• Menu
  • Product
  • Email
  • PDF
  • Order now
  • 具有电源路径管理功能的 bq2425x 2A 单输入 I2C 独立开关模式锂离子电池充电器

    • ZHCSAF6H October   2012  – August 2015 BQ24250 , BQ24251 , BQ24253

      PRODUCTION DATA.  

  • CONTENTS
  • SEARCH
  • 具有电源路径管理功能的 bq2425x 2A 单输入 I2C 独立开关模式锂离子电池充电器
  1. 1 特性
  2. 2 应用
  3. 3 说明
  4. 4 修订历史记录
  5. 5 说明 (续)
  6. 6 Device Options
  7. 7 Pin Configuration and Functions
  8. 8 Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Typical Characteristics
  9. 9 Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Charge Profile
      2. 9.3.2  EN1 and EN2 Pins
      3. 9.3.3  External Settings: ISET, ILIM and VIN_DPM
      4. 9.3.4  BC1.2 D+/D- Detection
      5. 9.3.5  Transient Response
      6. 9.3.6  AnyBoot Battery Detection
      7. 9.3.7  Input Voltage Based DPM
      8. 9.3.8  Sleep Mode
      9. 9.3.9  Input Over-Voltage Protection
      10. 9.3.10 NTC Monitor
      11. 9.3.11 Production Test Mode
      12. 9.3.12 Safety Timer
      13. 9.3.13 Watchdog Timer
      14. 9.3.14 Fault Modes
      15. 9.3.15 Dynamic Power Path Management
    4. 9.4 Device Functional Modes
      1. 9.4.1 I2C Operation (Host Mode / Default Mode)
    5. 9.5 Programming
      1. 9.5.1 Serial Interface Description
        1. 9.5.1.1 F/S Mode Protocol
    6. 9.6 Register Maps
      1. 9.6.1 Register #1
      2. 9.6.2 Register #2
      3. 9.6.3 Register #3
      4. 9.6.4 Register #4
      5. 9.6.5 Register #5
      6. 9.6.6 Register #6
      7. 9.6.7 Register #7
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Inductor Selection
      3. 10.2.3 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
    3. 12.3 Thermal Considerations
  13. 13器件和文档支持
    1. 13.1 相关链接
    2. 13.2 商标
    3. 13.3 静电放电警告
    4. 13.4 Glossary
  14. 14机械、封装和可订购信息
    1. 14.1 封装摘要
  15. 重要声明
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

DATA SHEET

具有电源路径管理功能的 bq2425x 2A 单输入 I2C 独立开关模式锂离子电池充电器

本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。

1 特性

  • 具有独立电源路径的高效开关模式充电器
  • 从深度放电电池或者在缺少电池的情况下启动系统
  • USB 充电兼容
    • 100mA、500mA、900mA、1.5A 和 2A
      可选输入电流限制
  • BC1.2 兼容 D+、D– 检测
  • 在主机模式下(在 I2C 通信开始之后、看门狗计时器超时之前)
    • 可编程电池充电电压 (VBATREG)
    • 可编程充电电流 (ICHG)
    • 可编程输入电流限值 (ILIM)
    • 基于输入电压的可编程动态电源管理阈值 (VIN_DPM)
    • 可编程输入过压保护阈值 (VOVP)
    • 可编程安全计时器
  • 针对以下各项的电阻器可编程默认值:
    • 具有电流监控输出的高达 2A 的 ICHG (ISET)
    • 具有电流监控输出的高达 2A 的 ILIM (ILIM)
    • VIN_DPM (VDPM)
  • 看门狗计时器禁用位
  • 集成 4.9V、50mA LDO
  • 完整的系统级保护
    • 输入 UVLO、输入过压保护 (OVP)、电池 OVP、睡眠模式、VIN_DPM
    • 输入电流限制
    • 充电电流限制
    • 热调节
    • 热关断
    • 符合 JEITA 标准的基于电压的 NTC 监控输入
    • 安全计时器
  • 22V 绝对最大输入电压额定值
  • 10.5V 最大运行输入电压
  • 用于实现高达 2A 的充电速度的低 RDS(on) 集成功率 FET
  • 开漏状态输出
  • 可支持小型电感器的运行频率为 3MHz 的同步固定频率 PWM 控制器
  • AnyBoot 可靠电池检测算法
  • 用于在任一给定充电电流上缩短充电时间的充电时间优化器
  • 2.40mm x 2.00mm 30 焊球 DSBGA 和 4mm x 4mm 24 引脚 QFN 封装

2 应用

  • 手机和智能手机
  • MP3 播放器
  • 便携式媒体播放器
  • 手持设备

3 说明

bq24251 和 bq24253 是高度集成的单节锂离子电池充电器和系统电源路径管理器件,适用于采用高容量电池的空间受限型便携式 应用 。单节电池充电器具有一个由 USB 端口或交流壁式适配器供电的单一输入,用于提供多用途解决方案。

器件信息(1)

器件型号 封装 封装尺寸(标称值)
bq24251
bq24253
VQFN (24) 4.00mm x 4.00mm
DSBGA (30) 2.40mm x 2.00mm
  1. 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。
bq24251 bq24253 Feat_App2_LUSBA1A.gif

4 修订历史记录

Changes from G Revision (January 2015) to H Revision

  • Changed 将 20V 最大输入电压额定值特性项目更改成了 22V,以匹配“绝对最大额定值”表Go
  • Deleted 在整个产品说明书中删除了 bq24250 器件Go
  • Changed Figure 11 and Figure 12 image X-axis labels from "Temperature (fC)" to "Temperature (°C)" Go

Changes from F Revision (December 2014) to G Revision

  • Deleted Lead temperature (soldering) spec from Absolute Maximum Ratings table. See Package Option Addendum. Go
  • Changed table heading from Handling Ratings to ESD Ratings. Moved Tstg spec to the Absolute Maximum Ratings tableGo
  • Changed the test condition of IBAT- Battery discharge current in SYSOFF mode: Removed “(BAT, SW, SYS)”Go
  • Added spec for IIN/IILIM ratio Go

Changes from E Revision (December 2013) to F Revision

  • Added 处理额定值表,特性 说明 部分、器件功能模式、应用和实施 部分、电源相关建议 部分、布局 部分、器件和文档支持 部分以及机械、封装和可订购信息 部分Go
  • Deleted the minimum spec for RILIM-SHORT and changed the typical value to 55 ohm and maximum spec to 75 ohm.Go
  • Changed VLDO values to (4.65, 4.85, 5.04) and added description in the second column.Go

Changes from D Revision (July 2013) to E Revision

  • Changed VDPM pin desctiption from "......sets a default of 4.36V" to ".......sets a default of 4.68V" Go
  • Changed text string in the VIN_DLM settings description from: "The ISET resistor must be floated in order to avoid an internal fault." to: "The ISET resistor must be connected in order to avoid an unstable charging state."Go
  • Changed text string in the Sleep Mode description from: "...sends a single 256μs pulse is sent on the STAT and INT outputs..." to: "...sends a single 256µs pulse on the STAT and INT outputs..."Go
  • Changed text string in the Input Over-Voltage Protection description from: "...turns the battery FET, sends a single 256-μs pulse is sent on the STAT and INT outputs..." to "...turns on the battery FET, sends a single 256-μs pulse on the STAT and INT outputs....."Go
  • Added Serial Interface DescriptionGo
  • Changed Register #3 description, B1(4)(5) Name from: "USB_DET_1/EN1" to: "USB_DET_1/EN2"Go
  • Changed Register #3 description, B0(LSB) Name from: "USB_DET_0/EN0" to: "USB_DET_0/EN1"Go
  • Changed Register #3 description, B1(4)(5) and B0(LSB) FUNCTION entries from: "Return USB detection result or pin EN1/EN0 status –" to "Return USB detection result or pin EN2/EN1 status –" ; changed 00 - DCP detected / from: "EN1=0, EN0=0" to: "EN2=0, EN1=0"; changed 01 - CDP detected / from: "EN1=0, EN0=1" to: "EN2=0, EN1=1"; changed 10 - SDP detected / from: "EN1=1, EN0=0" to: "EN2=1, EN1=0"; and changed 11 - Apple/TT or non-standard adaptor detected / from: "EN1=1, EN0=1" to: "EN2=1, EN1=1", respectively.Go

Changes from C Revision (June 2013) to D Revision

  • Changed VDPM Pin Description regulator reference from "1.23V" to "1.2" Go
  • Changed text string in D+/D- pin description from "....will remain low..." to "...will remain high impedance..."Go
  • Added SCL and SDA to Pin Voltage Range spec in the Absolute Maximum Ratings tableGo
  • Changed spec conditions for Output Current (Continuous), from "IN, SW, SYS, BAT" to "IN, SYS, BAT " in ABS Max Ratings table Go
  • Changed Figure 20 Go
  • Added text to NTC Monitor description for clarification.Go
  • Added text to Safety Timer description for clarification.Go
  • Changed Fault Condition from "Input Good" to "Input Fault & LDO Low" in Fault Conditions table.Go
  • Changed Register #2 Reset state from "1010 1100" to "xxxx 1100"Go
  • Changed Register #4 Reset state from "0000 0000" to "1111 1000"Go
  • Changed Bit B7, B6, B5, B4, B3 FUNCTION description from "(default 0)" to "(default 1)"Go
  • Changed Register #4 Footnote (1) text from "...current is 500ma...." to " .....current is external.."Go
  • Changed TS_EN description from "When set to a ‘1' the TS function is disabled ....." to "When set to a ‘0’, the TS function is disabled..."Go
  • Added text to TS_STAT description for clarification.Go
  • Changed Register #7, Bit B3 FUNCTION description from "...if TERM is true or EN_PTM is true..." to "if TERM is true or Force PTM s true..."Go

Changes from B Revision (May 2013) to C Revision

  • Deleted 从器件 bq24250YFF、bq24251YFF、bq24251RGE 和 bq24253RGE 中删除了“预览”状态注释Go

Changes from A Revision (March 2013) to B Revision

  • Added 在“订购信息”表中向器件添加了“预览”状态(bq24250RGER 和 bq24250RGET 除外)Go

Changes from * Revision (October 2012) to A Revision

  • 从“产品简介”更改成了“完整的产品说明书”Go
  • Added Typical Characteristics graphsGo
  • Changed Equation (3)Go
  • Changed text in the F/S Mode Protocol section from "...to either transmit data to the slave (R/W bit 1) or receive data from the slave (R/W bit 0" to "...to either transmit data to the slave (R/W bit 0) or receive data from the slave (R/W bit 1)" for clarification.Go

5 说明 (续)

电源路径管理功能使得 bq24251 和 bq24253 能够在对电池进行独立充电的同时通过一个高效的直流/直流转换器为系统供电。此充电器一直监视电池电流并在系统负载所需电流高于输入电流限值时减小充电电流。该减小的充电电流可实现正常的充电终止并且使得系统能够在电池组有缺陷或不存在电池组的情况下运行。此外,该减小的充电电流使得即使在电池已完全放电或没有电池的情况下也能够瞬时启动系统。当适配器无法提供峰值系统电流时,此电源路径管理架构还允许电池补充系统电流要求。该电流要求补充支持使用较小的适配器。

电池充电分为四个阶段:涓流充电、预充电、恒定电流和恒定电压。在所有充电阶段,一个内部控制环路监视 IC 结温并且在超过内部温度阈值时减小充电电流。此外,还包括一个基于电压且符合 JEITA 标准的电池组热敏电阻器监控输入 (TS),用于监控电池温度,以实现安全充电。

6 Device Options

DEVICE DEFAULT OVP D+/D- OR EN1/EN2 INT OR PG DEFAULT VOREG MINSYS TS PROFILE I2C OR STAND ALONE I2C ADDRESS
bq24251 10.5 V D+/D- PG 4.2 V 3.5V JEITA I2C + SA 0x6A
bq24253 10.5 V D+/D-
and
EN1/EN2
PG 4.2 V 3.5 V JEITA SA Only N/A

7 Pin Configuration and Functions

YFF Package / RGE Package
30-Pin DSBGA / 24-Pin QFN
Top View / Top View
bq24251 bq24253 pinouts_51_53_lusba1a.gif

Pin Functions

PIN I/O DESCRIPTION
NAME bq24251 bq24253
YFF RGE YFF RGE
IN A5,B5,C5 19 A5,B5,C5 19 I Input power supply. IN is connected to the external DC supply (AC adapter or USB port). Bypass IN to PGND with >2μF ceramic capacitor
PMID D5 20 D5 20 I Connection between blocking FET and high-side FET.
SW A4, B4, C4 17–18 A4, B4, C4 17–18 O Inductor Connection. Connect to the switching side of the external inductor.
BOOT E5 21 E5 21 I High Side MOSFET Gate Driver Supply. Connect a 0.033μF ceramic capacitor (voltage rating > 15V) from BOOT to SW to supply the gate drive for the high side MOSFETs.
PGND A3, B3, C3, F3 15–16 A3, B3, C3, F3 15–16 Ground terminal. Connect to the ground plane of the circuit.
SYS A2, B2, C2 13–14 A2, B2, C2 13–14 I System Voltage Sense and switched-mode power supply (SMPS) output filter connection. Connect SYS to the system output at the output bulk capacitors. Bypass SYS locally with >20μF.
BAT A1, B1, C1 11–12 A1, B1, C1 11–12 I/O Battery Connection. Connect to the positive terminal of the battery. Additionally, bypass BAT with a >1μF capacitor.
TS F1 9 F1 9 I Battery Pack NTC Monitor. Connect TS to the center tap of a resistor divider from LDO to GND. The NTC is connected from TS to GND. The TS function provides 4 thresholds for JEITA or PSE compatibility. See the NTC Monitor section for more details on operation and selecting the resistor values.
VDPM E4 23 E4 23 I Input DPM Programming Input. Connect a resistor divider between IN and GND with VDPM connected to the center tap to program the Input Voltage based Dynamic Power Management threshold (VIN_DPM). The input current is reduced to maintain the supply voltage at VIN_DPM. The reference for the regulator is 1.2V. Short pin to GND if external resistors are not desired—this sets a default of 4.68V for the input DPM threshold.
ISET D1 10 D1 10 I Charge Current Programming Input. Connect a resistor from ISET to GND to program the fast charge current. The charge current is programmable from 300mA to 2A.
ILIM F5 22 F5 22 I Input Current Limit Programming Input. Connect a resistor from ILIM to GND to program the input current limit for IN. The current limit is programmable from 0.5A to 2A. ILIM has no effect on the USB input. If an external resistor is not desired, short to GND for a 2A default setting.
CE D4 1 D4 1 I Charge Enable Active-Low Input. Connect CE to a high logic level to place the battery charger in standby mode.
EN1 – – F2 5 I Input Current Limit Configuration Inputs. Use EN1, and EN2 to control the maximum input current and enable USB compliance. See Table 1 for programming details.
EN2 – – E2 6 I
CHG – – E3 7 O Charge Status Open Drain Output. CHG is pulled low when a charge cycle starts and remains low while charging. CHG is high impedance when the charging terminates and when no supply exists. CHG does not indicate recharge cycles.
PG E1 8 E1 8 O Power Good Open Drain Output. PG is pulled low when a valid supply is connected to IN. A valid supply is between VBAT+VSLP and VOVP. If no supply is connected or the supply is out of this range, PG is high impedance.
STAT E3 7 – – O Status Output. STAT is an open-drain output that signals charging status and fault interrupts. STAT pulls low during charging. STAT is high impedance when charging is complete or the charger is disabled. When a fault occurs, a 256μs pulse is sent out as an interrupt for the host. STAT is enabled/disabled using the EN_STAT bit in the control register. STAT will indicate recharge cycles. Connect STAT to a logic rail using an LED for visual indication or through a 10kΩ resistor to communicate with the host processor.
INT – – – – O Status Output. INT is an open-drain output that signals charging status and fault interrupts. INT pulls low during charging. INT is high impedance when charging is complete or the charger is disabled. When a fault occurs, a 256μs pulse is sent out as an interrupt for the host. INT will indicate recharge cycles. Connect INT to a logic rail through a 10kΩ resistor to communicate with the host processor.
SCL E2 6 – – I I2C Interface Clock. Connect SCL to the logic rail through a 10kΩ resistor.
SDA F2 5 – – I/O I2C Interface Data. Connect SDA to the logic rail through a 10kΩ resistor.
D+ D3 2 D3 2 I BC1.2 compatible D+/D– Based Adapter Detection. Detects DCP, SDP, and CDP. Also complies with the unconnected dead battery provision clause. D+ and D- are connected to the D+ and D– outputs of the USB port at power up. Also includes the detection of Apple™ and TomTom™ adapters where a 500mA input current limit is enabled. The PG pin will remain high impedance until the detection has completed.
D– D2 3 D2 3 I
LDO F4 24 F4 24 O LDO output. LDO is regulated to 4.9V and drives up to 50mA. Bypass LDO with a 1μF ceramic Capacitor. LDO is enabled when VUVLO < VIN <18V.
AGND – 4 – 4 Analog Ground for QFN only. Connect to the thermal pad and the ground plane of the circuit.

8 Specifications

8.1 Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Pin Voltage Range (with respect to GND) IN –0.3 22 V
SW –0.7 12 V
BOOT –0.3 20 V
LDO,STAT, INT, /CHG, /PG, EN1, EN2, EN3, /CE, D+, D-, ILIM, ISET, VDPM, TS, SCL, SDA –0.3 7 V
SYS, BAT –0.3 5 V
BOOT relative to SW –0.3 7 V
Output Current (Continuous) IN 2 A
SYS, BAT 4
Output Sink Current STAT, /CHG, /PG 5 mA
Operating free-air temperature range –40 85 °C
Junction temperature, TJ –40 125 °C
Input Power IN 15 W
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

8.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) ±2000 V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

8.3 Recommended Operating Conditions

All voltages are with respect to PGND if not specified. Currents are positive into, negative out of the specified terminal. Consult Packaging Section of the data book for thermal limitations and considerations of packages
MIN MAX UNIT
VIN IN voltage range 4.35 18(1) V
IN operating voltage range 4.35 10.5
IIN Input current 2 A
ICHG Current in charge mode, BAT 2 A
IDISCHG Current in discharge mode, BAT 4 A
RISET Charge current programming resistor range 75 Ω
RILIM Input current limit programming resistor range 105 Ω
PIN Input Power 12 W
TJ Operating junction temperature range 0 125 °C
(1) The inherent switching noise voltage spikes should not exceed the absolute maximum rating on either the BOOT or SW pins. Small routing loops for the power nets in layout minimize switching noise.

8.4 Thermal Information

THERMAL METRIC(1) YFF
(30 PINS)
RGE
(24 PINS)
UNIT
RθJA Junction-to-ambient thermal resistance 76.5 32.9 °C/W
RθJCtop Junction-to-case (top) thermal resistance 0.2 32.8 °C/W
RθJB Junction-to-board thermal resistance 44 10.6 °C/W
ψJT Junction-to-top characterization parameter 1.6 0.3 °C/W
ψJB Junction-to-board characterization parameter 43.4 10.7 °C/W
RθJCbot Junction-to-case (bottom) thermal resistance N/A 2.3 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

8.5 Electrical Characteristics

VUVLO < VIN < VOVP and VIN > VBAT+VSLP, TJ = 0ºC-125°C and TJ = 25°C for typical values (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
INPUT CURRENTS
IIN Supply current from IN VDPM < VIN < VOVP AND VIN > VBAT+VSLP PWM switching, CE Enable 13 mA
VDPM < VIN < VOVP AND VIN > VBAT+VSLP PWM switching, CE Disable 5
VIN= 5.5V, 0°C< TJ < 85°C, High-Z Mode 170 225 μA
IBAT Battery discharge current in high impedance mode, (BAT, SW, SYS) 0°C< TJ < 85°C, VBAT = 4.2 V,
VIN = 0V or 5V, High-Z Mode
16 22 μA
Battery discharge current in SYSOFF mode 0°C< TJ < 85°C, VBAT = 4.2 V,
VIN < UVLO, SYSOFF Mode
1
POWER-PATH MANAGEMENT
VSYSREG System Regulation Voltage MINSYS stage (no DPM or DPPM) –1% 3.52 1% V
MINSYS stage (DPM or DPPM active) –1.50% VMINSYS
–200mV
1.50%
BATREG stage VBAT
+ ICHG Ron
SYSREG stage VBATREG
+2.1%
VBATREG
+3.1%
VBATREG
+4.1%
VSPLM Enter supplement mode voltage threshold VBAT = 3.6V VBAT –
40mV
V
ISPLM Exit supplement mode current threshold VBAT = 3.6V 20 mA
tDGL(SC1) Deglitch Time, OUT Short Circuit during Discharge or Supplement Mode Measured from (VBAT – VSYS) = 300 mV 740 μs
tREC(SC1) Recovery Time, OUT Short Circuit during Discharge or Supplement Mode 64 ms
BATTERY CHARGER
RON(BAT-SYS) Internal battery charger MOSFET on-resistance Measured from BAT to SYS, VBAT = 4.2V (WCSP) 20 30 mΩ
Measured from BAT to SYS, VBAT = 4.2V (QFN) 30 40
VBATREG I2C host mode Operating in voltage regulation, Programmable Range 3.5 4.44 V
SA mode or I2C default mode 4.2
Voltage Regulation Accuracy TJ = 25°C –0.5% 0.5%
TJ = 0°C to 125°C –0.75% 0.75%
ICHG Fast Charge Current Range VLOWV ≤ VBAT < VBAT(REG) 500 2000 mA
Fast Charge Current Accuracy I2C mode –7% 7%
ICHG-LOW Low Charge Current Setting Set via I2C 297 330 363 mA
KISET Programmable Fast Charge Current Factor bq24251 bq24253 Inline1_ICHG_lusba1.gif 232.5 250 267.5 AΩ
VISET Maximum ISET pin voltage (in regulation) 0.42 V
RISET-SHORT Short circuit resistance threshold 45 55 75 Ω
VLOWV Pre-charge to fast charge threshold Rising 2.9 3 3.1 V
Hysteresis for VLOWV Battery voltage falling 100 mV
IPRECHG Pr-charge current (VBATUVLO < VBAT < VLOWV) Ipre-chg is a precentile of the external fast charge settings. 8 10 12 %
tDGL(LOWV) Deglitch time for pre-charge to fast charge transition 32 ms
VBAT_UVLO Battery Under voltage lockout threshold VBAT rising 2.37 2.5 2.63 V
Battery UVLO hysteresis 200 mV
VBATSHRT Trickle charge to pre-charge threshold 1.9 2 2.1 V
Hysteresis for VBATSHRT Battery voltage falling 100 mV
IBATSHRT Trickle charge mode charge current (VBAT < VBATSHRT) 25 35 50 mA
tDGL(BATSHRT) Deglitch time for trickle charge to pre-charge transition 256 us
ITERM Termination Current Threshold Termination current on SA only 10 %ICHG
Termination Current Threshold Tolerance –10% 10%
tDGL(TERM) Deglitch time for charge termination Both rising and falling, 2-mV over-drive, tRISE, tFALL = 100 ns 64 ms
VRCH Recharge threshold voltage Below VBATREG 70 115 160 mV
tDGL(RCH) Deglitch time VBAT falling below VRCH, tFALL = 100 ns 32 ms
BATTERY DETECTION
VBATREG_HI Battery Detection High Regulation Voltage Same as VBATREG VBATREG V
VBATREG_LO Battery Detection Low Regulation Voltage 360 mV offset from VBATREG VBATREG
–480mV
V
VBATDET Hi Battery detection comparator VBATREG = VBATREG_HI VBATREG
–120mV
V
VBATDET LO Battery detection comparator VBATREG = VBATREG_LO VBATREG
+120mV
V
IDETECT Battery Detection Current Sink Always on during battery detection 7.5 mA
tDETECT Battery detection time For both VBATREG_HI and VBATREG_LO 32 ms
Tsafe Safety Timer Accuracy –10% +10%
INPUT PROTECTION
IIN Input current limiting IIN_LIMIT = 100 mA 90 95 100 mA
IIN_LIMIT = 150 mA 135 142.5 150
IIN_LIMIT = 500 mA 450 475 500
IIN_LIMIT = 900 mA 810 860 910
IIN_LIMIT = 1500 mA 1400 1475 1550
IIN_LIMIT = 2000 mA 1850 1950 2050
IIN_LIMIT = External bq24251 bq24253 inline2_ILIM_lusba1.gif
ILIM Maximum input current limit programmable range for IN input 500 2000 mA
KILIM Maximum input current factor for IN input ILIM = 500 mA to 2.0 A 240 270 300 AΩ
VILIM Maximum ILIM pin voltage (in regulation) 0.42 V
IIN /IILIM Ratio between input current and the ILIM pin current in external control or stand alone mode External ILIM control or stand alone 540 A/A
RILIM-SHORT Short circuit resistance threshold 55 75 Ω
VIN_DPM VIN_DPM threshold range SA mode 4.2 10 V
I2C mode 4.2 4.76
VIN_DPM threshold for USB Input in SA mode USB100, USB150, USB500, USB900, current limit selected. Also I2C register default. 4.27 4.36 4.45
VIN_DPM threshold with adaptor current limit and VDPM shorted to GND Must set to external resistor settings via the EN1/EN2 pins or the I2C register interface. VIN_DPM
.
–2%
VIN_DPM VIN_DPM
.
+2%
VIN_DPM threshold Accuracy Both I2C and SA mode –2% 2%
VREF_DPM DPM regulation voltage External resistor setting only 1.15 1.2 1.25 V
VDPM_SHRT VIN_DPM short threshold If VDPM is shorted to ground, VIN_DPM threshold will use internal default value 0.3 V
VUVLO IC active threshold voltage VIN rising 3.15 3.35 3.5 V
IC active hysteresis VIN falling from above VUVLO 175 mV
VSLP Sleep-mode entry threshold, VIN-VBAT 2.0 V ≤ VBAT ≤ VBATREG, VIN falling 0 50 100 mV
Sleep-mode exit hysteresis, VIN-VBAT 2.0 V ≤ VBAT ≤ VBATREG 40 100 160 mV
tDGL(SLP) Deglitch time for IN rising above VIN+VSLP_EXIT Rising voltage, 2-mV over drive, tRISE = 100 ns 32 ms
VOVP Input supply OVP threshold voltage IN rising Input OVP
–200mV
Input OVP Input OVP
+200mV
V
VOVP hysteresis IN falling from VOVP 100 mV
tDGL(OVP) Deglitch time for IN Rising above VOVP IN rising voltage, tRISE = 100 ns 32 ms
VBOVP Battery OVP threshold voltage VBAT threshold over VBATREG to turn off charger during charge 102.5 105 107.5 % VBATREG
VBOVP hysteresis Lower limit for VBAT falling from above VBOVP 1 % VBATREG
tDGL(BOVP) BOVP Deglitch Battery entering/exiting BOVP 1 ms
PWM CONVERTER
RON(BLK) Internal blocking MOSFET on-resistance Measured from IN to PMID (WCSP & QFN) 60 100 mΩ
RON(HS) Internal high-side MOSFET on-resistance Measured from PMID to SW (WCSP & QFN) 100 150 mΩ
RON(LS) Internal low-side MOSFET on-resistance Measured from SW to PGND (WCSP & QFN) 110 165 mΩ
ICbC Cycle-by-cycle current limit VSYS shorted 2.6 3.2 3.8 A
fOSC Oscillator frequency 2.7 3 3.3 MHz
DMAX Maximum duty cycle 95%
DMIN Minimum duty cycle 0%
TSHTDWN Thermal trip 150 °C
Thermal hysteresis 10
TREG Thermal regulation threshold Charge current begins to cut off 125
LDO (LINEAR DROPOUT)
VLDO LDO Output Voltage bq24251 and bq24253 VIN = 5.5 V, ILDO = 0 to 50 mA 4.65 4.95 5.25 V
ILDO Maximum LDO Output Current 50 mA
VDO LDO Dropout Voltage (VIN – VLDO) VIN = 5.0 V, ILDO = 50 mA 200 300 mV
BATTERY-PACK NTC MONITOR (1)
VHOT High temperature threshold VTS falling 29.6 30 30.4 % VLDO
VHYS(HOT) Hysteresis on high threshold VTS rising 1
VWARM Warm temperature threshold VTS falling 37.9 38.3 38.7
VHYS(WARM) Hysteresis on warm temperature threshold VTS rising 1
VCOOL Cool temperature threshold VTS rising 56.1 56.5 56.9
VHSY(COOL) Hysteresis on cool temperature threshold VTS falling 1
VCOLD Low temperature threshold VTS rising 59.6 60 60.4
VHYS(COLD) Hysteresis on low threshold VTS falling 1
VFRZ Freeze temperature threshold VTS rising 62 62.5 63
VHYS(FRZ) Hysteresis on freeze threshold VTS falling 1
VTS_DIS TS disable threshold 70 73
tDGL(TS) Deglitch time on TS change 32 ms
INPUTS (EN1, EN2, EN2, CE, CE1, CE2, BATREG, SCL, SDA, DBP)
VIH Input high threshold 1 V
VIL Input low threshold 0.4 V
STATUS OUTPUTS (CHG, PG, STAT, INT, BATRDY)
VOL Low-level output saturation voltage IO = 5 mA, sink current 0.4 V
IIH High-level leakage current Hi-Z and 5V applies 1 µA
TIMERS
tSAFETY 45 min safety timer 2700 s
6 hr safety timer 21600
9 hr safety timer 32400
tWATCH-DOG Watch dog timer 50 s
D+/D– DETECTION
IDP_SRC D+ current source for DCD DCD 7 13 µA
RDM_DWN D– pull-down resistance for DCD DCD 14.25 24.8 kΩ
VDP_LOW D+ low comparator threshold for DCD DCD 0.85 0.9 0.95 V
VDP_SRC D+ source voltage for Primary Detection Primary Detection 0.5 0.6 0.7 V
IDP_SRC_PD D+ source voltage output current for Primary Detection Primary Detection 200 µA
IDM_SINK D– sink current for Primary Detection Primary Detection 50 100 150 µA
VDAT_REF Primary Detection threshold Primary Detection 250 325 400 mV
VLGC Primary Detection threshold Primary Detection 0.85 0.9 0.95 V
VDM_SRC D- source voltage for Secondary Detection Secondary Detection 0.5 0.6 0.7 V
IDM_SRC_PD D- source voltage output current for Secondary Detection Secondary Detection 200 µA
IDP_SINK D+ sink current for Secondary Detection Secondary Detection 50 100 150 µA
VDAT_REF Secondary Detection threshold Secondary Detection 250 325 400 mV
VATT_LO Apple/TomTom detection low threshold Apple/TomTom Detection 1.8 1.85 1.975 V
VATT_HI Apple/TomTom detection high threshold Apple/TomTom Detection 3.2 3.5 3.8 V
CI Input Capacitance D– , switch open 4.5 pF
D+, switch open 4.5
ID_LKG Leakage Current into D+/D– D–, switch open –1 1 µA
D+, switch open –1 1

8.6 Typical Characteristics

bq24251 bq24253 bq2425x_batt_det_lusba1a.gif
VBAT = 3.8 V VIN = 5 V VREG = 4.2 V
ICHG = 0.5 A ILIM = 1 A
Figure 1. Battery Detection
bq24251 bq24253 C001_SLUSBA1.gif
ICHG = 2 A VIN = 5 V VREG = 4.2 V
Figure 3. Efficiency vs Battery Voltage
bq24251 bq24253 C002_SLUSBA1.gif
VREG = 4.2 V
Figure 5. Efficiency vs Output Current
bq24251 bq24253 C007_SLUSBA1.gif
VIN = 0 V SYSOFF = 0 Charge Enabled
BAT & SYS are Shorted
Figure 7. BAT IQ, SYSOFF = 0
bq24251 bq24253 C008_SLUSBA1.gif
Charge EN and DIS No Battery and System
Figure 9. Input IQ With Charge DIS and EN
bq24251 bq24253 C011_SLUSBA1.gif
VBAT = 3.3 V VIN = 5 V VREG = 4.2 V
ILIM = 2 A
Figure 11. ICHG Accuracy with Internal Settings, VBAT = 3.3 V
bq24251 bq24253 C013_SLUSBA1.png
Figure 13. Ratio Between VILIM and IIN With External ILIM Control
bq24251 bq24253 bq2425x_batt_removal_lusba1a.gif
VBAT = 3.8 V VIN = 6 V VREG = 4.2 V
ICHG = 1 A ILIM = 1 A
Figure 2. Battery Removal
bq24251 bq24253 C004_SLUSBA1.gif
VIN = 5 V No Battery ILIM = 2 A
VREG = 4.2 V Charge Disable
Figure 4. System Voltage Regulation vs Load Current
bq24251 bq24253 C003_SLUSBA1.gif
VREG = 3.6 V
Figure 6. Efficiency vs Output Current
bq24251 bq24253 C010_SLUSBA1.gif
VIN = 0 V SYSOFF = 1 Charge Enabled
BAT & SYS are Shorted
Figure 8. BAT IQ, SYSOFF = 1
bq24251 bq24253 C009_SLUSBA1.gif
Charge EN Hi-Z EN
Figure 10. Input IQ with Charge Enable and Hi-Z
bq24251 bq24253 C012_SLUSBA1.gif
VBAT = 3.8 V VIN = 5 V VREG = 4.2 V
ILIM = 2 A
Figure 12. ICHG Accuracy with Internal Settings, VBAT = 3.8 V
bq24251 bq24253 Input_OVP_Event2_SLUSBA1.gif
VBAT = 3.9 V VOVP = 10.5 V
ICHG = 1 A ILIM = 1 A
Figure 14. Input OVP Event with INT

9 Detailed Description

9.1 Overview

The bq2425x is a highly-integrated, single-cell, Li-Ion battery charger with integrated current sense resistors targeted for space-limited, portable applications with high-capacity batteries. The single-cell charger has a single input that operates from either a USB port or AC wall adapter for a versatile solution.

9.2 Functional Block Diagram

bq24251 bq24253 Block_Diagram_LUSBA1A.gif

9.3 Feature Description

9.3.1 Charge Profile

The bq2425x family provides a switch-mode buck regulator with output power path and a charge controller to provide optimum performance over the full battery charge cycle. The control loop for the buck regulator has 7 primary feedback loops that can set the duty cycle:

  1. Constant Current (CC)
  2. Constant Voltage (CV)
  3. Minimum System Voltage (MINSYS)
  4. Input Current (IILIM)
  5. Input Voltage (VIN_DPM)
  6. Die Temperature
  7. Cycle by Cycle Current

The feedback with the minimum duty cycle will be chosen as the active loop. The bq24251 and bq24253 support a precision Li-Ion or Li-Polymer charging system for single-cell applications. The Dynamic Power Path Management (DPPM) feature regulates the system voltage to a minimum of VMINSYS, so that startup is enabled even with a missing or deeply discharged battery. This provides a much better overall user experience in mobile applications. Figure 15 illustrates a typical charge profile while also demonstrating the minimum system output voltage regulation.

bq24251 bq24253 profile_LUSBA1A.gif Figure 15. bq24250 Charge Profile and Minimum System Output Voltage Regulation

Figure 16 demonstrates a measured charge profile with the bq2425X while charging a 2700mAh Li-Ion battery at a charge rate of 1A.

bq24251 bq24253 C005_SLUSBA1.gif
ICHG = 1 A
Figure 16. bq24250 Charge Profile while Charging a 2700-mAh Battery at a 1A Charge Rate

Figure 17 illustrates the precharge behavior of the above charge profile by narrowing the time axis to 0 – 120 seconds.

bq24251 bq24253 C006_SLUSBA1.gif
ICHG = 1 A
Figure 17. bq24250 Charge Profile While Charging a 2700-mAh Battery at a 1A Charge During Precharge

9.3.2 EN1 and EN2 Pins

The bq24251 is an I2C and stand-alone part. The EN1 and EN2 are not available for this spin but the D+/D- are available to support the BC1.2 D+/D- Based Adapter Detection. It detects DCP, SDP, and CDP. Also it complies with the unconnected dead battery provision clause. D+ and D- pins are connected to the D+ and D- outputs of the USB port at power up. Also includes the detection of AppleTM and TomTomTM adapters where a 500 mA input current limit is enabled. The PG pin will remain high impedance state until the detection is completed.

The bq24253 is a stand-alone part only. Both of the D+/D- and EN1/EN2 are available for this spin. During power up, the device checks first for the D+/D-. The EN1 and EN2 do not take effect until D+/D- detection routine is over and a change on the status of the EN1 and EN2 occurred.

When the input current limit pins change state, the VIN_DPM threshold changes as well. See Table 1 for the detailed truth table:

Table 1. EN1 and EN2 Truth Table(1)

EN2 EN1 Input Current Limit VIN_DPM Threshold
0 0 500mA 4.36V
0 1 Externally programmed by ILIM (up to 2.0A) Externally programmed VDPM
1 0 100mA 4.36V
1 1 Input Hi-Z None
(1) USB3.0 support available. Contact your local TI representative for details.

9.3.3 External Settings: ISET, ILIM and VIN_DPM

If the external resistor settings are used, the following equations can be followed to configure the charge settings.

The fast charge current resistor (RISET) can be set by using the following formula:

Equation 1. bq24251 bq24253 eq1_riset_usba1A.gif

Where IFC is the desired fast charge current setting in Amperes.

The input current limit resistor (RILIM) can be set by using the following formula:

Equation 2. bq24251 bq24253 eq2_rilim_usba1A.gif

Where IIC is the desired input current limit in Amperes.

Based on the application diagram reference designators, the resistor R1 and R2 can be calculated as follows to set VIN_DPM:

Equation 3. bq24251 bq24253 eq3_vindpm_usba1A.gif

VIN_DPM should be chosen first along with R1. Choosing R1 first will ensure that R2 will be greater than the resistance chosen. This is the case since VIN_DPM should be chosen to be greater than 2x VREF_DPM.

If external resistors are not desired in order to reduce the BOM count, the VDPM and the ILIM pins can be shorted to set the internal defaults. The ISET resistor must be connected in order to avoid an unstable charging state. Note that floating the ILIM pin will result in zero charge current if the external ISET is configured via the I2C register. Table 2 summarizes the settings when the ILIM, ISET, and VIN_DPM pins are shorted to GND:

Table 2. ILIM, VDPM, and ISET Short Behaviors

PIN SHORTED BEHAVIOR
ILIM Input current limit = 2A
VDPM VIN_DPM = 4.68V
ISET Fault—Charging Suspended

9.3.4 BC1.2 D+/D– Detection

The bq24251 and the bq24253 include a fully BC1.2 compatible D+/D– source detection. This detection supports the following types of ports:

  • DCP (dedicated charge port)
  • CDP (charging downstream port)
  • SDP (standard downstream port)
  • Apple™/TomTom™ ports

This D+/D– detection algorithm does not support ACA (accessory charge adapter) identification, but the input current will default to 500 mA when a charge port is attached to the ACA and bq24251/3 is connected to the OTG port.

The D+/D– detection algorithm is only active when the device is in standalone mode (e.g. the host is not communicating with the device and the watch dog timer has expired). However, when the device is in host mode (e.g. host is communicating via I2C to the device) writing a ‘1’ to register 0x04 bit location 4 (DPDM_EN) forces the device to perform a D+/D– detection. This allows the D+/D– detection to be enabled in both host mode and default mode. The current limit will not be implemented in host mode.

As described previously, the bq24253 is a stand-alone part only. Both of the D+/D- and EN1/EN2 are available for this spin. The below flow diagram illustrates the behavior of the bq24253 in D+/D- detection and the effect of the EN1/EN2. During power up, the device checks first for the D+/D-. The EN1 and EN2 do not take effect until D+/D- detection routine is over and a change on the status of the EN1 and EN2 occurred.

bq24251 bq24253 bq24253_D_and_EN1EN2_flow_LUSBA1.gif Figure 18. bq24253 D+/D- and EN1/EN2

The D+/D– detection algorithm has 5 primary states. These states are termed the following:

  1. Data Contact Detect
  2. Primary Detection
  3. Secondary Detection
  4. Non-standard Adapter Detection (for Apple™ / TomTom™)
  5. Detection Configuration

The DCD state determines if the device has properly connected to the D+/D– lines. If the device is not in host mode and VBUS is inserted (or DPDM_EN is true) the device enters the DCD state and enable the appropriate algorithm. If the DCD timer expires, the device enters the Non-standard Adapter Detection (for Apple™ / TomTom™) state. Otherwise it enters the Primary Detection state.

When entering the Primary Detection state, the appropriate algorithm is enabled to determine whether to enter the secondary detection state for DCP and CDP or the secondary detection state for SDP/Non-Standard adaptors.

The non-standard adapter detection state for Apple™ / TomTom™ tests for the unique conditions for these non-standard adapters. If the algorithm passes the unique conditions found with these adapters, it proceeds to the Detection Configuration state. Otherwise it reverts back to the primary detection state.

The secondary detection state determines whether the input port is a DCP, CDP, SDP, or other non-standard adapters. If the Primary Detection state indicated that the input port is either a DCP or CDP, the device enables the appropriate algorithm to differentiate between the two. If the Primary Detection state indicated that the input port is either a SDP or non-standard adapter, the device enables the appropriate algorithm to differentiate between these two ports. Once complete, the device continues to the Detection Configuration state.

bq24251 bq24253 Fig_9_LUSBA1A.gif Figure 19. Detection Configuration State

The detection configuration state sets the input current limit of the device along with the charge timer. The exception to the CDP and the SDP settings are due to the Dead Battery Provision (DBP) clause for unconnected devices. This clause states that the device can pull a maximum of 100mA when not connected due to a dead battery. During the battery wakeup time, the device sources a voltage on the D+ pin in order to comply with the DBP clause. Once the battery is good, the system can clear the D+ pin voltage by writing a ‘1’ to address 0x07 bit position 4 (CLR_VDP). The device must connect to the host within 1sec of clearing the D+ pin voltage per the DPB clause.

A summary of the input current limits and timer configurations for each charge port type are found in Table 3.

Table 3. D+/D– Detection Results per Charge Port Type

CHARGE PORT TYPE INPUT CURRENT LIMIT CHARGE TIMER
DCP External ILIM 6 hours
CDP Dead Battery 100 mA 45 minutes
CDP Good Battery 1500 mA 6 hours
SDP Dead Battery 100 mA 45 minutes
SDP Good Battery Hi-Z N/A
Non-Standard 500 mA 6 hours

9.3.5 Transient Response

The bq24251 and bq24253 include an advanced hybrid switch mode control architecture. When the device is regulating the charge current (fast-charge), a traditional voltage mode control loop is used with a Type-3 compensation network. However, the bq24251 and bq24253 switch to a current-mode control loop when the device enters voltage regulation. Voltage regulation occurs in three charging conditions: 1) Minimum system voltage regulation (battery below MINSYS), 2) Battery voltage regulation (IBAT < ICHG), and 3) Charge Done (VSYS = VBAT + 3.5%). This architecture allows for superior transient performance when regulating the voltage due to the simplification of the compensation when using current mode control. The below transient response plot illustrates a 0A to 2A load step with 4.7 ms full cycle and 12% duty cycle. A 3.9 V Li-Ion battery is used. The input voltage is set to 5 V, charge current is set to 0.5 A and the input current is limited to 0.5 A. Note that a high line impedance input supply was used to indicate a realistic input scenario (adapter and cable). This is illustrated by the change in VIN seen at the input of the IC.

Figure 33 shows a ringing at both the input voltage and the input current. This is caused by the input current limit speed up comparator.

9.3.6 AnyBoot Battery Detection

The bq2425x family includes a sophisticated battery detection algorithm used to provide the system with the proper status of the battery connection. The AnyBoot battery algorithm also guarantees the detection of voltage based battery protectors that may have a long closure time (due to the hysteresis of the protection switch and the cell capacity). The AnyBoot battery detection algorithm utilizes a dual-voltage based detection methodology where the system rail switches between two primary voltage levels. The period of the voltage level shift is 64ms and therefore the power supply rejection of the down-system electronics detects this shift as essentially DC.

The AnyBoot algorithm has essentially 3 states. The 1st state is used to determine if the device has terminated with a battery attached. If it has terminated due to the battery not being present, then the algorithm moves to the 2nd and 3rd states. The 2nd and 3rd states shift the system voltage level between 4.2 V and 3.72 V. In each state there are comparator checks to determine if a battery has been inserted. The two states guarantees the detection of a battery even if the voltage of the cell is at the same level of the comparator thresholds. The algorithm will remain in states 2 and 3 until a battery has been inserted. The flow diagram details for the Anyboot algorithm are shown in Figure 20.

bq24251 bq24253 Fig_10_LUSBA1A.gif Figure 20. AnyBoot Battery Detection Flow Diagram

9.3.7 Input Voltage Based DPM

During normal charging process, if the input power source is not able to support the programmed or default charging current, the supply voltage deceases. Once the supply drops to VIN_DPM, the input current limit is reduced down to prevent the further drop of the supply. When the IC enters this mode, the charge current is lower than the set. This feature ensures IC compatibility with adapters with different current capabilities without a hardware change.

9.3.8 Sleep Mode

The bq2425x enters the low-power sleep mode if the voltage on VIN falls below sleep-mode entry threshold, VBAT+VSLP, and VIN is higher than the under-voltage lockout threshold, VUVLO. This feature prevents draining the battery during the absence of VIN. When VIN < VBAT+VSLP, the bq2425x turns off the PWM converter, turns on the battery FET, sends a single 256-µs pulse on the STAT and INT outputs and the FAULT/STAT bits of the status registers are updated in the I2C. Once VIN > VBAT+VSLP with the hysteresis, the FAULT bits are cleared and the device initiates a new charge cycle.

9.3.9 Input Over-Voltage Protection

The bq2425x provides over-voltage protection on the input that protects downstream circuitry. The built-in input over-voltage protection to protect the device and other components against damage from overvoltage on the input supply (Voltage from VIN to PGND). When VIN > VOVP, the bq2425x turns off the PWM converter, turns on the battery FET, sends a single 256-μs pulse on the STAT and INT outputs and the FAULT/STAT bits of the status registers and the battery/supply status registers are updated in the I2C. Once the OVP fault is removed, the FAULT bits are cleared and the device returns to normal operation.

9.3.10 NTC Monitor

The bq24251 and bq24253 include the integration of an NTC monitor pin that complies with the JEITA specification (PSE also available upon request). The voltage based NTC monitor allows for the use of any NTC resistor with the use of the circuit shown in Figure 21.

bq24251 bq24253 Fig_11_LUSBA1A.gif Figure 21. Voltage Based NTC Circuit

The use of R3 is only necessary when the NTC does not have a beta near 3500K. When deviating from this beta, error will be introduced in the actual temperature trip thresholds. The trip thresholds are summarized below which are typical values provided in the specification table.

Table 4. Ratiometric TS Trip Thresholds for JEITA Compliant Charging

TS THRESHOLDS VTS/VLDO
VHOT 30.0%
VWARM 38.3%
VCOOL 56.5%
VCOLD 60%

When sizing for R2 and R3, it is best to solve two simultaneous equations that ensure the temperature profile of the NTC network will cross the VHOT and VCOLD thresholds. The accuracy of the VWARM and VCOOL thresholds will depend on the beta of the chosen NTC resistor. The two simultaneous equations are shown below:

Equation 4. bq24251 bq24253 eq4_Vc_usba1A.gif

Where the NTC resistance at the VHOT and VCOLD temperatures must be resolved as follows:

Equation 5. bq24251 bq24253 eq5_Rntc_usba1A.gif

To be JEITA compliant, TCOLD must be 0°C and THOT must be 60°C. If an NTC resistor is chosen such that the beta is 4000K and the nominal resistance is 10 kΩ, the following R2 and R3 values result from the above equations:

R2 = 5 kΩ

R3 = 9.82 kΩ

Figure 22 illustrates the temperature profile of the NTC network with R2 and R3 set to the above values.

bq24251 bq24253 Fig_12_LUSBA1A.gif Figure 22. Voltage Based NTC Circuit Temperature Profile

For JEITA compliance, the TCOOL and TWARM levels are to be 10°C and 45°C respectively. However, there is some error due to the variation in beta from 3500K. As shown above, the actual temperature points at which the NTC network crosses the VCOOL and VWARM are 13°C and 47°C respectively. This error is small but should be considered when choosing the final NTC resistor.

Once the resistors are configured, the internal JEITA algorithm applies the profile shown in Figure 23at each trip point for battery voltage regulation and charge current regulation. In order to ensure continuation of the charge process when an almost-full battery stops charging due to a cold temperature fault, it is recommended that a CE toggle is done on the I2C or CE pin.

bq24251 bq24253 Fig_13_LUSBA1A.gif Figure 23. JEITA Profile for Voltage and Current Regulation Loops

9.3.11 Production Test Mode

To aid in end mobile device product manufacturing, the bq2425x includes a Production Test Mode (PTM), where the device is essentially a DC-DC buck converter. In this mode the input current limit to the charger is disabled and the output current limit is limited only by the inductor cycle-by-cycle current (e.g. 3.5A). The PTM mode can be used to test systems with high transient loads such as GSM transmission without the need of a battery being present.

As a means of safety, the Anyboot algorithm will determine if a battery is not present at the output prior to enabling the PTM mode. If a battery is present and the software attempts to enter PTM mode, the device will not enable PTM mode.

9.3.12 Safety Timer

At the beginning of charging process, the bq2425x starts the safety timer. This timer is active during the entire charging process. If charging has not terminated before the safety timer expires, the IC enters suspend mode where charging is disabled. The safety timer time is selectable using the I2C interface. A single 256μs pulse is sent on the STAT and INT outputs and the FAULT/ bits of the status registers are updated in the I2C. This function prevents continuous charging of a defective battery if the host fails to reset the safety timer. When 2xTMR_EN bit is set to “1”, the safety timer runs at a rate 2x slower than normal (the timer is extended) under the following conditions:

  • Pre-charge or linear mode (minimum system voltage mode),
  • During thermal regulation where the charge current is reduced,
  • During TS fault where the  charge current is reduced due to temperature rise on the battery, input current limit

The safety timer is suspended during OVP, TS fault where charge is disabled, thermal shut down, and sleep mode. Removing the battery causes the safety timer to be reset and NOT halted/paused.        

9.3.13 Watchdog Timer

In addition to the safety timer, the bq24251 contains a 50-second watchdog timer that monitors the host through the I2C interface. Once a write is performed on the I2C interface, a watchdog timer is reset and started. The watchdog timer can be disabled by writing “0” on WD_EN bit of register #1. Writing “1” on that bit enables and resets the timer.

If the watchdog timer expires, the IC enters DEFAULT mode where the default charge parameters are loaded and charging continues. The I2C may be accessed again to re-initialize the desired values and restart the watchdog timer as long as the safety timer has not expired. Once the safety timer expires, charging is disabled.

9.3.14 Fault Modes

The bq2425x family includes several hardware fault detections. This allows for specific conditions that could cause a safety concern to be detected. With this feature, the host can be alleviated from monitoring unsafe charging conditions and also allows for a “fail-safe” if the host is not present. The table below summarizes the faults that are detected and the resulting behavior.

FAULT CONDITION CHARGER BEHAVIOR SAFETY TIMER BEHAVIOR
Input OVP VSYS and ICHG Disabled Suspended
Input UVLO VSYS and ICHG Disabled Reset
Sleep (VIN < VBAT) VSYS and ICHG Disabled Suspended
TS Fault (Batter Over Temp) VSYS Active and ICHG Disabled Suspended
Thermal Shutdown VSYS and ICHG Disabled Suspended
Timer Fault VSYS Active and ICHG Disabled Reset
No Battery VSYS Active and ICHG Disabled Suspended
ISET Short VSYS Active and ICHG Disabled Suspended
Input Fault & LDO Low VSYS and ICHG Disabled Suspended

9.3.15 Dynamic Power Path Management

The bq24251 and bq24253 feature a SYS output that powers the external system load connected to the battery. This output is active whenever a valid source is connected to IN or BAT. The following discusses the behavior of SYS with a source connected to the supply or a battery source only.

When a valid input source is connected to the input and the charge is enabled, the charge cycle is initiated. In case of VBAT > ~3.5V, the SYS output is connected to VBAT. If the SYS voltage falls to VMINSYS, it is regulated to the VSYSREG threshold to maintain the system output even with a deeply discharged or absent battery. In this mode, the SYS output voltage is regulated by the buck converter and the battery FET is linearly regulated to regulate the charge current into the battery. The current from the supply is shared between charging the battery and powering the system load at SYS.

The dynamic power path management (DPPM) circuitry of the bq2425x monitors the current limits continuously and if the SYS voltage falls to the VMINSYS voltage, it adjusts charge current to maintain the minimum system voltage and supply the load on SYS. If the charge current is reduced to zero and the load increases further, the bq2425x enters battery supplement mode. During supplement mode, the battery FET is turned on and the battery supplements the system load.

If the battery is ever 5% above the regulation threshold, the battery OVP circuit shuts the PWM converter off and the battery FET is turned on to discharge the battery to safe operating levels. Battery OVP FAULT is shown in the I2C FAULT registers.

When no input source is available at the input and the battery is connected, the battery FET is turned on similar to supplement mode. The battery must be above VBATUVLO threshold to turn on the SYS output. In this mode, the current is not regulated; however, there is a short circuit current limit. If the short circuit limit is reached, the battery FET is turned off for the deglitch time. After the deglitch time, the battery FET is turned on to test and see if the short has been removed. If it has not, the FET turns off and the process repeats until the short is removed. This process is to protect the internal FET from over current.

9.4 Device Functional Modes

9.4.1 I2C Operation (Host Mode / Default Mode)

There are two primary modes of operation when interacting with the charge parameters of the bq24251 chargers: 1) Host mode operation where the I2C registers set the charge parameters, and 2) Default mode where the register defaults set the charge parameters.

Figure 24 illustrates the behavior of the bq24251 when transitioning between host mode and stand alone mode:

bq24251 bq24253 bq24250_i2c_EN1_EN2_LUSBA1.gif Figure 24. Host Mode and Stand Alone Mode Handoff

Once the battery or input is inserted and above the good thresholds, the device determines if an I2C command has been received in order to discern whether to operate from the I2C registers or the internal register defaults. In stand-alone mode the input current limit is set by the EN1/EN2 pins. If the watch dog timer is enabled, the device will enter stand alone operation once the watchdog timer expires and re-initiate the default charge settings.

9.5 Programming

9.5.1 Serial Interface Description

The bq2425x uses an I2C compatible interface to program charge parameters. I2C ™ is a 2-wire serial interface developed by NXP (formerly Philips Semiconductor, see I2C-Bus Specification, Version 5, October 2012). The bus consists of a data line (SDA) and a clock line (SCL) with pull-up structures. When the bus is idle, both SDA and SCL lines are pulled high. All the I2C compatible devices connect to the I2C bus through open drain I/O pins, SDA and SCL. A master device, usually a microcontroller or a digital signal processor, controls the bus. The master is responsible for generating the SCL signal and device addresses. The master also generates specific conditions that indicate the START and STOP of data transfer. A slave device receives and/or transmits data on the bus under control of the master device.

The bq2425x device works as a slave and supports the following data transfer modes, as defined in the I2C Bus™ Specification: standard mode (100 kbps) and fast mode (400 kbps).  The interface adds flexibility to the battery charge solution, enabling most functions to be programmed to new values depending on the instantaneous application requirements. The I2C circuitry is powered from IN when a supply is connected.

The data transfer protocol for standard and fast modes is exactly the same; therefore, they are referred to as the F/S-mode in this document. The bq24251 device only supports 7-bit addressing. The device 7-bit address is defined as ‘1101010’ (0x6Ah).

To avoid I2C hang-ups, a timer (tI2CRESET) runs during I2C transactions. If the transaction takes longer than tI2CRESET, any additional commands are ignored and the I2C engine is reset. The timeout is reset with START and repeated START conditions and stops when a valid STOP condition is sent.

9.5.1.1 F/S Mode Protocol

The master initiates data transfer by generating a start condition. The start condition is when a high-to-low transition occurs on the SDA line while SCL is high, as shown in Figure 25. All I2C -compatible devices should recognize a start condition.

bq24251 bq24253 start_stop_lusba2.gif Figure 25. START and STOP Condition

The master then generates the SCL pulses, and transmits the 7-bit address and the read/write direction bit R/W on the SDA line. During all transmissions, the master ensures that data is valid. A valid data condition requires the SDA line to be stable during the entire high period of the clock pulse (see Figure 26). All devices recognize the address sent by the master and compare it to their internal fixed addresses. Only the slave device with a matching address generates an acknowledge (see Figure 27) by pulling the SDA line low during the entire high period of the ninth SCL cycle. Upon detecting this acknowledge, the master knows that communication link with a slave has been established.

bq24251 bq24253 serial_inf_lusba2.gif Figure 26. Bit Transfer on the Serial Interface

The master generates further SCL cycles to either transmit data to the slave (R/W bit 0) or receive data from the slave (R/W bit 1). In either case, the receiver needs to acknowledge the data sent by the transmitter. So an acknowledge signal can either be generated by the master or by the slave, depending on which one is the receiver. The 9-bit valid data sequences consisting of 8-bit data and 1-bit acknowledge can continue as long as necessary. To signal the end of the data transfer, the master generates a stop condition by pulling the SDA line from low to high while the SCL line is high (see Figure 25). This releases the bus and stops the communication link with the addressed slave. All I2C compatible devices must recognize the stop condition. Upon the receipt of a stop condition, all devices know that the bus is released, and wait for a start condition followed by a matching address. If a transaction is terminated prematurely, the master needs to send a STOP condition to prevent the slave I2C logic from remaining in a incorrect state. Attempting to read data from register addresses not listed in this section will result in 0xFFh being read out.

bq24251 bq24253 i2c_bus_lusba2.gif Figure 27. Acknowledge on the I2C Bus
bq24251 bq24253 bus_proto_lusba2.gif Figure 28. Bus Protocol

9.6 Register Maps

9.6.1 Register #1


Memory location: 00, Reset state: x0xx xxxx

BIT NAME READ/WRITE FUNCTION
B7(MSB) WD_FAULT Read only Read:0 – No fault
1 – WD timeout if WD enabled
B6 WD_EN Read/Write 0 – Disable
1 – Enable (also resets WD timer)
B5 STAT_1 Read only 00 – Ready
01 – Charge in progress
10 – Charge done
11 – Fault
B4 STAT_0 Read only
B3 FAULT_3 Read only 0000 – Normal
0001 – Input OVP
0010 – Input UVLO
0011 – Sleep
0100 – Battery Temperature (TS) Fault
0101 – Battery OVP
0110 – Thermal Shutdown
0111 – Timer Fault
1000 – No Battery connected
1001 – ISET short
1010 – Input Fault and LDO low
B2 FAULT_2 Read only
B1 FAULT_1 Read only
B0(LSB) FAULT_0 Read only
  • WD_FAULT – ‘0’ indicates no watch dog fault has occurred, where a ‘1’ indicates a fault has previously occurred.
  • WD_EN – Enables or disables the internal watch dog timer. A ‘1’ enables the watch dog timer and a ‘0’ disables it. '1' is default for bq24251 only.
  • STAT – Indicates the charge controller status.
  • FAULT – Indicates the faults that have occurred. If multiple faults occurred, they can be read by sequentially addressing this register (e.g. reading the register 2 or more times). Once all faults have been read and the device is in a non-fault state, the fault register will show “Normal”. Regarding the "Input Fault & LDO Low" the IC indicates this if LDO is low and at the same time the input is below UVLO or coming out of UVLO with LDO still low.

9.6.2 Register #2


Memory location: 01, Reset state: xxxx 1100

BIT NAME READ/WRITE FUNCTION
B7(MSB) Reset Write only Write:
1 – Reset all registers to default values
0 – No effect
B6 IIN_ILIMIT_2 Read/Write 000 – USB2.0 host with 100mA current limit
001 – USB3.0 host with 150mA current limit
010 – USB2.0 host with 500mA current limit
011 – USB3.0 host with 900mA current limit
100 – Charger with 1500mA current limit
101 – Charger with 2000mA current limit
110 – External ILIM current limit
111- No input current limit with internal clamp at 3A (PTM MODE)
B5 IIN_ILIMIT_1 Read/Write
B4 IIN_ILIMIT _0 Read/Write
B3 EN_STAT Read/Write 0 – Disable STAT function
1 – Enable STAT function
B2 EN_TERM Read/Write 0 – Disable charge termination
1 – Enable charge termination
B1 CE Read/Write 0 – Charging is enabled
1 – Charging is disabled
B0 (LSB) HZ_MODE Read/Write 0 – Not high impedance mode
1 – High impedance mode
  • IIN_LIMIT – Sets the input current limit level. When in host mode this register sets the regulation level. However, when in standalone mode (e.g. no I2C writes have occurred after power up or the WD timer has expired) the external resistor setting for IILIM sets the regulation level.
  • EN_STAT – Enables and disables the STAT pin. When set to a ‘1’ the STAT pin is enabled and function normally. When set to a ‘0’ the STAT pin is disabled and the open drain FET is in HiZ mode.
  • EN_TERM – Enables and disables the termination function in the charge controller. When set to a ‘1’ the termination function will be enabled. When set to a ‘0’ the termination function will be disabled. When termination is disabled, there are no indications of the charger terminating (i.e. STAT pin or STAT registers).
  • CE – The charge enable bit which enables or disables the charge function. When set to a ‘0’, the charger operates normally. When set to a ‘1’, the charger is disables by turning off the BAT FET between SYS and BAT. The SYS pin continues to stay active via the switch mode controller if an input is present.
  • HZ_MODE – Sets the charger IC into low power standby mode. When set to a ‘1’, the switch mode controller is disabled but the BAT FET remains ON to keep the system powered. When set to a ‘0’, the charger operates normally.

9.6.3 Register #3


Memory location: 02, Reset state: 1000 1111

BIT NAME READ/WRITE FUNCTION
B7(MSB) VBATREG_5(1) Read/Write Battery Regulation Voltage: 640mV (default 1)
B6 VBATREG_4(1) Read/Write Battery Regulation Voltage: 320mV (default 0)
B5 VBATREG_3(1) Read/Write Battery Regulation Voltage: 160mV (default 0)
B4 VBATREG_2(1) Read/Write Battery Regulation Voltage: 80mV (default 0)
B3 VBATREG_1(1) Read/Write Battery Regulation Voltage: 40mV (default 1)
B2 VBATREG_0(1) Read/Write Battery Regulation Voltage: 20mV (default 1)
B1(4)(5) USB_DET_1/EN2 Read Only Return USB detection result or pin EN2/EN1 status –
00 – DCP detected / EN2=0, EN1=0
01 – CDP detected / EN2=0, EN1=1
10 – SDP detected / EN2=1, EN1=0
11 – Apple/TT or non-standard adaptor detected / EN2=1, EN1=1
B0(LSB) USB_DET_0/EN1 Read Only
(1) Charge voltage range is 3.5 V—4.44 V with the offset of 3.5 V and step of 20 mV (default 4.2 V)
  • VBATREG – Sets the battery regulation voltage
  • USB_DET/EN – Provides status of the D+/D– detection-results for spins that include the D+/D– pins or the state of EN1/EN2 for spins that include the EN1/EN2 pins

9.6.4 Register #4


Memory location: 03, Reset state: 1111 1000

BIT NAME READ/WRITE FUNCTION
B7(MSB) ICHG_4(1) (2) Read/Write Charge current
800 mA – (default 1)
B6 ICHG_3(1) (2) Read/Write Charge current:
400 mA – (default 1)
B5 ICHG_2(1) (2) Read/Write Charge current:
200 mA – (default 1)
B4 ICHG_1(1) (2) Read/Write Charge current:
100 mA – (default 1)
B3 ICHG_0(1) (2) Read/Write Charge current:
50 mA – (default 1)
B2 ITERM_2(3) Read/Write Termination current sense threshold: 100 mA (default 0)
B1 ITERM_1(3) Read/Write Termination current sense threshold: 50 mA (default 0)
B0(LSB) ITERM_0(3) Read/Write Termination current sense threshold: 25 mA (default 0)
(1) Charge current offset is 500 mA and default charge current is external (maximum is 2.0A)
(2) When all bits are 1’s, it is external ISET charging mode
(3) Termination threshold voltage offset is 50 mA. The default termination current is 50 mA if the charge is selected from I2C. Otherwise, termination is set to 10% of ICHG in external I_set mode with ±10% accuracy.
  • ICHG – Sets the charge current regulation
  • ITERM – Sets the current level at which the charger will terminate

9.6.5 Register #5


Memory location: 04, Reset state: xx00 x010

BIT NAME READ/WRITE FUNCTION
B7(MSB) LOOP_STATUS1(1) Read Only 00 – No loop is active that slows down timer
01 – VIN_DPM regulation loop is active
10 – Input current limit loop is active
11 – Thermal regulation loop is active
B6 LOOP_STATUS0(1) Read Only
B5 LOW_CHG Read/Write 0 – Normal charge current set by 03h
1 – Low charge current setting 330mA (default 0)
B4 DPDM_EN Read/Write 0 – Bit returns to 0 after D+/D– detection is performed
1 – Force D+/D– detection (default 0)
B3 CE_STATUS Read Only 0 – CE low
1 – CE high
B2 VINDPM_2 (2) Read/Write Input VIN-DPM voltage: 320mV (default 0)
B1 VINDPM_1 (2) Read/Write Input VIN-DPM voltage: 160mV (default 1)
B0(LSB) VINDPM_0 (2) Read/Write Input VIN-DPM voltage: 80mV (default 0)
(1) LOOP_STATUS bits show if there are any loop is active that slow down the safety timer. If a status occurs, these bits announce the status and do not clear until read. If more than one occurs, the first one is shown.
(2) VIN-DPM voltage offset is 4.20V and default VIN_DPM threshold is 4.36 V.
  • LOOP_STATUS – Provides the status of the active regulation loop. The charge controller allows for only one loop can regulate at a time.
  • LOW_CHG – When set to a ‘1’, the charge current is reduced 330mA independent of the charge current setting in register 0x03. When set to ‘0’, the charge current is set by register 0x03.
  • DPDM_EN – Forces a D+/D- detection routine to be executed once a ‘1’ is written. This is independent of the input being supplied.
  • CE_STATUS – Provides the status of the CE pin level. If the CE pin is forced high, this bit returns a ‘1’. If the CE pin is forced low, this bit returns a ‘0’.
  • VINDPM – Sets the input VDPM level.

9.6.6 Register #6


Memory location: 05, Reset state: 101x 1xxx

BIT NAME READ/WRITE FUNCTION
B7(MSB) 2XTMR_EN Read/Write 0 – Timer not slowed at any time
1 – Timer slowed by 2x when in thermal regulation, VIN_DPM or DPPM (default 1)
B6 TMR_1 Read/Write Safety Timer Time Limit
00 – 0.75 hour fast charge
01 – 6 hour fast charge (default 01)
10 – 9 hour fast charge
11 – Disable safety timers
B5 TMR_2 Read/Write
B4 SYSOFF Read/Write 0 – SYSOFF disabled
1 – SYSOFF enabled
B3 TS_EN Read/Write 0 – TS function disabled
1 – TS function enabled (default 1)
B2 TS_STAT2 Read only TS Fault Mode:
000 – Normal, No TS fault
001 – TS temp > THOT (Charging suspended for JEITA and Standard TS)
010 – TWARM < TS temp < THOT (Regulation voltage is reduced for JEITA standard)
011 – TCOLD < TS temp < TCOOL (Charge current is reduced for JEITA standard)
100 – TS temp < TCOLD (Charging suspended for JEITA and Standard TS)
101 – TFREEZE < TS temp < TCOLD (Charging at 3.9V and 100mA and only for PSE option only)
110 – TS temp < TFREEZE (Charging suspended for PSE option only)
111 – TS open (TS disabled)
B1 TS_STAT1 Read only
B0(LSB) TS_STAT0 Read only
  • 2xTMR_EN – When set to a ‘1’, the 2x Timer function is enabled and allows for the timer to be extended if a condition occurs where the charge current is reduced (i.e. VIN_DPM, thermal regulation, etc.). When set to a ‘0’, this function is disabled and the normal timer will always be executed independent of the current reduce conditions.
  • SYSOFF – When set to a ‘1’ and the input is removed, the internal battery FET is turned off in order to reduce the leakage from the BAT pin to less than 1µA. Note that this disconnects the battery from the system. When set to a ‘0’, this function is disabled.
  • TS_EN – Enables and disables the TS function. When set to a ‘0’ the TS function is disabled otherwise it is enabled. Only applies to spins that have a TS pin.
  • TS_STAT – Provides status of the TS pin state for versions that have a TS pin. “100” indicates the TS temp < TCOLD and charging suspended for JEITA Standard. In order to ensure continuation of the charge process when an almost-full battery stops charging due to a cold temperature fault, it is recommended that a CE toggle is done on the I2C or CE pin.

9.6.7 Register #7


Memory location: 06, Reset state: 1110 0000

BIT NAME READ/WRITE FUNCTION
B7(MSB) VOVP_2 Read/Write OVP voltage:
000 – 6.0 V; 001 – 6.5 V; 010 – 7.0 V; 011 – 8.0 V
100 – 9.0 V; 101 – 9.5 V; 110 – 10.0 V; 111 –10.5 V
B6 VOVP_1 Read/Write
B5 VOVP_0 Read/Write
B4 CLR_VDP Read/Write 0 – Keep D+ voltage source on during DBP charging
1 – Turn off D+ voltage source to release D+ line
B3 FORCE_BATDET Read/Write 0 – Enter the battery detection routine only if TERM is true or Force PTM is true
1 – Enter the battery detection routine
B2 FORCE_PTM Read/Write 0 – PTM mode is disabled
1 – PTM mode is enabled
B1 N/A Read/Write Not available. Keep set to 0.
B0(LSB) N/A Read/Write Not available. Keep set to 0.
  • VOVP – Sets the OVP level
  • CLR_VDP – When the D+/D– detection has finished, some cases require the D+ pin to force a voltage of 0.6 V. This bit allows the system to clear the voltage prior to any communication on the D+/D– pins. A ‘1’ clears the voltage at the D+ pin if present.
  • FORCE_BATDET – Forces battery detection and provides status of the battery presence. A logic ‘1’ enables this function.
  • FORCE_PTM – Puts the device in production test mode (PTM) where the input current limit is disabled. Note that a battery must not be present prior to using this function. Otherwise the function will not be allowed to execute. A logic ‘1’ enables the PTM function.

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

The bq2425x devices are high-efficiency switched-mode chargers. The device has integrated power FETs that are able to charge at up to a 2-A charging rate, and an integrated 50-mA LDO. In I2C mode (bq24251), the device has programmable battery charge voltage (VBATREG), charge current (ICHG), input current limit (ILIM), and input over-voltage protection threshold (VOVP). The charge current and the input current limit are programmed using external resistors (RISET and RILIM) connected from the ISET and ILIM pins to ground. The range of these resistors can be found in the datasheet. Both of these currents can be programmed up to 2 A. The device also has complete system-level protection such as input under-voltage lockout (UVLO), input over-voltage protection (OVP), battery OVP, sleep mode, thermal regulation and thermal shutdown, voltage-based NTC monitoring input, and safety timers.

10.2 Typical Application

bq24251 bq24253 bq24251_app_circuit_LUSBA1.gif Figure 29. bq24251 Typical Application Circuit

10.2.1 Design Requirements

Use the following typical application design procedure to select external components values for the bq24251 device.

Table 5. Design Parameters

SPECIFICATION TEST CONDITION MIN TYP MAX UNIT
Input DC voltage, VIN Recommended input voltage range 4.35 10.5 V
Input current Recommended input current range 2 A
Charge current Fast charge current range 0.5 2 A
Output regulation voltage Standalone mode or I2C default mode 4.2 V
Output regulation voltage I2C host mode: operating in voltage regulation, programmable range 3.5 4.44 V
LDO LDO output voltage 4.9 V

10.2.2 Detailed Design Procedure

10.2.2.1 Inductor Selection

The inductor selection depends on the application requirements. The bq24250 is designed to operate at around 1 µH. The value will have an effect on efficiency, and the ripple requirements, stability of the charger, package size, and DCR of the inductor. The 1-μH inductor provides a good tradeoff between size and efficiency and ripple.

Once the inductance has been selected, the peak current is needed in order to choose the saturation current rating of the inductor. Make sure that the saturation current is always greater than or equal to the calculated IPEAK. The following equation can be used to calculate the current ripple:

Equation 6. ΔIL = {VBAT (VIN – VBAT)}/(VIN x ƒs x L)

Then use current ripple to calculate the peak current as follows:

Equation 7. IPEAK = Load x (1 + ΔIL/2)

In this design example, the regulation voltage is set to 4.2 V, the input voltage is 5 V and the inductance is selected to be 1-µH. The maximum charge current that can be used in this application is 1A and can be set by I2C command. The peak current is needed in order to choose the saturation current rating of the inductor. Using equation 6 and 7, ΔIL is calculated to be 0.224 A and the inductor peak current is 1.112 A. A 1-µF BAT cap is needed and 22-µF SYS cap is needed on the system trace.

The default settings for external fast charge current and external setting of current limit are chosen to be IFC=500 mA and ILIM=1 A. RISET and RILIM need to be calculated using equation 1 and 2 in the data sheet.

The fast charge current resistor (RISET) can be set as follows:

RISET=250/0.5A=500Ω

The input current limit resistor (RILIM) can be set as follows:

RILIM= 270/1A=270Ω

The external settings of VIN_DPM can be designed by calculating R1 and R2 according to Equation 3 in this data sheet and the typical application circuit. VIN_DPM should be chosen first along with R1. VIN_DPM is chosen to be 4.48 V and R1 is set to 274 KΩ in this design example. Using equation 3, the value of R2 is calculated to be 100 KΩ.

In this design example, the application needs to be JEITA compliant. Thus, TCOLD must be 0°C and THOT must be 60°C. If an NTC resistor is chosen such that the beta is 4500K and the nominal resistance is 13 KΩ, the calculated R3 and R4 values are 5 KΩ and 8.8 KΩ respectively. These results are obtained from Equation 4 and Equation 5 in this data sheet.

10.2.3 Application Curves

bq24251 bq24253 Start_Up2_SLUSBA1.gif
VBAT = 3.8 V ICHG = 1 A
ISYS = 0 A ILIM = 1.5 A
Figure 30. Startup
bq24251 bq24253 CCM_Operation2_SLUSBA1.gif
VBAT = 3.3 V ICHG = 1 A VIN = 5.2 V
ISYS = 0 A
Figure 32. 1.0 µH CCM Operation
bq24251 bq24253 DPM_Start_Up2_SLUSBA1.gif
VBAT = 3.6 V ICHG = 2 A VDPM = 4.36 V
ISYS = 0 A ILIM = 0.5 A
Figure 31. VDPM Startup, 4.2 V
bq24251 bq24253 bq2425x_tran_resp_CH_EN_lusba1a.png
Figure 33. 2-A Load Step Transient

11 Power Supply Recommendations

The devices are designed to operate from an input voltage range between 4.35V and 10.5V. This input supply must be well regulated. If the input supply is located more than a few inches from the bq24250 charger, additional bulk capacitance may be required in addition to the ceramic bypass capacitors.

12 Layout

12.1 Layout Guidelines

  1. Place the BOOT, PMID, IN, BAT, and LDO capacitors as close as possible to the IC for optimal performance.
  2. Connect the inductor as close as possible to the SW pin, and the SYS/CSIN cap as close as possible to the inductor minimizing noise in the path.
  3. Place a 1-μF PMID capacitor as close as possible to the PMID and PGND pins, making the high frequency current loop area as small as possible.
  4. The local bypass capacitor from SYS/CSIN to GND must be connected between the SYS/CSIN pin and PGND of the IC. This minimizes the current path loop area from the SW pin through the LC filter and back to the PGND pin.
  5. Place all decoupling capacitors close to their respective IC pins and as close as possible to PGND (do not place components such that routing interrupts power-stage currents). All small control signals must be routed away from the high-current paths.
  6. To reduce noise coupling, use a ground plane if possible, to isolate the noisy traces from spreading its noise all over the board. Put vias inside the PGND pads for the IC.
  7. The high-current charge paths into IN, Micro-USB, BAT, SYS/CSIN, and from the SW pins must be sized appropriately for the maximum charge current to avoid voltage drops in these traces.
  8. For high-current applications, the balls for the power paths must be connected to as much copper in the board as possible. This allows better thermal performance because the board conducts heat away from the IC.

12.2 Layout Example

bq24251 bq24253 pcb_layout_lusba1.gif Figure 34. Recommended bq2425x PCB Layout for DSBGA Package

12.3 Thermal Considerations

During the charging process, to prevent overheat of the chip, bq2425x monitors the junction temperature, TJ, of the die and begins to taper down the charge current once TJ reaches the thermal regulation threshold, TREG. The charge current is reduced when the junction temperature increases above TREG. Once the charge current is reduced, the system current is reduced while the battery supplements the load to supply the system. This may cause a thermal shutdown of the IC if the die temperature rises too. At any state, if TJ exceeds TSHTDWN, bq2425x suspends charging and disables the buck converter. During thermal shutdown mode, PWM is turned off, all safety timers are suspended, and a single 256μs pulse is sent on the STAT and INT outputs and the FAULT/STAT bits of the status registers are updated in the I2C. A new charging cycle begins when TJ falls below TSHTDWN by approximately 10°C.

13 器件和文档支持

13.1 相关链接

下面的表格列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链接。

Table 6. 相关链接

器件 产品文件夹 样片与购买 技术文档 工具和软件 支持和社区
bq24251 请单击此处 请单击此处 请单击此处 请单击此处 请单击此处
bq24253 请单击此处 请单击此处 请单击此处 请单击此处 请单击此处

13.2 商标

All trademarks are the property of their respective owners.

13.3 静电放电警告

esds-image

这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。

13.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。

14.1 封装摘要

bq24251 bq24253 topside_markings_51_53_lusba1a.gif


重要声明

德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 JESD48最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的TI 销售条款与条件。

TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为有必要时才会使用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应用相关的风险,客户应提供充分的设计与操作安全措施。

TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权限作出任何保证或解释。TI所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它知识产权方面的许可。

对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件或服务的所有明示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而对 TI及其代理造成的任何损失。

在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。

TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。

只有那些 TI 特别注明属于军用等级或“增强型塑料”的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面向军事或航空航天用途的 TI组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有法律和法规要求。

TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949要求,TI不承担任何责任。

产品

  • 数字音频: www.ti.com.cn/audio
  • 放大器和线性器件: www.ti.com.cn/amplifiers
  • 数据转换器: www.ti.com.cn/dataconverters
  • DLP® 产品: www.dlp.com
  • DSP - 数字信号处理器: www.ti.com.cn/dsp
  • 时钟和计时器: www.ti.com.cn/clockandtimers
  • 接口: www.ti.com.cn/interface
  • 逻辑: www.ti.com.cn/logic
  • 电源管理: www.ti.com.cn/power
  • 微控制器 (MCU): www.ti.com.cn/microcontrollers
  • RFID 系统: www.ti.com.cn/rfidsys
  • OMAP应用处理器: www.ti.com/omap
  • 无线连通性: www.ti.com.cn/wirelessconnectivity

应用

  • 通信与电信: www.ti.com.cn/telecom
  • 计算机及周边: www.ti.com.cn/computer
  • 消费电子: www.ti.com/consumer-apps
  • 能源: www.ti.com/energy
  • 工业应用: www.ti.com.cn/industrial
  • 医疗电子: www.ti.com.cn/medical
  • 安防应用: www.ti.com.cn/security
  • 汽车电子: www.ti.com.cn/automotive
  • 视频和影像: www.ti.com.cn/video

德州仪器在线技术支持社区: www.deyisupport.com

邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122
Copyright© 2016, 德州仪器半导体技术(上海)有限公司

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale