• Menu
  • Product
  • Email
  • PDF
  • Order now
  • 具有 ±1V 双极输入和 2.5V 基准电压输出的 AMC1035 Δ-Σ 调制器

    • ZHCSIP8B August   2018  – April 2020 AMC1035

      PRODUCTION DATA.  

  • CONTENTS
  • SEARCH
  • 具有 ±1V 双极输入和 2.5V 基准电压输出的 AMC1035 Δ-Σ 调制器
  1. 1 特性
  2. 2 应用
  3. 3 说明
    1.     Device Images
      1.      应用示例
  4. 4 修订历史记录
  5. 5 Pin Configuration and Functions
    1.     Pin Functions
  6. 6 Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  7. 7 Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Analog Input
      2. 7.3.2 Modulator
      3. 7.3.3 Reference Output
      4. 7.3.4 Clock Input
      5. 7.3.5 Digital Output
      6. 7.3.6 Manchester Coding Feature
    4. 7.4 Device Functional Modes
      1. 7.4.1 Output Behavior in Case of a Full-Scale Input
      2. 7.4.2 Fail-Safe Output
  8. 8 Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Digital Filter Usage
    2. 8.2 Typical Applications
      1. 8.2.1 Voltage Sensing
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curve
      2. 8.2.2 IGBT Temperature Sensing
      3. 8.2.3 What to Do and What Not to Do
  9. 9 Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11器件和文档支持
    1. 11.1 文档支持
      1. 11.1.1 相关文档
    2. 11.2 接收文档更新通知
    3. 11.3 社区资源
    4. 11.4 商标
    5. 11.5 静电放电警告
    6. 11.6 Glossary
  12. 12机械、封装和可订购信息
  13. 重要声明
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

DATA SHEET

具有 ±1V 双极输入和 2.5V 基准电压输出的 AMC1035 Δ-Σ 调制器

本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。

1 特性

  • 针对电压和温度感应进行了优化的 Δ-Σ 调制器:
    • ±1V 输入电压范围
    • 高差分输入电阻:1.6GΩ(典型值)
    • 集成 2.5V、±5mA 基准,可实现比例测量
  • 出色的直流性能:
    • 失调电压误差:±0.5mV(最大值)
    • 温漂:±6µV/°C(最大值)
    • 增益误差:±0.25%(最大值)
    • 增益漂移:±45ppm/°C(最大值)
    • 比例增益漂移:±15ppm/°C(最大值)
  • 可选曼彻斯特编码式或未编码式位流输出
  • 完整的额定工作温度范围:–40°C 至 +125°C

2 应用

  • 工业应用中的交流电压和温度 感应:
    • 电机驱动器
    • 光电逆变器
    • 不间断电源
    • 工业运输系统

3 说明

AMC1035 是一款精密 Δ-Σ 调制器,可在 3.0V 至 5.5V 的单电源下运行,且具有 9MHz 至 21MHz 的时钟信号。在曼彻斯特模式下,额定时钟范围为 9MHz 至 11MHz。该器件的差分 ±1V 输入结构经过优化,可适应工业应用中的典型高噪声 环境。
AMC1035 可选择曼彻斯特编码式输出位流,这样便无需考虑接收器件的设置和保留时间要求并减少总体电路布局工作。当用于与数字滤波器(例如集成到 TMS320F28004x、TMS320F2807x 或 TMS320F2837x 微控制器系列中)一起抽取输出位流时,该器件可在 82kSPS 的数据速率下实现具有 87dB 动态范围的 16 位分辨率。

AMC1035 的内部基准源支持比例电路架构,可最大限度降低电源电压变化和温漂对测量精度的负面影响。

AMC1035 还可用于与数字隔离器和隔离电源一起实现交流电力线电压检测。

器件信息(1)

器件型号 封装 封装尺寸(标称值)
AMC1035 SOIC (8) 4.9mm x 3.9mm
  1. 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。

Device Images

应用示例

AMC1035 frontpage_bas837.gif

4 修订历史记录

Changes from A Revision (November 2018) to B Revision

  • Deleted PSRR specification for TA > 85°C from Reference Output section of Electrical Characteristics tableGo
  • Changed SINAD equationGo

Changes from * Revision (August 2018) to A Revision

  • Changed 将文档状态从“预告信息”更改为“生产数据”Go

5 Pin Configuration and Functions

D Package
8-Pin SOIC
Top View

Pin Functions

PIN I/O DESCRIPTION
NO. NAME
1 MCE I Manchester coding enabled, active high, with internal pulldown resistor (typical value: 200 kΩ).
The polarity of this signal must not be changed when the clock signal is applied.
2 AINP I Noninverting analog input.
3 AINN I Inverting analog input.
4 REFOUT O Reference output: 2.5 V nominal, maximum ±5-mA sink and source capability.
5 GND — Ground reference.
6 DOUT O Modulator bitstream data output, updated with the rising edge of the clock signal present on CLKIN.
This pin is a Manchester coded output if MCE is pulled high. Use the rising edge of the clock to latch the modulator bitstream at the input of the digital filter device.
7 CLKIN I Modulator clock input: 9 MHz to 21 MHz with an internal pulldown resistor (typical value: 200 kΩ).
The clock signal must be applied continuously for proper device operation; see the Clock Input section for additional details.
8 VDD — Power supply, 3.0 V to 5.5 V.
See the Power Supply Recommendations section for decoupling recommendations.

6 Specifications

6.1 Absolute Maximum Ratings

see (1)
MIN MAX UNIT
Supply voltage, VDD to GND –0.3 7 V
Analog input voltage at AINP, AINN GND – 5 VDD + 0.5 V
Analog output voltage at REFOUT GND – 0.5 VDD + 0.5 V
Digital input voltage at CLKIN or MCE GND – 0.5 VDD + 0.5 V
Digital output voltage at DOUT GND – 0.5 VDD + 0.5 V
Input current to any pin except supply pins –10 10 mA
Junction temperature, TJ 150 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating ambient temperature range (unless otherwise noted)
MIN NOM MAX UNIT
POWER SUPPLY
VDD Supply voltage VDD to GND 3.0 3.3 5.5 V
ANALOG INPUT
VClipping Differential input voltage before clipping output VIN = VAINP – VAINN ±1.25 V
VFSR Specified linear differential full-scale voltage VIN = VAINP – VAINN –1 1 V
Absolute common-mode input voltage(1) (VAINP + VAINN) / 2 to GND –2 VDD V
VCM Operating common-mode input voltage(2) (VAINP + VAINN) / 2 to GND,
3.0 V ≤ VDD < 4 V,
VAINP = VAINN
–1.4 VDD – 1.4 V
(VAINP + VAINN) / 2 to GND,
3.0 V ≤ VDD < 4.5 V,
|VAINP – VAINN| = 1.25 V
–0.8 VDD – 2.4
(VAINP + VAINN) / 2 to GND,
4 V ≤ VDD ≤ 5.5 V,
VAINP = VAINN
–1.4 2.7
(VAINP + VAINN) / 2 to GND,
4.5 V ≤ VDD ≤ 5.5 V,
|VAINP – VAINN| = 1.25 V
–0.8 2.1
DIGITAL INPUT
Input voltage VMCE or VCLKIN to GND GND VDD V
TEMPERATURE RANGE
TA Operating ambient temperature –40 25 125 °C
(1) Steady-state voltage supported by the device in case of a system failure. See specified common-mode input voltage VCM for normal operation. Observe analog input voltage range as specified in the Absolute Maximum Ratings table.
(2) See the Analog Input section for more details.

6.4 Thermal Information

THERMAL METRIC(1) AMC1035 UNIT
D (SOIC)
8 PINS
RθJA Junction-to-ambient thermal resistance 120 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 52 °C/W
RθJB Junction-to-board thermal resistance 61 °C/W
ψJT Junction-to-top characterization parameter 10 °C/W
ψJB Junction-to-board characterization parameter 60 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance n/a °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale