ZHCSIU6F September   2018  – June 2021 TPS2663

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Hot Plug-In and In-Rush Current Control
        1. 9.3.1.1 Thermal Regulation Loop
      2. 9.3.2  PGOOD and PGTH
        1. 9.3.2.1 PGTH as VOUT Sensing Input
      3. 9.3.3  Undervoltage Lockout (UVLO)
      4. 9.3.4  Overvoltage Protection (OVP)
      5. 9.3.5  Input Reverse Polarity Protection (B_GATE, DRV)
      6. 9.3.6  Reverse Current Protection
      7. 9.3.7  Overload and Short Circuit Protection
        1. 9.3.7.1 Overload Protection
          1. 9.3.7.1.1 Active Current Limiting at 1x IOL, (TPS26630 and TPS26632 Only)
          2. 9.3.7.1.2 Active Current Limiting with 2x IOL Pulse Current Support, (TPS26631, TPS26633, TPS26635 and TPS26636 Only)
        2. 9.3.7.2 Short Circuit Protection
          1. 9.3.7.2.1 Start-Up With Short-Circuit On Output
      8. 9.3.8  Output Power Limiting, PLIM (TPS26632, TPS26633, TPS26635 and TPS26636 Only)
      9. 9.3.9  Current Monitoring Output (IMON)
      10. 9.3.10 FAULT Response ( FLT)
      11. 9.3.11 IN_SYS, IN, OUT and GND Pins
      12. 9.3.12 Thermal Shutdown
      13. 9.3.13 Low Current Shutdown Control (SHDN)
    4. 9.4 Device Functional Modes
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application: Power Path Protection in a PLC System
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Programming the Current-Limit Threshold—R(ILIM) Selection
        2. 10.2.2.2 Undervoltage Lockout and Overvoltage Set Point
        3. 10.2.2.3 Output Buffer Capacitor – COUT
        4. 10.2.2.4 PGTH Set Point
        5. 10.2.2.5 Setting Output Voltage Ramp Time—(tdVdT)
          1. 10.2.2.5.1 Support Component Selections— RPGOOD and C(IN)
        6. 10.2.2.6 Selecting Q1, Q2 and TVS Clamp for Surge Protection
      3. 10.2.3 Application Curves
    3. 10.3 System Examples
      1. 10.3.1 Simple 24-V Power Supply Path Protection
      2. 10.3.2 Priority Power MUX Operation
      3. 10.3.3 Input Protection for a Compact 24-V Auxiliary Power Supply for Servo Drives
    4. 10.4 Do's and Don'ts
  11. 11Power Supply Recommendations
    1. 11.1 Transient Protection
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 接收文档更新通知
    3. 13.3 支持资源
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 术语表
  14. 14Mechanical, Packaging, and Orderable Information

Priority Power MUX Operation

Applications having two energy sources such as Portable battery powered equipment require preference of one source to another. For example, mains power (wall-adapter) has the priority over the internal back-up power or auxiliary power. These applications demand for switch over from mains power to backup power only when main input voltage falls below a user defined threshold. The TPS2663x devices provide a simple solution for priority power multiplexing needs.

Figure 10-12 shows a typical priority power multiplexing implementation using devices. When the MAIN power is present, the device in VIN_MAIN path powers the OUT bus irrespective of whether auxiliary power VIN_AUX is greater than or less than VIN_MAIN. Once the voltage on the VIN_MAIN rail falls below the user-defined threshold, the device VIN_MAIN issues a signal to switch over to auxiliary power VIN_AUX. The transition happens seamlessly in tOVP(dly_fast), with minimal voltage droop on the output. The voltage droop during transition is a function of load current and output capacitance. See Equation 13.

Equation 13. GUID-FDE65037-F84A-4940-A54F-68FC523978BB-low.gif

where

  • V(DROOP) is in volts, I(LOAD) is load current in Ampere, C(OUT) is output capacitance in µF, tOVP(fast_dly) = 140 µs (typical)

Figure 9-13, Figure 9-14, Figure 9-15 and figure 9-16 show typical switch-over waveforms of Priority Muxing implementation using the TPS26630 or TPS26631 for 20-V Primary and 24-V Auxiliary Bus.

GUID-CB51A700-BB7F-4326-804B-66E6E01CC23B-low.gifFigure 10-12 Priority Power Mux Implementation
GUID-66652FB7-656C-4F49-AA29-84B4FFFC56F1-low.png
Figure 10-13 VIN_MAIN Power Recovery: Change Over from Auxiliary VIN_AUX to Primary Power VIN_MAIN
GUID-A32EF3AC-C1BB-496C-A2DE-F8C8243FCE82-low.png
Figure 10-15 VIN_AUX Brownout Condition
GUID-CCADE310-B95B-4977-8275-45E172D5C6BB-low.png
Figure 10-14 VIN_MAIN Brownout Condition: Change Over from Main VIN_MAIN to Auxiliary Power VIN_AUX
GUID-7773E03C-8C8D-4523-B026-CEA58DE2198A-low.png
Figure 10-16 VIN_AUX Power Recovery