AMC1035 是一款精密 Δ-Σ 调制器,可在 3.0V 至 5.5V 的单电源下运行,且具有 9MHz 至 21MHz 的时钟信号。在曼彻斯特模式下,额定时钟范围为 9MHz 至 11MHz。该器件的差分 ±1V 输入结构经过优化,可适应工业应用中的典型高噪声 环境。
AMC1035 可选择曼彻斯特编码式输出位流,这样便无需考虑接收器件的设置和保留时间要求并减少总体电路布局工作。当用于与数字滤波器(例如集成到 TMS320F28004x、TMS320F2807x 或 TMS320F2837x 微控制器系列中)一起抽取输出位流时,该器件可在 82kSPS 的数据速率下实现具有 87dB 动态范围的 16 位分辨率。
AMC1035 的内部基准源支持比例电路架构,可最大限度降低电源电压变化和温漂对测量精度的负面影响。
AMC1035 还可用于与数字隔离器和隔离电源一起实现交流电力线电压检测。
器件型号 | 封装 | 封装尺寸(标称值) |
---|---|---|
AMC1035 | SOIC (8) | 4.9mm x 3.9mm |
PIN | I/O | DESCRIPTION | |
---|---|---|---|
NO. | NAME | ||
1 | MCE | I | Manchester coding enabled, active high, with internal pulldown resistor (typical value: 200 kΩ).
The polarity of this signal must not be changed when the clock signal is applied. |
2 | AINP | I | Noninverting analog input. |
3 | AINN | I | Inverting analog input. |
4 | REFOUT | O | Reference output: 2.5 V nominal, maximum ±5-mA sink and source capability. |
5 | GND | — | Ground reference. |
6 | DOUT | O | Modulator bitstream data output, updated with the rising edge of the clock signal present on CLKIN.
This pin is a Manchester coded output if MCE is pulled high. Use the rising edge of the clock to latch the modulator bitstream at the input of the digital filter device. |
7 | CLKIN | I | Modulator clock input: 9 MHz to 21 MHz with an internal pulldown resistor (typical value: 200 kΩ).
The clock signal must be applied continuously for proper device operation; see the Clock Input section for additional details. |
8 | VDD | — | Power supply, 3.0 V to 5.5 V.
See the Power Supply Recommendations section for decoupling recommendations. |
MIN | MAX | UNIT | ||
---|---|---|---|---|
Supply voltage, VDD to GND | –0.3 | 7 | V | |
Analog input voltage at AINP, AINN | GND – 5 | VDD + 0.5 | V | |
Analog output voltage at REFOUT | GND – 0.5 | VDD + 0.5 | V | |
Digital input voltage at CLKIN or MCE | GND – 0.5 | VDD + 0.5 | V | |
Digital output voltage at DOUT | GND – 0.5 | VDD + 0.5 | V | |
Input current to any pin except supply pins | –10 | 10 | mA | |
Junction temperature, TJ | 150 | °C | ||
Storage temperature, Tstg | –65 | 150 | °C |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±2000 | V |
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±1000 |
MIN | NOM | MAX | UNIT | |||
---|---|---|---|---|---|---|
POWER SUPPLY | ||||||
VDD | Supply voltage | VDD to GND | 3.0 | 3.3 | 5.5 | V |
ANALOG INPUT | ||||||
VClipping | Differential input voltage before clipping output | VIN = VAINP – VAINN | ±1.25 | V | ||
VFSR | Specified linear differential full-scale voltage | VIN = VAINP – VAINN | –1 | 1 | V | |
Absolute common-mode input voltage(1) | (VAINP + VAINN) / 2 to GND | –2 | VDD | V | ||
VCM | Operating common-mode input voltage(2) | (VAINP + VAINN) / 2 to GND,
3.0 V ≤ VDD < 4 V, VAINP = VAINN |
–1.4 | VDD – 1.4 | V | |
(VAINP + VAINN) / 2 to GND,
3.0 V ≤ VDD < 4.5 V, |VAINP – VAINN| = 1.25 V |
–0.8 | VDD – 2.4 | ||||
(VAINP + VAINN) / 2 to GND,
4 V ≤ VDD ≤ 5.5 V, VAINP = VAINN |
–1.4 | 2.7 | ||||
(VAINP + VAINN) / 2 to GND,
4.5 V ≤ VDD ≤ 5.5 V, |VAINP – VAINN| = 1.25 V |
–0.8 | 2.1 | ||||
DIGITAL INPUT | ||||||
Input voltage | VMCE or VCLKIN to GND | GND | VDD | V | ||
TEMPERATURE RANGE | ||||||
TA | Operating ambient temperature | –40 | 25 | 125 | °C |
THERMAL METRIC(1) | AMC1035 | UNIT | |
---|---|---|---|
D (SOIC) | |||
8 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 120 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 52 | °C/W |
RθJB | Junction-to-board thermal resistance | 61 | °C/W |
ψJT | Junction-to-top characterization parameter | 10 | °C/W |
ψJB | Junction-to-board characterization parameter | 60 | °C/W |
RθJC(bot) | Junction-to-case (bottom) thermal resistance | n/a | °C/W |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
ANALOG INPUTS | ||||||
VCMuv(1) | Negative common-mode undervoltage detection level(2) | (VAINP + VAINN) / 2, VAINP = VAINN | –1.45 | V | ||
(VAINP + VAINN) / 2, |VAINP – VAINN| = 1.25 V | –0.85 | |||||
VCMov(1) | Positive common-mode overvoltage detection level(2) | 3.0 V ≤ VDD < 4 V, VAINP = VAINN | VDD – 1.35 | V | ||
3.0 V ≤ VDD < 4.5 V, |VAINP – VAINN| = 1.25 V | VDD – 2.35 | |||||
4 V ≤ VDD ≤ 5.5 V, VAINP = VAINN | 2.75 | |||||
4.5 V ≤ VDD ≤ 5.5 V, |VAINP – VAINN| = 1.25 V | 2.15 | |||||
RIN | Single-ended input resistance | AINN = GND | 0.1 | 0.4 | GΩ | |
RIND | Differential input resistance | 0.16 | 1.6 | GΩ | ||
CIN | Single-ended input capacitance | AINN = GND | 2 | pF | ||
CIND | Differential input capacitance | 2 | pF | |||
IIB | Input bias current | AINP = AINN = GND, (IAINP + IAINN) / 2 | –10 | ±3 | 10 | nA |
TCIIB | Input bias current thermal drift | AINP = AINN = GND, (IAINP + IAINN) / 2 | ±5 | pA/°C | ||
IIO | Input offset current | IIO = IAINP – IAINN | –5 | ±1 | 5 | nA |
CMRR | Common-mode rejection ratio | AINP = AINN, fIN = 0 Hz, VCM min ≤ VIN ≤ VCM max | –104 | dB | ||
AINP = AINN, fIN from 0.1 Hz to 50 kHz,
–0.5 V ≤ VIN ≤ 0.5 V |
–88 | |||||
DC ACCURACY | ||||||
Resolution(3) | 16 | Bits | ||||
INL | Integral nonlinearity(4) | Resolution: 16 bits | –12 | ±2 | 12 | LSB |
EO | Offset error | Initial, at TA = 25°C, AINP = AINN = GND | –0.5 | ±0.03 | 0.5 | mV |
TCEO | Offset error thermal drift(5) | –6 | ±0.1 | 6 | µV/°C | |
EG | Gain error | Initial, at TA = 25°C | –0.25% | ±0.02% | 0.25% | |
Initial, at TA = 25°C, ratiometric mode | –0.3% | ±0.02% | 0.3% | |||
TCEG | Gain error thermal drift(6) | –45 | ±20 | 45 | ppm/°C | |
Ratiometric mode | –15 | ±4 | 15 | |||
PSRR | Power-supply rejection ratio | AINP = AINN = GND, at dc | –90 | dB | ||
AINP = AINN = GND, 10 kHz, 100-mV ripple | –84 | |||||
AC ACCURACY | ||||||
SNR | Signal-to-noise ratio | fIN = 1 kHz | 81 | 87 | dB | |
SINAD | Signal-to-noise + distortion | fIN = 1 kHz | 77 | 83 | dB | |
THD | Total harmonic distortion | fIN = 1 kHz | –87 | –78 | dB | |
SFDR | Spurious-free dynamic range | fIN = 1 kHz | 78 | 87 | dB | |
REFERENCE OUTPUT | ||||||
VREFOUT | Reference output voltage | Initial, at TA = 25°C, no load | 2.495 | 2.5 | 2.505 | V |
TCVREFOUT | Reference output voltage drift | –50 | ±20 | 50 | ppm/°C | |
IREFOUT | Reference output current | CLOAD < 1 nF(7) | –5 | 5 | mA | |
Load regulation | Load to GND or VDD | 0.15 | 0.35 | mV/mA | ||
ISC | Short-circuit current | REFOUT to GND | 23 | mA | ||
REFOUT to VDD | –21 | |||||
PSRR | Power-supply rejection ratio | –200 | ±30 | 200 | µV/V | |
DIGITAL INPUTS (CMOS Logic With Schmitt-Trigger) | ||||||
IIN | Input current | GND ≤ VIN ≤ VDD | 35 | μA | ||
CIN | Input capacitance | 3 | pF | |||
VIH | High-level input voltage | 0.7 × VDD | VDD + 0.3 | V | ||
VIL | Low-level input voltage | –0.3 | 0.3 × VDD | V | ||
DIGITAL OUTPUT: CMOS | ||||||
CLOAD | Output load capacitance | fCLKIN = 21 MHz | 15 | 30 | pF | |
VOH | High-level output voltage | IOH = –20 µA | VDD – 0.1 | V | ||
IOH = –4 mA | VDD – 0.4 | |||||
VOL | Low-level output voltage | IOL = 20 µA | 0.1 | V | ||
IOL = 4 mA | 0.4 | |||||
POWER SUPPLY | ||||||
IVDD | High-side supply current | 3.0 V ≤ VDD ≤ 3.6 V, IREFOUT = 0 mA, MCE = 0, CLOAD = 15 pF | 5.2 | 6.8 | mA | |
3.0 V ≤ VDD ≤ 3.6 V, IREFOUT = 0 mA, MCE = 1, CLOAD = 15 pF(8) | 4.6 | 6.1 | ||||
4.5 V ≤ VDD ≤ 5.5 V, IREFOUT = 0 mA, MCE = 0, CLOAD = 15 pF | 6.4 | 8.3 | ||||
4.5 V ≤ VDD ≤ 5.5 V, IREFOUT = 0 mA, MCE = 1, CLOAD = 15 pF(8) | 5.4 | 7.2 |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
fCLKIN | CLKIN clock frequency | MCE = 0 | 9 | 20 | 21 | MHz |
MCE = 1 | 9 | 10 | 11 | |||
DutyCycle | CLKIN clock duty cycle(1) | 40% | 50% | 60% | ||
tH1 | DOUT hold time after rising edge of CLKIN | MCE = 0, CLOAD = 15 pF | 6 | ns | ||
tH2 | DOUT hold time after rising edge of CLKIN | MCE = 1, CLOAD = 15 pF | 6 | 23 | ns | |
tH3 | DOUT hold time after falling edge of CLKIN | MCE = 1, CLOAD = 15 pF | 10 | 26 | ns | |
tD1 | Rising edge of CLKIN to DOUT valid delay | MCE = 0, CLOAD = 15 pF | 25 | ns | ||
tD2 | Rising edge of CLKIN to DOUT valid delay | MCE = 1, CLOAD = 15 pF | 11 | 27 | ns | |
tD3 | Falling edge of CLKIN to DOUT valid delay | MCE = 1, CLOAD = 15 pF | 15 | 30 | ns | |
tr | DOUT rise time | 10% to 90%, 3.0 V ≤ VDD ≤ 3.6 V, CLOAD = 15 pF | 2.5 | 5 | ns | |
10% to 90%, 4.5 V ≤ VDD ≤ 5.5 V, CLOAD = 15 pF | 1.5 | 3.5 | ||||
tf | DOUT fall time | 90% to 10%, 3.0 V ≤ VDD ≤ 3.6 V, CLOAD = 15 pF | 2.5 | 5.8 | ns | |
90% to 10%, 4.5 V ≤ VDD ≤ 5.5 V, CLOAD = 15 pF | 1.8 | 4.4 | ||||
tASTART | Analog startup time | VDD step to 3.0 V, 0.1% settling, CLKIN applied | 0.25 | ms |
VDD = 5.5 V |
4096-point FFT, VIN = 2 VPP |
4096-point FFT, VIN = 2 VPP |
The differential analog input (comprised of input signals AINP and AINN) of the AMC1035 is a chopper-stabilized buffer, followed by the switched-capacitor input of a second-order, delta-sigma (ΔΣ) modulator stage that digitizes the input signal into a 1-bit output stream. The data output DOUT of the converter provides a stream of digital ones and zeros that is synchronous to the externally-provided clock source at the CLKIN pin with a frequency in the range of 9 MHz to 21 MHz. The time average of this serial bitstream output is proportional to the analog input voltage.
The Functional Block Diagram section shows a detailed block diagram of the AMC1035. The 1.6-GΩ differential input resistance of the analog input stage supports low gain-error signal sensing in high-voltage applications using resistive dividers. The external clock input simplifies the synchronization of multiple measurement channels on the system level. The extended frequency range of up to 21 MHz supports higher performance levels compared to the other solutions available on the market.