• Menu
  • Product
  • Email
  • PDF
  • Order now
  • UCC24612 高频同步整流器控制器

    • ZHCSHN1A August   2017  – February 2018 UCC24612

      PRODUCTION DATA.  

  • CONTENTS
  • SEARCH
  • UCC24612 高频同步整流器控制器
  1. 1 特性
  2. 2 应用
  3. 3 说明
    1.     Device Images
      1.      具有高侧 SR 的反激式
      2.      具有低侧 SR 的反激式
  4. 4 修订历史记录
  5. 5 Pin Configuration and Functions
    1.     Pin Functions
  6. 6 Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  7. 7 Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Power Management
      2. 7.3.2 Synchronous Rectifier Control
      3. 7.3.3 Adaptive Blanking Time
        1. 7.3.3.1 Turn-On Blanking Timer (Minimum On Time)
        2. 7.3.3.2 Turn-Off Blanking Timer
        3. 7.3.3.3 SR Turn-on Re-arm
      4. 7.3.4 Gate Voltage Clamping
      5. 7.3.5 Standby Mode
    4. 7.4 Device Functional Modes
      1. 7.4.1 UVLO Mode
      2. 7.4.2 Standby Mode
      3. 7.4.3 Run Mode
  8. 8 Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 SR MOSFET Selection
        2. 8.2.2.2 Bypass Capacitor Selection
        3. 8.2.2.3 Snubber design
        4. 8.2.2.4 High-Side Operation
      3. 8.2.3 Application Curves
        1. 8.2.3.1 Steady State Testing Low-Side Configuration
        2. 8.2.3.2 Steady State Testing High-Side Configuration
  9. 9 Power Supply Recommendations
  10. 10PCB Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11器件和文档支持
    1. 11.1 社区资源
    2. 11.2 商标
    3. 11.3 静电放电警告
    4. 11.4 Glossary
  12. 12机械、封装和可订购信息
  13. 重要声明
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

DATA SHEET

UCC24612 高频同步整流器控制器

本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。

1 特性

  • 支持有源钳位反激式、QR、DCM、CCM 反激式和 LLC 等各种拓扑
  • MOSFET VDS 感应高达 230V
  • 工作频率高达 1MHz
    • UCC24612-1 为 1MHz
    • UCC24612-2 为 800kHz
  • 宽 VDD 范围允许从 5V 至 28V 输出系统的直接偏置
  • 具有比例栅极驱动器的 4A 灌电流、1A 拉电流栅极驱动器
  • 自适应最短关闭时间,可提高抗噪能力
  • 循环极限预关闭可提高 CCM 效率
  • 高侧或低侧可配置
  • 实现自动轻负载和睡眠模式管理,待机电流为 320µA
  • 16ns 典型关闭传播延迟
  • 9.5V 栅极驱动器钳位,可减少驱动损耗

2 应用

  • 交流/直流适配器
  • USB Type-C 和电力输送交流适配器
  • 服务器和电信电源
  • 交流/直流辅助电源

3 说明

UCC24612 是用于标准和逻辑电平 N 沟道 MOSFET 功率器件的高性能同步整流器控制器和驱动器。通过实施接近理想的二极管仿真,UCC24612 可减少输出整流器的损耗,并间接减少初级侧损耗。漏极到源极 (VDS) 传感控制方案允许 UCC24612 使用多个拓扑结构,例如有源钳位反激式、QR/DCM/CCM 反激式和 LLC 等。

集成 特性 可简化设计工作,使 UCC24612 在各种频率下都 应用中 ,并表现卓越。较宽的 VDD 和 VD 工作电压范围便于在输出电压高达 28V 的系统中轻松实施。通过自适应最短关闭时间可提高效率和抗噪能力。变体器件 UCC24612-1 和 UCC24612-2 具有不同的最短导通时间,以提高抗噪能力。通过比例栅极驱动器和连续导通模式 (CCM) 循环极限预关闭进一步增强了 CCM 模式下的稳健运行能力。

UCC24612 具有多个可提高效率的 特性 。具有较短传播延迟的快速比较器可减少开关损耗。9.5V 栅极驱动器钳位可降低 MOSFET 驱动损耗。频率相关待机模式可进一步降低待机功耗。这些 特性 可帮助 UCC24612 成为符合诸如美国能源部 (DoE) 第 VI 级和行为规范 (CoC) 第 2 级等严格效率标准的更大系统的一部分。

UCC24612 采用 SOT23-5 封装。

器件信息(1)

器件型号 封装 封装尺寸(标称值)
UCC24612 SOT23 (5) 3.00mm x 3.00mm
  1. 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。

Device Images

具有高侧 SR 的反激式

UCC24612 alt_sluscm5.gif

具有低侧 SR 的反激式

UCC24612 alt2_sluscm5.gif

4 修订历史记录

日期 修订版本 说明
2017 年 2018 A 第一版.

5 Pin Configuration and Functions

5-Pin SOT-23
UCC24612 Pinout.gif

Pin Functions

PIN I/O DESCRIPTION
NAME NO.
REG 3 O
REG is the device bias pin. An internal linear regulator from VDD to REG generates a well regulated 9.5-V voltage. It is recommend to put a 2.2-µF bypass capacitor from REG pin to VS pin.
VD 5 I
MOSFET drain voltage sensing input. Connect this pin to SR MOSFET drain pin. The layout should avoid sharing the VD pin trace with the power path to minimize the impact of parasitic inductance.
VDD 4 I
Internal linear regulator input. Connect this pin to the output voltage when in low-side SR configuration. Use R-C-D circuit or other circuits to generate bias voltage from SR MOSFET drain when using high-side SR configuration, referring to Power Supply Recommendations for details.
VG 1 O
VG (controlled MOSFET gate drive), connect VG to the gate of the controlled MOSFET through a small series resistor using short PC board tracks to achieve optimal switching performance. The VG output can achieve >1-A peak source current when High and >4-A peak sink current when Low when connected to a large N-channel power MOSFET. Due to the weak internal pull up after initial fast turn on, avoid putting a resistor less than 50 kΩ between VG to VS .
VS 2 -
VS is the internal ground reference of the UCC24612. It is also used to sense the voltage drop across the SR MOSFET. The layout should avoid sharing the VS pin trace with the power path to minimize the impact of parasitic inductance.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
Input voltage (3) VDD –0.3 30 V
VD –0.7 230 V
VG –0.3 VREG V
VD for IVD ≤ –10 mA –1.0 230 V
REG 12 V
Output current, peak VG(2) pulsed, tPULSE ≤ 4 ms, duty cycle ≤ 1% ±4 A
TJ Operating junction temperature –40 125 °C
Tstg Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) In normal use, VG is connected to the gate of a power MOSFET through a small resistor. When used this way, VG current is limited by the UCC24612 and no absolute maximum output current considerations are required. The series resistor shall be selected to minimize overshoot and ringing due to series inductance of the VG output and power-MOSFET gate-drive loop. Continuous VG current is subject to the maximum operating junction temperature limitation.
(3) Input voltages more negative than indicated may exist on any listed pin without excess stress or damage to the device if the pin’s input current magnitude is limited to less than -10mA.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins, except pin 5 (1) ±2,000 V
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, pin 5 (1) ±1,500 V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) ±500 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VVDD VDD input voltage 4 28 V
CVDD VDD bypass capacitor 1 µF
CREG REG bypass capacitor 1.5 2.2 µF
TJ Junction temperature –40 125 °C
fS_MAX Maximum switching frequency UCC24612-1 770 1000 kHz
Maximum switching frequency UCC24612-2 625 800

6.4 Thermal Information

THERMAL METRIC(1) UCC24612 UNIT
DBV (SOT23-5)
5 PINs
RθJA Junction-to-ambient thermal resistance 206.6 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 97.6 °C/W
RθJB Junction-to-board thermal resistance 44.2 °C/W
ψJT Junction-to-top characterization parameter 9.9 °C/W
ψJB Junction-to-board characterization parameter 43.7 °C/W
(1) For more information about traditional and new thermal metrics, see the the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

At VDD = 12 VDC, CVG = 0 pF, CREG = 2.2 µF, −40°C ≤ TJ = TA ≤ +125°C, all voltages are with respect to VS, and currents are positive into and negative out of the specified terminal, unless otherwise noted. Typical values are at TJ = +25°C.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
BIAS SUPPLY
IVDDSTART VDD current, REG undervoltage VDD = 4 V, VD = 0 V 50 105 150 μA
IVDDRUN VDD current, run VDD = 12 V 0.5 0.92 1.5 mA
VDD = 5 V 0.5 0.9 1.5 mA
IVDDSTBY VDD current, standby mode VDD = 12 V, VD = 1 V 200 390 650 μA
VDD = 5 V, VD = 1 V 200 320 500 μA
UNDERVOLTAGE LOCKOUT (UVLO)
VREGON REG turn-on threshold Turn-on detected by IVDD rising 4.15 4.5 4.87 V
VREGOFF REG turn-off threshold Turn-off detected by IVDD falling 3.65 4 4.25 V
VREGHYST UVLO hysteresis VREGHYST = VREGON – VREGOFF 0.425 0.5 0.575 V
MOSFET VOLTAGE SENSING
VTHVGON VG turn-on threshold VD falling, TJ = 25°C –300 –240 –175 mV
VTHVGOFF VG turn-off threshold VD rising, TJ = 25°C –20 -9 –2 mV
VD rising, –40°C ≤TJ ≤ 125°C –30 –9 –2
VTHARM VG re-arming threshold VD rising 0.4 0.5 0.6 V
IVDBIAS_ON VD pin bias current when VG is high (SR is on) VVD = –50 mV, VVG = VGH –1 0 1 µA
IVDBIAS_OFF VD pin bias current when VG is low (SR is off) VVD = –150 mV, VVG = VGL, TJ = 25°C –6 –2 µA
VVD = –150 mV, VVG = VGL, –40°C ≤TJ ≤ 125°C –10
IVDLK VD pin leakage current VVD = 200 V 0.06 2 µA
GATE DRIVER
RSOURCE VG pull-up resistance IVG = –20 mA 5.7 10 Ω
RSINK VG pull-down resistance IVG = 100 mA 0.45 1 Ω
VGH VG clamp level 8.55 9.4 10.26 V
VGL VG output low voltage IVG = 100 mA, VDD = 12 V 60 150 mV
VOLGUV VG output low voltage in UVLO IVG = 25 mA, VDD = 4 V 0.7 V
IVGPU Gate driver maximum source current 1(1) A
IVGPD Gate driver maximum sink current (1) 4 A
REG SUPPLY
VREG REG pin regulation level ILOAD_REG = 0 mA 8.55 9.4 10.26 V
VREGLG Load regulation on REG ILOAD_REG= 10 mA to 0 mA 0.016 0.1 V
VREGDO REG drop-out on pass-through mode VDD = 5 V, ILOAD_REG= 10 mA 0.28 0.45 V
IREGSC REG short-circuit current VREG = 0 V 1 5.2 15 mA
IREGLIM REG current limit VREG = 8 V 25 42 62 mA
(1) Specified by design

6.6 Timing Requirements

At VDD = 12 VDC, CVG = 0 pF, CREG = 2.2 µF, −40°C ≤ TJ = TA ≤ +125°C, all voltages are with respect to VS, and currents are positive into and negative out of the specified terminal, unless otherwise noted. Typical values are at TJ = +25°C.
TEST CONDITIONS MIN NOM MAX UNIT
MOSFET VOLTAGE SENSING
tdVGON Gate turn-on propagation delay VD transitions from 4.7 V to –0.3 V in 5 ns, UCC24612-1, TJ = 25°C, see curve for more information 40 80 120 ns
VD transitions from 4.7 V to –0.3 V in 5 ns, UCC24612-2, TJ = 25°C, see curve for more information 120 170 225
tdVGOFF Gate turn-off propagation delay VD moves from -0.3 V to 4.7 V in 5 ns 16 35 ns
MINIMUM ON-TIME
tON(min) Minimum SR conduction time UCC24612 -1 245 375 475 ns
UCC24612 -2 350 540 670 ns
Adaptive MINIMUM OFF-TIME
tOFF_ABSMIN Absolute minimum SR off-time UCC24612-1 200 400 595 ns
UCC24612-2 160 360 545
tOFF_MAX Maximum SR off-blanking time 2.65 3.68 4.65 µs
GATE DRIVER
tr_VG VG rise time 10% to 90%, CVG = 6.8 nF 10 32 65 ns
tf_VG VG fall time, 90% to 10%, CVG = 6.8 nF 5 16 35 ns
LIGHTLOAD / STANDBY
tSTBY_DET Standby mode detection time 3 4.5 6 ms
fSLEEP Average frequency entering standby mode 8 12 16 kHz
fWAKE Average frequency coming out of standby mode 10 15 20 kHz
fSTB_HYS Average frequency hysteresis for standby mode 2 3 4 kHz
PROTECTION
TTSD Thermal shut-down threshold 130(1) 165 ºC
THYS Thermal shut-down recovery hysteresis 15 ºC
(1) Specified by design

6.7 Typical Characteristics

UCC24612 D017_SLUSCM5.gifFigure 1. UVLO Threshold Voltage vs Temperature
UCC24612 D031_SLUSCM5.gifFigure 3. SR Turn-off Threshold Voltages vs Temperature
UCC24612 D021_SLUSCM5.gif
Figure 5. Proportional Gate-drive Threshold vs Temperature
UCC24612 D023_SLUSCM5.gif
Figure 7. REG Drop-out in Pass-through Mode vs Temperature, ILOAD_REG = 10 mA
UCC24612 D025_SLUSCM5.gif
Figure 9. Turn-On Blanking Time vs Temperature
UCC24612 D028_SLUSCM5.gif
1.
Figure 11. SR Turn-off Propagation Delay vs Temperature
UCC24612 D018_SLUSCM5.gifFigure 2. Bias Supply Current vs. Temperature (CVG= 0 pF, VVD = 1 V and No Switching)
UCC24612 D020_SLUSCM5.gifFigure 4. SR Turn-on Threshold Voltage vs Temperature
UCC24612 D026_SLUSCM5.gif
Figure 6. REG Pin Voltage vs Temperature at Different Loading Conditions
UCC24612 D030_SLUSCM5.gif
Figure 8. Abs. Minimum Turn-off Blanking Time and Maximum Turn-off Blanking Time vs Temperature
UCC24612 D027_SLUSCM5.gif
1.
Figure 10. SR Turn-on Delay Time vs Temperature
UCC24612 D029_SLUSCM5.gif
1.
Figure 12. Standby Current vs Temperature

7 Detailed Description

7.1 Overview

The UCC24612 synchronous rectifier (SR) controller uses drain-to-source voltage sensing to determine the SR MOSFET conduction interval. The SR MOSFET is turned on when VDS exceeds turn-on threshold VTHVGON, and is turned off when VDS falls below VTHVGOFF. The SR conduction voltage drop is continuously monitored and regulated to minimize the conduction loss while allowing the SR to pre-turn-off when operating in continuous conduction mode (CCM) . The extremely fast turn-off comparator and driving circuit ensures the fast turn-off of the SR MOSFET, even in CCM condition. Fixed minimum on-time (tON(min) ) allows the controller to operate up to 1-MHz switching frequency (1 MHz for UCC24612-1, 800 kHz for UCC24612-2). The adaptive minimum off-time control simplifies the design, making the controller suitable for a wide range of applications and switching frequencies, with good immunity to noise caused by parasitic ringing. To minimize the standby power, automatic light-load mode disables the VG pulses when the average switching frequency of the converter becomes lower than fSLEEP (12 kHz typical). When the load increases such that the average switching frequency increases above fWAKE (15 kHz typical), the controller resumes normal SR operation. The wide VDD range and gate driver clamp make the controller ideal for wide output voltage range applications such as USB Power Delivery (USB-PD) adapters, for example.

7.2 Functional Block Diagram

UCC24612 fbd_luscm5.gif

7.3 Feature Description

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale