• Menu
  • Product
  • Email
  • PDF
  • Order now
  • 具有 ±1V 双极输入和 2.5V 基准电压输出的 AMC1035 Δ-Σ 调制器

    • ZHCSIP8B August   2018  – April 2020 AMC1035

      PRODUCTION DATA.  

  • CONTENTS
  • SEARCH
  • 具有 ±1V 双极输入和 2.5V 基准电压输出的 AMC1035 Δ-Σ 调制器
  1. 1 特性
  2. 2 应用
  3. 3 说明
    1.     Device Images
      1.      应用示例
  4. 4 修订历史记录
  5. 5 Pin Configuration and Functions
    1.     Pin Functions
  6. 6 Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  7. 7 Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Analog Input
      2. 7.3.2 Modulator
      3. 7.3.3 Reference Output
      4. 7.3.4 Clock Input
      5. 7.3.5 Digital Output
      6. 7.3.6 Manchester Coding Feature
    4. 7.4 Device Functional Modes
      1. 7.4.1 Output Behavior in Case of a Full-Scale Input
      2. 7.4.2 Fail-Safe Output
  8. 8 Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Digital Filter Usage
    2. 8.2 Typical Applications
      1. 8.2.1 Voltage Sensing
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curve
      2. 8.2.2 IGBT Temperature Sensing
      3. 8.2.3 What to Do and What Not to Do
  9. 9 Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11器件和文档支持
    1. 11.1 文档支持
      1. 11.1.1 相关文档
    2. 11.2 接收文档更新通知
    3. 11.3 社区资源
    4. 11.4 商标
    5. 11.5 静电放电警告
    6. 11.6 Glossary
  12. 12机械、封装和可订购信息
  13. 重要声明
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

DATA SHEET

具有 ±1V 双极输入和 2.5V 基准电压输出的 AMC1035 Δ-Σ 调制器

本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。

1 特性

  • 针对电压和温度感应进行了优化的 Δ-Σ 调制器:
    • ±1V 输入电压范围
    • 高差分输入电阻:1.6GΩ(典型值)
    • 集成 2.5V、±5mA 基准,可实现比例测量
  • 出色的直流性能:
    • 失调电压误差:±0.5mV(最大值)
    • 温漂:±6µV/°C(最大值)
    • 增益误差:±0.25%(最大值)
    • 增益漂移:±45ppm/°C(最大值)
    • 比例增益漂移:±15ppm/°C(最大值)
  • 可选曼彻斯特编码式或未编码式位流输出
  • 完整的额定工作温度范围:–40°C 至 +125°C

2 应用

  • 工业应用中的交流电压和温度 感应:
    • 电机驱动器
    • 光电逆变器
    • 不间断电源
    • 工业运输系统

3 说明

AMC1035 是一款精密 Δ-Σ 调制器,可在 3.0V 至 5.5V 的单电源下运行,且具有 9MHz 至 21MHz 的时钟信号。在曼彻斯特模式下,额定时钟范围为 9MHz 至 11MHz。该器件的差分 ±1V 输入结构经过优化,可适应工业应用中的典型高噪声 环境。
AMC1035 可选择曼彻斯特编码式输出位流,这样便无需考虑接收器件的设置和保留时间要求并减少总体电路布局工作。当用于与数字滤波器(例如集成到 TMS320F28004x、TMS320F2807x 或 TMS320F2837x 微控制器系列中)一起抽取输出位流时,该器件可在 82kSPS 的数据速率下实现具有 87dB 动态范围的 16 位分辨率。

AMC1035 的内部基准源支持比例电路架构,可最大限度降低电源电压变化和温漂对测量精度的负面影响。

AMC1035 还可用于与数字隔离器和隔离电源一起实现交流电力线电压检测。

器件信息(1)

器件型号 封装 封装尺寸(标称值)
AMC1035 SOIC (8) 4.9mm x 3.9mm
  1. 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。

Device Images

应用示例

AMC1035 frontpage_bas837.gif

4 修订历史记录

Changes from A Revision (November 2018) to B Revision

  • Deleted PSRR specification for TA > 85°C from Reference Output section of Electrical Characteristics tableGo
  • Changed SINAD equationGo

Changes from * Revision (August 2018) to A Revision

  • Changed 将文档状态从“预告信息”更改为“生产数据”Go

5 Pin Configuration and Functions

D Package
8-Pin SOIC
Top View

Pin Functions

PIN I/O DESCRIPTION
NO. NAME
1 MCE I Manchester coding enabled, active high, with internal pulldown resistor (typical value: 200 kΩ).
The polarity of this signal must not be changed when the clock signal is applied.
2 AINP I Noninverting analog input.
3 AINN I Inverting analog input.
4 REFOUT O Reference output: 2.5 V nominal, maximum ±5-mA sink and source capability.
5 GND — Ground reference.
6 DOUT O Modulator bitstream data output, updated with the rising edge of the clock signal present on CLKIN.
This pin is a Manchester coded output if MCE is pulled high. Use the rising edge of the clock to latch the modulator bitstream at the input of the digital filter device.
7 CLKIN I Modulator clock input: 9 MHz to 21 MHz with an internal pulldown resistor (typical value: 200 kΩ).
The clock signal must be applied continuously for proper device operation; see the Clock Input section for additional details.
8 VDD — Power supply, 3.0 V to 5.5 V.
See the Power Supply Recommendations section for decoupling recommendations.

6 Specifications

6.1 Absolute Maximum Ratings

see (1)
MIN MAX UNIT
Supply voltage, VDD to GND –0.3 7 V
Analog input voltage at AINP, AINN GND – 5 VDD + 0.5 V
Analog output voltage at REFOUT GND – 0.5 VDD + 0.5 V
Digital input voltage at CLKIN or MCE GND – 0.5 VDD + 0.5 V
Digital output voltage at DOUT GND – 0.5 VDD + 0.5 V
Input current to any pin except supply pins –10 10 mA
Junction temperature, TJ 150 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating ambient temperature range (unless otherwise noted)
MIN NOM MAX UNIT
POWER SUPPLY
VDD Supply voltage VDD to GND 3.0 3.3 5.5 V
ANALOG INPUT
VClipping Differential input voltage before clipping output VIN = VAINP – VAINN ±1.25 V
VFSR Specified linear differential full-scale voltage VIN = VAINP – VAINN –1 1 V
Absolute common-mode input voltage(1) (VAINP + VAINN) / 2 to GND –2 VDD V
VCM Operating common-mode input voltage(2) (VAINP + VAINN) / 2 to GND,
3.0 V ≤ VDD < 4 V,
VAINP = VAINN
–1.4 VDD – 1.4 V
(VAINP + VAINN) / 2 to GND,
3.0 V ≤ VDD < 4.5 V,
|VAINP – VAINN| = 1.25 V
–0.8 VDD – 2.4
(VAINP + VAINN) / 2 to GND,
4 V ≤ VDD ≤ 5.5 V,
VAINP = VAINN
–1.4 2.7
(VAINP + VAINN) / 2 to GND,
4.5 V ≤ VDD ≤ 5.5 V,
|VAINP – VAINN| = 1.25 V
–0.8 2.1
DIGITAL INPUT
Input voltage VMCE or VCLKIN to GND GND VDD V
TEMPERATURE RANGE
TA Operating ambient temperature –40 25 125 °C
(1) Steady-state voltage supported by the device in case of a system failure. See specified common-mode input voltage VCM for normal operation. Observe analog input voltage range as specified in the Absolute Maximum Ratings table.
(2) See the Analog Input section for more details.

6.4 Thermal Information

THERMAL METRIC(1) AMC1035 UNIT
D (SOIC)
8 PINS
RθJA Junction-to-ambient thermal resistance 120 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 52 °C/W
RθJB Junction-to-board thermal resistance 61 °C/W
ψJT Junction-to-top characterization parameter 10 °C/W
ψJB Junction-to-board characterization parameter 60 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance n/a °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

minimum and maximum specifications apply from TA = –40°C to +125°C, VDD = 3.0 V to 5.5 V, AINP = –1 V to 1 V, AINN = GND, and sinc3 filter with OSR = 256 (unless otherwise noted); typical specifications are at TA = 25°C, CLKIN = 20 MHz, and VDD = 3.3 V
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ANALOG INPUTS
VCMuv(1) Negative common-mode undervoltage detection level(2) (VAINP + VAINN) / 2, VAINP = VAINN –1.45 V
(VAINP + VAINN) / 2, |VAINP – VAINN| = 1.25 V –0.85
VCMov(1) Positive common-mode overvoltage detection level(2) 3.0 V ≤ VDD < 4 V, VAINP = VAINN VDD – 1.35 V
3.0 V ≤ VDD < 4.5 V, |VAINP – VAINN| = 1.25 V VDD – 2.35
4 V ≤ VDD ≤ 5.5 V, VAINP = VAINN 2.75
4.5 V ≤ VDD ≤ 5.5 V, |VAINP – VAINN| = 1.25 V 2.15
RIN Single-ended input resistance AINN = GND 0.1 0.4 GΩ
RIND  Differential input resistance 0.16 1.6 GΩ
CIN Single-ended input capacitance AINN = GND 2 pF
CIND  Differential input capacitance 2 pF
IIB  Input bias current AINP = AINN = GND, (IAINP + IAINN) / 2 –10 ±3 10 nA
TCIIB  Input bias current thermal drift AINP = AINN = GND, (IAINP + IAINN) / 2 ±5 pA/°C
IIO  Input offset current IIO = IAINP – IAINN –5 ±1 5 nA
CMRR Common-mode rejection ratio AINP = AINN, fIN = 0 Hz, VCM min ≤ VIN ≤ VCM max –104 dB
AINP = AINN, fIN from 0.1 Hz to 50 kHz,
–0.5 V ≤ VIN ≤ 0.5 V
–88
DC ACCURACY
Resolution(3) 16 Bits
INL Integral nonlinearity(4) Resolution: 16 bits –12 ±2 12 LSB
EO Offset error  Initial, at TA = 25°C, AINP = AINN = GND –0.5 ±0.03 0.5 mV
TCEO Offset error thermal drift(5) –6 ±0.1 6 µV/°C
EG Gain error Initial, at TA = 25°C –0.25% ±0.02% 0.25%
Initial, at TA = 25°C, ratiometric mode –0.3% ±0.02% 0.3%
TCEG Gain error thermal drift(6) –45 ±20 45 ppm/°C
Ratiometric mode –15 ±4 15
PSRR Power-supply rejection ratio AINP = AINN = GND, at dc –90 dB
AINP = AINN = GND, 10 kHz, 100-mV ripple –84
AC ACCURACY
SNR Signal-to-noise ratio fIN = 1 kHz 81 87 dB
SINAD Signal-to-noise + distortion fIN = 1 kHz 77 83 dB
THD Total harmonic distortion fIN = 1 kHz –87 –78 dB
SFDR Spurious-free dynamic range fIN = 1 kHz 78 87 dB
REFERENCE OUTPUT
VREFOUT Reference output voltage Initial, at TA = 25°C, no load 2.495 2.5 2.505 V
TCVREFOUT Reference output voltage drift –50 ±20 50 ppm/°C
IREFOUT Reference output current CLOAD < 1 nF(7) –5 5 mA
Load regulation Load to GND or VDD 0.15 0.35 mV/mA
ISC Short-circuit current REFOUT to GND 23 mA
REFOUT to VDD –21
PSRR Power-supply rejection ratio –200 ±30 200 µV/V
DIGITAL INPUTS (CMOS Logic With Schmitt-Trigger)
IIN Input current GND ≤ VIN ≤ VDD 35 μA
CIN Input capacitance 3 pF
VIH High-level input voltage 0.7 × VDD VDD + 0.3 V
VIL Low-level input voltage –0.3 0.3 × VDD V
DIGITAL OUTPUT: CMOS
CLOAD Output load capacitance fCLKIN = 21 MHz 15 30 pF
VOH High-level output voltage IOH = –20 µA VDD – 0.1 V
IOH = –4 mA VDD – 0.4
VOL Low-level output voltage IOL = 20 µA 0.1 V
IOL = 4 mA 0.4
POWER SUPPLY
IVDD High-side supply current 3.0 V ≤ VDD ≤ 3.6 V, IREFOUT = 0 mA, MCE = 0, CLOAD = 15 pF 5.2 6.8 mA
3.0 V ≤ VDD ≤ 3.6 V, IREFOUT = 0 mA, MCE = 1, CLOAD = 15 pF(8) 4.6 6.1
4.5 V ≤ VDD ≤ 5.5 V, IREFOUT = 0 mA, MCE = 0, CLOAD = 15 pF 6.4 8.3
4.5 V ≤ VDD ≤ 5.5 V, IREFOUT = 0 mA, MCE = 1, CLOAD = 15 pF(8) 5.4 7.2
(1) See the Analog Input section for more details.
(2) The common-mode overvoltage detection level has a typical hysteresis of 35 mV.
(3) The filter output is truncated to 16 bits. 16 bits of no missing codes is specified by design.
(4) Integral nonlinearity is defined as the maximum deviation from a straight line passing through the end-points of the ideal ADC transfer function expressed as number of LSBs or as a percent of the specified linear full-scale range FSR.
(5) Offset error drift is calculated using the box method, as described by the following equation: AMC1035 ec_eodrift_bas654.gif.
(6) Gain error drift is calculated using the box method, as described by the following equation: AMC1035 ec_egdrift_bas654.gif .
(7) Capacitive load with a value ≥ 1nF requires series resistor to be connected to the REFOUT pin. See the Reference Output section for more details.
(8) Typical value is specified at fCLKIN = 10 MHz, maximum value is specified at fCLKIN = 11 MHz.

6.6 Switching Characteristics

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fCLKIN CLKIN clock frequency MCE = 0 9 20 21 MHz
MCE = 1 9 10 11
DutyCycle CLKIN clock duty cycle(1) 40% 50% 60%
tH1 DOUT hold time after rising edge of CLKIN MCE = 0, CLOAD = 15 pF 6 ns
tH2 DOUT hold time after rising edge of CLKIN MCE = 1, CLOAD = 15 pF 6 23 ns
tH3 DOUT hold time after falling edge of CLKIN MCE = 1, CLOAD = 15 pF 10 26 ns
tD1 Rising edge of CLKIN to DOUT valid delay MCE = 0, CLOAD = 15 pF 25 ns
tD2 Rising edge of CLKIN to DOUT valid delay MCE = 1, CLOAD = 15 pF 11 27 ns
tD3 Falling edge of CLKIN to DOUT valid delay MCE = 1, CLOAD = 15 pF 15 30 ns
tr DOUT rise time 10% to 90%, 3.0 V ≤ VDD ≤ 3.6 V, CLOAD = 15 pF 2.5 5 ns
10% to 90%, 4.5 V ≤ VDD ≤ 5.5 V, CLOAD = 15 pF 1.5 3.5
tf DOUT fall time 90% to 10%, 3.0 V ≤ VDD ≤ 3.6 V, CLOAD = 15 pF 2.5 5.8 ns
90% to 10%, 4.5 V ≤ VDD ≤ 5.5 V, CLOAD = 15 pF 1.8 4.4
tASTART Analog startup time VDD step to 3.0 V, 0.1% settling, CLKIN applied 0.25 ms
(1) The duty cycle of DOUT equals the clock duty cycle of the applied CLKIN signal.
AMC1035 tim_AMC1035.gifFigure 1. Digital Interface Timing
AMC1035 tim_start_bas837.gifFigure 2. Device Startup Timing

6.7 Typical Characteristics

at VDD = 3.3 V, AINP = –1 V to 1 V, AINN = GND, fCLKIN = 20 MHz, MCE = 0, and sinc3 filter with OSR = 256 (unless otherwise noted)
AMC1035 D001_SBAS837.gif
VDD = 5.5 V
Figure 3. Input Bias Current vs
Common-Mode Input Voltage
AMC1035 D031_SBAS837.gif
Figure 5. Integral Nonlinearity vs Input Voltage
AMC1035 D004_SBAS837.gif
Figure 7. Offset Error vs Supply Voltage
AMC1035 D006_SBAS837.gif
Figure 9. Offset Error vs Clock Frequency
AMC1035 D008_SBAS837.gif
Figure 11. Gain Error vs Temperature
AMC1035 D010_SBAS837.gif
Figure 13. Gain Error vs Clock Frequency
AMC1035 D012_SBAS837.gif
Figure 15. Signal-to-Noise Ratio and
Signal-to-Noise + Distortion vs Supply Voltage
AMC1035 D014_SBAS837.gif
Figure 17. Signal-to-Noise Ratio and
Signal-to-Noise + Distortion vs Clock Frequency
AMC1035 D016_SBAS837.gif
Figure 19. Signal-to-Noise Ratio and
Signal-to-Noise + Distortion vs Input Signal Amplitude
AMC1035 D018_SBAS837.gif
Figure 21. Total Harmonic Distortion vs Temperature
AMC1035 D020_SBAS837.gif
Figure 23. Total Harmonic Distortion vs
Input Signal Frequency
AMC1035 D022_SBAS837.gif
Figure 25. Spurious-Free Dynamic Range vs Supply Voltage
AMC1035 D024_SBAS837.gif
Figure 27. Spurious-Free Dynamic Range vs
Clock Frequency
AMC1035 D026_SBAS837.gif
Figure 29. Spurious-Free Dynamic Range vs
Input Signal Amplitude
AMC1035 D028_SBAS837.gif
4096-point FFT, VIN = 2 VPP
Figure 31. Frequency Spectrum With 5-kHz Input Signal
AMC1035 D030_SBAS837.gif
Figure 33. Reference Output Voltage vs Temperature
AMC1035 D033_SBAS837.gif
Figure 35. Supply Current vs Temperature
AMC1035 D002_SBAS837.gif
Figure 4. Common-Mode Rejection Ratio vs
Input Signal Frequency
AMC1035 D003_SBAS837.gif
Figure 6. Integral Nonlinearity vs Temperature
AMC1035 D005_SBAS837.gif
Figure 8. Offset Error vs Temperature
AMC1035 D007_SBAS837.gif
Figure 10. Gain Error vs Supply Voltage
AMC1035 D009_SBAS837.gif
Figure 12. Ratiometric Gain Error vs Temperature
AMC1035 D011_SBAS837.gif
Figure 14. Power-Supply Rejection Ratio vs
Ripple Frequency
AMC1035 D013_SBAS837.gif
Figure 16. Signal-to-Noise Ratio and
Signal-to-Noise + Distortion vs Temperature
AMC1035 D015_SBAS837.gif
Figure 18. Signal-to-Noise Ratio and
Signal-to-Noise + Distortion vs Input Signal Frequency
AMC1035 D017_SBAS837.gif
Figure 20. Total Harmonic Distortion vs Supply Voltage
AMC1035 D019_SBAS837.gif
Figure 22. Total Harmonic Distortion vs Clock Frequency
AMC1035 D021_SBAS837.gif
Figure 24. Total Harmonic Distortion vs
Input Signal Amplitude
AMC1035 D023_SBAS837.gif
Figure 26. Spurious-Free Dynamic Range vs Temperature
AMC1035 D025_SBAS837.gif
Figure 28. Spurious-Free Dynamic Range vs
Input Signal Frequency
AMC1035 D027_SBAS837.gif
4096-point FFT, VIN = 2 VPP
Figure 30. Frequency Spectrum With 1-kHz Input Signal
AMC1035 D029_SBAS837.gif
Figure 32. Reference Output Voltage vs Supply Voltage
AMC1035 D032_SBAS837.gif
Figure 34. Supply Current vs Supply Voltage
AMC1035 D034_SBAS837.gif
Figure 36. Supply Current vs Clock Frequency

7 Detailed Description

7.1 Overview

The differential analog input (comprised of input signals AINP and AINN) of the AMC1035 is a chopper-stabilized buffer, followed by the switched-capacitor input of a second-order, delta-sigma (ΔΣ) modulator stage that digitizes the input signal into a 1-bit output stream. The data output DOUT of the converter provides a stream of digital ones and zeros that is synchronous to the externally-provided clock source at the CLKIN pin with a frequency in the range of 9 MHz to 21 MHz. The time average of this serial bitstream output is proportional to the analog input voltage.

The Functional Block Diagram section shows a detailed block diagram of the AMC1035. The 1.6-GΩ differential input resistance of the analog input stage supports low gain-error signal sensing in high-voltage applications using resistive dividers. The external clock input simplifies the synchronization of multiple measurement channels on the system level. The extended frequency range of up to 21 MHz supports higher performance levels compared to the other solutions available on the market.

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale