{C}$ to 150°C , $V_{(\text{VIN})} = 2.95$ to 6 V (unless otherwise noted)

DESCRIPTION	TEST CONDITIONS	MIN	TYP	MAX	UNIT
CURRENT LIMIT					
Current limit threshold		3.7	6.5		A
THERMAL SHUTDOWN					
Thermal shutdown		168			°C
Hysteresis		20			°C
TIMING RESISTOR AND EXTERNAL CLOCK (RT/CLK PIN)					
Switching frequency range using RT mode		200	2000		kHz
Switching frequency	$R_t = 400$ kΩ	400	500	600	kHz
Switching frequency range using CLK mode		300	2000		kHz
Minimum CLK pulse duration		75			ns
RT/CLK voltage	$R_t = 400$ kΩ	0.5			V
RT/CLK high threshold		1.6	2.5		V
RT/CLK low threshold		0.4	0.6		V
Delay from RT/CLK falling edge to PH rising edge	Measure at 500 kHz with RT resistor in series with device pin	90			ns
PLL lock-in time	Measure at 500 kHz	45			μs
PH (PH PIN)					
Minimum on-time	Measured at 50% point on PH, $I_O = 3$ A	75			ns
	Measured at 50% point on PH, $V_{(\text{VIN})} = 6$ V, $I_O = 0$ A	120			
Minimum off-time	Prior to skipping off pulses, BOOT-PH = 2.95 V, $I_O = 3$ A	60			ns
Rise time	$V_{(\text{VIN})} = 6$ V, 6 A	2.25			V/ns
Fall time	$V_{(\text{VIN})} = 6$ V, 6 A	2			
BOOT (BOOT PIN)					
BOOT charge resistance	$V_{(\text{VIN})} = 5$ V	16			Ω
BOOT-PH UVLO	$V_{(\text{VIN})} = 2.95$ V	2.1			V
SLOW START AND TRACKING (SS/TR PIN)					
Charge current	$V_{(\text{SS/TR})} = 0.4$ V	2			μA
SS/TR to VSENSE matching	$V_{(\text{SS/TR})} = 0.4$ V	50			mV
SS/TR to reference crossover	98% of normal reference voltage	1.1			V
SS/TR discharge voltage (overload)	$V_{(\text{VSENSE})} = 0$ V	61			mV
SS/TR discharge current (overload)	$V_{(\text{VSENSE})} = 0$ V, $V_{(\text{SS/TR})} = 0.4$ V	350			μA
SS discharge current (UVLO, EN, thermal fault)	$V_{(\text{VIN})} = 5$ V, $V_{(\text{SS/TR})} = 0.5$ V	1.9			mA
POWER GOOD (PWRGD PIN)					
VSENSE threshold	VSENSE falling (Fault)	91			% V_{ref}
	VSENSE rising (Good)	93			
	VSENSE rising (Fault)	109			
	VSENSE falling (Good)	107			
Hysteresis	VSENSE falling	2			% V_{ref}
Output-high leakage	$V_{(\text{VSENSE})} = V_{\text{ref}}$, $V_{(\text{PWRGD})} = 5.5$ V	7			nA
On-resistance		56	100		Ω
Output low	$I_{(\text{PWRGD})} = 3$ mA	0.3			V
Minimum VIN for valid output	$V_{(\text{PWRGD})} < 0.5$ V at 100 μA	0.65	1.6		V

6.6 Typical Characteristics

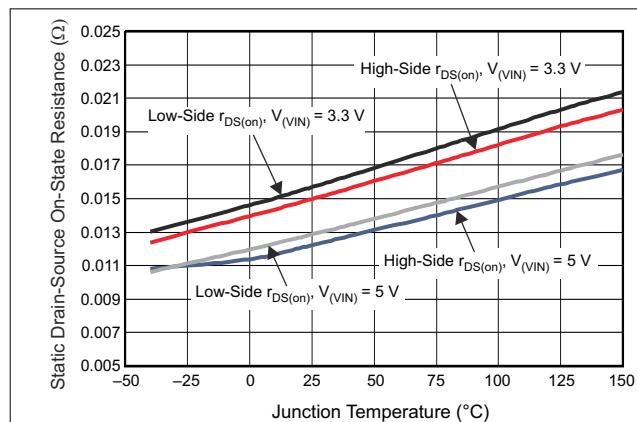


图 6-1. High-Side and Low-Side $r_{DS(on)}$ vs Temperature

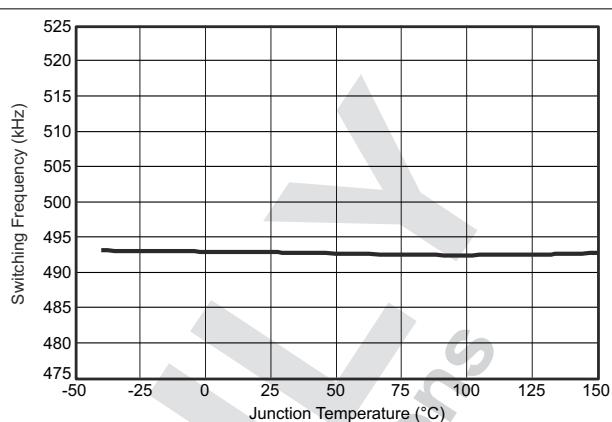


图 6-2. Frequency vs Temperature

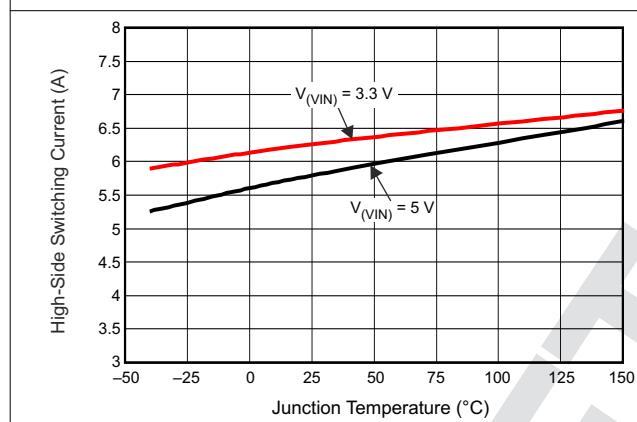


图 6-3. High-Side Current Limit vs Temperature

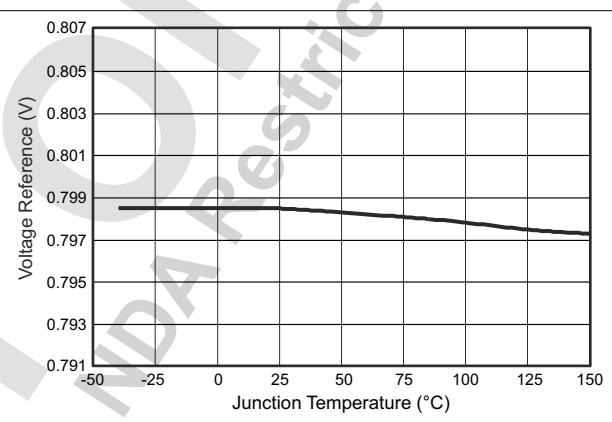


图 6-4. Voltage Reference vs Temperature

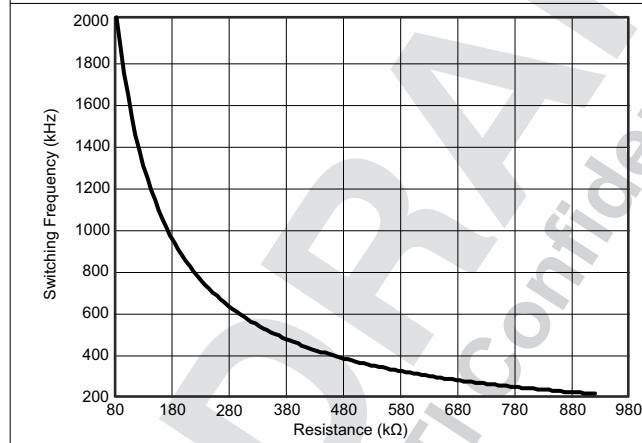


图 6-5. Switching Frequency vs RT Resistance, Low-Frequency Range

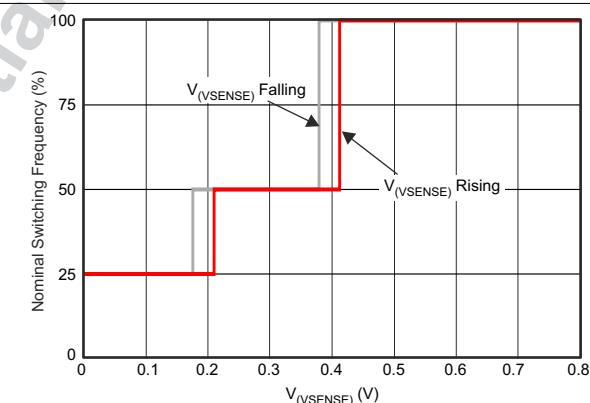


图 6-6. Switching Frequency vs $V_{(VSENSE)}$

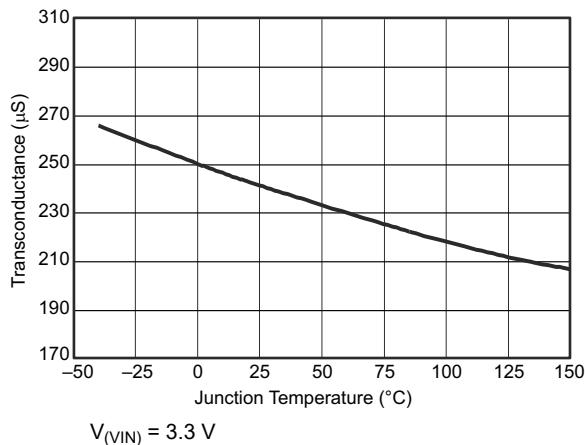


図 6-7. Transconductance vs Temperature

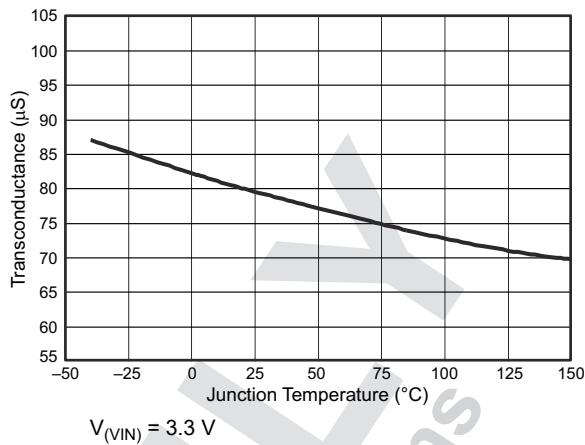


図 6-8. Transconductance (Slow Start) vs Junction Temperature

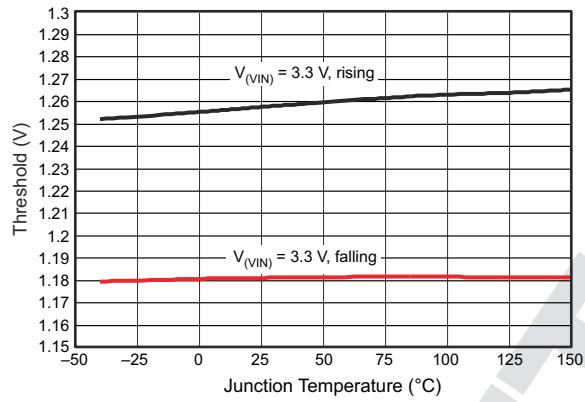


図 6-9. EN Pin Voltage vs Temperature

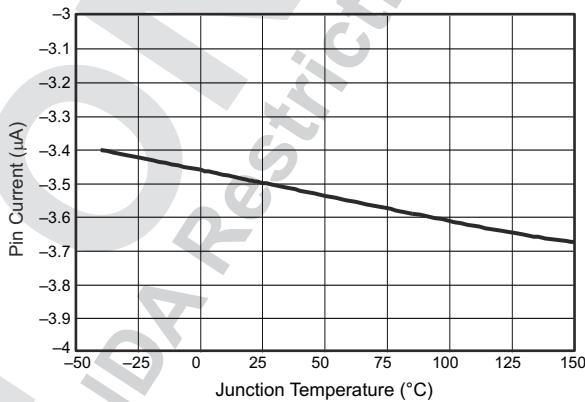


図 6-10. EN Pin Current vs Temperature

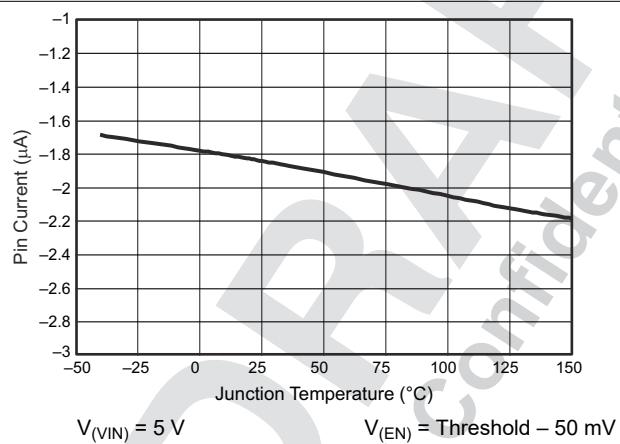


図 6-11. EN Pin Current vs Temperature

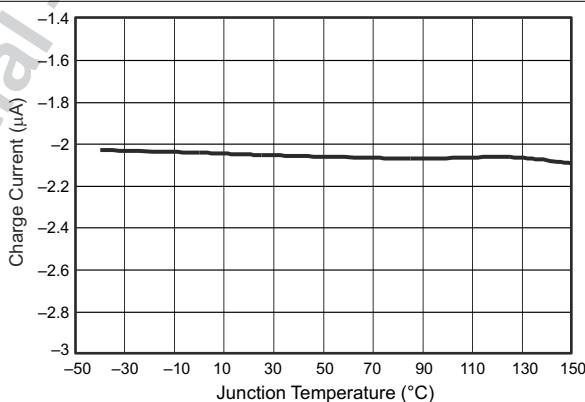


図 6-12. Charge Current vs Temperature

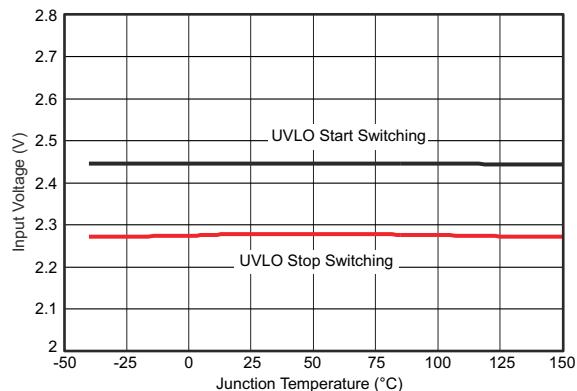


图 6-13. Input Voltage vs Temperature

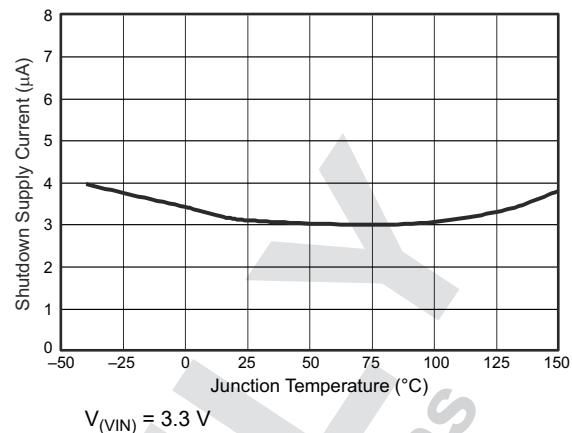


图 6-14. Shutdown Supply Current vs Temperature

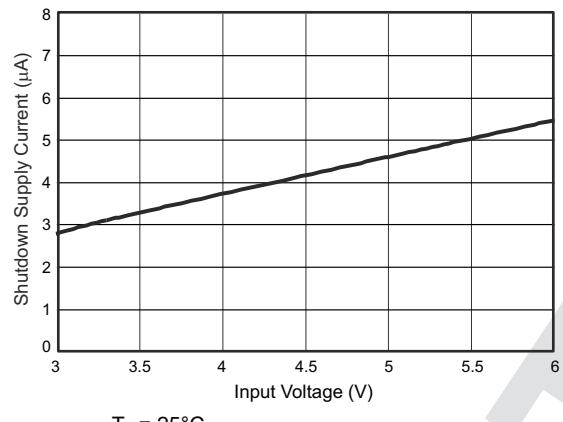


图 6-15. Shutdown Supply Current vs Input Voltage

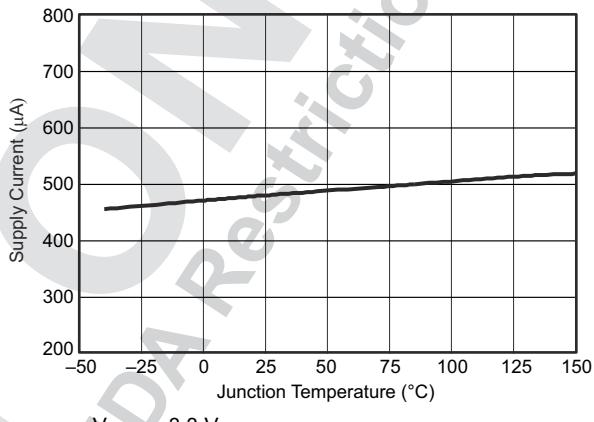


图 6-16. VIN Supply Current vs Junction Temperature

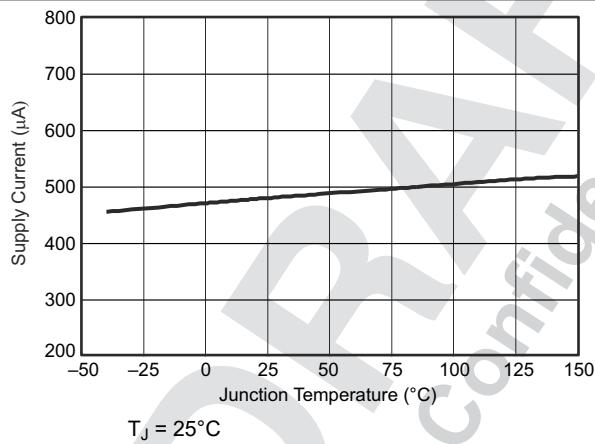


图 6-17. VIN Supply Current vs Input Voltage

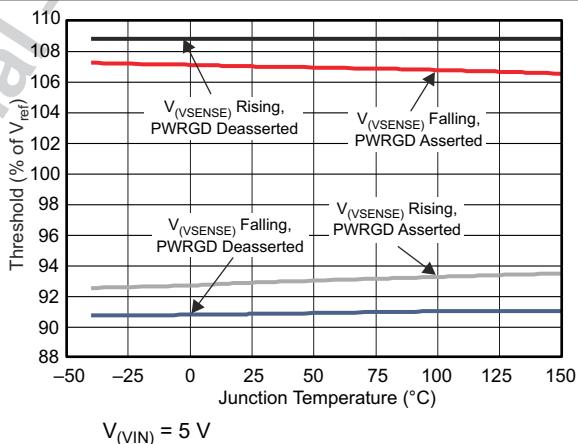


图 6-18. PWRGD Threshold vs Temperature

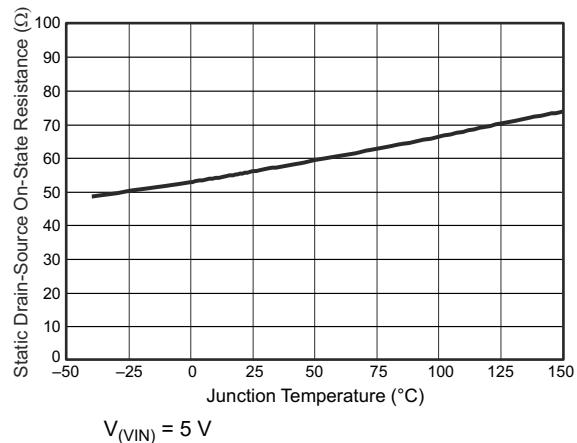


図 6-19. PWRGD On-Resistance vs Temperature

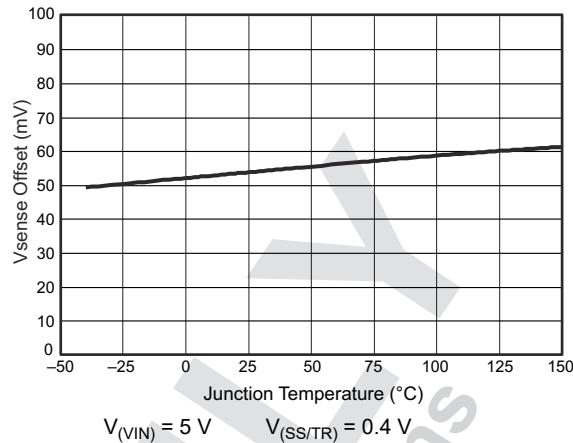


図 6-20. SS/TR-to-VSENSE Offset vs Temperature

7 Detailed Description

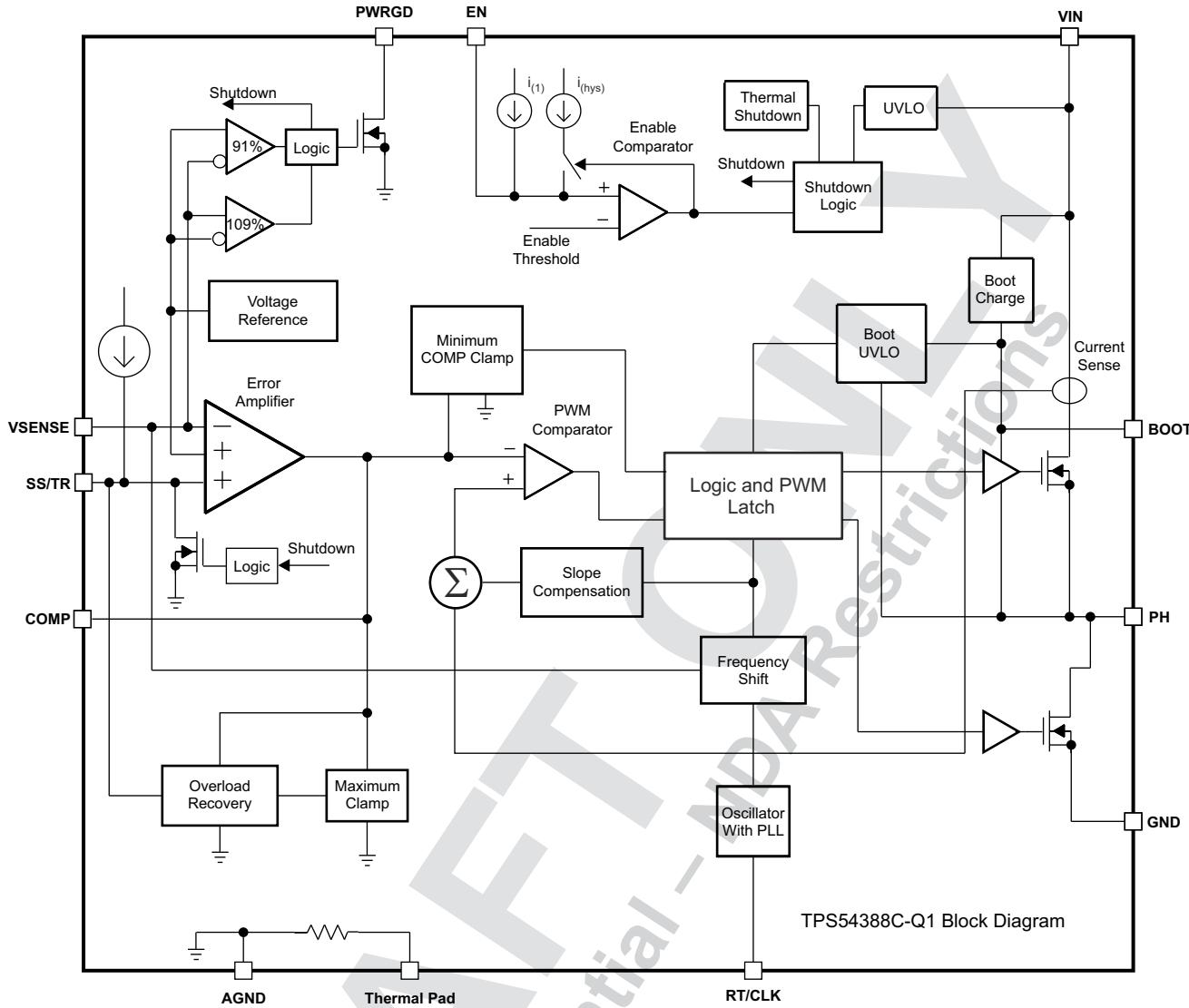
7.1 Overview

The TPS54388C-Q1 device is a 6-V, 3-A, synchronous step-down (buck) converter with two integrated n-channel MOSFETs. To improve performance during line and load transients, the device implements a constant-frequency, peak-current-mode control, which reduces output capacitance and simplifies external frequency-compensation design. The wide switching-frequency range of 200 kHz to 2000 kHz allows for efficiency and size optimization when selecting the output-filter components. A resistor to ground on the RT/CLK pin sets the switching frequency. The device has an internal phase-lock loop (PLL) on the RT/CLK pin that synchronizes the power-switch turnon to a falling edge of an external system clock.

The TPS54388C-Q1 device has a typical default start-up voltage of 2.45 V. The EN pin has an internal pullup current source that one can use to adjust the input-voltage undervoltage lockout (UVLO) with two external resistors. In addition, the pullup current provides a default condition, allowing the device to operate when the EN pin is floating. The total operating current for the device is typically 515 μ A when not switching and under no load. With the device disabled, the supply current is typically 5.5 μ A.

The integrated 12-m Ω MOSFETs allow for high-efficiency power-supply designs with continuous output currents up to 3 A.

The TPS54388C-Q1 device reduces the external component count by integrating the boot recharge diode. A capacitor between the BOOT and PH pins supplies the bias voltage for the integrated high-side MOSFET. A UVLO circuit monitors the boot-capacitor voltage and turns off the high-side MOSFET when the voltage falls below a preset threshold. This BOOT circuit allows the TPS54388C-Q1 device to operate approaching 100% duty cycle. The lower limit for stepping down the output voltage is the 0.8-V reference.


The TPS54388C-Q1 device has a power-good comparator (PWRGD) with 2% hysteresis.

The TPS54388C-Q1 device minimizes excessive output overvoltage transients by taking advantage of the overvoltage power-good comparator. A regulated output voltage exceeding 109% of the nominal voltage activates the overvoltage comparator, turning off the high-side MOSFET and masking it from turning on until the output voltage is lower than 107% of the nominal voltage.

A use of the SS/TR (slow start pr tracking) pin is to minimize inrush currents or provide power-supply sequencing during power up. Couple a small-value capacitor to the pin for slow start. Discharging the SS/TR pin before the output powers up ensures a repeatable restart after an overtemperature fault, UVLO fault, or disabled condition.

The use of a frequency foldback circuit reduces the switching frequency during start-up and overcurrent fault conditions to help limit the inductor current.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Fixed-Frequency PWM Control

The TPS54388C-Q1 device uses an adjustable fixed-frequency, peak-current-mode control. An error amplifier, which drives the COMP pin, compares the output voltage through external resistors on the VSENSE pin to an internal voltage reference. An internal oscillator initiates the turnon of the high-side power switch. The device compares the error-amplifier output to the high-side power-switch current. When the sensed voltage derived from the power-switch current reaches the COMP voltage level, the high-side power switch turns off and the low-side power switch turns on. The COMP pin voltage increases and decreases as the output current increases and decreases. The device implements a current limit by clamping the COMP pin voltage to a maximum level, and also implements a minimum clamp for improved transient-response performance.

7.3.2 Slope Compensation and Output Current

The TPS54388C-Q1 device adds a compensating ramp to the switch-current signal. This slope compensation prevents sub-harmonic oscillations as duty cycle increases. The available peak inductor current remains constant over the full duty-cycle range.

7.3.3 Bootstrap Voltage (BOOT) and Low-Dropout Operation

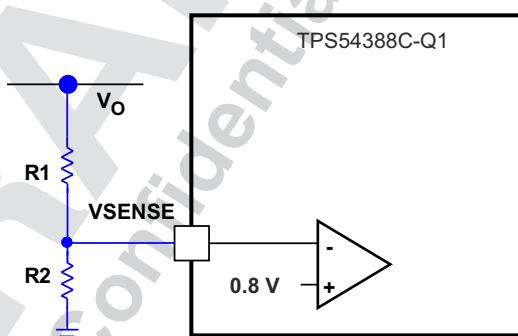
The TPS54388C-Q1 device has an integrated boot regulator and requires a small ceramic capacitor between the BOOT and PH pins to provide the gate-drive voltage for the high-side MOSFET. The value of the ceramic capacitor should be 0.1 μ F. TI recommends a ceramic capacitor with an X7R- or X5R-grade dielectric with a voltage rating of 10 V or higher because of the stable characteristics over temperature and voltage.

The TPS54388C-Q1 design improves dropout by operating at 100% duty cycle as long as the BOOT-to-PH pin voltage is greater than 2.2 V. A UVLO circuit turns off the high-side MOSFET, allowing for the low-side MOSFET to conduct when the voltage from BOOT to PH drops below 2.2 V. Because the supply current sourced from the BOOT pin is low, the high-side MOSFET can remain on for more switching cycles than are required to refresh the capacitor. Thus, the effective duty cycle of the switching regulator is high.

7.3.4 Error Amplifier

The TPS54388C-Q1 device has a transconductance amplifier that it uses as an error amplifier. The error amplifier compares the VSENSE voltage to the lower of the SS/TR pin voltage or the internal 0.8-V voltage reference. The transconductance of the error amplifier is 245 μ S during normal operation. When the voltage of VSENSE pin is below 0.8 V and the device is regulating using the SS/TR voltage, the g_m is typically greater than 79 μ S, but less than 245 μ S.

7.3.5 Voltage Reference


The voltage reference system produces a precise $\pm 1\%$ voltage reference over temperature by scaling the output of a temperature-stable band-gap circuit. The band-gap and scaling circuits produce 0.8 V at the non-inverting input of the error amplifier.

7.4 Device Functional Modes

7.4.1 Adjusting the Output Voltage

A resistor divider from the output node to the VSENSE pin sets the output voltage. TI recommends using divider resistors with 1% tolerance or better. Start with 100 k Ω for the R1 resistor and use [式 1](#) to calculate R2. To improve efficiency at light loads, consider using larger-value resistors. If the values are too high, the regulator is more susceptible to noise, and voltage errors from the VSENSE input current are noticeable.

$$R2 = R1 \times \left(\frac{0.8 \text{ V}}{V_O - 0.8 \text{ V}} \right) \quad (1)$$

图 7-1. Voltage-Divider Circuit

7.4.2 Enable Functionality and Adjusting Undervoltage Lockout

The VIN pin voltage on the VIN pin falling below 2.6 V disables the TPS54388C-Q1 device. If an application requires a higher undervoltage lockout (UVLO), use the EN pin as shown in [图 7-2](#) to adjust the input voltage UVLO by using two external resistors. TI recommends using the EN resistors to set the UVLO falling threshold ($V_{(STOP)}$) above 2.6 V. Set the rising threshold ($V_{(START)}$) to provide enough hysteresis to allow for any input supply variations. The EN pin has an internal pullup current source that provides the default condition of

TPS54388C-Q1 operation when the EN pin floats. Once the EN pin voltage exceeds 1.25 V, the circuitry adds an additional 1.6 μ A of hysteresis. Pulling the EN pin below 1.18 V removes the 1.6 μ A. This additional current facilitates input voltage hysteresis.

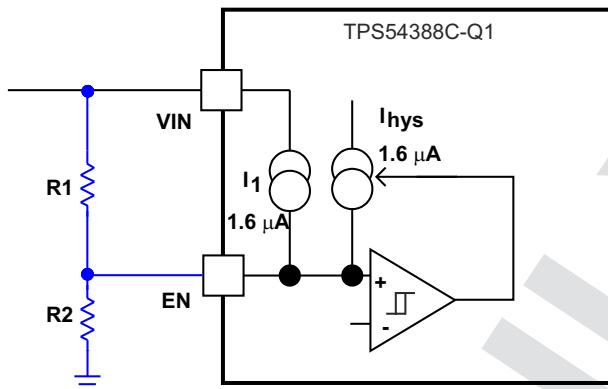


图 7-2. Adjustable Undervoltage Lockout

$$R1 = \frac{V_{(START)} \left(\frac{V_{(ENFALLING)}}{V_{(ENRISING)}} \right) - V_{(STOP)}}{I_{(1)} \left(1 - \frac{V_{(ENFALLING)}}{V_{(ENRISING)}} \right) + I_{(hys)}} \quad (2)$$

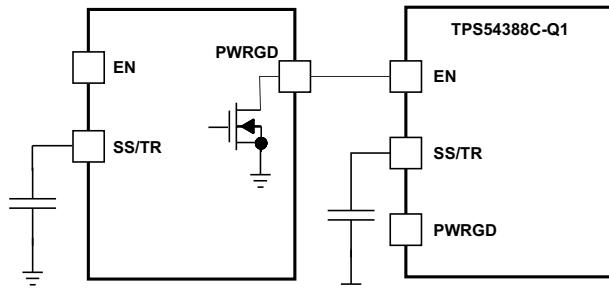
where

- $V_{(ENFALLING)} = 1.18$ V
- $V_{(ENRISING)} = 1.25$ V
- $I_{(1)} = 1.6$ μ A
- $I_{(hys)} = 1.6$ μ A

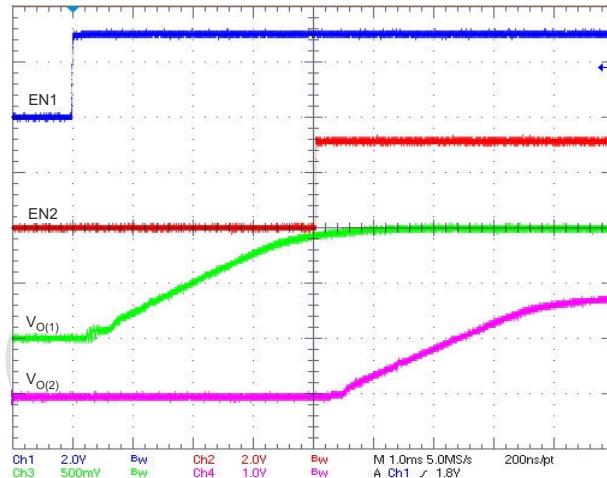
$$R2 = \frac{R1 \times V_{(ENFALLING)}}{V_{(STOP)} - V_{(ENFALLING)} + R1 \times (I_{(1)} + I_{(hys)})} \quad (3)$$

7.4.3 Slow-Start or Tracking Pin

The TPS54388C-Q1 device regulates to the lower of the SS/TR pin and the internal reference voltage. A capacitor on the SS/TR pin to ground implements a slow-start time. The TPS54388C-Q1 device has an internal pullup current source of 2 μ A, which charges the external slow-start capacitor. 式 4 calculates the required slow-start capacitor value, where $t_{(SS/TR)}$ is the desired slow start time in ms, $I_{(SS/TR)}$ is the internal slow start charging current of 2 μ A, and V_{ref} is the internal voltage reference of 0.8 V.


$$C_{(SS/TR)} (\text{nF}) = \frac{t_{(SS/TR)} (\text{ms}) \times I_{(SS/TR)} (\mu\text{A})}{V_{ref} (\text{V})} \quad (4)$$

If during normal operation, VIN goes below UVLO, the EN pin goes below 1.2 V, or a thermal shutdown event occurs, the TPS54388C-Q1 device stops switching. On VIN going above UVLO, the release or pulling high of EN, or exit from a thermal shutdown, SS/TR discharges to below 60 mV before re-initiation of a power-up sequence. The VSENSE voltage follows the SS/TR pin voltage with a 50-mV offset up to 85% of the internal voltage reference. When the SS/TR voltage is greater than 85% of the internal reference voltage, the offset increases as the effective system reference transitions from the SS/TR voltage to the internal voltage reference.


7.4.4 Sequencing

One can implement many of the common power-supply sequencing methods using the SS/TR, EN, and PWRGD pins. Implementation of the sequential method uses an open-drain or open-collector output of the power-on-reset pin of another device. [图 7-3](#) shows the sequential method. Couple the power-good to the EN pin on the TPS54388C-Q1 device to enable the second power supply once the primary supply reaches regulation.

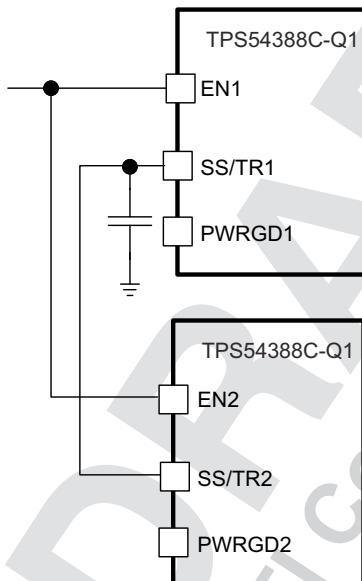

One can accomplish ratiometric start-up by connecting the SS/TR pins together. The regulator outputs ramp up and reach regulation at the same time. When calculating the slow-start time, double the pullup current source in [式 4](#). [图 7-5](#) shows the ratiometric method.

图 7-3. Sequential Start-Up Sequence

图 7-4. Sequential Start-Up Using EN and PWRGD

图 7-5. Schematic for Ratiometric Start-Up Sequence

图 7-6. Ratiometric Start-Up With $V_{O(1)}$ Leading $V_{O(2)}$

One can implement ratiometric and simultaneous power-supply sequencing by connecting the resistor network of R1 and R2 shown in [图 7-7](#) to the output of the power supply that requires tracking, or to another voltage reference source. Using [式 5](#) and [式 6](#), one can calculate the tracking resistors to initiate $V_{O(2)}$ slightly before,

after, or at the same time as $V_{O(1)}$. $V_{O(1)} - V_{O(2)}$ is 0 V for simultaneous sequencing. Including $V_{(ssoffset)}$ and $I_{(SS/TR)}$ as variables in the equations minimizes the effect of the inherent SS/TR-to-VSENSE offset ($V_{(ssoffset)}$) in the slow-start circuit and the offset created by the pullup current source ($I_{(ss)}$) and tracking resistors. Because the SS/TR pin requires pulling below 60 mV before starting after an EN, UVLO, or thermal-shutdown fault, select the tracking resistors carefully to ensure the device can restart after a fault. Make sure the calculated R1 value from 式 5 is greater than the value calculated in 式 7 to ensure the device can recover from a fault. As the SS/TR voltage becomes more than 85% of the nominal reference voltage, $V_{(ssoffset)}$ becomes larger as the slow-start circuits gradually hand off the regulation reference to the internal voltage reference. The SS/TR pin voltage must be greater than 1.1 V for a complete handoff to the internal voltage reference as shown in 図 7-6.

$$R1 = \frac{V_{O(1)}}{V_{ref}} \times \frac{V_{(ssoffset)}}{I_{(SS/TR)}} \quad (5)$$

$$R2 = \frac{V_{ref} \times R1}{V_{O(1)} - V_{ref}} \quad (6)$$

$$R1 > 2930 \times V_{O(1)} - 145 \times (V_{O(1)} - V_{O(2)}) \quad (7)$$

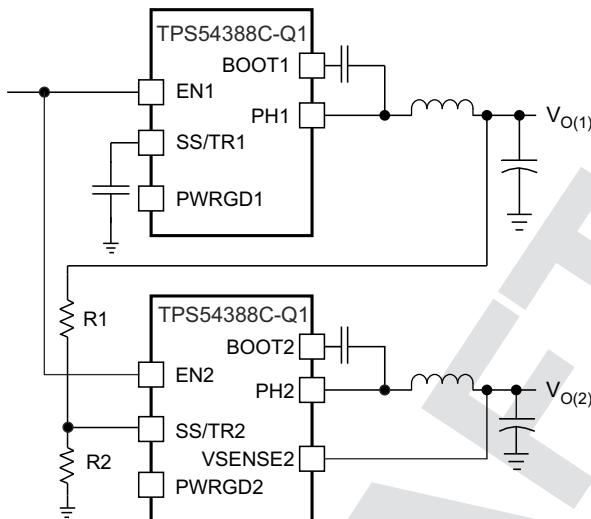


図 7-7. Ratiometric and Simultaneous Start-Up Sequence

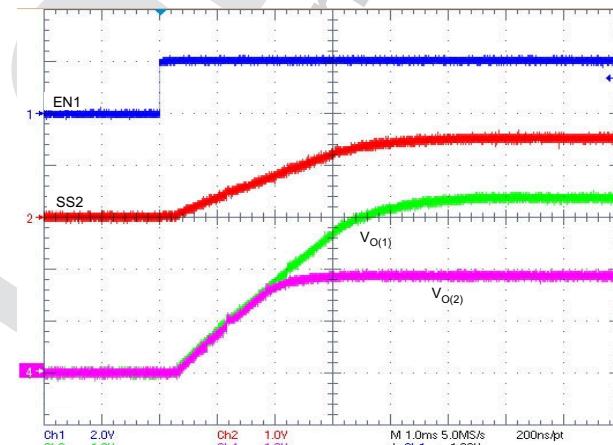


図 7-8. Ratiometric Start-Up Using Coupled SS/TR Pins

7.4.5 Constant Switching Frequency and Timing Resistor (RT/CLK Pin)

The switching frequency of the TPS54388C-Q1 device is adjustable over a wide range from 200 kHz to 2000 kHz by placing a resistor on the RT/CLK pin with a value calculated by 式 8. An internal amplifier holds this pin at a fixed voltage when using an external resistor to ground to set the switching frequency. The voltage on RT/CLK is typically 0.5 V. To determine the timing resistance for a given switching frequency, use 式 8 or the curve in 図 6-5.

$$Rt(k\Omega) = \frac{247\,530 \text{ (M}\Omega/\text{s)}}{f_{(SW)}^{1.0533} \text{ (kHz)}} \quad (8)$$

$$f_{(SW)} \text{ (kHz)} = \frac{131\,904 \text{ (M}\Omega/\text{s)}}{Rt^{0.9492} \text{ (k}\Omega\text{)}} \quad (9)$$

To reduce the solution size, one would typically set the switching frequency as high as possible, but consider tradeoffs of the efficiency, maximum input voltage, and minimum controllable on-time.

The minimum controllable on-time is typically 60 ns at full-current load and 120 ns at no load, and limits the maximum operating input voltage or output voltage.

7.4.6 Overcurrent Protection

The TPS54388C-Q1 device implements a cycle-by-cycle current limit. During each switching cycle, the device compares a voltage derived from the high-side switch current to the voltage on the COMP pin. When the instantaneous switch-current voltage intersects the COMP voltage, the high-side switch turns off. During overcurrent conditions that pull the output voltage low, the error amplifier responds by driving the COMP pin high, increasing the switch current. An internal clamp on the error-amplifier output functions as a switch-current limit.

7.4.7 Frequency Shift

To operate at high switching frequencies and provide protection during overcurrent conditions, the TPS54388C-Q1 device implements a frequency shift. Without this frequency shift, during an overcurrent condition the low-side MOSFET might not turn off long enough to reduce the current in the inductor, causing a current runaway. With frequency shift, during an overcurrent condition there is a switching-frequency reduction from 100% to 50%, then 25%, as the voltage decreases from 0.8 V to 0 V on the VSENSE pin. The frequency shift allows the low-side MOSFET to be off long enough to decrease the current in the inductor. During start-up, the switching frequency increases as the voltage on VSENSE increases from 0 V to 0.8 V. See [6-6](#) for details.

7.4.8 Reverse Overcurrent Protection

The TPS54388C-Q1 device implements low-side current protection by detecting the voltage across the low-side MOSFET. When the converter sinks current through its low-side FET, the control circuit turns off the low-side MOSFET if the reverse current is typically more than 4.5 A. By implementing this additional protection scheme, the converter is able to protect itself from excessive current during power cycling and start-up into pre-biased outputs.

7.4.9 Synchronize Using the RT/CLK Pin

The RT/CLK pin synchronizes the converter to an external system clock. See [7-9](#). To implement the synchronization feature in a system, connect a square wave to the RT/CLK pin with an on-time of at least 75 ns. If the square wave pulls the pin above the PLL upper threshold, a mode change occurs, and the pin becomes a synchronization input. The CLK mode disables the internal amplifier, and the pin becomes a high-impedance clock input to the internal PLL. Stopping the clocking edges re-enables the internal amplifier, and the mode returns to the frequency set by the resistor. The square-wave amplitude at this pin must transition lower than 0.6 V and higher than 1.6 V, typically. The synchronization frequency range is 300 kHz to 2000 kHz. The rising edge of PH synchronizes to the falling edge of the RT/CLK pin.

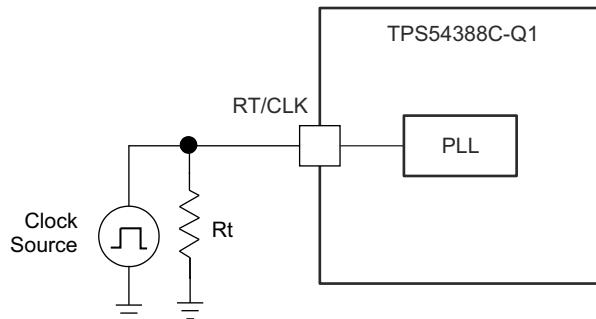


图 7-9. Synchronizing to a System Clock

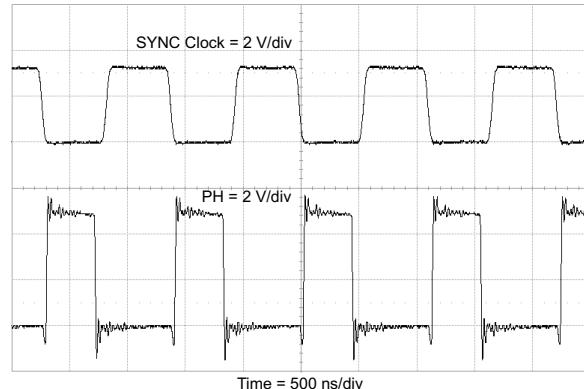


图 7-10. Plot of Synchronizing to a System Clock

7.4.10 Power Good (PWRGD Pin)

The output of the PWRGD pin is an open-drain MOSFET. The output goes low when the VSENSE voltage enters the fault condition by falling below 91% or rising above 109% of the nominal internal reference voltage. There is a 2% hysteresis on the threshold voltage, so when the VSENSE voltage rises to the good condition above 93% or falls below 107% of the internal voltage reference, the PWRGD output MOSFET turns off. TI recommends using a pullup resistor between the values of 1 k Ω and 100 k Ω to a voltage source that is 6 V or less. PWRGD is in a valid state once the VIN input voltage is greater than 1.1 V.

7.4.11 Overvoltage Transient Protection

The TPS54388C-Q1 device incorporates an overvoltage transient protection (OVTP) circuit to minimize voltage overshoot when recovering from output fault conditions or strong unload transients. The OVTP feature minimizes the output overshoot by implementing a circuit to compare the VSENSE pin voltage to the OVTP threshold, which is 109% of the internal voltage reference. If the VSENSE pin voltage goes higher than the OVTP threshold, the high-side MOSFET turns off, preventing current from flowing to the output and minimizing output overshoot. When the VSENSE voltage drops lower than the OVTP threshold, the high-side MOSFET turns on in the next clock cycle.

7.4.12 Thermal Shutdown

The device implements an internal thermal shutdown to protect itself if the junction temperature exceeds 168°C. The thermal shutdown forces the device to stop switching when the junction temperature exceeds the thermal trip threshold. Once the die temperature decreases below 148°C, the device reinitiates the power-up sequence by discharging the SS/TR pin to below 60 mV. The thermal shutdown hysteresis is 20°C.

7.4.13 Small-Signal Model for Loop Response

图 7-11 shows an equivalent model for the TPS54388C-Q1 control loop, which one can model in a circuit-simulation program to check frequency response and dynamic load response. The error amplifier is a transconductance amplifier with a g_m of 245 μ S. One can model the error amplifier using an ideal voltage-controlled current source. The resistor R0 and capacitor C0 model the open-loop gain and frequency response of the amplifier. The 1-mV ac voltage source between nodes a and b effectively breaks the control loop for the frequency-response measurements. Plotting a over c vs frequency shows the small-signal response of the frequency compensation. Plotting a over b vs frequency shows the small-signal response of the overall loop. Check the dynamic loop response by replacing $R_{(L)}$ with a current source that has the appropriate load-step amplitude and step rate in a time-domain analysis.

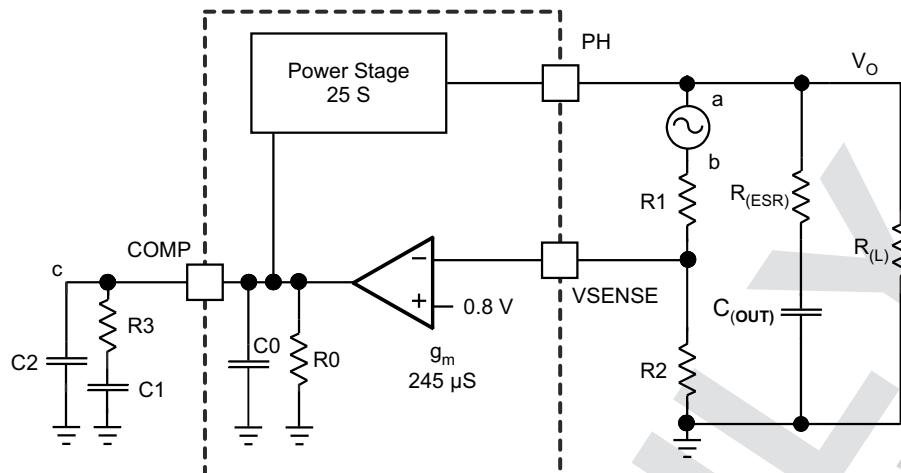


图 7-11. Small-Signal Model for Loop Response

7.4.14 Simple Small-Signal Model for Peak-Current-Mode Control

图 7-11 is a simple small-signal model that one can use to understand how to design the frequency compensation. A voltage-controlled current source (duty-cycle modulator) supplying current to the output capacitor and load resistor approximates the TPS54388C-Q1 power stage. 式 10 shows the control-to-output transfer function, which consists of a dc gain, one dominant pole, and one ESR zero. The quotient of the change in switch current divided by the change in COMP pin voltage (node c in 图 7-11) is the power-stage transconductance. The g_m for the TPS54388C-Q1 device is 25 S. The low-frequency gain of the power-stage frequency response is the product of the transconductance and the load resistance as shown in 式 11. As the load current increases and decreases, the low-frequency gain decreases and increases, respectively. This variation with load may seem problematic at first glance, but the dominant pole moves with load current (see 式 12). The dashed line in the right half of 图 7-12 highlights the combined effect. As the load current decreases, the gain increases and the pole frequency lowers, keeping the 0-dB crossover frequency the same for varying load conditions, which makes it easier to design the frequency compensation.

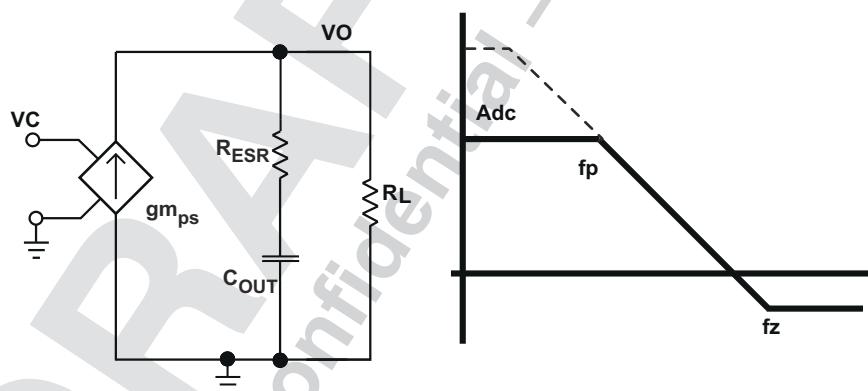
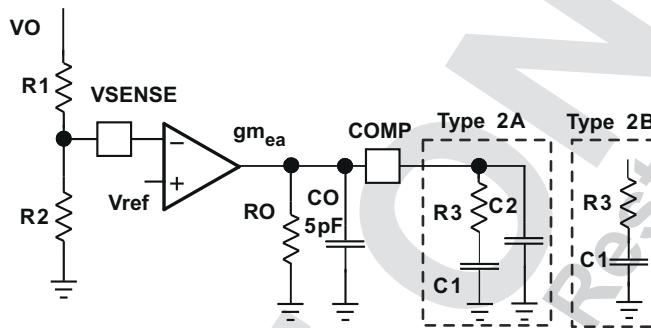


图 7-12. Simple Small-Signal Model and Frequency Response for Peak-Current-Mode Control

$$\frac{V_O}{V_{(C)}} = A_{(dc)} \times \frac{\left(1 + \frac{s}{2\pi \times f_{(z)}}\right)}{\left(1 + \frac{s}{2\pi \times f_{(p)}}\right)} \quad (10)$$


$$A_{(dc)} = g_{m(ps)} \times R_{(L)} \quad (11)$$

$$f_{(p)} = \frac{1}{C_{(OUT)} \times R_{(L)} \times 2\pi} \quad (12)$$

$$f_{(z)} = \frac{1}{C_{(OUT)} \times R_{(ESR)} \times 2\pi} \quad (13)$$

7.4.15 Small-Signal Model for Frequency Compensation

The TPS54388C-Q1 device uses a transconductance amplifier for the error amplifier and readily supports two of the commonly used frequency-compensation circuits. [图 7-13](#) shows the compensation circuits. The most-likely implementation of Type 2B circuits is in high-bandwidth power-supply designs using low-ESR output capacitors. Type 2A contains one additional high-frequency pole to attenuate high-frequency noise.

图 7-13. Types of Frequency Compensation

The design guidelines for TPS54388C-Q1 loop compensation are as follows:

1. Calculate the modulator pole, $f_{(p,mod)}$, and the ESR zero, $f_{(z,mod)}$, using [式 14](#) and [式 15](#). The output capacitor ($C_{(OUT)}$) may require derating if the output voltage is a high percentage of the capacitor rating. Use the manufacturer information for the capacitor to derate the capacitor value. Use [式 16](#) and [式 17](#) to estimate a starting point for the crossover frequency, $f_{(c)}$. [式 16](#) is the geometric mean of the modulator pole and the ESR zero, and [式 17](#) is the mean of the modulator pole and the switching frequency. Use the lower value of [式 16](#) or [式 17](#) as the maximum crossover frequency.

$$f_{(p,mod)} = \frac{I_{O(max)}}{2\pi \times V_O \times C_{(OUT)}} \quad (14)$$

$$f_{(z,mod)} = \frac{1}{2\pi \times R_{(ESR)} \times C_{(OUT)}} \quad (15)$$

$$f_{(c)} = \sqrt{f_{(p,mod)} \times f_{(z,mod)}} \quad (16)$$

$$f_{(c)} = \sqrt{f_{(p,mod)} \times \frac{f_{(SW)}}{2}} \quad (17)$$

2. Determine $R3$ using [式 18](#).

$$R3 = \frac{2\pi \times f_{(c)} \times V_O \times C_{(OUT)}}{g_{m(ea)} \times V_{ref} \times g_{m(ps)}} \quad (18)$$

where

- $g_{m(ea)}$ is the amplifier gain (245 μ S)
- $g_{m(ps)}$ is the power-stage gain (25 S)

3. Place a compensation zero at the dominant pole:

$$f_{(p)} = \frac{1}{C_{(OUT)} \times R_{(L)} \times 2\pi} \quad (19)$$

4. Determine C1 using 式 20.

$$C1 = \frac{R_{(L)} \times C_{(OUT)}}{R3} \quad (20)$$

5. C2 is optional. Use it, if necessary, to cancel the zero from the ESR of $C_{(OUT)}$.

$$C2 = \frac{R_{(ESR)} \times C_{(OUT)}}{R3} \quad (21)$$

8 Application and Implementation

注

以下のアプリケーション情報は、TI の製品仕様に含まれるものではなく、TI ではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。

8.1 Application Information

Details on how to use this device in automotive applications appear throughout this device specification. The following sections provide the typical application use case with equations and methods on selecting the external components, as well as layout guidelines.

8.2 Typical Application

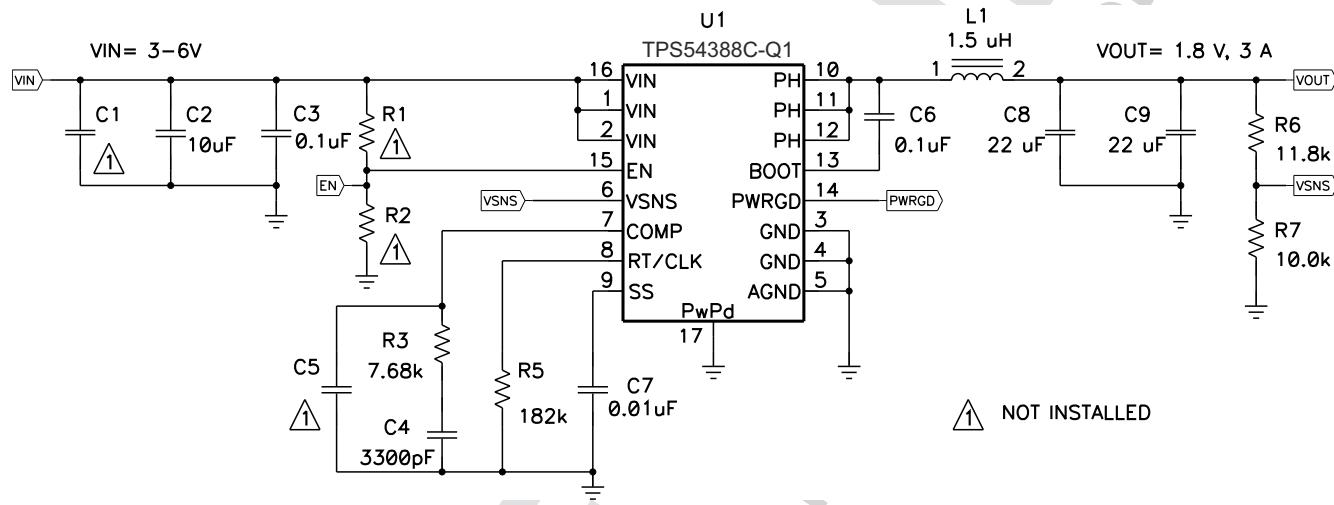


図 8-1. High-Frequency, 1.8-V Output Power-Supply Design With Adjusted UVLO

8.2.1 Design Requirements

This example details the design of a high-frequency switching-regulator design using ceramic output capacitors. To start the design process, it is necessary to know a few parameters. Determination of these parameters is typically at the system level. For this example, start with the following known parameters:

表 8-1. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Output voltage	1.8 V
Transient response, 1-A to 2-A load step	$\Delta V_{(out)} = 5\%$
Maximum output current	3 A
Input voltage	5 V nominal, 3 V to 5 V
Output-voltage ripple	< 30 mV p-p
Switching frequency, $f_{(sw)}$	1000 kHz

8.2.2 Detailed Design Procedure

8.2.2.1 Selecting the Switching Frequency

The first step is to decide on a switching frequency for the regulator. Typically, one would choose the highest switching frequency possible to produce the smallest solution size. The high switching frequency allows for lower-valued inductors and smaller output capacitors compared to a power supply that switches at a lower frequency. However, the highest switching frequency causes extra switching losses, which hurt the converter performance. The converter is capable of running from 200 kHz to 2 MHz. Unless a small solution size is an ultimate goal, select a moderate switching frequency of 1 MHz to achieve both a small solution size and high-efficiency operation. Using [式 8](#), calculate R_5 to be 180 k Ω . Choose a standard 1% 182-k Ω value for the design.

8.2.2.2 Output Inductor Selection

The inductor selected works for the entire TPS54388C-Q1 input-voltage range. To calculate the value of the output inductor, use [式 22](#). The $k_{(IND)}$ coefficient represents the amount of inductor ripple current relative to the maximum output current. The output capacitor filters the inductor ripple current. Therefore, choosing high inductor ripple currents impacts the selection of the output capacitor, because the output capacitor must have a ripple-current rating equal to or greater than the inductor ripple current. In general, the inductor ripple value is at the discretion of the designer; however, $k_{(IND)}$ is normally from 0.1 to 0.3 for the majority of applications.

For this design example, use $k_{(IND)} = 0.3$, and the inductor value calculates to be 1.36 μ H. For this design, choose the nearest standard value of 1.5 μ H. For the output-filter inductor, it is important not to exceed the rms-current and saturation-current ratings. Find the rms and peak inductor current using [式 24](#) and [式 25](#).

For this design, the rms inductor current is 3.01 A and the peak inductor current is 3.72 A. The chosen inductor is a Coilcraft XLA4020-152ME_ or equivalent. It has a saturation current rating of 9.6 A and an RMS current rating of 7.5 A.

The current flowing through the inductor is the inductor ripple current plus the output current. During power up, faults, or transient load conditions, the inductor current can increase above the calculated peak inductor current level calculated previously. In transient conditions, the inductor current can increase up to the switch-current limit of the device. For this reason, the most conservative approach is to specify an inductor with a saturation current rating equal to or greater than the switch-current limit rather than the peak inductor current.

$$L1 = \frac{V_{I(\max)} - V_O}{I_O \times k_{(IND)}} \times \frac{V_O}{V_{I(\max)} \times f_{(SW)}} \quad (22)$$

$$I_{(\text{ripple})} = \frac{V_{I(\max)} - V_O}{L1} \times \frac{V_O}{V_{I(\max)} \times f_{(SW)}} \quad (23)$$

$$I_{(\text{Lrms})} = \sqrt{I_O^2 + \frac{1}{12} \times \left(\frac{V_O \times (V_{I(\max)} - V_O)}{V_{I(\max)} \times L1 \times f_{(SW)}} \right)^2} \quad (24)$$

$$I_{(\text{Lpeak})} = I_O + \frac{I_{(\text{ripple})}}{2} \quad (25)$$

8.2.2.3 Output Capacitor

Three primary considerations must be considered for selecting the value of the output capacitor. The output capacitor determines the modulator pole, the output voltage ripple, and how the regulator responds to a large change in load current. Base the output-capacitance selection on the most-stringent of these three criteria.

The desired response to a large change in the load current is the first criterion. The output capacitor must supply the load with current when the regulator cannot. This situation would occur if there are desired hold-up times for the regulator where the output capacitor must hold the output voltage above a certain level for a specified amount of time after removal of the input power. The regulator is temporarily not able to supply sufficient output current if there is a large, fast increase in the current requirement of the load, such as transitioning from no load to a full load. The regulator usually requires two or more clock cycles for the control loop to see the change in load current and output voltage and then adjust the duty cycle to react to the change. The output capacitor must be large enough to supply the extra current to the load until the control loop responds to the load change. The output capacitance must be large enough to supply the difference in current for two clock cycles while only allowing a tolerable amount of droop in the output voltage. 式 26 shows the minimum output capacitance necessary to meet this requirement.

For this example, the specification for transient-load response is a 5% change in V_O for a load step from 0 A (no load) to 1.5 A (50% load). For this example, $\Delta I_O = 1.5 \text{ A} - 0 \text{ A} = 1.5 \text{ A}$ and $\Delta V_O = 0.05 \times 1.8 \text{ V} = 0.09 \text{ V}$. Using these numbers gives a minimum capacitance of 33 μF . This value does not take the ESR of the output capacitor into account in the output voltage change. For ceramic capacitors, the ESR is usually small enough to ignore in this calculation.

式 27 calculates the minimum output capacitance needed to meet the output-voltage ripple specification. In this case, the maximum output-voltage ripple is 30 mV. Under this requirement, 式 27 yields 2.3 μF .

$$C_{(\text{OUT})} > \frac{2 \times \Delta I_O}{f_{(\text{SW})} \times \Delta V_O} \quad (26)$$

where

- ΔI_O is the change in output current
- $f_{(\text{SW})}$ is the regulator switching frequency
- ΔV_O is the allowable change in the output voltage

$$C_{(\text{OUT})} > \frac{1}{8 \times f_{(\text{SW})}} \times \frac{1}{\frac{V_{O(\text{ripple})}}{I_{(\text{ripple})}}} \quad (27)$$

where

- $f_{(SW)}$ is the switching frequency
- $V_{O(\text{ripple})}$ is the maximum allowable output voltage ripple
- $I_{(\text{ripple})}$ is the inductor ripple current

Use 式 28 to calculate the maximum ESR an output capacitor can have to meet the output-voltage ripple specification. 式 28 indicates the ESR should be less than 55 mΩ. In this case, the ESR of the ceramic capacitor is much less than 55 mΩ.

Factoring in additional capacitance deratings for aging, temperature, and dc bias increases this minimum value. For this example, use two 22-µF, 10-V X5R ceramic capacitors with 3 mΩ of ESR.

Capacitors generally have limits to the amount of ripple current they can handle without failing or producing excess heat. Select an output capacitor that can support the inductor ripple current. Some capacitor data sheets specify the root-mean-square (rms) value of the maximum ripple current. Use 式 29 to calculate the rms ripple current that the output capacitor must support. For this application, 式 29 yields 333 mA.

$$R_{(\text{ESR})} < \frac{V_{O(\text{ripple})}}{I_{(\text{ripple})}} \quad (28)$$

$$I_{(\text{Co,rms})} = \frac{V_O \times (V_{I(\text{max})} - V_O)}{\sqrt{12} \times V_{I(\text{max})} \times L_1 \times f_{(\text{SW})}} \quad (29)$$

8.2.2.4 Input Capacitor

The TPS54388C-Q1 device requires a high-quality ceramic, type X5R or X7R, input decoupling capacitor with at least 4.7 µF of effective capacitance, and in some applications a bulk capacitance. The effective capacitance includes any dc bias effects. The voltage rating of the input capacitor must be greater than the maximum input voltage. The capacitor must also have a ripple-current rating greater than the maximum input-current ripple of the TPS54388C-Q1 device. Calculate the input ripple current using 式 30.

The value of a ceramic capacitor varies significantly over temperature and the amount of dc bias applied to the capacitor. Minimize the capacitance variations due to temperature by selecting a dielectric material that is stable over temperature. X5R and X7R ceramic dielectrics are the usual selection for power regulator capacitors because they have a high capacitance-to-volume ratio and are fairly stable over temperature. The output-capacitor selection must also take dc bias into account. The capacitance value of a capacitor decreases as the dc bias across that capacitor increases.

This example design requires a ceramic capacitor with at least a 10-V voltage rating to support the maximum input voltage. For this example, the selection is one 10-µF 10-V and one 0.1-µF 10-V capacitor in parallel. The input capacitance value determines the input ripple voltage of the regulator. Calculate the input voltage ripple using 式 31. Using the design example values, $I_{O(\text{max})} = 3 \text{ A}$, $C_{(\text{IN})} = 10 \mu\text{F}$, and $f_{(\text{SW})} = 1 \text{ MHz}$, yields an input voltage ripple of 76 mV and an rms input current of 1.47 A.

$$I_{(\text{Ci,rms})} = I_O \times \sqrt{\frac{V_O}{V_{I(\text{min})}} \times \frac{(V_{I(\text{min})} - V_O)}{V_{I(\text{min})}}} \quad (30)$$

$$\Delta V_I = \frac{I_{O(\text{max})} \times 0.25}{C_{(\text{IN})} \times f_{(\text{SW})}} \quad (31)$$

8.2.2.5 Slow-Start Capacitor

The slow-start capacitor determines the minimum amount of time it takes for the output voltage to reach its nominal programmed value during power up. Slow start is useful if a load requires a controlled rate of voltage slew. Another use for slow start is if the output capacitance is large and would require large amounts of current to charge the capacitor quickly to the output-voltage level. The large current necessary to charge the capacitor

may make the TPS54388C-Q1 device reach the current limit, or excessive current draw from the input power supply may cause the input voltage rail to sag. Limiting the output-voltage slew rate solves both of these problems.

Calculate the slow-start capacitor value using 式 32. For the example circuit, the slow-start time is not too critical because the output-capacitor value is 44 μ F, which does not require much current to charge to 1.8 V. The example circuit has the slow-start time set to an arbitrary value of 4 ms, which requires a 10-nF capacitor. In the TPS54388C-Q1 device, $I_{(SS/TR)}$ is 2.2 μ A and V_{ref} is 0.8 V.

$$C_{(SS)} \text{ (nF)} = \frac{t_{(SS)} \text{ (ms)} \times I_{(SS/TR)} \text{ (\mu A)}}{V_{ref} \text{ (V)}} \quad (32)$$

8.2.2.6 Bootstrap Capacitor Selection

Connect a 0.1- μ F ceramic capacitor between the BOOT and PH pins for proper operation. TI recommends using a ceramic capacitor with X5R or better-grade dielectric. The capacitor should have a 10-V or higher voltage rating.

8.2.2.7 Output-Voltage and Feedback-Resistor Selection

For the example design, the R6 selection is 100 k Ω . Using 式 33, calculate R7 as 80 k Ω . The nearest standard 1% resistor is 80.5 k Ω .

$$R7 = \frac{V_{ref}}{V_O - V_{ref}} \times R6 \quad (33)$$

Because of the internal design of the TPS54388C-Q1 device, there is a minimum output-voltage limit for any given input voltage. The output voltage can never be lower than the internal voltage reference of 0.8 V. Above 0.8 V, an output voltage limit may exist due to the minimum controllable on-time. In this case, 式 34 gives the minimum output voltage:

$$V_{O(min)} = t_{(ONmin)} \times f_{(SWmax)} \times (V_{I(max)} - I_{O(min)} \times 2 \times r_{DS(on)}) - I_{O(min)} \times (R_{(L)} + r_{DS(on)}) \quad (34)$$

where

- $V_{O(min)}$ = minimum achievable output voltage
- $t_{(ONmin)}$ = minimum controllable on-time (65 ns typical, 120 ns with no load)
- $f_{(SWmax)}$ = maximum switching frequency, including tolerance
- $V_{I(max)}$ = maximum input voltage
- $I_{O(min)}$ = minimum load current
- $r_{DS(on)}$ = minimum high-side MOSFET on-resistance (15 m Ω –19 m Ω)
- $R_{(L)}$ = series resistance of output inductor

There is also a maximum achievable output voltage, which is limited by the minimum off-time. 式 35 gives the maximum output voltage.

$$V_{O(max)} = (1 - t_{(OFFmax)} \times f_{(SWmax)}) \times (V_{I(min)} - I_{O(max)} \times 2 \times r_{DS(on)}) - I_{O(max)} \times (R_{(L)} + r_{DS(on)}) \quad (35)$$

where

- $V_{O(max)}$ = maximum achievable output voltage
- $t_{(OFFmax)}$ = maximum off-time (60 ns, typical)
- $f_{(SWmax)}$ = maximum switching frequency, including tolerance
- $V_{I(min)}$ = minimum input voltage
- $I_{O(max)}$ = maximum load current
- $r_{DS(on)}$ = maximum high-side MOSFET on-resistance (19 m Ω –30 m Ω)

- $R_{(L)}$ = series resistance of output inductor

DRAFT ONLY
TI Confidential - NDA Restrictions

8.2.2.8 Compensation

The industry uses several techniques to compensate dc-dc regulators. The method presented here is easy to calculate and yields high phase margins. For most conditions, the regulator has a phase margin between 60 and 90 degrees. The method presented here ignores the effects of the slope compensation that is internal to the TPS54388C-Q1 device. As a result of ignoring the slope compensation, the actual crossover frequency is usually lower than the crossover frequency used in the calculations.

To get started, calculate the modulator pole, $f_{(p,mod)}$, and the ESR zero, $f_{(z,mod)}$, using 式 36 and 式 37. For $C_{(OUT)}$, derating the capacitor is not necessary, as the 1.8-V output is a small percentage of the 10-V capacitor rating. If the output is a high percentage of the capacitor rating, use the manufacturer information for the capacitor to derate the capacitor value. Use 式 38 and 式 39 to estimate a starting point for the crossover frequency, $f_{(c)}$. For the example design, $f_{(p,mod)}$ is 6.03 kHz and $f_{(z,mod)}$ is 1210 kHz. 式 38 is the geometric mean of the modulator pole and the ESR zero, and 式 39 is the mean of the modulator pole and the switching frequency. 式 38 yields 85.3 kHz and 式 39 gives 54.9 kHz. Use the lower value of 式 38 or 式 39 as the approximate crossover frequency. For this example, $f_{(c)}$ is 56 kHz. Next, calculate the values of the compensation components. Use a resistor in series with a capacitor to create a compensating zero. A capacitor in parallel with these two components forms the compensating pole (if needed).

$$f_{(p,mod)} = \frac{I_{O(\max)}}{2\pi \times V_O \times C_{(OUT)}} \quad (36)$$

$$f_{(z,mod)} = \frac{1}{2\pi \times R_{(ESR)} \times C_{(OUT)}} \quad (37)$$

$$f_{(c)} = \sqrt{f_{(p,mod)} \times f_{(z,mod)}} \quad (38)$$

$$f_{(c)} = \sqrt{f_{(p,mod)} \times \frac{f_{(SW)}}{2}} \quad (39)$$

The compensation design takes the following steps:

1. Set up the anticipated crossover frequency. Use 式 40 to calculate the resistor value for the compensation network. In this example, the anticipated crossover frequency ($f_{(c)}$) is 56 kHz. The power-stage gain ($g_{m(ps)}$) is 25 S and the error-amplifier gain ($g_{m(ea)}$) is 245 μ S.

$$R3 = \frac{2\pi \times f_{(c)} \times V_O \times C_{(OUT)}}{g_{m(ea)} \times V_{ref} \times g_{m(ps)}} \quad (40)$$

2. Place a compensation zero at the pole formed by the load resistor and the output capacitor. Calculate the capacitor for the compensation network using 式 41.

$$C3 = \frac{R0 \times C0}{R3} \quad (41)$$

3. One can include an additional pole to attenuate high-frequency noise. In this application, the extra pole is not necessary.

From the procedures above, the compensation network includes a 7.68-k Ω resistor and a 3300-pF capacitor.

8.2.2.9 Power-Dissipation Estimate

The following formulas show how to estimate the IC power dissipation under continuous-conduction mode (CCM) operation. The power dissipation of the IC (P_T) includes conduction loss ($P_{(con)}$), dead-time loss ($P_{(d)}$), switching loss ($P_{(sw)}$), gate-drive loss ($P_{(gd)}$) and supply-current loss ($P_{(q)}$).

$$P_{(con)} = I_O^2 \times r_{DS(on)(Temp)} \quad (42)$$

where

- I_O is the output current (A)
- $r_{DS(on)(Temp)}$ is the on-resistance of the high-side MOSFET at a given temperature (Ω)

$$P_{(d)} = f_{(sw)} \times I_O \times 0.7 \times 60 \times 10^{-9} \quad (43)$$

where

- $f_{(sw)}$ is the switching frequency (Hz)

$$P_{(sw)} = 1/2 \times V_I \times I_O \times f_{(sw)} \times 8 \times 10^{-9} \quad (44)$$

where

- V_I is the input voltage (V)

$$P_{(gd)} = 2 \times V_I \times f_{(sw)} \times 2 \times 10^{-9} \quad (45)$$

$$P_{(q)} = V_I \times 515 \times 10^{-6} \quad (46)$$

Therefore:

$$P_T = P_{(con)} + P_{(d)} + P_{(sw)} + P_{(gd)} + P_{(q)} \quad (47)$$

For a given T_A , use 式 48 to calculate the junction temperature.

$$T_J = T_A + R_{\theta JA} \times P_T \quad (48)$$

where

- T_J is the junction temperature ($^{\circ}$ C)
- T_A is the ambient temperature ($^{\circ}$ C)
- $R_{\theta JA}$ is the thermal resistance of the package ($^{\circ}$ C/W)
- P_T is the total device power dissipation (W)

For a given $T_{J(max)} = 150^{\circ}$ C, use 式 49 to calculate the maximum ambient temperature.

$$T_{A(max)} = T_{J(max)} - R_{\theta JA} \times P_T \quad (49)$$

where

- $T_{J(max)}$ is maximum junction temperature ($^{\circ}$ C)
- $T_{A(max)}$ is maximum ambient temperature ($^{\circ}$ C)

Additional power losses occur in the regulator circuit because of the inductor ac and dc losses and trace resistance that impact the overall efficiency of the regulator.

8.2.3 Application Curves

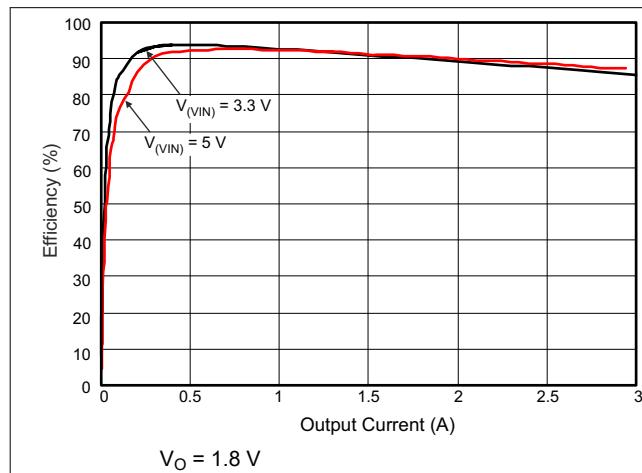


图 8-2. Efficiency vs Load Current

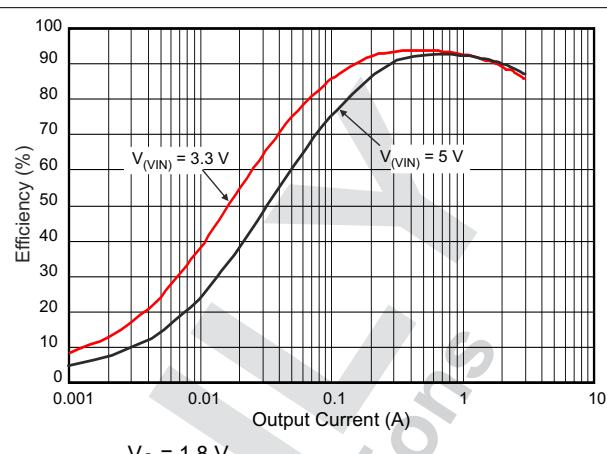


图 8-3. Efficiency vs Load Current

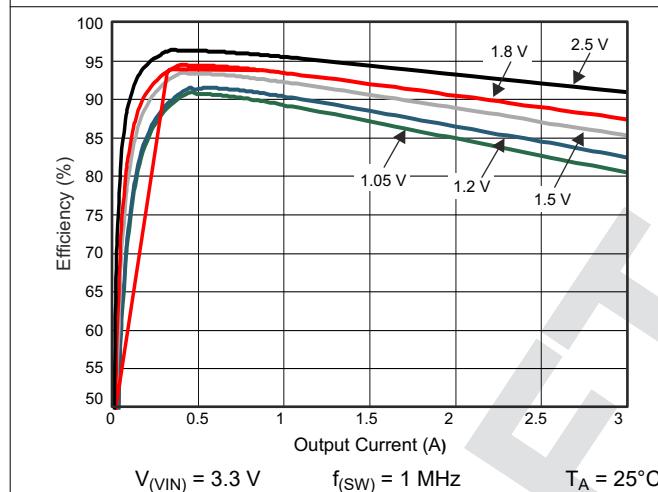


图 8-4. Efficiency vs Load Current

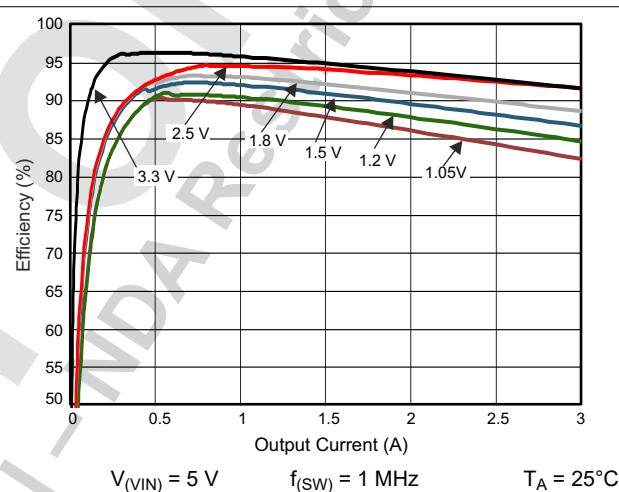


图 8-5. Efficiency vs Load Current

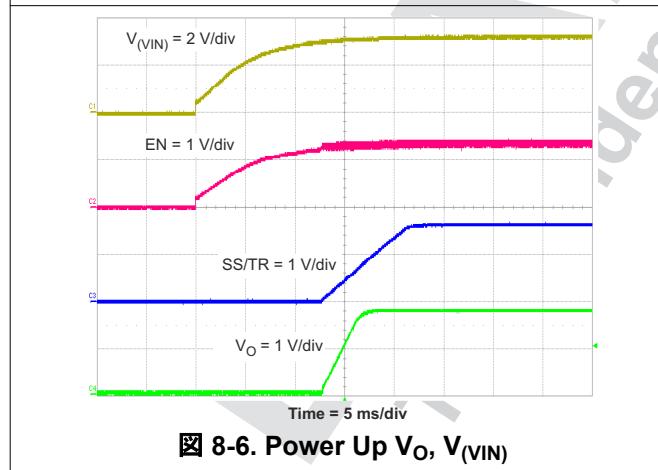


图 8-6. Power Up V_O , $V(VIN)$

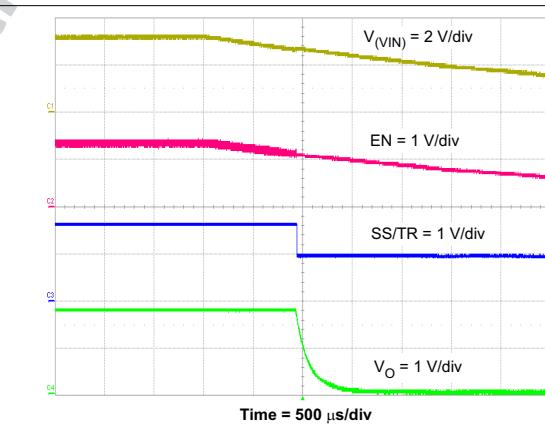


图 8-7. Power Down V_O , $V(VIN)$

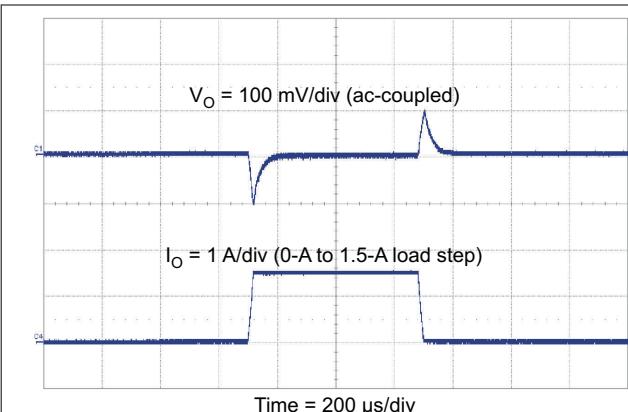


图 8-8. Transient Response, 1.5-A Step

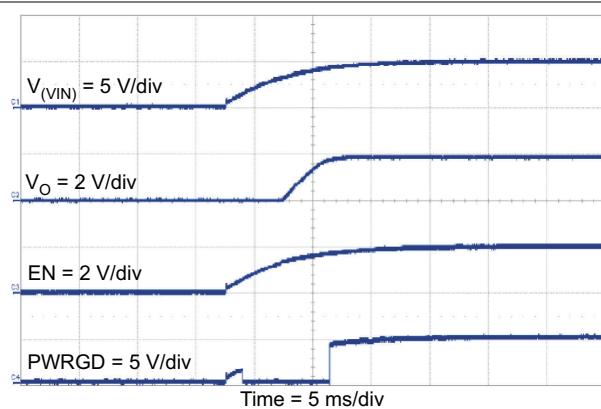


图 8-9. Power Up V_O , $V_{(V\text{IN})}$

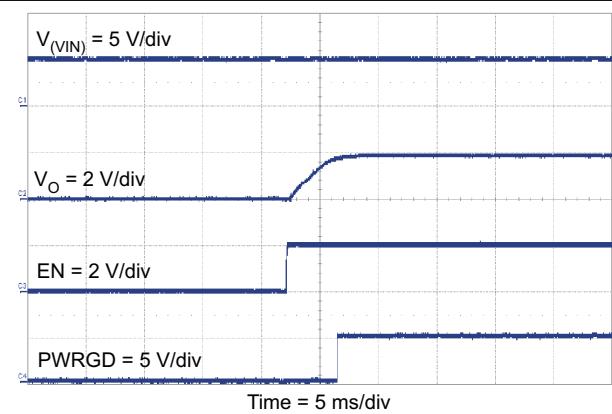


图 8-10. Power Up V_O , EN

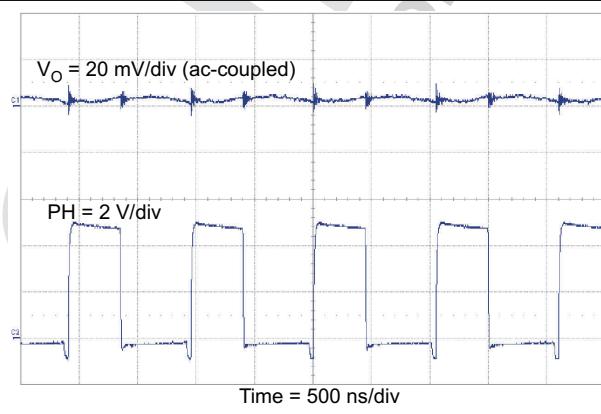


图 8-11. Output Ripple, 3 A

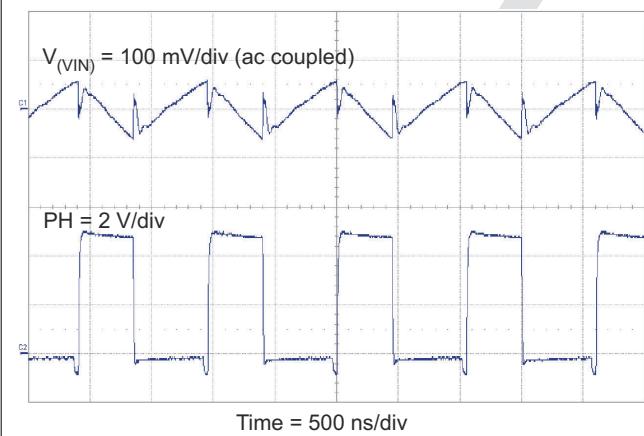


图 8-12. Input Ripple, 3 A

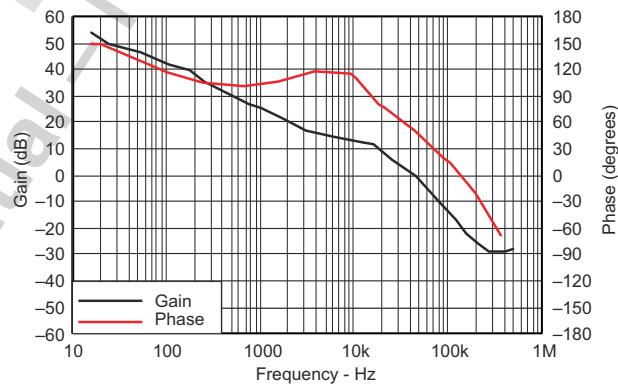


图 8-13. Closed-Loop Response

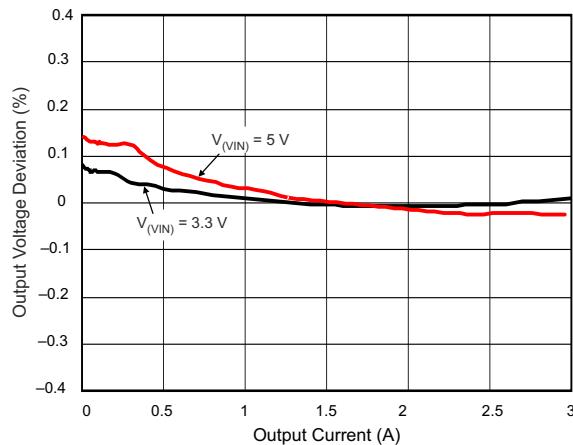


図 8-14. Load Regulation vs Load Current

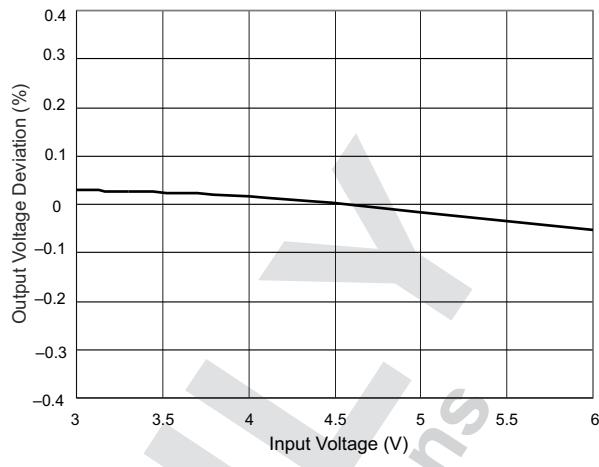
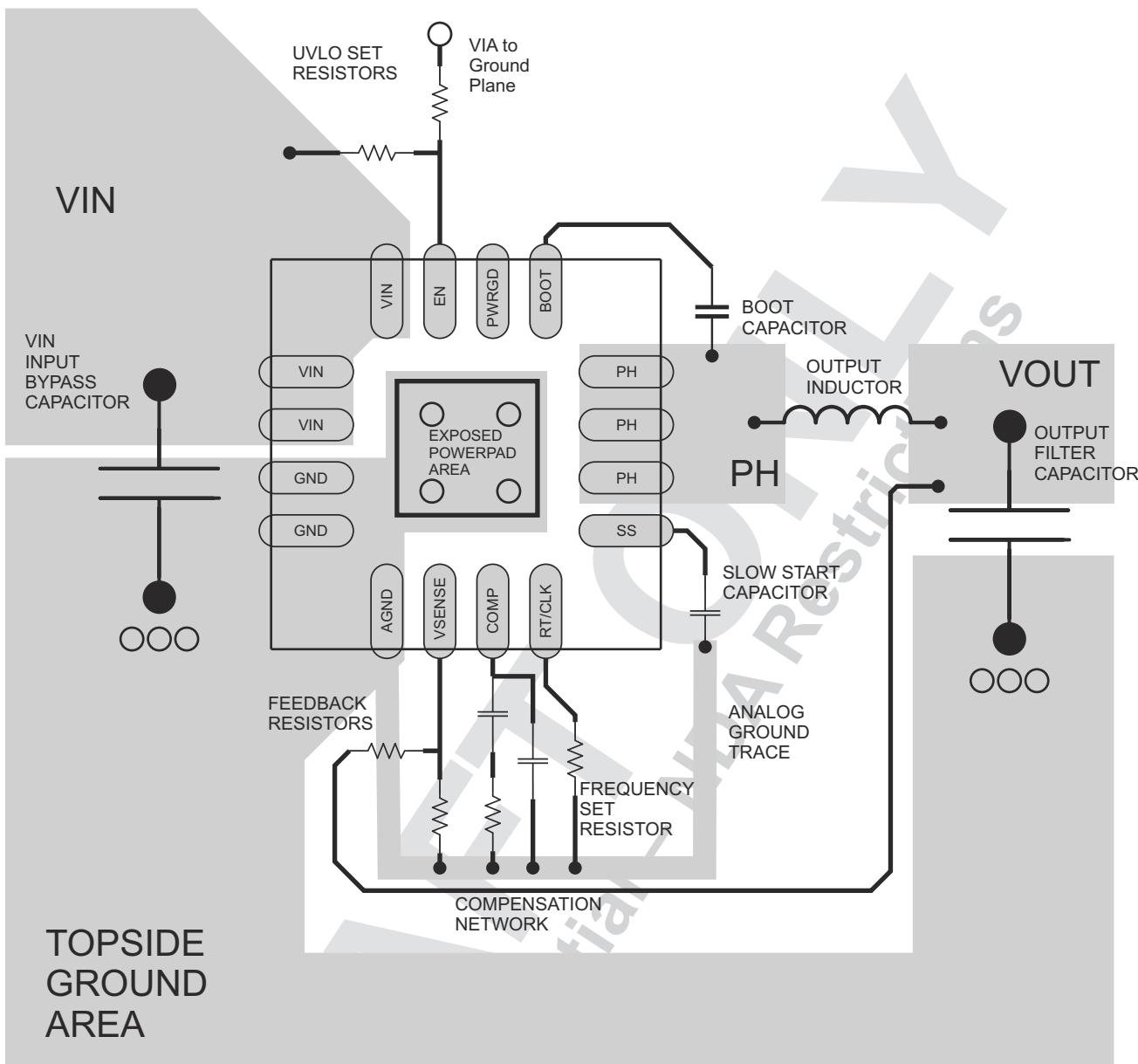


図 8-15. Regulation vs Input Voltage

9 Power Supply Recommendations

By design, the TPS54388C-Q1 device works with an analog supply voltage range of 2.95 V to 6 V. Ensure good regulation for the input supply, and connect the supply to the VIN pins with the appropriate input capacitor as calculated in the [セクション 8.2.2.4](#) section. If the input supply is located more than a few inches from the TPS54388C-Q1 device, the design may require extra capacitance in addition to the recommended value.

10 Layout


10.1 Layout Guidelines

Layout is a critical portion of good power-supply design. The signal paths, which conduct fast-changing currents or voltages, can interact with stray inductance or parasitic capacitance in several ways to generate noise or degrade the power-supply performance. Take care to minimize the loop area formed by the bypass-capacitor connections and the VIN pins. See [FIG 10-1](#) for a PCB layout example. Tie the GND pins and AGND pin directly to the thermal pad under the IC. Connect the thermal pad to any internal PCB ground planes using multiple vias directly under the IC. Use additional vias to connect the top-side ground area to any internal planes near the input and output capacitors. For operation at full-rated load, the top-side ground area, along with any additional internal ground planes, must provide adequate heat-dissipating area.

Locate the input bypass capacitor as close to the IC as possible. Route the PH pin to the output inductor. Because the PH connection is the switching node, locate the output inductor close to the PH pins, and minimize the area of the PCB conductor to prevent excessive capacitive coupling. Also, locate the boot capacitor close to the device. Connect the sensitive analog ground connections for the feedback voltage divider, compensation components, slow-start capacitor, and frequency-set resistor to a separate analog ground trace as shown. The RT/CLK pin is particularly sensitive to noise, so locate the Rt resistor as close as possible to the IC, and connect it with minimal lengths of trace. Place the additional external components approximately as shown. It may be possible to obtain acceptable performance with alternative PCB layouts. However, this layout, meant as a guideline, produces good results.

DRAFT
TI Confidential - NDA Required

10.2 Layout Example

- VIA to Ground Plane

☒ 10-1. PCB Layout Example

11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation

For related documentation, see the following:

- [Enable Functionality and Adjusting Undervoltage Lockout for TPS57112-Q1 \(SLVA784\)](#)
- [Interfacing TPS57xxx-Q1, TPS65320-Q1 Family, and TPS65321-Q1 Devices With Low Impedance External Clock Drivers \(SLVA755\)](#)
- [TPS57112-Q1 High Frequency \(2.35 MHz\) Operation \(SLVA743\)](#)
- [TPS54388EVM User's Guide \(SLVU962\)](#)
- [TPS54388-Q1 Pin Open and Short Test Results \(SLVA581\)](#)

11.2 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、[ti.com](#) のデバイス製品フォルダを開いてください。「更新の通知を受け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。

11.3 サポート・リソース

[TI E2E™ サポート・フォーラム](#)は、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するものではなく、必ずしも TI の見解を反映したものではありません。TI の[使用条件](#)を参照してください。

11.4 Trademarks

TI E2E™ is a trademark of Texas Instruments.

すべての商標は、それぞれの所有者に帰属します。

11.5 静電気放電に関する注意事項

 この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことをお勧めします。正しい ESD 対策をとらないと、デバイスを破損するおそれがあります。

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

11.6 用語集

[TI 用語集](#) この用語集には、用語や略語の一覧および定義が記載されています。

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most-current data available for the designated devices. This data is subject to change without notice and without revision of this document. For browser-based versions of this data sheet, see the left-hand navigation pane.

PACKAGING INFORMATION

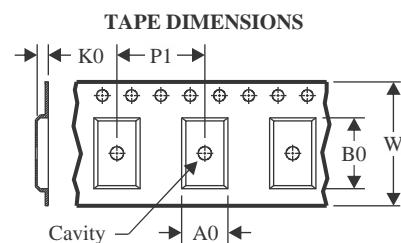
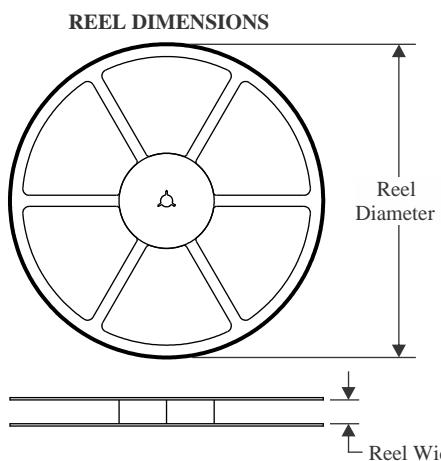
Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
TPS54388CQRTERQ1	Active	Production	WQFN (RTE) 16	3000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	5438Q
TPS54388CQRTERQ1.A	Active	Production	WQFN (RTE) 16	3000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	5438Q
TPS54388CQRTERQ1.B	Active	Production	WQFN (RTE) 16	3000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	5438Q

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

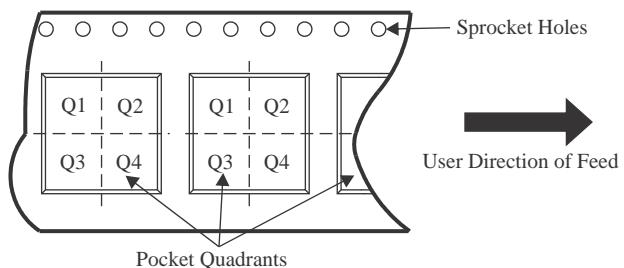
⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

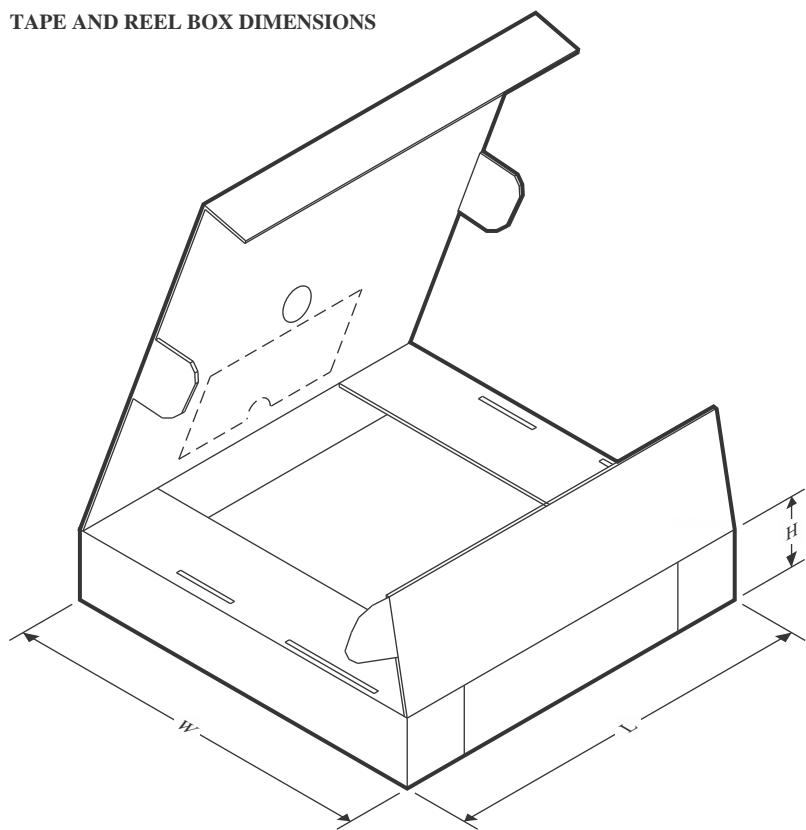


⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.


Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

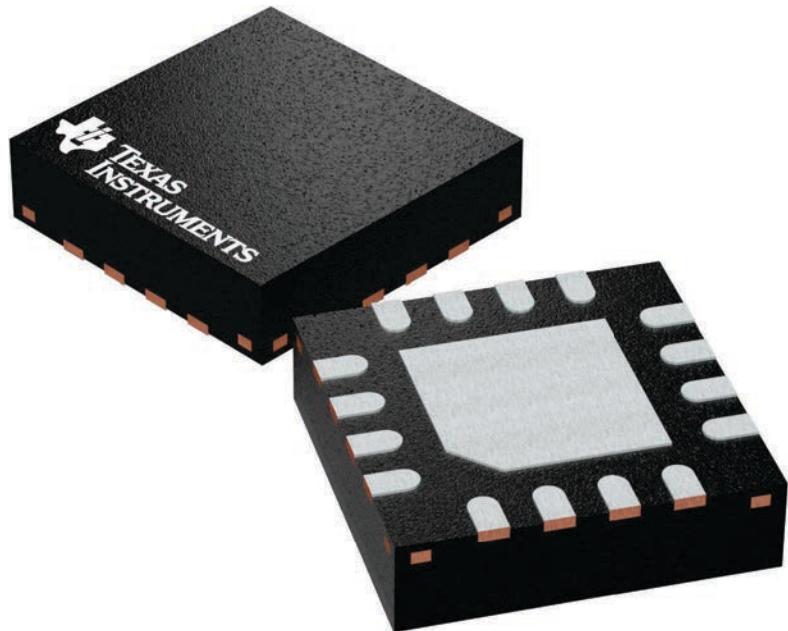
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS54388CQRTERRQ1	WQFN	RTE	16	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS54388CQRTERQ1	WQFN	RTE	16	3000	353.0	353.0	32.0

GENERIC PACKAGE VIEW


RTE 16

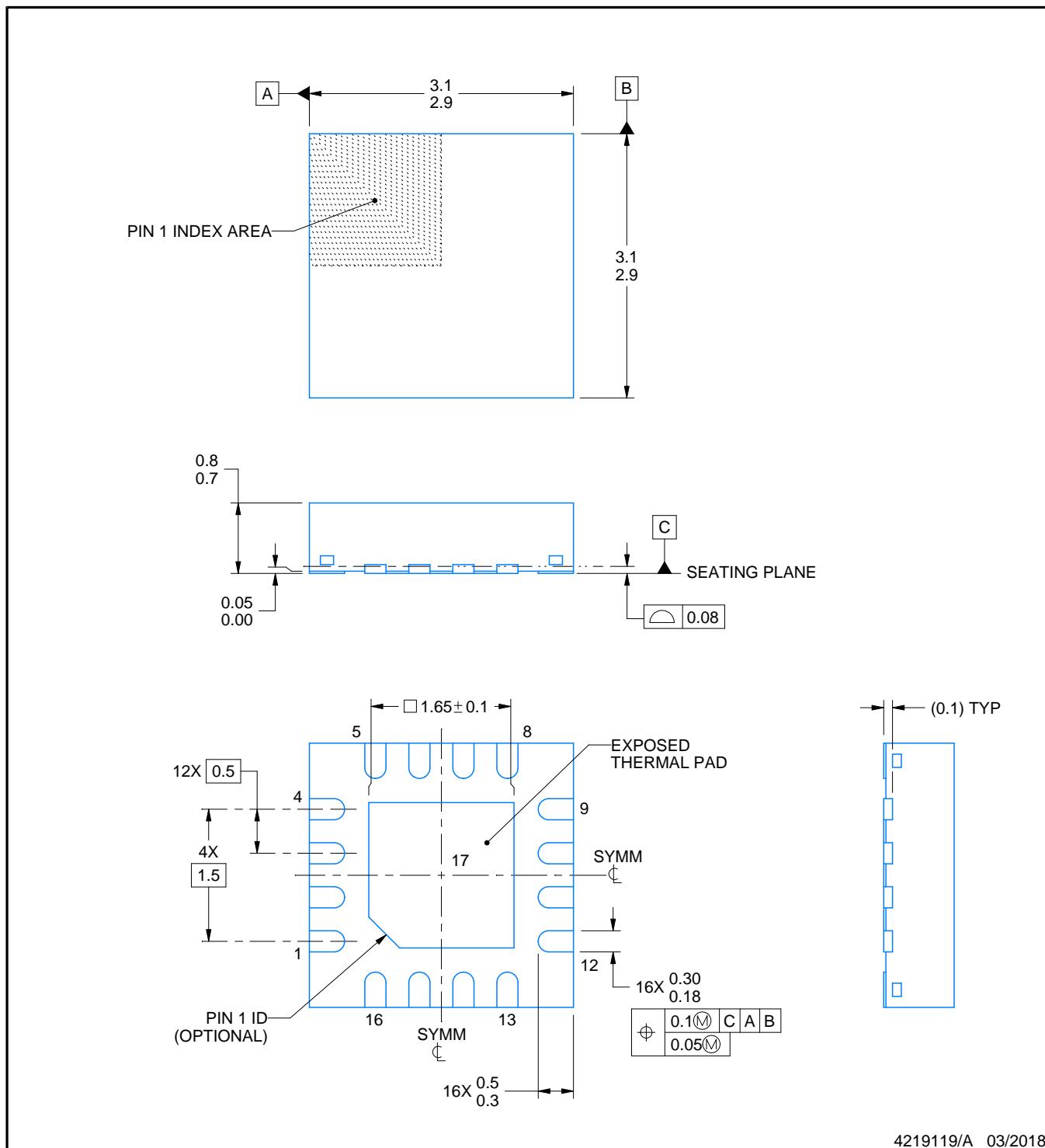
WQFN - 0.8 mm max height

3 x 3, 0.5 mm pitch

PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary.
Refer to the product data sheet for package details.

4225944/A


PACKAGE OUTLINE

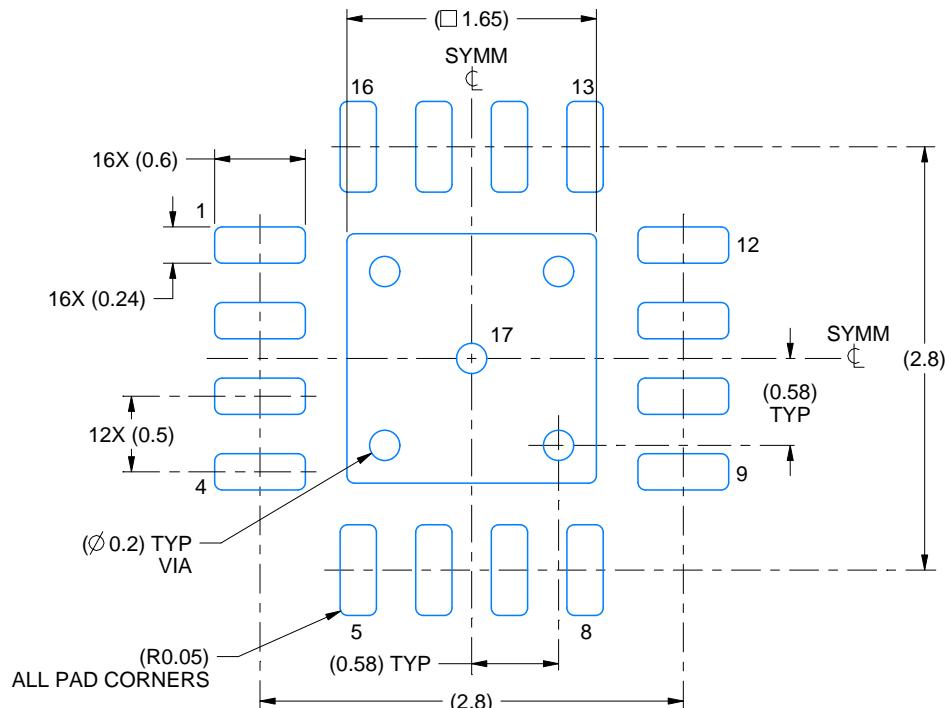
RTE0016F

WQFN - 0.8 mm max height

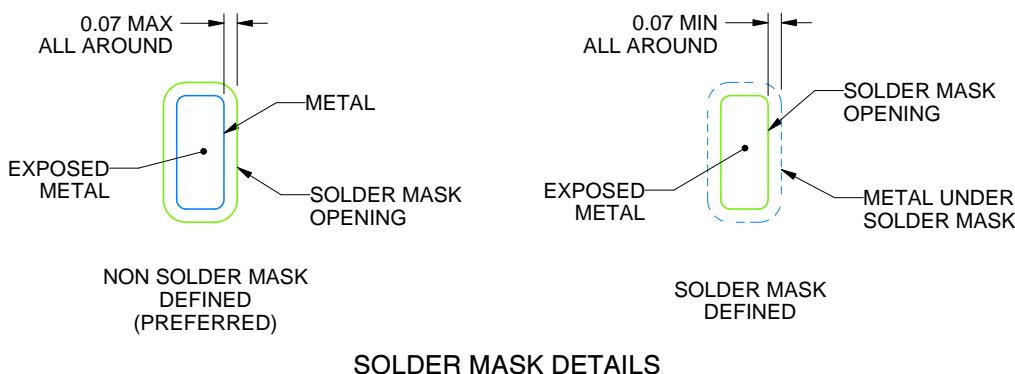
PLASTIC QUAD FLATPACK - NO LEAD

4219119/A 03/2018

NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

EXAMPLE BOARD LAYOUT


RTE0016F

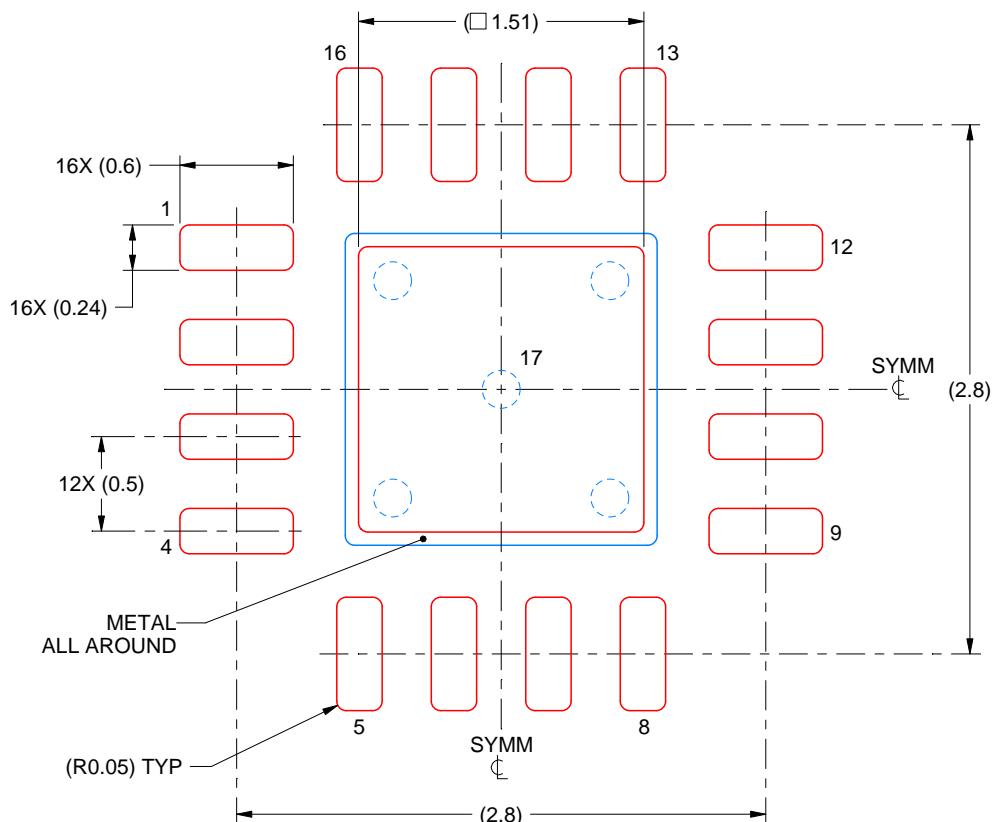
WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE:20X

4219119/A 03/2018

NOTES: (continued)


4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

EXAMPLE STENCIL DESIGN

RTE0016F

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL

EXPOSED PAD 17:
84% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE
SCALE:25X

4219119/A 03/2018

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の默示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または默示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したもので、(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TI の製品は、[TI の販売条件](#)、[TI の総合的な品質ガイドライン](#)、[ti.com](#) または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TI はそれらに異議を唱え、拒否します。

Copyright © 2025, Texas Instruments Incorporated

最終更新日：2025 年 10 月