• Menu
  • Product
  • Email
  • PDF
  • Order now
  • 适用于太阳能应用且具有最大功率点跟踪功能的 BQ24650 独立式同步降压电池充电控制器

    • ZHCSKO6B July   2010  – January 2020 BQ24650

      PRODUCTION DATA.  

  • CONTENTS
  • SEARCH
  • 适用于太阳能应用且具有最大功率点跟踪功能的 BQ24650 独立式同步降压电池充电控制器
  1. 1 特性
  2. 2 应用
  3. 3 说明
    1.     Device Images
      1.      典型应用
  4. 4 修订历史记录
  5. 5 说明 (续)
  6. 6 Pin Configuration and Functions
    1.     Pin Functions
  7. 7 Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. 8 Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Battery Voltage Regulation
      2. 8.3.2  Input Voltage Regulation
      3. 8.3.3  Battery Current Regulation
      4. 8.3.4  Battery Precharge
      5. 8.3.5  Charge Termination and Recharge
      6. 8.3.6  Power Up
      7. 8.3.7  Enable and Disable Charging
      8. 8.3.8  Automatic Internal Soft-Start Charger Current
      9. 8.3.9  Converter Operation
      10. 8.3.10 Synchronous and Non-Synchronous Operation
      11. 8.3.11 Cycle-by-Cycle Charge Undercurrent
      12. 8.3.12 Input Overvoltage Protection (ACOV)
      13. 8.3.13 Input Undervoltage Lockout (UVLO)
      14. 8.3.14 Battery Overvoltage Protection
      15. 8.3.15 Cycle-by-Cycle Charge Overcurrent Protection
      16. 8.3.16 Thermal Shutdown Protection
      17. 8.3.17 Temperature Qualification
      18. 8.3.18 Charge Enable
      19. 8.3.19 Inductor, Capacitor, and Sense Resistor Selection Guidelines
      20. 8.3.20 Charge Status Outputs
      21. 8.3.21 Battery Detection
        1. 8.3.21.1 Example
    4. 8.4 Device Functional Modes
      1. 8.4.1 Converter Operation
      2. 8.4.2 Synchronous and Non-Synchronous Operation
  9. 9 Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Inductor Selection
        2. 9.2.2.2 Input Capacitor
        3. 9.2.2.3 Output Capacitor
        4. 9.2.2.4 Power MOSFETs Selection
        5. 9.2.2.5 Input Filter Design
        6. 9.2.2.6 MPPT Temperature Compensation
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12器件和文档支持
    1. 12.1 器件支持
      1. 12.1.1 第三方产品免责声明
    2. 12.2 接收文档更新通知
    3. 12.3 支持资源
    4. 12.4 商标
    5. 12.5 静电放电警告
    6. 12.6 Glossary
  13. 13机械、封装和可订购信息
  14. 重要声明
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

DATA SHEET

适用于太阳能应用且具有最大功率点跟踪功能的 BQ24650 独立式同步降压电池充电控制器

本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。

1 特性

  • 通过输入电压调节实现最大功率点跟踪 (MPPT) 功能
  • 可编程 MPPT 设置
  • 5V 至 28V 输入太阳能电池板
  • 600kHz NMOS-NMOS 同步降压控制器
  • 电阻可编程浮充电压
  • 适用于锂离子/聚合物、磷酸铁锂、铅酸化学电池
  • 精度
    • ±0.5% 充电电压调节
    • ±3% 充电电流调节
    • ±0.6% 输入电压调节
  • 高集成度
    • 内部环路补偿
    • 内部数字软启动
  • 安全
    • 输入过压保护
    • 电池温度感应
    • 电池欠电检测
    • 热关断保护
  • 针对 LED 或主机处理器的充电状态输出
  • MPPSET 充电使能引脚
  • 自动休眠模式,可降低功耗
    • 关闭状态电池放电电流 < 15μA
  • 小型 3.5 × 3.5mm2、16 引脚 QFN 封装

2 应用

  • 太阳能供电 应用
  • 远程监控站
  • 便携式手持仪器
  • 12V 至 24V 汽车系统
  • 限流电源

3 说明

BQ24650 器件是一款高度集成的开关模式电池充电控制器。它提供了输入电压调节功能,在输入电压低于编程电平时可降低充电电流。当输入端使用太阳能电池板供电时,输入调节环路会降低充电电流,使太阳能电池板提供最大的功率输出。

BQ24650 提供一个频率恒定的同步 PWM 控制器,该控制器具有高精度充电电流和电压调节、充电预调节、充电终止和充电状态监控功能。

器件信息(1)

器件型号 封装 封装尺寸(标称值)
BQ24650 VQFN (16) 3.50mm × 3.50mm
  1. 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。

Device Images

典型应用

BQ24650 typ_sys_sch_lusa75.gif

4 修订历史记录

Changes from A Revision (April 2016) to B Revision

  • Changed 更改了标题Go
  • Deleted 删除了第 1 页“典型应用”中的各组件值 Go

Changes from * Revision (July 2010) to A Revision

  • 添加了ESD 额定值 表、特性 说明 部分、器件功能模式、应用和实施 部分、电源相关建议 部分、布局 部分、器件和文档支持 部分以及机械、封装和可订购信息 部分Go
  • 删除了订购信息 表Go

5 说明 (续)

BQ24650 分三个阶段对电池充电:预充电、恒流充电和恒压充电。当电流达到快速充电速率的 10% 时,充电操作被终止。预充电计时器固定为 30 分钟。当电池电压低于内部阈值时,BQ24650 会自动重启充电周期;当输入电压低于电池电压时,则会进入低静态电流休眠模式。

BQ24650 支持 2.1V 至 26V 的电池电压范围,且 VFB 设置为 2.1V 反馈基准。通过选择适当的检测电阻可以对充电电流进行编程。BQ24650 采用 16 引脚 3.5mm × 3.5mm2 薄型 QFN 封装。

6 Pin Configuration and Functions

RVA Package
16-Pin VQFN
Top View

Pin Functions

PIN TYPE DESCRIPTION
NO. NAME
1 VCC P IC power positive supply. Place a 1-μF ceramic capacitor from VCC to GND and place it as close as possible to IC. Place a 10-Ω resistor from input side to VCC pin to filter the noise.
2 MPPSET I Input voltage set point. Use a voltage divider from input source to GND to set voltage on MPPSET to 1.2 V. To disable charge, pull MPPSET below 75 mV.
3 STAT1 O Open-drain charge status output to indicate various charger operation. Connect to the cathode of LED with 10 kΩ to the pullup rail. LOW or LED light up indicates charge in progress. Otherwise stays HI or LED stays off. When any fault condition occurs, both STAT1 and STAT2 are HI, or both LEDs are off.
4 TS I Temperature qualification voltage input. Connect to a negative temperature coefficient thermistor. Program the hot and cold temperature window with a resistor divider from VREF to TS to GND. A 103AT-2 thermister is recommended.
5 STAT2 O Open-drain charge status output to indicate various charger operation. Connect to the cathode of LED with 10 kΩ to the pullup rail. LOW or LED light up indicates charge is complete. Otherwise, stays HI or LED stays off. When any fault condition occurs, both STAT1 and STAT2 are HI, or both LEDs are off.
6 VREF P 3.3-V reference voltage output. Place a 1-μF ceramic capacitor from VREF to GND pin close to the IC. This voltage could be used for programming voltage on TS and the pullup rail of STAT1 and STAT2.
7 TERM_EN I Charge termination enable. Pull TERM_EN to GND to disable charge termination. Pull TERM_EN to VREF to allow charge termination. TERM_EN must be terminated and cannot be left floating.
8 VFB I Charge voltage analog feedback adjustment. Connect the output of a resistor divider powered from the battery terminals to this node to adjust the output battery voltage regulation.
9 SRN I Charge current sense resistor, negative input. A 0.1-μF ceramic capacitor is placed from SRN to SRP to provide differential-mode filtering. An optional 0.1-μF ceramic capacitor is placed from SRN to GND for common-mode filtering.
10 SRP P/I Charge current sense resistor, positive input. A 0.1-μF ceramic capacitor is placed from SRN to SRP to provide differential-mode filtering. A 0.1-μF ceramic capacitor is placed from SRP to GND for common-mode filtering.
11 GND P Power ground. Ground connection for high-current power converter node. On PCB layout, connect directly to source of low-side power MOSFET, to ground connection of input and output capacitors of the charger. Only connect to GND through the thermal pad underneath the IC.
12 REGN P PWM low-side driver positive 6-V supply output. Connect a 1-μF ceramic capacitor from REGN to GND, close to the IC. Use to drive low-side driver and high-side driver bootstrap Schottky diode from REGN to BTST.
13 LODRV O PWM low-side driver output. Connect to the gate of the low-side N-channel power MOSFET with a short trace.
14 PH P Switching node, charge current output inductor connection. Connect the 0.1-μF bootstrap capacitor from PH to BTST.
15 HIDRV O PWM high-side driver output. Connect to the gate of the high-side N-channel power MOSFET with a short trace.
16 BTST P PWM high-side driver positive supply. Connect the 0.1-µF bootstrap capacitor from PH to BTST.
— Thermal Pad — Exposed pad beneath the IC. The thermal pad must always be soldered to the board and have the vias on the thermal pad plane star-connecting to GND and ground plane for high-current power converter. It also serves as a thermal pad to dissipate heat.

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)(3)
MIN MAX UNIT
Voltage (with respect to GND) VCC, STAT1, STAT2, SRP, SRN –0.3 33 V
PH –2 36
VFB –0.3 16
REGN, LODRV, TS, MPPSET, TERM_EN –0.3 7
BTST, HIDRV with respect to GND –0.3 39
VREF –0.3 3.6
Maximum difference voltage SRP–SRN –0.5 0.5 V
Junction temperature, TJ –40 155 °C
Storage temperature, Tstg –55 155 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are with respect to GND if not specified. Currents are positive into, negative out of the specified terminal. Consult Packaging Section of the data book for thermal limitations and considerations of packages.
(3) Must have a series resistor between battery pack to VFB if battery pack voltage is expected to be greater than 16 V. Usually the resistor divider top resistor takes care of this.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

MIN MAX UNIT
Voltage range (with respect to GND) VCC, STAT1, STAT2, SRP, SRN –0.3 28 V
PH –2 30
VFB –0.3 14
REGN, LODRV, TS, MPPSET, TERM_EN –0.3 6.5
BTST, HIDRV with respect to GND –0.3 34
VREF 3.3
Maximum difference voltage SRP–SRN –0.2 0.2 V
Junction temperature, TJ –40 125 °C

7.4 Thermal Information

THERMAL METRIC(1) BQ24650 UNIT
RVA (VQFN)
16 PINS
RθJA Junction-to-ambient thermal resistance(2) 43.8 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 81 °C/W
RθJB Junction-to-board thermal resistance 16 °C/W
ψJT Junction-to-top characterization parameter(3) 0.6 °C/W
ψJB Junction-to-board characterization parameter(4) 15.77 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 4 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a
(3) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining RθJA, using a procedure described in JESD51-2a (sections 6 and 7).
(4) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining RθJA, using a procedure described in JESD51-2a (sections 6 and 7).

7.5 Electrical Characteristics

5 V ≤ VVCC ≤ 28 V, –40°C < TJ + 125°C, typical values are at TA = 25°C, with respect to GND (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
OPERATING CONDITIONS
VVCC_OP VCC input voltage operating range 5 28 V
QUIESCENT CURRENTS
IBAT Total battery discharge current (sum of currents into VCC, BTST, PH, SRP, SRN, VFB), VFB ≤ 2.1V VCC < VBAT, VCC > VUVLO (SLEEP) 15 µA
Battery discharge current (sum of currents into BTST, PH, SRP, SRN, VFB), VFB ≤ 2.1V VCC > VBAT, VCC > VUVLO, CE = LOW 5 µA
VCC > VBAT, VCC > VVCCLOWV,
CE = HIGH, Charge done
5 µA
IAC Adapter supply current (sum of current into VCC pin) VCC > VBAT, VCC > VUVLO, CE = LOW 0.7 1 mA
VCC > VBAT, VCC > VVCCLOWV,
CE = HIGH, charge done
2 3 mA
VCC > VBAT, VCC > VVCCLOWV,
CE = HIGH, Charging, Qg_total = 10 nC [1]
25 mA
CHARGE VOLTAGE REGULATION
VREG Feedback regulation voltage 2.1 V
Charge voltage regulation accuracy TJ = 0°C to 85°C –0.5% 0.5%
TJ = –40°C to 125°C –0.7% 0.7%
IVFB Leakage current into VFB pin VFB = 2.1 V 100 nA
CURRENT REGULATION – FAST CHARGE
VIREG_CHG SRP-SRN current sense voltage range VIREG_CHG = VSRP – VSRN 40 mV
Charge current regulation accuracy VIREG_CHG = 40 mV –3% 3%
CURRENT REGULATION – PRE-CHARGE
VPRECHG Precharge current sense voltage range VIREG_PRCHG = VSRP – VSRN 4 mV
Precharge current regulation accuracy VIREG_PRECH = 4 mV –25% 25%
CHARGE TERMINATION
VTERMCHG Termination current sense voltage range VITERM = VSRP – VSRN 4 mV
Termination current accuracy VITERM = 4 mV –25% 25%
Deglitch time for termination (both edges) 100 ms
tQUAL Termination qualification time VBAT > VRECH and ICHG < ITERM 250 ms
IQUAL Termination qualification current Discharge current once termination is detected 2 mA
INPUT VOLTAGE REGULATION
VMPPSET MPPSET regulation voltage 1.2 V
Input voltage regulation accuracy –0.6% 0.6%
IMPPSET Leakage current into MPPSET pin VMPPSET = 7 V, TA = 0 – 85°C 1 µA
VMPPSET_CD MPPSET shorted to disable charge 75 mV
VMPPSET_CE MPPSET released to enable charge 175 mV
INPUT UNDERVOLTAGE LOCKOUT COMPARATOR (UVLO)
VUVLO AC undervoltage rising threshold Measure on VCC 3.65 3.85 4 V
VUVLO_HYS AC undervoltage hysteresis, falling 350 mV
VCC LOWV COMPARATOR
VVCC LOWV_fall Falling threshold, disable charge Measure on VCC 4.1 V
VVCC LOWV_rise Rising threshold, resume charge 4.35 V
SLEEP COMPARATOR (REVERSE DISCHARGING PROTECTION)
VSLEEP _FALL SLEEP falling threshold VVCC – VSRN to enter SLEEP 40 100 150 mV
VSLEEP_HYS SLEEP hysteresis 500 mV
SLEEP rising shutdown deglitch VCC falling below SRN 100 ms
SLEEP falling powerup deglitch VCC rising above SRN, Delay to exit SLEEP mode 30 ms
BAT LOWV COMPARATOR
VLOWV Precharge to fast charge transition (LOWV threshold) Measure on VFB pin 1.54 1.55 1.56 V
VLOWV_HYS LOWV hysteresis 100 mV
LOWV rising deglitch VFB falling below VLOWV 25 ms
LOWV falling deglitch VFB rising above VLOWV + VLOWV_HYS 25 ms
RECHARGE COMPARATOR
VRECHG Recharge threshold (with respect to VREG) Measure on VFB pin 35 50 65 mV
Recharge rising deglitch VFB decreasing below VRECHG 10 ms
Recharge falling deglitch VFB increasing above VRECHG 10 ms
BAT OVERVOLTAGE COMPARATOR
VOV_RISE Overvoltage rising threshold As percentage of VFB 104%
VOV_FALL Overvoltage falling threshold As percentage of VFB 102%
INPUT OVERVOLTAGE COMPARATOR (ACOV)
VACOV AC overvoltage rising threshold on VCC 31 32 33 V
VACOV_HYS AC overvoltage falling hysteresis 1 V
AC overvoltage deglitch (both edges) Delay to changing the STAT pins 1 ms
AC overvoltage rising deglitch Delay to disable charge 1 ms
AC overvoltage falling deglitch Delay to resume charge 20 ms
THERMAL SHUTDOWN COMPARATOR
TSHUT Thermal shutdown rising temperature Temperature increasing 145 °C
TSHUT_HYS Thermal shutdown hysteresis 15 °C
Thermal shutdown rising deglitch Temperature increasing 100 µs
Thermal shutdown falling deglitch Temperature decreasing 10 ms
THERMISTOR COMPARATOR
VLTF Cold temperature rising threshold As percentage to VVREF 72.5% 73.5% 74.5%
VLTF_HYS Rising hysteresis 0.2% 0.4% 0.6%
VHTF Hot temperature rising threshold 46.7% 47.5% 48.3%
VTCO Cut-off temperature rising threshold 44.3% 45% 45.7%
Deglitch time for temperature out of range detection VTS < VLTF, or VTS < VTCO, or
VTS < VHTF
400 ms
Deglitch time for temperature in valid range detection VTS > VLTF – VLTF_HYS or VTS >VTCO, or VTS > VHTF 20 ms
CHARGE OVERCURRENT COMPARATOR (CYCLE-BY-CYCLE)
VOC Charge overcurrent rising threshold Current rising, in synchronous mode measure (VSRP – VSRN) 80 mV
CHARGE UNDERCURRENT COMPARATOR (CYCLE-BY-CYCLE)
VISYNSET Charge undercurrent falling threshold Switch from CCM to DCM, VSRP > 2.2V 1 5 9 mV
BATTERY-SHORTED COMPARATOR (BATSHORT)
VBATSHT BAT short falling threshold, forced non-synchronous mode VSRP falling 2 V
VBATSHT_HYS BAT short rising hysteresis 200 mV
tBATSHT_DEG Deglitch on both edges 1 µs
LOW CHARGE CURRENT COMPARATOR
VLC Low charge current falling threshold Measure V(SRP-SRN) 1.25 mV
VLC_HYS Low charge current rising hysteresis 1.25 mV
tLC_DEG Deglitch on both edges 1 µs
VREF REGULATOR
VVREF_REG VREF regulator voltage VVCC > VUVLO, 0 – 35 mA load 3.267 3.3 3.333 V
IVREF_LIM VREF current limit VVREF = 0 V, VVCC > VUVLO 35 mA
REGN REGULATOR
VREGN_REG REGN regulator voltage VVCC > 10 V, MPPSET > 175 mV 5.7 6.0 6.3 V
IREGN_LIM REGN current limit VREGN = 0 V, VVCC > VUVLO, MPPSET < 75 mV 40 mA
BATTERY DETECTION
tWAKE Wake timer Max time charge is enabled 500 ms
IWAKE Wake current RSENSE = 10 mΩ 50 125 200 mA
tDISCHARGE Discharge timer Max time discharge current is applied 1 sec
IDISCHARGE Discharge current 6 mA
IFAULT Fault current after a timeout fault 2 mA
IQUAL Termination qualification current 2 mA
tQUAL Termination qualification time 250 ms
VWAKE Wake threshold (with respect to VREG) Voltage on VFB to detect battery absent during wake 50 mV
VDISCH Discharge threshold Voltage on VFB to detect battery absent during discharge 1.55 V
PWM HIGH-SIDE DRIVER (HIDRV)
RDS_HI_ON High-side driver (HSD) turnon resistance VBTST – VPH = 5.5 V 3.3 6 Ω
RDS_HI_OFF High-side driver turnoff resistance 1 1.4 Ω
VBTST_REFRESH Bootstrap refresh comparator threshold Voltage VBTST – VPH when low side refresh pulse is requested 4.0 4.2 V
PWM LOW-SIDE DRIVER (LODRV)
RDS_LO_ON Low-side driver (LSD) turn-on resistance 4.1 7 Ω
RDS_LO_OFF Low-side driver turn-off resistance 1 1.4 Ω
PWM DRIVERS TIMING
Driver dead-time Dead time when switching between LSD and HSD, No load at LSD and HSD 30 ns
PWM OSCILLATOR
VRAMP_HEIGHT PWM ramp height As percentage of VCC 7%
PWM switching frequency 510 600 690 kHz
INTERNAL SOFT START (8 STEPS TO REGULATION CURRENT ICHG)
Soft-start steps 8 step
Soft-start step time 1.6 ms
CHARGER SECTION POWER-UP SEQUENCING
Charge-enable delay after power-up Delay from MPPSET > 175 mV to charger is allowed to turn on 1.5 s
LOGIC IO PIN CHARACTERISTICS (STAT1, STAT2, TERM_EN)
VOUT_LOW STAT1, STAT2 output low saturation voltage Sink current = 5 mA 0.5 V
IOUT_HI Leakage current V = 32 V 1.2 µA
VIN_LOW TERM_EN input low threshold voltage 0.4 V
VIN_HI TERM_EN input high threshold voltage 1.6 V
IIN_BIAS TERM_EN bias current VTERM_EN = 0.5 V 60 µA

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale