• Menu
  • Product
  • Email
  • PDF
  • Order now
  • 适用于太阳能应用且具有最大功率点跟踪功能的 BQ24650 独立式同步降压电池充电控制器

    • ZHCSKO6B July   2010  – January 2020 BQ24650

      PRODUCTION DATA.  

  • CONTENTS
  • SEARCH
  • 适用于太阳能应用且具有最大功率点跟踪功能的 BQ24650 独立式同步降压电池充电控制器
  1. 1 特性
  2. 2 应用
  3. 3 说明
    1.     Device Images
      1.      典型应用
  4. 4 修订历史记录
  5. 5 说明 (续)
  6. 6 Pin Configuration and Functions
    1.     Pin Functions
  7. 7 Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. 8 Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Battery Voltage Regulation
      2. 8.3.2  Input Voltage Regulation
      3. 8.3.3  Battery Current Regulation
      4. 8.3.4  Battery Precharge
      5. 8.3.5  Charge Termination and Recharge
      6. 8.3.6  Power Up
      7. 8.3.7  Enable and Disable Charging
      8. 8.3.8  Automatic Internal Soft-Start Charger Current
      9. 8.3.9  Converter Operation
      10. 8.3.10 Synchronous and Non-Synchronous Operation
      11. 8.3.11 Cycle-by-Cycle Charge Undercurrent
      12. 8.3.12 Input Overvoltage Protection (ACOV)
      13. 8.3.13 Input Undervoltage Lockout (UVLO)
      14. 8.3.14 Battery Overvoltage Protection
      15. 8.3.15 Cycle-by-Cycle Charge Overcurrent Protection
      16. 8.3.16 Thermal Shutdown Protection
      17. 8.3.17 Temperature Qualification
      18. 8.3.18 Charge Enable
      19. 8.3.19 Inductor, Capacitor, and Sense Resistor Selection Guidelines
      20. 8.3.20 Charge Status Outputs
      21. 8.3.21 Battery Detection
        1. 8.3.21.1 Example
    4. 8.4 Device Functional Modes
      1. 8.4.1 Converter Operation
      2. 8.4.2 Synchronous and Non-Synchronous Operation
  9. 9 Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Inductor Selection
        2. 9.2.2.2 Input Capacitor
        3. 9.2.2.3 Output Capacitor
        4. 9.2.2.4 Power MOSFETs Selection
        5. 9.2.2.5 Input Filter Design
        6. 9.2.2.6 MPPT Temperature Compensation
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12器件和文档支持
    1. 12.1 器件支持
      1. 12.1.1 第三方产品免责声明
    2. 12.2 接收文档更新通知
    3. 12.3 支持资源
    4. 12.4 商标
    5. 12.5 静电放电警告
    6. 12.6 Glossary
  13. 13机械、封装和可订购信息
  14. 重要声明
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

DATA SHEET

适用于太阳能应用且具有最大功率点跟踪功能的 BQ24650 独立式同步降压电池充电控制器

本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。

1 特性

  • 通过输入电压调节实现最大功率点跟踪 (MPPT) 功能
  • 可编程 MPPT 设置
  • 5V 至 28V 输入太阳能电池板
  • 600kHz NMOS-NMOS 同步降压控制器
  • 电阻可编程浮充电压
  • 适用于锂离子/聚合物、磷酸铁锂、铅酸化学电池
  • 精度
    • ±0.5% 充电电压调节
    • ±3% 充电电流调节
    • ±0.6% 输入电压调节
  • 高集成度
    • 内部环路补偿
    • 内部数字软启动
  • 安全
    • 输入过压保护
    • 电池温度感应
    • 电池欠电检测
    • 热关断保护
  • 针对 LED 或主机处理器的充电状态输出
  • MPPSET 充电使能引脚
  • 自动休眠模式,可降低功耗
    • 关闭状态电池放电电流 < 15μA
  • 小型 3.5 × 3.5mm2、16 引脚 QFN 封装

2 应用

  • 太阳能供电 应用
  • 远程监控站
  • 便携式手持仪器
  • 12V 至 24V 汽车系统
  • 限流电源

3 说明

BQ24650 器件是一款高度集成的开关模式电池充电控制器。它提供了输入电压调节功能,在输入电压低于编程电平时可降低充电电流。当输入端使用太阳能电池板供电时,输入调节环路会降低充电电流,使太阳能电池板提供最大的功率输出。

BQ24650 提供一个频率恒定的同步 PWM 控制器,该控制器具有高精度充电电流和电压调节、充电预调节、充电终止和充电状态监控功能。

器件信息(1)

器件型号 封装 封装尺寸(标称值)
BQ24650 VQFN (16) 3.50mm × 3.50mm
  1. 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。

Device Images

典型应用

BQ24650 typ_sys_sch_lusa75.gif

4 修订历史记录

Changes from A Revision (April 2016) to B Revision

  • Changed 更改了标题Go
  • Deleted 删除了第 1 页“典型应用”中的各组件值 Go

Changes from * Revision (July 2010) to A Revision

  • 添加了ESD 额定值 表、特性 说明 部分、器件功能模式、应用和实施 部分、电源相关建议 部分、布局 部分、器件和文档支持 部分以及机械、封装和可订购信息 部分Go
  • 删除了订购信息 表Go

5 说明 (续)

BQ24650 分三个阶段对电池充电:预充电、恒流充电和恒压充电。当电流达到快速充电速率的 10% 时,充电操作被终止。预充电计时器固定为 30 分钟。当电池电压低于内部阈值时,BQ24650 会自动重启充电周期;当输入电压低于电池电压时,则会进入低静态电流休眠模式。

BQ24650 支持 2.1V 至 26V 的电池电压范围,且 VFB 设置为 2.1V 反馈基准。通过选择适当的检测电阻可以对充电电流进行编程。BQ24650 采用 16 引脚 3.5mm × 3.5mm2 薄型 QFN 封装。

6 Pin Configuration and Functions

RVA Package
16-Pin VQFN
Top View

Pin Functions

PIN TYPE DESCRIPTION
NO. NAME
1 VCC P IC power positive supply. Place a 1-μF ceramic capacitor from VCC to GND and place it as close as possible to IC. Place a 10-Ω resistor from input side to VCC pin to filter the noise.
2 MPPSET I Input voltage set point. Use a voltage divider from input source to GND to set voltage on MPPSET to 1.2 V. To disable charge, pull MPPSET below 75 mV.
3 STAT1 O Open-drain charge status output to indicate various charger operation. Connect to the cathode of LED with 10 kΩ to the pullup rail. LOW or LED light up indicates charge in progress. Otherwise stays HI or LED stays off. When any fault condition occurs, both STAT1 and STAT2 are HI, or both LEDs are off.
4 TS I Temperature qualification voltage input. Connect to a negative temperature coefficient thermistor. Program the hot and cold temperature window with a resistor divider from VREF to TS to GND. A 103AT-2 thermister is recommended.
5 STAT2 O Open-drain charge status output to indicate various charger operation. Connect to the cathode of LED with 10 kΩ to the pullup rail. LOW or LED light up indicates charge is complete. Otherwise, stays HI or LED stays off. When any fault condition occurs, both STAT1 and STAT2 are HI, or both LEDs are off.
6 VREF P 3.3-V reference voltage output. Place a 1-μF ceramic capacitor from VREF to GND pin close to the IC. This voltage could be used for programming voltage on TS and the pullup rail of STAT1 and STAT2.
7 TERM_EN I Charge termination enable. Pull TERM_EN to GND to disable charge termination. Pull TERM_EN to VREF to allow charge termination. TERM_EN must be terminated and cannot be left floating.
8 VFB I Charge voltage analog feedback adjustment. Connect the output of a resistor divider powered from the battery terminals to this node to adjust the output battery voltage regulation.
9 SRN I Charge current sense resistor, negative input. A 0.1-μF ceramic capacitor is placed from SRN to SRP to provide differential-mode filtering. An optional 0.1-μF ceramic capacitor is placed from SRN to GND for common-mode filtering.
10 SRP P/I Charge current sense resistor, positive input. A 0.1-μF ceramic capacitor is placed from SRN to SRP to provide differential-mode filtering. A 0.1-μF ceramic capacitor is placed from SRP to GND for common-mode filtering.
11 GND P Power ground. Ground connection for high-current power converter node. On PCB layout, connect directly to source of low-side power MOSFET, to ground connection of input and output capacitors of the charger. Only connect to GND through the thermal pad underneath the IC.
12 REGN P PWM low-side driver positive 6-V supply output. Connect a 1-μF ceramic capacitor from REGN to GND, close to the IC. Use to drive low-side driver and high-side driver bootstrap Schottky diode from REGN to BTST.
13 LODRV O PWM low-side driver output. Connect to the gate of the low-side N-channel power MOSFET with a short trace.
14 PH P Switching node, charge current output inductor connection. Connect the 0.1-μF bootstrap capacitor from PH to BTST.
15 HIDRV O PWM high-side driver output. Connect to the gate of the high-side N-channel power MOSFET with a short trace.
16 BTST P PWM high-side driver positive supply. Connect the 0.1-µF bootstrap capacitor from PH to BTST.
— Thermal Pad — Exposed pad beneath the IC. The thermal pad must always be soldered to the board and have the vias on the thermal pad plane star-connecting to GND and ground plane for high-current power converter. It also serves as a thermal pad to dissipate heat.

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)(3)
MIN MAX UNIT
Voltage (with respect to GND) VCC, STAT1, STAT2, SRP, SRN –0.3 33 V
PH –2 36
VFB –0.3 16
REGN, LODRV, TS, MPPSET, TERM_EN –0.3 7
BTST, HIDRV with respect to GND –0.3 39
VREF –0.3 3.6
Maximum difference voltage SRP–SRN –0.5 0.5 V
Junction temperature, TJ –40 155 °C
Storage temperature, Tstg –55 155 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are with respect to GND if not specified. Currents are positive into, negative out of the specified terminal. Consult Packaging Section of the data book for thermal limitations and considerations of packages.
(3) Must have a series resistor between battery pack to VFB if battery pack voltage is expected to be greater than 16 V. Usually the resistor divider top resistor takes care of this.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

MIN MAX UNIT
Voltage range (with respect to GND) VCC, STAT1, STAT2, SRP, SRN –0.3 28 V
PH –2 30
VFB –0.3 14
REGN, LODRV, TS, MPPSET, TERM_EN –0.3 6.5
BTST, HIDRV with respect to GND –0.3 34
VREF 3.3
Maximum difference voltage SRP–SRN –0.2 0.2 V
Junction temperature, TJ –40 125 °C

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale