• Menu
  • Product
  • Email
  • PDF
  • Order now
  • 具有集成 PGA 和基准的 ADS1120 4 通道、2kSPS、低功耗、16 位 ADC

    • ZHCSDB9C August   2013  – February 2017 ADS1120

      PRODUCTION DATA.  

  • CONTENTS
  • SEARCH
  • 具有集成 PGA 和基准的 ADS1120 4 通道、2kSPS、低功耗、16 位 ADC
  1. 1 特性
  2. 2 应用
  3. 3 说明
  4. 4 修订历史记录
  5. 5 Pin Configuration and Functions
  6. 6 Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 SPI Timing Requirements
    7. 6.7 SPI Switching Characteristics
    8. 6.8 Typical Characteristics
  7. 7 Parameter Measurement Information
    1. 7.1 Noise Performance
  8. 8 Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Multiplexer
      2. 8.3.2  Low-Noise PGA
        1. 8.3.2.1 PGA Common-Mode Voltage Requirements
        2. 8.3.2.2 Bypassing the PGA
      3. 8.3.3  Modulator
      4. 8.3.4  Digital Filter
      5. 8.3.5  Output Data Rate
      6. 8.3.6  Voltage Reference
      7. 8.3.7  Clock Source
      8. 8.3.8  Excitation Current Sources
      9. 8.3.9  Low-Side Power Switch
      10. 8.3.10 Sensor Detection
      11. 8.3.11 System Monitor
      12. 8.3.12 Offset Calibration
      13. 8.3.13 Temperature Sensor
        1. 8.3.13.1 Converting from Temperature to Digital Codes
          1. 8.3.13.1.1 For Positive Temperatures (for Example, 50°C):
          2. 8.3.13.1.2 For Negative Temperatures (for Example, -25°C):
        2. 8.3.13.2 Converting from Digital Codes to Temperature
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power-Up and Reset
      2. 8.4.2 Conversion Modes
        1. 8.4.2.1 Single-Shot Mode
        2. 8.4.2.2 Continuous Conversion Mode
      3. 8.4.3 Operating Modes
        1. 8.4.3.1 Normal Mode
        2. 8.4.3.2 Duty-Cycle Mode
        3. 8.4.3.3 Turbo Mode
        4. 8.4.3.4 Power-Down Mode
    5. 8.5 Programming
      1. 8.5.1 Serial Interface
        1. 8.5.1.1 Chip Select (CS)
        2. 8.5.1.2 Serial Clock (SCLK)
        3. 8.5.1.3 Data Ready (DRDY)
        4. 8.5.1.4 Data Input (DIN)
        5. 8.5.1.5 Data Output and Data Ready (DOUT/DRDY)
        6. 8.5.1.6 SPI Timeout
      2. 8.5.2 Data Format
      3. 8.5.3 Commands
        1. 8.5.3.1 RESET (0000 011x)
        2. 8.5.3.2 START/SYNC (0000 100x)
        3. 8.5.3.3 POWERDOWN (0000 001x)
        4. 8.5.3.4 RDATA (0001 xxxx)
        5. 8.5.3.5 RREG (0010 rrnn)
        6. 8.5.3.6 WREG (0100 rrnn)
      4. 8.5.4 Reading Data
      5. 8.5.5 Sending Commands
      6. 8.5.6 Interfacing with Multiple Devices
    6. 8.6 Register Map
      1. 8.6.1 Configuration Registers
        1. 8.6.1.1 Configuration Register 0 (offset = 00h) [reset = 00h]
        2. 8.6.1.2 Configuration Register 1 (offset = 01h) [reset = 00h]
        3. 8.6.1.3 Configuration Register 2 (offset = 02h) [reset = 00h]
        4. 8.6.1.4 Configuration Register 3 (offset = 03h) [reset = 00h]
  9. 9 Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Serial Interface Connections
      2. 9.1.2 Analog Input Filtering
      3. 9.1.3 External Reference and Ratiometric Measurements
      4. 9.1.4 Establishing a Proper Common-Mode Input Voltage
      5. 9.1.5 Unused Inputs and Outputs
      6. 9.1.6 Pseudo Code Example
    2. 9.2 Typical Applications
      1. 9.2.1 K-Type Thermocouple Measurement (-200°C to +1250°C)
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curves
      2. 9.2.2 3-Wire RTD Measurement (-200°C to +850°C)
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
          1. 9.2.2.2.1 Design Variations for 2-Wire and 4-Wire RTD Measurements
        3. 9.2.2.3 Application Curves
      3. 9.2.3 Resistive Bridge Measurement
        1. 9.2.3.1 Design Requirements
        2. 9.2.3.2 Detailed Design Procedure
  10. 10Power Supply Recommendations
    1. 10.1 Power-Supply Sequencing
    2. 10.2 Power-Supply Ramp Rate
    3. 10.3 Power-Supply Decoupling
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12器件和文档支持
    1. 12.1 文档支持
      1. 12.1.1 相关文档
    2. 12.2 接收文档更新通知
    3. 12.3 社区资源
    4. 12.4 商标
    5. 12.5 静电放电警告
    6. 12.6 Glossary
  13. 13机械、封装和可订购信息
  14. 重要声明
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

DATA SHEET

具有集成 PGA 和基准的 ADS1120 4 通道、2kSPS、低功耗、16 位 ADC

本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。

1 特性

  • 低电流消耗:
    占空比模式下低至 120μA(典型值)
  • 宽电源范围:2.3V 至 5.5V
  • 可编程增益:1V/V 至 128V/V
  • 可编程数据速率:高达 2kSPS
  • 16 位无噪声分辨率(20SPS 时)
  • 采用单周期稳定数字滤波器,在 20SPS 时
    实现 50Hz 和 60Hz 谐波抑制
  • 两个差分输入或四个单端输入
  • 双匹配可编程电流源:50μA 至 1.5mA
  • 内部 2.048V 基准电压:漂移 5ppm/°C(典型值)
  • 集成 2% 精准振荡器
  • 集成温度传感器:精度 0.5°C(典型值)
  • 与 SPI 兼容的接口(模式 1)
  • 封装:3.5mm × 3.5mm × 0.9mm 超薄型四方扁平无引线 (VQFN)

2 应用

  • 温度传感器测量:
    • 热敏电阻
    • 热电偶
    • 电阻式温度检测器 (RTD):
      2 线、3 线或 4 线制类型
  • 电阻桥式传感器测量:
    • 压力传感器
    • 应力计
    • 衡器
  • 便携式仪表
  • 工厂自动化和过程控制

3 说明

ADS1120 是一款 16 位高精度模数转换器 (ADC),集成了多种 特性, 能够降低系统成本并减少小型传感器信号测量 应用 中的组件数量。该器件 具有 通过输入多路复用器 (MUX) 实现的两个差分输入或四个单端输入,一个低噪声可编程增益放大器 (PGA),两个可编程激励电流源,一个电压基准,一个振荡器,一个低侧开关和一个精密温度传感器。

此器件能够以高达 2000 次/秒 (SPS) 采样数据速率执行转换,并且能够在单周期内稳定。针对噪声环境中的工业应用,当采样频率为 20SPS 时,数字滤波器可同时提供 50Hz 和 60Hz 抑制。内部 PGA 提供高达 128V/V 的增益。此 PGA 使得 ADS1120 非常适用于小型传感器信号测量 应用 ,例如电阻式温度检测器 (RTD)、热电偶、热敏电阻和桥式传感器。该器件在使用 PGA 时支持测量伪差分或全差分信号。此外,该器件还可配置为禁用内部 PGA,同时仍提供高输入阻抗和高达 4V/V 的增益,从而实现单端测量。

在禁用 PGA 后的占空比模式下运行功耗可低至 120µA。ADS1120 采用无引线 VQFN-16 或薄型小外形尺寸 (TSSOP)-16 封装,额定工作温度范围为 -40°C 至 +125°C。

器件信息(1)

器件型号 封装 封装尺寸(标称值)
ADS1120 VQFN (16) 3.50mm x 3.50mm
TSSOP (16) 5.00mm x 4.40mm
  1. 如需了解所有可用封装,请见数据表末尾的可订购产品附录。

K 型热电偶测量

ADS1120 FP_TC_example_bas535.gif

4 修订历史记录

Changes from B Revision (January 2015) to C Revision

  • Changed 文档标题Go
  • Changed K 型热电偶测量图Go
  • Added footnote 1 to Pin Functions table and changed descriptions of AIN0/REFP1, AIN1, AIN2, AIN3/REFN1, REFN0, and REFP0 pins accordingly Go
  • Changed format of Absolute Maximum Ratings tableGo
  • Changed Functional Block Diagram figure Go
  • Changed Bypassing the PGA sectionGo
  • Changed (AVDD) to (AVDD – AVSS) in first paragraph of Voltage Reference sectionGo
  • Added fourth sentence to Temperature Sensor sectionGo
  • Changed last equation in Converting from Digital Codes to Temperature sectionGo
  • Changed bit 0 in register 03h to 0 from RESERVED Go
  • Changed description of bits 5:4 in Configuration Register 2Go
  • Added Unused Inputs and Outputs section Go
  • Changed Thermocouple Measurement figureGo
  • Changed 3-Wire RTD Measurement figure Go
  • Changed 2-Wire RTD Measurement figure Go
  • Changed 4-Wire RTD Measurement figure Go
  • Changed Resistive Bridge Measurement figure Go
  • Changed Power Supply Recommendations section: changed Power-Supply Sequencing subsection, added Power-Supply Ramp Rate subsectionGo

Changes from A Revision (January 2014) to B Revision

  • 增加了 ESD 额定值表、推荐的运行条件表、应用和实施、电源相关建议、布局、器件和文档支持以及机械、封装和可订购信息部分Go
  • 更改了文档标题、特性, 应用, 说明,引脚配置和功能,参数测量信息,特性 说明,器件功能模式,编程,寄存器映射部分以及首页图Go
  • Deleted Ordering Information section and Product Family tableGo
  • Changed format of Absolute Maximum Ratings table and added minimum junction temperature specificationGo
  • Changed Analog Inputs and Voltage Reference Input sections (specification values were not changed) and added Internal Oscillator section to Electrical Characteristics tableGo
  • Changed System Performance section: changed VIO parameter name, deleted symbol and changed test conditions of Gain error parameter in Electrical Characteristics table Go
  • Deleted Clock Sources section and changed Temperature Sensor and Power Supply sections (specification values were not changed) in Electrical Characteristics tableGo
  • Changed SPI Timing Requirements and Figure 1 (specification values were not changed), added SPI Switching Characteristics and Figure 2 Go
  • Changed format of Typical Characteristics section (actual curves did not change)Go

Changes from * Revision (August 2013) to A Revision

  • 投入生产Go

5 Pin Configuration and Functions

RVA Package
16-Pin VQFN
Top View
ADS1120 po_QFN_bas501.gif
PW Package
16-Pin TSSOP
Top View
ADS1120 po_TSSOP_bas501.gif

Pin Functions

PIN ANALOG OR DIGITAL
INPUT/OUTPUT
DESCRIPTION(1)
NAME NO.
RVA PW
AIN0/REFP1 9 11 Analog input Analog input 0, positive reference input 1
AIN1 8 10 Analog input Analog input 1
AIN2 5 7 Analog input Analog input 2
AIN3/REFN1 4 6 Analog input Analog input 3, negative reference input 1.
Internal low-side power switch connected between AIN3/REFN1 and AVSS.
AVDD 10 12 Analog Positive analog power supply
AVSS 3 5 Analog Negative analog power supply
CLK 1 3 Digital input External clock source pin. Connect to DGND if not used.
CS 16 2 Digital input Chip select; active low. Connect to DGND if not used.
DGND 2 4 Digital Digital ground
DIN 14 16 Digital input Serial data input
DOUT/DRDY 13 15 Digital output Serial data output combined with data ready; active low
DRDY 12 14 Digital output Data ready, active low.
Leave unconnected or tie to DVDD using a weak pull-up resistor if not used.
DVDD 11 13 Digital Positive digital power supply
REFN0 6 8 Analog input Negative reference input 0
REFP0 7 9 Analog input Positive reference input 0
SCLK 15 1 Digital input Serial clock input
Thermal pad — — Thermal power pad. Do not connect or only connect to AVSS.
(1) See the Unused Inputs and Outputs section for unused pin connections.

6 Specifications

6.1 Absolute Maximum Ratings(1)

MIN MAX UNIT
Power-supply voltage AVDD to AVSS –0.3 7 V
DVDD to DGND –0.3 7
AVSS to DGND –2.8 0.3
Analog input voltage AIN0/REFP1, AIN1, AIN2, AIN3/REFN1, REFP0, REFN0 AVSS – 0.3 AVDD + 0.3 V
Digital input voltage CS, SCLK, DIN, DOUT/DRDY, DRDY, CLK DGND – 0.3 DVDD + 0.3 V
Input current Continuous, any pin except power supply pins –10 10 mA
Temperature Junction, TJ –40 150 °C
Storage, Tstg –60 150
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM),
per ANSI/ESDA/JEDEC JS-001(1)
±2000 V
Charged-device model (CDM),
per JEDEC specification JESD22-C101(2)
±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process..
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating ambient temperature range (unless otherwise noted)
MIN NOM MAX UNIT
POWER SUPPLY
Unipolar analog power supply AVDD to AVSS 2.3 5.5 V
AVSS to DGND –0.1 0 0.1
Bipolar analog power supply AVDD to DGND 2.3 2.5 2.75 V
AVSS to DGND –2.75 –2.5 –2.3
Digital power supply DVDD to DGND 2.3 5.5 V
ANALOG INPUTS(1)
VIN Differential input voltage VIN = V(AINP) – V(AINN)(2) –Vref / Gain Vref / Gain V
V(AINx) Absolute input voltage PGA disabled, gain = 1 to 4 AVSS – 0.1 AVDD + 0.1 V
PGA enabled, gain = 1 to 128 See the Low-Noise PGA section
VCM Common-mode input voltage PGA disabled, gain = 1 to 4 AVSS – 0.1 AVDD + 0.1 V
PGA enabled, gain = 1 to 128 See the Low-Noise PGA section
VOLTAGE REFERENCE INPUTS(3)
Vref Differential reference input voltage Vref = V(REFPx) – V(REFNx) 0.75 2.5 AVDD V
V(REFNx) Absolute negative reference voltage AVSS – 0.1 V(REFPx) – 0.75 V
V(REFPx) Absolute positive reference voltage V(REFNx) + 0.75 AVDD + 0.1 V
EXTERNAL CLOCK SOURCE
f(CLK) External clock frequency 0.5 4.096 4.5 MHz
Duty cycle 40% 60%
DIGITAL INPUTS
Input voltage DGND DVDD V
TEMPERATURE RANGE
TA Operating ambient temperature –40 125 °C
(1) AINP and AINN denote the positive and negative inputs of the PGA. AINx denotes one of the four available analog inputs.
PGA disabled means the low-noise PGA is powered down and bypassed. Gains of 1, 2, and 4 are still possible in this case.
See the Bypassing the PGA section for more information.
(2) Excluding the effects of offset and gain error.
Limited to ±[(AVDD – AVSS) – 0.4 V] / Gain, when the PGA is enabled.
(3) REFPx and REFNx denote one of two available differential reference input pairs.

6.4 Thermal Information

THERMAL METRIC(1) ADS1120 UNIT
VQFN (RVA) TSSOP (PW)
16 PINS 16 PINS
RθJA Junction-to-ambient thermal resistance 43.4 99.5 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 47.3 35.2 °C/W
RθJB Junction-to-board thermal resistance 18.4 44.3 °C/W
ψJT Junction-to-top characterization parameter 0.6 2.4 °C/W
ψJB Junction-to-board characterization parameter 18.4 43.8 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 2.0 n/a °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

Minimum and maximum specifications apply from TA = –40°C to +125°C. Typical specifications are at TA = 25°C.
All specifications are at AVDD = 3.3 V, AVSS = 0 V, DVDD = 3.3 V, PGA enabled, DR = 20 SPS, and external Vref = 2.5 V (unless otherwise noted).(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ANALOG INPUTS
Absolute input current See the Typical Characteristics
Differential input current See the Typical Characteristics
SYSTEM PERFORMANCE
Resolution (no missing codes) 16 Bits
DR Data rate Normal mode 20, 45, 90, 175, 330, 600, 1000 SPS
Duty-cycle mode 5, 11.25, 22.5, 44, 82.5, 150, 250
Turbo mode 40, 90, 180, 350, 660, 1200, 2000
Noise (input-referred) See the Noise Performance section
INL Integral nonlinearity Gain = 1 to 128, VCM = 0.5 AVDD, best fit(2) 8 20 ppmFSR
VIO Input offset voltage PGA disabled, gain = 1 to 4, differential inputs ±4 µV
Gain = 1 to 128, differential inputs ±4
Offset drift PGA disabled, gain = 1 to 4 0.25 µV/°C
Gain = 1 to 128, TA = –40°C to +85°C(2) 0.08 0.3
Gain = 1 to 128 0.25
Gain error PGA disabled, gain = 1 to 4 ±0.015%
Gain = 1 to 128, TA = 25°C –0.1% ±0.015% 0.1%
Gain drift PGA disabled, gain = 1 to 4 1 ppm/°C
Gain = 1 to 128(2) 1 4
NMRR Normal-mode rejection ratio(2) 50 Hz ±3%, DR = 20 SPS, external CLK, 50/60 bit = 10 105 dB
60 Hz ±3%, DR = 20 SPS, external CLK, 50/60 bit = 11 105
50 Hz or 60 Hz ±3%, DR = 20 SPS,
external CLK, 50/60 bit = 01
90
CMRR Common-mode rejection ratio At dc, gain = 1 90 105 dB
f(CM) = 50 Hz, DR = 2000 SPS(2) 95 115
f(CM) = 60 Hz, DR = 2000 SPS(2) 95 115
PSRR Power-supply rejection ratio AVDD at dc, VCM = 0.5 AVDD, gain = 1 80 105 dB
DVDD at dc, VCM = 0.5 AVDD, gain = 1(2) 100 115
INTERNAL VOLTAGE REFERENCE
Initial accuracy TA = 25°C 2.045 2.048 2.051 V
Reference drift(2) 5 40 ppm/°C
Long-term drift 1000 hours 110 ppm
VOLTAGE REFERENCE INPUTS
Reference input current REFP0 = Vref, REFN0 = AVSS ±10 nA
INTERNAL OSCILLATOR
Internal oscillator accuracy Normal mode –2% ±1% 2%
EXCITATION CURRENT SOURCES (IDACs)
Current settings 50, 100, 250, 500, 1000, 1500 µA
Compliance voltage All current settings AVDD – 0.9 V
Accuracy All current settings, each IDAC –6% ±1% 6%
Current match Between IDACs ±0.3%
Temperature drift Each IDAC 50 ppm/°C
Temperature drift matching Between IDACs 10 ppm/°C
TEMPERATURE SENSOR
Conversion resolution 14 Bits
Temperature resolution 0.03125 °C
Accuracy TA = 0°C to +75°C ±0.25 °C
TA = –40°C to +125°C ±0.5
Accuracy vs analog supply voltage 0.0625 0.25 °C/V
LOW-SIDE POWER SWITCH
RON On-resistance 3.5 Ω
Current through switch 30 mA
DIGITAL INPUTS/OUTPUTS
VIH High-level input voltage 0.7 DVDD DVDD V
VIL Low-level input voltage DGND 0.3 DVDD V
VOH High-level output voltage IOH = 3 mA 0.8 DVDD V
VOL Low-level output voltage IOL = 3 mA 0.2 DVDD V
IH Input leakage, high VIH = 5.5 V –10 10 µA
IL Input leakage, low VIL = DGND –10 10 µA
POWER SUPPLY
IAVDD Analog supply current(3) Power-down mode 0.1 3 µA
Duty-cycle mode, PGA disabled 65
Duty-cycle mode, gain = 1 to 16 95
Duty-cycle mode, gain = 32 115
Duty-cycle mode, gain = 64, 128 135
Normal mode, PGA disabled 240
Normal mode, gain = 1 to 16 340 490
Normal mode, gain = 32 425
Normal mode, gain = 64, 128 510
Turbo mode, PGA disabled 360
Turbo mode, gain = 1 to 16 540
Turbo mode, gain = 32 715
Turbo mode, gain = 64, 128 890
IDVDD Digital supply current(3) Power-down mode 0.3 5 µA
Duty-cycle mode 55
Normal mode 75 110
Turbo mode 95
PD Power dissipation(3) Duty-cycle mode, PGA disabled 0.4 mW
Normal mode, gain = 1 to 16 1.4
Turbo mode, gain = 1 to 16 2.1
(1) PGA disabled means the low-noise PGA is powered down and bypassed. Gains of 1, 2, and 4 are still possible in this case.
See the Bypassing the PGA section for more information.
(2) Minimum and maximum values are ensured by design and characterization data.
(3) Internal voltage reference selected, internal oscillator enabled, IDACs turned off, and continuous conversion mode.
Analog supply current increases by 70 µA, typ (normal mode, turbo mode) when selecting an external reference.
Analog supply current increases by 190 µA (typ) when enabling the IDACs (excludes the actual IDAC current).

6.6 SPI Timing Requirements

over operating ambient temperature range and DVDD = 2.3 V to 5.5 V (unless otherwise noted)
MIN MAX UNIT
td(CSSC) Delay time, CS falling edge to first SCLK rising edge(2) 50 ns
td(SCCS) Delay time, final SCLK falling edge to CS rising edge 25 ns
tw(CSH) Pulse duration, CS high 50 ns
tc(SC) SCLK period 150 ns
tw(SCH) Pulse duration, SCLK high 60 ns
tw(SCL) Pulse duration, SCLK low 60 ns
tsu(DI) Setup time, DIN valid before SCLK falling edge 50 ns
th(DI) Hold time, DIN valid after SCLK falling edge 25 ns
SPI timeout(1) Normal mode, duty-cycle mode 13955 t(MOD)
Turbo mode 27910 t(MOD)
(1) See the SPI Timeout section for more information.
t(MOD) = 1 / f(MOD). Modulator frequency f(MOD) = 256 kHz (normal mode, duty-cycle mode) and 512 kHz (turbo mode), when using the internal oscillator or an external 4.096-MHz clock.
(2) CS can be tied low permanently in case the serial bus is not shared with any other device.

6.7 SPI Switching Characteristics

over operating ambient temperature range, DVDD = 2.3 V to 5.5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tp(CSDO) Propagation delay time,
CS falling edge to DOUT driven
DOUT load = 20 pF || 10 kΩ to DGND 50 ns
tp(SCDO) Propagation delay time,
SCLK rising edge to valid new DOUT
DOUT load = 20 pF || 10 kΩ to DGND 0 50 ns
tp(CSDOZ) Propagation delay time,
CS rising edge to DOUT high impedance
DOUT load = 20 pF || 10 kΩ to DGND 50 ns
ADS1120 tim_req_bas683.gif
NOTE: Single-byte communication is shown. Actual communication may be multiple bytes.
Figure 1. Serial Interface Timing Requirements
ADS1120 swi_char_bas683.gif

NOTE:

Single-byte communication is shown. Actual communication may be multiple bytes.
Figure 2. Serial Interface Switching Characteristics

6.8 Typical Characteristics

At TA = 25°C, AVDD = 3.3 V, AVSS = 0 V, and PGA enabled using external Vref = 2.5 V (unless otherwise noted).
ADS1120 C017_bas501.png
AVDD = 3.3 V
Figure 3. Input-Referred Offset Voltage vs Temperature
ADS1120 C019_bas501.png
AVDD = 3.3 V
Figure 5. Gain Error vs Temperature
ADS1120 C025_bas501.png
AVDD = 3.3 V, external 2.5-V reference, normal mode
Figure 7. Integral Nonlinearity vs
Differential Input Signal
ADS1120 C043_bas501.png
AVDD = 3.3 V, internal reference, normal mode
Figure 9. Integral Nonlinearity vs
Differential Input Signal
ADS1120 C042_bas501.png
TA = 25°C, data from 5490 devices
Figure 11. Internal Reference Voltage Histogram
ADS1120 C002_bas501.png
DVDD = 3.3 V, normal mode
Figure 13. Internal Oscillator Accuracy vs Temperature
ADS1120 C030_bas501.png
AVDD = 3.3 V, PGA enabled, TA = –40°C
Figure 15. Absolute Input Current vs
Absolute Input Voltage
ADS1120 C032_bas501.png
AVDD = 3.3 V, PGA enabled, TA = 85°C
Figure 17. Absolute Input Current vs
Absolute Input Voltage
ADS1120 C038_bas501.png
AVDD = 3.3 V, PGA enabled, AINP = AIN0, AINN = AIN1
Figure 19. Differential Input Current vs
Differential Input Voltage
ADS1120 C034_bas501.png
AVDD = 3.3 V, PGA disabled, TA = –40°C
Figure 21. Absolute Input Current vs
Absolute Input Voltage
ADS1120 C036_bas501.png
AVDD = 3.3 V, PGA disabled, TA = 85°C
Figure 23. Absolute Input Current vs
Absolute Input Voltage
ADS1120 C040_bas501.png
AVDD = 3.3 V, PGA disabled, AINP = AIN0, AINN = AIN1
Figure 25. Differential Input Current vs
Differential Input Voltage
ADS1120 C006_bas501.png
Figure 27. IDAC Accuracy vs Compliance Voltage
ADS1120 C007_bas501.png
Figure 29. IDAC Matching vs Temperature
ADS1120 C012_bas501.png
AVDD = 3.3 V, internal reference, turbo mode
Figure 31. IAVDD vs Temperature
ADS1120 C004_bas501.png
Normal mode, internal reference
Figure 33. IAVDD vs AVDD
ADS1120 C014_bas501.png
DVDD = 3.3 V
Figure 35. IDVDD vs Temperature
ADS1120 C001_bas501.png
Figure 37. Low-Side Power Switch RON vs Temperature
ADS1120 C018_bas501.png
AVDD = 5.0 V
Figure 4. Input-Referred Offset Voltage vs Temperature
ADS1120 C020_bas501.png
AVDD = 5.0 V
Figure 6. Gain Error vs Temperature
ADS1120 C029_bas501.png
AVDD = 5.0 V, external 2.5-V reference, normal mode
Figure 8. Integral Nonlinearity vs
Differential Input Signal
ADS1120 C044_bas501.png
AVDD = 5.0 V, internal reference, normal mode
Figure 10. Integral Nonlinearity vs
Differential Input Signal
ADS1120 C021_bas501.png
Figure 12. Internal Reference Voltage vs Temperature
ADS1120 C016_bas501.png
Figure 14. AVDD Power-Supply Rejection Ratio vs Frequency
ADS1120 C031_bas501.png
AVDD = 3.3 V, PGA enabled, TA = 25°C
Figure 16. Absolute Input Current vs
Absolute Input Voltage
ADS1120 C033_bas501.png
AVDD = 3.3 V, PGA enabled, TA = 125°C
Figure 18. Absolute Input Current vs
Absolute Input Voltage
ADS1120 C039_bas501.png
AVDD = 3.3 V, PGA enabled, AINP = AIN3, AINN = AIN2
Figure 20. Differential Input Current vs
Differential Input Voltage
ADS1120 C035_bas501.png
AVDD = 3.3 V, PGA disabled, TA = 25°C
Figure 22. Absolute Input Current vs
Absolute Input Voltage
ADS1120 C037_bas501.png
AVDD = 3.3 V, PGA disabled, TA = 125°C
Figure 24. Absolute Input Current vs
Absolute Input Voltage
ADS1120 C041_bas501.png
AVDD = 3.3 V, PGA disabled, AINP = AIN3, AINN = AIN2
Figure 26. Differential Input Current vs
Differential Input Voltage
ADS1120 C005_bas501.png
Figure 28. IDAC Accuracy vs Temperature
ADS1120 C011_bas501.png
AVDD = 3.3 V, internal reference, normal mode
Figure 30. IAVDD vs Temperature
ADS1120 C013_bas501.png
AVDD = 3.3 V, internal reference, duty-cycle mode
Figure 32. IAVDD vs Temperature
ADS1120 C010_bas501.png
Figure 34. IDVDD vs DVDD
ADS1120 C015_bas501.png
Figure 36. Internal Temperature Sensor Accuracy vs Temperature

7 Parameter Measurement Information

7.1 Noise Performance

Delta-sigma (ΔΣ) analog-to-digital converters (ADCs) are based on the principle of oversampling. The input signal of a ΔΣ ADC is sampled at a high frequency (modulator frequency) and subsequently filtered and decimated in the digital domain to yield a conversion result at the respective output data rate. The ratio between modulator frequency and output data rate is called oversampling ratio (OSR). By increasing the OSR, and thus reducing the output data rate, the noise performance of the ADC can be optimized. In other words, the input-referred noise drops when reducing the output data rate because more samples of the internal modulator are averaged to yield one conversion result. Increasing the gain also reduces the input-referred noise, which is particularly useful when measuring low-level signals.

Table 1 to Table 8 summarize the device noise performance. Data are representative of typical noise performance at TA = 25°C using the internal 2.048-V reference. Data shown are the result of averaging readings from a single device over a time period of approximately 0.75 seconds and are measured with the inputs internally shorted together. Table 1, Table 3, Table 5 and Table 7 list the input-referred noise in units of μVRMS for the conditions shown. Note that µVPP values are shown in parenthesis. Table 2, Table 4, Table 6 and Table 8 list the corresponding data in effective number of bits (ENOB) calculated from μVRMS values using Equation 1. Note that noise-free bits calculated from peak-to-peak noise values using Equation 2 are shown in parenthesis.

The input-referred noise (Table 1, Table 3, Table 5 and Table 7) only changes marginally when using an external low-noise reference, such as the REF5020. To calculate ENOB numbers and noise-free bits when using a reference voltage other than 2.048 V, use Equation 1 to Equation 3:

Equation 1. ENOB = ln (Full-Scale Range / VRMS-Noise) / ln(2)
Equation 2. Noise-Free Bits = ln (Full-Scale Range / VPP-Noise) / ln(2)
Equation 3. Full-Scale Range = 2 · Vref / Gain

Table 1. Noise in μVRMS (μVPP)
at AVDD = 3.3 V, AVSS = 0 V, Normal Mode, and Internal Reference = 2.048 V

DATA RATE
(SPS)
GAIN (PGA Enabled)
1 2 4 8 16 32 64 128
20 62.50 (62.50) 31.25 (31.25) 15.63 (15.63) 7.81 (7.81) 3.91 (3.91) 1.95 (1.95) 0.98 (0.98) 0.49 (0.49)
45 62.50 (62.50) 31.25 (31.25) 15.63 (15.63) 7.81 (7.81) 3.91 (3.91) 1.95 (1.95) 0.98 (0.98) 0.49 (0.51)
90 62.50 (62.50) 31.25 (31.25) 15.63 (15.63) 7.81 (7.81) 3.91 (3.91) 1.95 (2.14) 0.98 (1.22) 0.49 (0.85)
175 62.50 (63.72) 31.25 (34.06) 15.63 (17.76) 7.81 (11.20) 3.91 (5.13) 1.95 (3.09) 0.98 (2.14) 0.49 (1.60)
330 62.50 (106.93) 31.25 (50.78) 15.63 (26.25) 7.81 (14.13) 3.91 (7.52) 1.95 (4.66) 0.98 (2.69) 0.49 (1.99)
600 62.50 (151.61) 31.25 (72.27) 15.63 (39.43) 7.81 (19.26) 3.91 (12.77) 1.95 (6.87) 0.98 (4.76) 0.55 (3.34)
1000 62.50 (227.29) 31.25 (122.68) 15.63 (58.53) 7.81 (31.52) 3.91 (18.08) 1.95 (10.71) 1.03 (6.52) 0.70 (4.01)

Table 2. ENOB from RMS Noise (Noise-free Bits from Peak-to-Peak Noise)
at AVDD = 3.3 V, AVSS = 0 V, Normal Mode, and Internal Reference = 2.048 V

DATA RATE
(SPS)
GAIN (PGA Enabled)
1 2 4 8 16 32 64 128
20 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
45 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (15.49)
90 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (15.87) 16 (15.67) 16 (15.20)
175 16 (15.97) 16 (15.88) 16 (15.82) 16 (15.48) 16 (15.61) 16 (15.34) 16 (14.87) 16 (14.29)
330 16 (15.23) 16 (15.30) 16 (15.25) 16 (15.15) 16 (15.05) 16 (14.74) 16 (14.54) 16 (13.97)
600 16 (14.72) 16 (14.79) 16 (14.66) 16 (14.70) 16 (14.29) 16 (14.18) 16 (13.72) 15.83 (13.23)
1000 16 (14.14) 16 (14.03) 16 (14.09) 16 (13.99) 16 (13.79) 16 (13.54) 15.92 (13.26) 15.49 (12.96)

Table 3. Noise in μVRMS (μVPP) with PGA Disabled
at AVDD = 3.3 V, AVSS = 0 V, Normal Mode, and Internal Reference = 2.048 V

DATA RATE
(SPS)
GAIN (PGA Disabled)
1 2 4
20 62.50 (62.50) 31.25 (31.25) 15.63 (15.63)
45 62.50 (62.50) 31.25 (31.25) 15.63 (15.63)
90 62.50 (62.50) 31.25 (31.25) 15.63 (15.63)
175 62.50 (65.92) 31.25 (35.40) 15.63 (18.92)
330 62.50 (94.24) 31.25 (50.17) 15.63 (28.75)
600 62.50 (138.67) 31.25 (78.13) 15.63 (39.79)
1000 62.50 (260.50) 31.25 (120.97) 15.63 (63.72)

Table 4. ENOB from RMS Noise (Noise-free Bits from Peak-to-Peak Noise) with PGA Disabled
at AVDD = 3.3 V, AVSS = 0 V, Normal Mode, and Internal Reference = 2.048 V

DATA RATE
(SPS)
GAIN (PGA Disabled)
1 2 4
20 16 (16) 16 (16) 16 (16)
45 16 (16) 16 (16) 16 (16)
90 16 (16) 16 (16) 16 (16)
175 16 (15.92) 16 (15.82) 16 (15.72)
330 16 (15.41) 16 (15.32) 16 (15.12)
600 16 (14.85) 16 (14.68) 16 (14.65)
1000 16 (13.94) 16 (14.05) 16 (13.97)

Table 5. Noise in μVRMS (μVPP)
at AVDD = 3.3 V, AVSS = 0 V, Turbo Mode, and Internal Reference = 2.048 V

DATA RATE
(SPS)
GAIN (PGA Enabled)
1 2 4 8 16 32 64 128
40 62.50 (62.50) 31.25 (31.25) 15.63 (15.63) 7.81 (7.81) 3.91 (3.91) 1.95 (1.95) 0.98 (0.98) 0.49 (0.55)
90 62.50 (62.50) 31.25 (31.25) 15.63 (15.63) 7.81 (7.81) 3.91 (3.91) 1.95 (1.95) 0.98 (1.13) 0.49 (0.69)
180 62.50 (62.50) 31.25 (31.25) 15.63 (15.63) 7.81 (7.81) 3.91 (4.82) 1.95 (2.57) 0.98 (1.47) 0.49 (1.34)
350 62.50 (84.72) 31.25 (40.04) 15.63 (19.04) 7.81 (10.13) 3.91 (6.15) 1.95 (3.59) 0.98 (2.29) 0.49 (1.39)
660 62.50 (120.36) 31.25 (47.36) 15.63 (27.83) 7.81 (17.36) 3.91 (10.21) 1.95 (4.43) 0.98 (3.67) 0.49 (2.93)
1200 62.50 (162.35) 31.25 (85.94) 15.63 (44.01) 7.81 (21.55) 3.91 (15.14) 1.95 (7.58) 0.98 (5.31) 0.57 (3.51)
2000 62.50 (265.14) 31.25 (127.32) 15.63 (65.43) 7.81 (37.02) 3.91 (18.89) 1.95 (12.00) 1.13 (7.60) 0.82 (5.81)

Table 6. ENOB from RMS Noise (Noise-Free Bits from Peak-to-Peak Noise)
at AVDD = 3.3 V, AVSS = 0 V, Turbo Mode, and Internal Reference = 2.048 V

DATA RATE
(SPS)
GAIN (PGA Enabled)
1 2 4 8 16 32 64 128
40 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (15.83)
90 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (15.80) 16 (15.49)
180 16 (16) 16 (16) 16 (16) 16 (16) 16 (15.70) 16 (15.60) 16 (15.41) 16 (14.54)
350 16 (15.56) 16 (15.64) 16 (15.71) 16 (15.62) 16 (15.35) 16 (15.12) 16 (14.77) 16 (14.49)
660 16 (15.05) 16 (15.40) 16 (15.17) 16 (14.85) 16 (14.61) 16 (14.82) 16 (14.09) 16 (13.42)
1200 16 (14.62) 16 (14.54) 16 (14.51) 16 (14.54) 16 (14.05) 16 (14.04) 16 (13.56) 15.77 (13.15)
2000 16 (13.92) 16 (13.97) 16 (13.93) 16 (13.76) 16 (13.73) 16 (13.38) 15.79 (13.04) 15.25 (12.43)

Table 7. Noise in μVRMS (μVPP) with PGA Disabled
at AVDD = 3.3 V, AVSS = 0 V, Turbo Mode, and Internal Reference = 2.048 V

DATA RATE
(SPS)
GAIN (PGA Disabled)
1 2 4
40 62.50 (62.50) 31.25 (31.25) 15.63 (15.63)
90 62.50 (62.50) 31.25 (31.25) 15.63 (15.63)
180 62.50 (62.50) 31.25 (31.25) 15.63 (15.63)
350 62.50 (75.20) 31.25 (34.18) 15.63 (17.64)
660 62.50 (111.08) 31.25 (56.76) 15.63 (24.47)
1200 62.50 (176.03) 31.25 (89.23) 15.63 (40.95)
2000 62.50 (250.98) 31.25 (131.35) 15.63 (68.18)

Table 8. ENOB from RMS Noise (Noise-Free Bits from Peak-to-Peak Noise) with PGA Disabled
at AVDD = 3.3 V, AVSS = 0 V, Turbo Mode, and Internal Reference = 2.048 V

DATA RATE
(SPS)
GAIN (PGA Disabled)
1 2 4
40 16 (16) 16 (16) 16 (16)
90 16 (16) 16 (16) 16 (16)
180 16 (16) 16 (16) 16 (16)
350 16 (15.73) 16 (15.87) 16 (15.83)
660 16 (15.17) 16 (15.14) 16 (15.19)
1200 16 (14.51) 16 (14.49) 16 (14.61)
2000 16 (13.99) 16 (13.93) 16 (13.87)

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale