• Menu
  • Product
  • Email
  • PDF
  • Order now
  • TPS7H4003-SEP 采用增强型航天塑料的抗辐射3V 至 7V 输入、18A 同步降压转换器

    • ZHCSPL6 January   2022 TPS7H4003-SEP

      PRODUCTION DATA  

  • CONTENTS
  • SEARCH
  • TPS7H4003-SEP 采用增强型航天塑料的抗辐射3V 至 7V 输入、18A 同步降压转换器
  1. 1 特性
  2. 2 应用
  3. 3 说明
  4. 4 Revision History
  5. 5 Pin Configuration and Functions
  6. 6 Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. 7 Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  VIN and Power VIN Pins (VIN and PVIN)
      2. 7.3.2  Voltage Reference
      3. 7.3.3  Adjusting the Output Voltage
      4. 7.3.4  Safe Start-Up Into Prebiased Outputs
      5. 7.3.5  Error Amplifier
      6. 7.3.6  Enable and Adjust UVLO
      7. 7.3.7  Adjustable Switching Frequency and Synchronization (SYNC)
        1. 7.3.7.1 Internal Oscillator Mode
        2. 7.3.7.2 External Synchronization Mode
        3. 7.3.7.3 Primary-Secondary Operation Mode
      8. 7.3.8  Soft-Start (SS/TR)
      9. 7.3.9  Power Good (PWRGD)
      10. 7.3.10 Sequencing
      11. 7.3.11 Output Overvoltage Protection (OVP)
      12. 7.3.12 Overcurrent Protection
        1. 7.3.12.1 High-Side MOSFET Overcurrent Protection
        2. 7.3.12.2 Low-Side MOSFET Overcurrent Protection
      13. 7.3.13 Thermal Shutdown
      14. 7.3.14 Turn-On Behavior
      15. 7.3.15 Slope Compensation
        1. 7.3.15.1 Slope Compensation Requirements
      16. 7.3.16 Small Signal Model for Frequency Compensation
    4. 7.4 Device Functional Modes
      1. 7.4.1 Fixed-Frequency PWM Control
  8. 8 Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Operating Frequency
        2. 8.2.2.2 Output Inductor Selection
        3. 8.2.2.3 Output Capacitor Selection
        4. 8.2.2.4 Output Schottky Diode
        5. 8.2.2.5 Input Capacitor Selection
        6. 8.2.2.6 Soft-Start Capacitor Selection
        7. 8.2.2.7 Undervoltage Lockout (UVLO) Set Point
        8. 8.2.2.8 Output Voltage Feedback Resistor Selection
          1. 8.2.2.8.1 Minimum Output Voltage
        9. 8.2.2.9 Compensation Component Selection
      3. 8.2.3 Parallel Operation
      4. 8.2.4 Application Curve
  9. 9 Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 接收文档更新通知
    3. 11.3 支持资源
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 术语表
  12. 12Mechanical, Packaging, and Orderable Information
  13. 重要声明
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

DATA SHEET

TPS7H4003-SEP 采用增强型航天塑料的抗辐射3V 至 7V 输入、18A 同步降压转换器

本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。

1 特性

  • 辐射性能:
    • SEL、SEB 和 SEGR 对于
      LET 的抗扰度高达 43MeV-cm2/mg
    • SET 和 SEFI 的
      LET 特征值高达 43MeV-cm2/mg
    • 每个晶圆批次的保障 TID 高达
      50krad(Si)
  • 峰值效率:94%(100kHz 时,VO = 1V)
  • 集成式 17mΩ 和 9mΩ MOSFET
  • 电源轨:3V 至 7V(输入电压)
  • 灵活的开关频率选项:
    • 100kHz 至 1MHz 可调内部振荡器
    • 外部同步功能:100kHz 至 1MHz
    • 可将 SYNC 引脚配置为 500kHz 时钟频率、90° 相位差以并联多达 4 个器件
  • 在温度、辐射以及线路和负载调节范围内提供 0.6V ±1.7% 的基准电压
  • 单调启动至预偏置输出
  • 可调斜坡补偿和软启动
  • 可实现电源定序的可调输入使能和电源正常输出
  • 44 引脚 PowerPAD™ HTSSOP 封装
  • 增强型航天塑料:
    • 受控基线
    • Au 键合线和 NiPdAu 铅涂层
    • 采用增强型模塑化合物实现低释气
    • 制造、组装和测试一体化基地
    • 延长了产品生命周期
    • 延长了产品变更通知
    • 产品可追溯性
功能图

2 应用

  • 太空卫星负载点电源
  • 通信负载
  • 光学成像有效载荷

3 说明

TPS7H4003-SEP 是一款具有集成式低电阻高侧和低侧 MOSFET 的 7V、18A 抗辐射同步降压转换器,采用热增强型 34 引脚陶瓷扁平封装。通过电流模式控制,可实现高效率并能减少元件数量。

输出电压启动斜坡由 SS/TR 引脚控制,该引脚既支持独立电源运行,又支持跟踪模式。正确配置使能与电源正常引脚也可实现电源定序。TPS7H4003-SEP 可配置为初级-次级模式,并且通过 SYNC2 引脚,无需外部时钟即可并行配置四个器件。

高侧 FET 的逐周期电流限制可在过载情况下保护器件,并通过低侧拉电流保护功能防止电流失控,增强限制效果。此外,还提供关闭低侧 MOSFET 的低侧灌电流保护功能,以防止过多的反向电流。当芯片温度超过热限值时,热关断会禁用此器件。

器件信息
器件型号(1) 等级 封装
TPS7H4003MDDWSEP 50krad(Si) RLAT HTSSOP (44)
6.10mm × 14.00mm
质量 = 243.8mg(2)
TPS7H4003MDDWTSEP
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。
(2) 质量误差在 ±10% 以内。

4 Revision History

DATE REVISION NOTES
* Initial Release

5 Pin Configuration and Functions

Figure 5-1 DDW Package
44-Pin HTSSOP
(Top View)
Table 5-1 Pin Functions
PIN I/O DESCRIPTION
NO. NAME
1, 2, 10, 35 GND — Return for control circuitry.
3, 42–44 NC I No connect.
4 EN I EN pin is internally pulled up allowing for the pin to be floated to enable the device.
5 RT I/O A resistor connected between RT and GND sets the switching frequency of the converter. The switching frequency range is 100 kHz to 1 MHz. When an external clock is used, RT must be selected such that the set switching frequency coincides with the frequency of the applied clock. Leaving this pin floating sets the internal switching frequency to 500 kHz and SYNC1 and SYNC2 become output clocks at 500 kHz, with SYNC1 aligned with the converter switching and SYNC2 90° out of phase.
6, 7 VIN I Input power for the control circuitry of the switching regulator.
8 SYNC1 I/O SYNC1 is an input when an external clock is provided. The frequency of the external clock should match the switching frequency that is set by the resistor between RT and GND. With an external clock applied, the converter switching action is 180° out of phase with the external clock. When RT is floating, SYNC1 serves as an output of a 500-kHz clock signal that is in phase with the converter switching action. SYNC1 can be used in combination with SYNC2 in order to connect up to four devices in parallel.
9 SYNC2 I/O SYNC2 is used for connecting multiple devices in parallel. For the primary device, with RT floating, SYNC2 outputs 500-kHz signal that is 90° out of phase with the SYNC1 output clock. For the secondary devices, in which RT is populated, SYNC2 is used to configure the phase of the input clock signal on SYNC1. When SYNC2 is connected to VIN, the internal clock of the secondary device is in phase with clock provided at SYNC1. When SYNC2 is connected to GND, the input clock signal at SYNC1 is internally inverted.
11–15 PVIN I Input power for the output stage of the switching regulator.
16–22 PGND — Return for low-side power MOSFET.
23–34 PH O Switch phase node.
36 PWRGD O Power Good fault pin. Asserts low if output voltage is low due to thermal shutdown, dropout, overvoltage, or EN shutdown, or during soft-start.
37 RSC I/O A resistor to GND sets the desired slope compensation.
38 SS/TR I/O Soft-start and tracking. An external capacitor connected to this pin sets the internal voltage reference rise time. The voltage on this pin overrides the internal reference. It can be used for tracking and sequencing.
39 VSENSE I Inverting input of the gm error amplifier.
40 COMP I/O Error amplifier output and input to the output switch current comparator. Connect frequency compensation to this pin.
41 REFCAP O Required 470-nF external capacitor for internal reference.
PowerPAD™ — Used for heat sinking by soldering to GND copper on printed circuit board.

6 Specifications

6.1 Absolute Maximum Ratings

over operating temperature (unless otherwise noted)(1)
MIN MAX UNIT
Input voltage VIN –0.3 7.5 V
PVIN –0.3 7.5
EN –0.3 7.5
RSC –0.3 3.3
VSENSE –0.3 3.3
COMP –0.3 3.3
PWRGD –0.3 7.5
SS/TR –0.3 3.3
RT –0.3 3.3
SYNC1 –0.3 7.5
SYNC2 –0.3 7.5
Output voltage REFCAP –0.3 3.3 V
PH –1 7.5
PH 10-ns transient –3 7.5
Vdiff (GND to exposed thermal pad) –0.2 0.2 V
Source current PH Current limit A
RT ±100 µA
Sink current PH Current limit A
PVIN Current limit A
COMP ±200 µA
PWRGD –0.1 5 mA
Operating junction temperature –55 150 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) ±2000 V
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002, all pins(2) ±1000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

MIN NOM MAX UNIT
IOUT Maximum switching current 18 A
TJ Junction operating temperature –55 125 °C

6.4 Thermal Information

THERMAL METRIChref TPS7H4003-SEP UNIT
HTSSOP
44 PINS
RθJA Junction-to-ambient thermal resistance 23.7 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 12.4 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 1.2 °C/W
RθJB Junction-to-board thermal resistance 6.8 °C/W
ψJT Junction-to-top characterization parameter 0.2 °C/W
ψJB Junction-to-board characterization parameter 6.7 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report (SPRA953)

6.5 Electrical Characteristics

TJ = –55°C to 125°C, VIN = PVIN = 3 V to 7 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SUPPLY VOLTAGE (VIN AND PVIN PINS)
PVIN operating input voltage 3.0 7.0 V
PVIN internal UVLO threshold PVIN rising 2.425 2.50 2.575 V
PVIN internal UVLO hysteresis Load = 0 A 425 450 475 mV
VIN operating input voltage 3.0 7.0 V
VIN internal UVLO threshold VIN rising 2.71 2.75 2.80 V
VIN internal UVLO hysteresis 134 150 178 mV
VIN shutdown supply current VEN = 0 V 2.32 2.85 mA
VIN operating – non switching supply current VSENSE = VBG 4 6 mA
ENABLE AND UVLO (EN PIN)
Enable threshold Rising 1.110 1.14 1.172 V
Falling 1.080 1.11 1.148
Input current VEN = 1.1 V 4.8 6.1 7.6 µA
Hysteresis current VEN = 1.3 V 2.4 3.0 3.9 µA
VOLTAGE REFERENCE
Internal voltage reference initial tolerance 0 A ≤ Iout ≤ 18 A, 25℃ 0.598 0.605 0.613 V
Internal voltage reference 0 A ≤ Iout ≤ 18 A –55℃ 0.594 0.602 0.609 V
–40℃ 0.596 0.602 0.608
85℃ 0.600 0.606 0.613
125℃ 0.599 0.607 0.614
REFCAP voltage REFCAP = 470 nF 1.189 1.209 1.228 V
MOSFET
High-side switch resistance(1) PVIN = VIN = 3 V, lead length = 3 mm –55℃ 16 18 mΩ
25℃ 19 21
125℃ 23 27
PVIN = VIN = 5 V, lead length = 3 mm –55℃ 14 16
25℃ 17 19
125℃ 20 23
PVIN = VIN = 7 V, lead length =
3 mm(3)
–55℃ 13 15
25℃ 15 18
125℃ 19 22
Low-side switch resistance(1) PVIN = VIN = 3 V, lead length = 3 mm –55℃ 7 11 mΩ
25℃ 9 12
125℃ 13 17
PVIN = VIN = 5 V, lead length = 3 mm –55℃ 6 10
25℃ 9 11
125℃ 12 15
PVIN = VIN = 7 V, lead length =
3 mm(3)
–55℃ 5 9
25℃ 8 10
125℃ 11 14
ERROR AMPLIFIER
Error amplifier input offset voltage VSENSE = 0.6 V –2 2.55 mV
VSENSE pin input current VSENSE = 0.6 V –15 15 nA
Error amplifier transconductance (gm) –2 μA < ICOMP < 2 μA, V(COMP) = 1 V 1150 1800 2400 µS
Error amplifier DC gain(2) VSENSE = 0.6 V 10000 V/V
Error amplifier source V(COMP) = 1 V, 100-mV input overdrive 100 140 190 µA
Error amplifier sink 100 140 190 µA
Error amplifier output resistance 7 MΩ
COMP to Iswitch gm(3) COMP = 0.5 V –55℃ 28 38 49 S
25℃ 29 40 50
125℃ 30 41 52
OVERCURRENT PROTECTION
High-side switch current limit threshold(3) VIN = 7 V 27 34 A
Low-side switch sourcing overcurrent threshold(3) VIN = 7 V 25 32 A
Low-side switch sinking overcurrent threshold(3) VIN = 7 V 3.5 6 A
SLOPE COMPENSATION
Slope compensation(4) fSW = 100 kHz, RSC = 1.1 MΩ –1.2 A/µs
fSW = 500 kHz, RSC = 196 kΩ –6.0
fSW = 1000 kHz, RSC = 80.6 kΩ –16.0
THERMAL SHUTDOWN
Thermal shutdown 190 °C
Thermal shutdown hysteresis 18 °C
INTERNAL SWITCHING FREQUENCY
Internally set frequency RT = Open VIN = 3 V 444 473 515 kHz
VIN = 5 V 449 502  560
Externally set frequency RT = 1.07 MΩ (1%) VIN = 3 V 80 98 125 kHz
VIN = 5 V 80 100 125
RT = 165 kΩ (1%) VIN = 3 V 455 495 535
VIN = 5 V 475 523 615
RT = 73.2 kΩ (1%) VIN = 3 V 689 850 1011
VIN = 5 V 760 986 1212
EXTERNAL SYNCHRONIZATION
SYNC1/SYNC2 out low-to-high rise time (10%/90%) Cload = 25 pF 70 180 ns
SYNC1/SYNC2 out high-to-low fall time (90%/10%) Cload = 25 pF 10 21 ns
SYNC2 to SYNC1 rising edge phase shift 77 85 94 °
SYNC1 falling edge delay(3) 165 180 185 °
SYNC1/SYNC2 out high level threshold IOH = 50 µA VIN – 0.3 V
SYNC1/SYNC2 out low level threshold IOL = 50 µA 600 mV
SYNC1/SYNC2 in low level threshold PVIN = VIN = 3 V 800 mV
PVIN = VIN = 5 V 800
PVIN = VIN = 7 V(3) 800
SYNC1/SYNC2 in high level threshold PVIN = VIN = 3 V 2.25 V
PVIN = VIN = 5 V 3.5
PVIN = VIN = 7 V(3) 4.9
SYNC1 in frequency range PVIN = VIN = 5 V 100 1000 kHz
SYNC1 in duty cycle range Duty cycle of external clock 40 60 %
PH (PH PIN)
Minimum on time Measured at 10% to 90% of VIN,
IPH = 2 A, VIN = 3 V
190 235 ns
Measured at 10% to 90% of VIN,
IPH = 2 A, VIN = 5 V
190 225
SOFT START AND TRACKING (SS/TR PIN)
SS charge current 1.5 2.5 3 µA
SS/TR to VSENSE matching(3) V(SS/TR) = 0.3 V 30 90 mV
POWER GOOD (PWRGD PIN)
VSENSE threshold VSENSE falling (fault) 90 91 %VREF
VSENSE rising (good) 94 97
VSENSE rising (fault) 109 111
VSENSE falling (good) 103 106
Output high leakage VSENSE = VREF, V(PWRGD) = 5 V 30 181 nA
Output low I(PWRGD) = 2 mA 0.3 V
Minimum VIN for valid output V(PWRGD) < 0.5 V at 100 μA 0.6 1 V
Minimum SS/TR voltage for PWRGD 1.1 V
(1) Measured at pins.
(2) Ensured by design only. Not tested in production.
(3) Bench verified. Not tested in production.
(4) Example values are shown in the table.  Actual values are application specific and should be calculated as detailed in the Slope Compensation section.

6.6 Typical Characteristics

Output inductor of L = 10 μH (part number XAL1510-103MED) was used for all 100-kHz efficiency measurements. For 500-kHz and 1-MHz efficiency measurements, output inductor of L = 1 μH (XAL1580-102MED) was used.

Figure 6-1 Internal VREF Initial Tolerance
Figure 6-3 Internal Frequency Variation
Figure 6-5 Enable Hysteresis Current Variation
Figure 6-7 Enable Threshold Rising Variation
Figure 6-9 VIN Non-Switching Current Variation
Figure 6-11 SS/TR to VSENSE Matching Variation
Figure 6-13 Low-Side Sourcing Current Limit Variation
Figure 6-15 Low-Side Switch Resistance Variation
VOUT = 1 V, fsw = 100 kHz
Figure 6-17 Efficiency for VIN = 3.3 V
VOUT = 1.8 V, fsw = 100 kHz
Figure 6-19 Efficiency for VIN = 5 V
VOUT = 1 V, fsw = 500 kHz
Figure 6-21 Efficiency for VIN = 3 V
VOUT = 1.8 V, fsw = 500 kHz
Figure 6-23 Efficiency for VIN = 3 V
VOUT = 1 V, fsw = 500 kHz
Figure 6-25 Efficiency for VIN = 5 V
VOUT = 1.8 V, fsw = 500 kHz
Figure 6-27 Efficiency for VIN = 5 V
VOUT = 3.3 V, fsw = 500 kHz
Figure 6-29 Efficiency for VIN = 5 V
VOUT = 1.5 V, fsw = 500 kHz
Figure 6-31 Efficiency for VIN = 7 V
VOUT = 2.5 V, fsw = 500 kHz
Figure 6-33 Efficiency for VIN = 7 V
VOUT = 1 V, fsw = 1 MHz
Figure 6-35 Efficiency for VIN = 3 V
VOUT = 1.8 V, fsw = 1 MHz
Figure 6-37 Efficiency for VIN = 3 V
VOUT = 1 V, fsw = 1 MHz
Figure 6-39 Efficiency for VIN = 5 V
VOUT = 1.8 V, fsw = 1 MHz
Figure 6-41 Efficiency for VIN = 5 V
VOUT = 3.3 V, fsw = 1 MHz
Figure 6-43 Efficiency for VIN = 5 V
VOUT = 2.5 V, fsw = 1 MHz
Figure 6-45 Efficiency for VIN = 7 V
VOUT = 1 V, fsw = 100 kHz, 500 kHz, 1 MHz
Figure 6-47 Efficiency for VIN = 5 V
Figure 6-2 Internal VREF Variation
Figure 6-4 VIN Shutdown Supply Current Variation
Figure 6-6 Enable Input Current Variation
Figure 6-8 Enable Threshold Falling Variation
Figure 6-10 SS Charge Current Variation
Figure 6-12 High-Side Current Limit Variation
Figure 6-14 Low-Side Sinking Current Limit Variation
Figure 6-16 High-Side Switch Resistance Variation
VOUT = 1 V, fsw = 100 kHz
Figure 6-18 Efficiency for VIN = 5 V
VOUT = 2.5 V, fsw = 100 kHz
Figure 6-20 Efficiency for VIN = 5 V
VOUT = 1.5 V, fsw = 500 kHz
Figure 6-22 Efficiency for VIN = 3 V
VOUT = 2.5 V, fsw = 500 kHz
Figure 6-24 Efficiency for VIN = 3 V
VOUT = 1.5 V, fsw = 500 kHz
Figure 6-26 Efficiency for VIN = 5 V
VOUT = 2.5 V, fsw = 500 kHz
Figure 6-28 Efficiency for VIN = 5 V
VOUT = 1 V, fsw = 500 kHz
Figure 6-30 Efficiency for VIN = 7 V
VOUT = 1.8 V, fsw = 500 kHz
Figure 6-32 Efficiency for VIN = 7 V
VOUT = 3.3 V, fsw = 500 kHz
Figure 6-34 Efficiency for VIN = 7 V
VOUT = 1.5 V, fsw = 1 MHz
Figure 6-36 Efficiency for VIN = 3 V
VOUT = 2.5 V, fsw = 1 MHz
Figure 6-38 Efficiency for VIN = 3 V
VOUT = 1.5 V, fsw = 1 MHz
Figure 6-40 Efficiency for VIN = 5 V
VOUT = 2.5 V, fsw = 1 MHz
Figure 6-42 Efficiency for VIN = 5 V
VOUT = 1.8 V, fsw = 1 MHz
Figure 6-44 Efficiency for VIN = 7 V
VOUT = 3.3 V, fsw = 1 MHz
Figure 6-46 Efficiency for VIN = 7 V

7 Detailed Description

7.1 Overview

The device is a 7-V, 18-A synchronous step-down (buck) converter with two integrated MOSFETs; a PMOS for the high side and a NMOS for the low side. To improve performance during line and load transients, the device implements a constant frequency, peak current mode control, which also simplifies external frequency compensation. The wide switching frequency, 100 kHz to 1 MHz, allows for efficiency and size optimization when selecting the output filter components. The integrated MOSFETs allow for high-efficiency power supply designs with continuous output currents up to 18 A. The MOSFETs have been sized to optimize efficiency for lower duty cycle applications.

The device is designed for safe monotonic startup into prebiased loads. The default start up is when VIN is typically 2.75 V. The EN pin has an internal pullup current source that can be used to adjust the input voltage UVLO with two external resistors. In addition, the EN pin can be floating for the device to operate with the internal pullup current. The total operating current for the device is approximately 4 mA when not switching and under no load. When the device is disabled, the supply current is typically 2.3 mA.

The device has a power-good comparator (PWRGD) with hysteresis, which monitors the output voltage through the VSENSE pin. The PWRGD pin is an open-drain MOSFET, which is pulled low when the VSENSE pin voltage is less than 91% or greater than 109% of the reference voltage VREF and asserts high when the VSENSE pin voltage is 94% to 106% of the VREF.

The SS/TR (soft-start/tracking) pin is used to minimize inrush currents or provide power-supply sequencing during power-up. A small-value capacitor or resistor divider should be coupled to the pin for soft-start or critical power-supply sequencing requirements. If VSENSE is greater than the voltage at SS during startup, the device will enter into a pulse-skipping mode.

The device is protected from output overvoltage, overload, and thermal fault conditions. The device minimizes excessive output overvoltage transients by taking advantage of the overvoltage circuit power-good comparator. When the overvoltage comparator is activated, the high-side MOSFET is turned off and prevented from turning on until the VSENSE pin voltage is lower than 106% of the VREF. The device implements both high-side MOSFET overload protection and bidirectional low-side MOSFET overload protections, which help control the inductor current and avoid current runaway. The device also shuts down if the junction temperature is higher than thermal shutdown trip point. The device is restarted under control of the soft-start circuit automatically when the junction temperature drops 18°C (typical) below the thermal shutdown trip point.

7.2 Functional Block Diagram

GUID-F45DED92-651A-47A3-935F-DC2C6CEDA7A5-low.gif

7.3 Feature Description

7.3.1 VIN and Power VIN Pins (VIN and PVIN)

The device allows for a variety of applications by using the VIN and PVIN pins together or separately. The VIN pin voltage supplies the internal control circuits of the device. The PVIN pin voltage provides the input voltage to the power converter system. Both pins have an input voltage range from 3 V to 7 V. A voltage divider connected to the EN pin can adjust the input voltage UVLO appropriately. Adjusting the input voltage UVLO on the PVIN pin helps to provide consistent power-up behavior.

7.3.2 Voltage Reference

The device generates an internal 1.21-V bandgap reference that is utilized throughout the various control logic blocks. This is the voltage present on the REFCAP and SS/TR pins during steady state operation. This voltage is divided down to 0.605 V to produce the reference for the error amplifier. The error amplifier reference is measured at the COMP pin to account for offsets in the error amplifier and maintains regulation within ±1.7% across line, load, temperature, and TID as shown in the Electrical Characteristics. A 470-nF capacitor to ground is required at the REFCAP pin for proper electrical operation as well as to ensure robust SET performance of the device.

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale