TPS54332 器件是一款 28V、3.5A 非同步降压转换器,该器件集成了一个低 RDS(on) 的高侧 MOSFET。为了提高轻负载条件下的效率,将自动激活脉冲跳跃 Eco-mode 特性。此外,1μA 的关断电源电流使得该器件适用于电池供电类应用。具有内部斜坡补偿的电流模式控制简化了外部补偿计算,并在允许使用陶瓷输出电容器的同时减少了元件数量。一个电阻分压器对输入欠压锁定的迟滞进行编程。过压瞬态保护电路可限制启动期间和瞬态条件下的电压过冲。逐周期电流限制方案、频率折返和热关断特性可在过载条件下对器件和负载施加保护。TPS54332 采用 8 引脚 SOIC PowerPAD 集成电路封装。
Changes from Revision C (November 2014) to Revision D (September 2023)
Changes from Revision B (February 2012) to Revision C (November 2014)
PIN | I/O | DESCRIPTION | |
---|---|---|---|
NAME | NO. | ||
BOOT | 1 | O | A 0.1-μF bootstrap capacitor is required between BOOT and PH. If the voltage on this capacitor falls below the minimum requirement, the high-side MOSFET is forced to switch off until the capacitor is refreshed. |
VIN | 2 | I | Input supply voltage, 3.5 V to 28 V. |
EN | 3 | I | Enable pin. Pull below 1.25 V to disable. Float to enable. TI recommends programming the input undervoltage lockout with two resistors. |
SS | 4 | I | Slow-start pin. An external capacitor connected to this pin sets the output rise time. |
VSENSE | 5 | I | Inverting node of the gm error amplifier. |
COMP | 6 | O | Error amplifier output, and input to the PWM comparator. Connect frequency compensation components to this pin. |
GND | 7 | — | Ground |
PH | 8 | O | The source of the internal high-side power MOSFET |
PowerPAD | 9 | — | GND pin must be connected to the exposed pad for proper operation. |
MIN | MAX | UNIT | ||
---|---|---|---|---|
Input Voltage | VIN | –0.3 | 30 | V |
EN | –0.3 | 6 | ||
BOOT | 38 | |||
VSENSE | –0.3 | 3 | ||
COMP | –0.3 | 3 | ||
SS | –0.3 | 3 | ||
Output Voltage | BOOT-PH | 8 | V | |
PH | –0.6 | 30 | ||
PH (10-ns transient from ground to negative peak) | –5 | |||
Source Current | EN | 100 | μA | |
BOOT | 100 | mA | ||
VSENSE | 10 | μA | ||
PH | 9.25 | A | ||
Sink Current | VIN | 9.25 | A | |
COMP | 100 | μA | ||
SS | 200 | |||
Operating Junction Temperature | –40 | 150 | °C | |
Storage temperature | –65 | 150 | °C |
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
V(ESD) | Electrostatic Discharge | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) | 2 | kV | |
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) | 500 | V |
MIN | MAX | UNIT | |
---|---|---|---|
Operating Input Voltage on (VIN pin) | 3.5 | 28 | V |
Operating junction temperature, TJ | –40 | 150 | °C |
THERMAL METRIC(1) | TPS54332 | UNIT | |
---|---|---|---|
HSOP | |||
8 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 48.7 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 52.4 | |
RθJB | Junction-to-board thermal resistance | 25.3 | |
ψJT | Junction-to-top characterization parameter | 8.4 | |
ψJB | Junction-to-board characterization parameter | 25.2 | |
RθJC(bot) | Junction-to-case (bottom) thermal resistance | 2.3 |
DESCRIPTION | TEST CONDITIONS | MIN | TYP | MAX | UNIT |
---|---|---|---|---|---|
SUPPLY VOLTAGE (VIN PIN) | |||||
Internal undervoltage lockout threshold | Rising and Falling | 3.5 | V | ||
Shutdown supply current | EN = 0 V, VIN = 12 V, –40°C to 85°C | 1 | 4 | μA | |
Operating – non switching supply current | VSENSE = 0.85 V | 82 | 120 | μA | |
ENABLE AND UVLO (EN PIN) | |||||
Enable threshold | Rising and Falling | 1.25 | 1.35 | V | |
Input current | Enable threshold – 50 mV | -1 | μA | ||
Input current | Enable threshold + 50 mV | -4 | μA | ||
VOLTAGE REFERENCE | |||||
Voltage reference | 0.772 | 0.8 | 0.828 | V | |
HIGH-SIDE MOSFET | |||||
On resistance | BOOT-PH = 3 V, VIN = 3.5 V | 115 | 200 | mΩ | |
BOOT-PH = 6 V, VIN = 12 V | 80 | 150 | |||
ERROR AMPLIFIER | |||||
Error amplifier transconductance (gm) | –2 μA < ICOMP < 2 μA, V(COMP) = 1 V | 92 | μmhos | ||
Error amplifier DC gain(1) | VSENSE = 0.8 V | 800 | V/V | ||
Error amplifier unity gain bandwidth(1) | 5 pF capacitance from COMP to GND pins | 2.7 | MHz | ||
Error amplifier source/sink current | V(COMP) = 1.0 V, 100-mV overdrive | ±7 | μA | ||
Switch current to COMP transconductance | VIN = 12 V | 12 | A/V | ||
PULSE-SKIPPING ECO-MODE | |||||
Pulse-skipping Eco-mode switch current threshold | 160 | mA | |||
CURRENT LIMIT | |||||
Current limit threshold | VIN = 12 V | 4.2 | 6.5 | A | |
THERMAL SHUTDOWN | |||||
Thermal Shutdown | 165 | °C | |||
SLOW-START (SS PIN) | |||||
Charge current | V(SS) = 0.4 V | 2 | μA | ||
SS to VSENSE matching | V(SS) = 0.4 V | 10 | mV |
The TPS54332 is a 28-V, 3.5-A, step-down (buck) converter with an integrated high-side, N-channel MOSFET. To improve performance during line and load transients, the device implements a constant-frequency, current mode control, which reduces output capacitance and simplifies external frequency compensation design. The TPS54332 has a preset switching frequency of 1 MHz.
The TPS54332 needs a minimum input voltage of 3.5 V to operate normally. The EN pin has an internal pullup current source that can be used to adjust the input voltage undervoltage lockout (UVLO) with two external resistors. In addition, the pullup current provides a default condition when the EN pin is floating for the device to operate. The operating current is 82 μA typically when not switching and under no load. When the device is disabled, the supply current is 1 μA typically.
The integrated 80-mΩ high-side MOSFET allows for high-efficiency power supply designs with continuous output currents up to 3.5 A.
The TPS54332 reduces the external component count by integrating the boot recharge diode. The bias voltage for the integrated high-side MOSFET is supplied by an external capacitor on the BOOT to PH pin. The boot capacitor voltage is monitored by an UVLO circuit and turns the high-side MOSFET off when the voltage falls below a preset threshold of 2.1 V typically. The output voltage can be stepped down to as low as the reference voltage.
By adding an external capacitor, the slow-start time of the TPS54332 can be adjustable which enables flexible output filter selection.
To improve the efficiency at light load conditions, the TPS54332 enters a special pulse-skipping Eco-mode when the peak inductor current drops below 160 mA typically.
The frequency foldback reduces the switching frequency during start-up and overcurrent conditions to help control the inductor current. The thermal shutdown gives the additional protection under fault conditions.