SN65DSI83-Q1 DSI 转 LVDS 桥接器 具有 一个单通道 MIPI D-PHY 接收器前端
配置,此配置中在每个通道上具有 4 条信道,每条信道的运行速率为 1Gbps,最大输入带宽为 4Gbps。该桥接器可解码 MIPI DSI 18bpp RGB666 和 24bpp RGB888 视频流,并将格式化视频数据流转换为 LVDS 输出(像素时钟范围为 25MHz 至 154MHz),从而提供单链路 LVDS(每个链路具有 4 个数据信道)。
SN65DSI83-Q1 器件可支持高达 WUXGA 1920 × 1200(每秒 60 帧,24bpp,采用简化消隐)的分辨率。SN65DSI83-Q1 器件还适用于 使用 60fps 1366 × 768/1280 × 800(18bpp 和 24bpp)的应用。该器件实现了部分线路缓冲以适应 DSI 与 LVDS 接口间的数据流不匹配的情况。
SN65DSI83-Q1 器件采用小外形 10mm × 10mm HTQFP
(0.5mm 间距)封装,工作温度范围为 –40ºC 至 +105ºC。
器件编号 | 封装 | 封装尺寸(标称值) |
---|---|---|
SN65DSI83-Q1 | HTQFP (64) | 10.00mm x 10.00mm |
Changes from * Revision (December 2016) to A Revision
PIN | TYPE | DESCRIPTION | |
---|---|---|---|
NAME | NO. | ||
ADDR | 64 | I/O | Local I2C interface target address select. See Table 3. In normal operation this pin is an input. When the ADDR pin is programmed high, it must be tied to the same 1.8-V power rails where the SN65DSI83-Q1 VCC 1.8-V power rail is connected |
A_CLKP | 38 | O | LVDS channel A, LVDS clock output |
A_CLKN | 39 | ||
A_Y0P | 46 | O | LVDS channel A, LVDS data output 0 |
A_Y0N | 47 | ||
A_Y1P | 44 | O | LVDS channel A, LVDS data output 1 |
A_Y1N | 45 | ||
A_Y2P | 41 | O | LVDS channel A, LVDS data output 2 |
A_Y2N | 42 | ||
A_Y3P | 36 | O | LVDS channel A, LVDS data output 3. A_Y3P and A_Y3N must be left not connected (NC) for 18-bpp panels |
A_Y3N | 37 | ||
DA0P | 19 | I | MIPI D-PHY channel A, data lane 0; data rate up to 1 Gbps |
DA0N | 20 | ||
DA1P | 21 | I | MIPI D-PHY channel A, data lane 1; data rate up to 1 Gbps |
DA1N | 22 | ||
DA2P | 27 | I | MIPI D-PHY channel A, data lane 2; data rate up to 1 Gbps |
DA2N | 28 | ||
DA3P | 29 | I | MIPI D-PHY channel A, data lane 3; data rate up to 1 Gbps |
DA3N | 30 | ||
DACP | 24 | I | MIPI D-PHY channel A, clock lane; data rate up to 1 Gbps |
DACN | 25 | ||
EN | 2 | I | Chip enable and reset. The device is reset (shutdown) when the EN pin is low |
GND | 23, 26, 52 | G | Reference ground |
IRQ | 33 | O | Interrupt signal |
REFCLK | 17 | I | This pin is an optional external reference clock for the LVDS pixel clock. If an external reference clock is not used, this pin must be pulled to ground with an external resistor. The source of the reference clock must be placed as close as possible with a series resistor near the source to reduce EMI |
RSVD | 4 | RSVD | Reserved and leave them unconnected |
5 | |||
6 | |||
7 | |||
8 | |||
9 | |||
10 | |||
11 | |||
12 | |||
13 | |||
50 | |||
51 | |||
53 | |||
54 | |||
56 | |||
57 | |||
59 | |||
60 | |||
61 | |||
62 | |||
RSVD1 | 34 | I/O | Reserved. This pin must be left unconnected for normal operation |
RSVD2 | 1 | I | Reserved. This pin must be left unconnected for normal operation |
SCL | 15 | I | Local I2C interface clock |
SDA | 16 | I/O | Local I2C interface data |
VCC | 3 | — | 1.8-V power supply |
14 | |||
18 | |||
32 | |||
35 | |||
40 | |||
43 | |||
48 | |||
49 | |||
55 | |||
58 | |||
63 | |||
VCORE | 31 | P | 1.1-V output from the voltage regulator. This pin must have a 1-µF external capacitor to ground |
PowerPAD | — | — | Reference ground |
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
VCC | Supply voltage | –0.3 | 2.175 | V | |
Input voltage | CMOS input pins | –0.5 | 2.175 | V | |
DSI input pins (DAxP, DAxN) | –0.4 | 1.4 | V | ||
TA | Operating free-air temperature | –40 | 105 | °C | |
TJ | Junction temperature | –40 | 115 | °C | |
Tstg | Storage temperature | –65 | 150 | °C |
VALUE | UNIT | ||||
---|---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per AEC Q100-002(1) | ±4000 | V | |
Charged-device model (CDM), per AEC Q100-011 | ±1000 |
MIN | NOM | MAX | UNIT | ||
---|---|---|---|---|---|
VCC | VCC power supply | 1.65 | 1.8 | 1.95 | V |
VPSN | Supply noise on any VCC pin | ƒ(noise) > 1 MHz | 0.05 | V | |
V(DSI) | DSI input pin voltage | –50 | 1350 | mV | |
ƒ(I2C) | Local I2C input frequency | 400 | kHz | ||
ƒHS(CLK) | DSI high-speed (HS) clock input frequency | 40 | 500 | MHz | |
tsu | DSI HS data to clock setup time; see Figure 1 | 0.15 | UI(1) | ||
th | DSI HS data to clock hold time; see Figure 1 | 0.15 | UI(1) | ||
ZOD(LVDS) | LVDS output differential impedance | 90 | 132 | Ω | |
TC | Case temperature | 92.2 | °C |
THERMAL METRIC(1) | SN65DSI83-Q1 | UNIT | |
---|---|---|---|
PAP (HTQFP) | |||
64 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 36.1 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 18.2 | °C/W |
RθJB | Junction-to-board thermal resistance | 20.6 | °C/W |
ψJT | Junction-to-top characterization parameter | 0.8 | °C/W |
ψJB | Junction-to-board characterization parameter | 20.5 | °C/W |
RθJC(bot) | Junction-to-case (bottom) thermal resistance | 2.2 | °C/W |
PARAMETER | TEST CONDITIONS | MIN | TYP(1) | MAX | UNIT | |
---|---|---|---|---|---|---|
VIL | Low-level control signal input voltage | 0.3 × VCC | V | |||
VIH | High-level control signal input voltage | 0.7 × VCC | V | |||
VOH | High-level output voltage | IOH = –4 mA | 1.25 | V | ||
VOL | Low-level output voltage | IOL = 4 mA | 0.4 | V | ||
ILKG | Input failsafe leakage current | VCC = 0; VCC(PIN) = 1.8 V | ±30 | μA | ||
IIH | High level input current | Any input terminal | ±30 | μA | ||
IIL | Low level input current | Any input terminal | ±30 | μA | ||
IOZ | High-impedance output current | CMOS output terminals | ±10 | μA | ||
IOS | Short-circuit output current | Any output driving GND short | ±50 | mA | ||
ICC | Device active current | See (2) | 77 | 124 | mA | |
IULPS | Device standby current | All data and clock lanes are in ultra-low power state (ULPS) | 7.7 | 14 | mA | |
IRST | Shutdown current | EN = 0 | 130 | µA | ||
REN | EN control input resistor | 200 | kΩ | |||
MIPI DSI INTERFACE | ||||||
VIH-LP | LP receiver input high threshold | See Figure 2 | 880 | mV | ||
VIL-LP | LP receiver input low threshold | See Figure 2 | 550 | mV | ||
|VID| | HS differential input voltage | 100 | 270 | mV | ||
|VIDT| | HS differential input voltage threshold | 50 | mV | |||
VIL-ULPS | LP receiver input low threshold; ultra-low power state (ULPS) | 300 | mV | |||
VCM-HS | HS common mode voltage; steady-state | 70 | 330 | mV | ||
ΔVCM-HS | HS common mode peak-to-peak variation including symbol delta and interference | 100 | mV | |||
VIH-HS | HS single-ended input high voltage | See Figure 2 | 460 | mV | ||
VIL-HS | HS single-ended input low voltage | See Figure 2 | –40 | mV | ||
VTERM-EN | HS termination enable; single-ended input voltage (both Dp AND Dn apply to enable) | Termination is switched simultaneous for Dn and Dp | 450 | mV | ||
RDIFF-HS | HS mode differential input impedance | 80 | 125 | Ω | ||
LVDS OUTPUT | ||||||
|VOD| | Steady-state differential output voltage
A_Y x P/N |
CSR 0×19.3:2=00
100 Ω near end termination |
180 | 245 | 330 | mV |
CSR 0×19.3:2=01
100 Ω near end termination |
215 | 293 | 392 | |||
CSR 0×19.3:2=10
100 Ω near end termination |
250 | 341 | 455 | |||
CSR 0×19.3:2=11
100 Ω near end termination |
290 | 389 | 515 | |||
CSR 0×19.3:2=00
200 Ω near end termination |
150 | 204 | 275 | |||
CSR 0×19.3:2=01
200 Ω near end termination |
200 | 271 | 365 | |||
CSR 0×19.3:2=10
200 Ω near end termination |
250 | 337 | 450 | |||
CSR 0×19.3:2=11
200 Ω near end termination |
300 | 402 | 535 | |||
|VOD| | Steady-state differential output voltage for
A_CLKP/N |
CSR 0×19.3:2=00
near end termination |
140 | 191 | 262 | mV |
CSR 0×19.3:2=01
100 Ω near end termination |
168 | 229 | 315 | |||
CSR 0×19.3:2=10
100 Ω near end termination |
195 | 266 | 365 | |||
CSR 0×19.3:2=11
100 Ω near end termination |
226 | 303 | 415 | |||
CSR 0×19.3:2=00
200 Ω near end termination |
117 | 159 | 220 | |||
CSR 0×19.3:2=01
200 Ω near end termination |
156 | 211 | 295 | |||
CSR 0×19.3:2=10
200 Ω near end termination |
195 | 263 | 362 | |||
CSR 0×19.3:2=11
200 Ω near end termination |
234 | 314 | 435 | |||
Δ|VOD| | Change in steady-state differential output voltage between opposite binary states | RL = 100 Ω | 35 | mV | ||
VOC(SS) | Steady state common-mode output voltage(3) | CSR 0×19.6 = 1 and CSR 0×1B.6 = 1 Figure 3 | 0.75 | 0.9 | 1.13 | V |
CSR 0×19.6 = 0 see Figure 3 | 1 | 1.25 | 1.5 | |||
VOC(PP) | Peak-to-peak common-mode output voltage | see Figure 3 | 35 | mV | ||
RLVDS_DIS | Pulldown resistance for disabled LVDS outputs | 1 | kΩ |
PARAMETER | TEST CONDITIONS | MIN | TYP(1) | MAX | UNIT | |
---|---|---|---|---|---|---|
DSI | ||||||
tGS | DSI LP glitch suppression pulse width | 300 | ps | |||
LVDS | ||||||
tc | Output clock period | 6.49 | 40 | ns | ||
tw | High-level output clock (CLK) pulse duration | 4/7 tc | ns | |||
t0 | Delay time, CLK↑ to 1st serial bit position | tc = 6.49 ns;
Input clock jitter < 25 ps (REFCLK) See Figure 4 |
–0.15 | 0.15 | ns | |
t1 | Delay time, CLK↑ to 2nd serial bit position | 1/7 tc – 0.15 | 1/7 tc + 0.15 | ns | ||
t2 | Delay time, CLK↑ to 3rd serial bit position | 2/7 tc – 0.15 | 2/7 tc + 0.15 | ns | ||
t3 | Delay time, CLK↑ to 4th serial bit position | 3/7 tc – 0.15 | 3/7 tc + 0.15 | ns | ||
t4 | Delay time, CLK↑ to 5th serial bit position | 4/7 tc – 0.15 | 4/7 tc + 0.15 | ns | ||
t5 | Delay time, CLK↑ to 6th serial bit position | 5/7 tc – 0.15 | 5/7 tc + 0.15 | ns | ||
t6 | Delay time, CLK↑ to 7th serial bit position | 6/7 tc – 0.15 | 6/7 tc + 0.15 | ns | ||
tr | Differential output rise time | See Figure 4 | 180 | 500 | ps | |
tf | Differential output fall time | |||||
EN, ULPS, RESET | ||||||
ten | Enable time from EN or ULPS | tc(o) = 12.9 ns | 1 | ms | ||
tdis | Disable time to standby; see | tc(o) = 12.9 ns | 0.1 | ms | ||
treset | Reset yime | 10 | ms | |||
REFCLK | ||||||
FREFCLK | REFCLK freqeuncy. Supported frequencies:
25 MHz - 154 MHz |
25 | 154 | MHz | ||
tr, tf | REFCLK rise and fall time | 100 × 10–12 | 1×10–9 | s | ||
tpj | REFCLK peak-to-peak phase jitter | 50 | ps | |||
Duty | REFCLK duty cycle | 40% | 50% | 60% | ||
REFCLK or DSI CLK (DACP/N) | ||||||
SSC_CLKIN | SSC enabled Input CLK center spread depth(2) | 0.5% | 1% | 2% | ||
Modulation frequency | 30 | 60 | kHz |
The SN65DSI83-Q1 DSI to LVDS bridge device features a single-channel MIPI® D-PHY receiver front-end configuration with four lanes per channel operating at 1 Gbps per lane; a maximum input bandwidth of 4 Gbps. The bridge decodes MIPI DSI 18-bpp RGB666 and 24-bpp RGB888 packets and converts the formatted video data stream to an LVDS output operating at pixel clocks operating from 25 MHz to 154 MHz, offering a Single-Link LVDS with four data lanes per link.
The LVDS clock may be derived from the DSI channel A clock, or from an external reference clock source. When the MIPI D-PHY channel A HS clock is used as the LVDS clock source, the D-PHY clock lane must operate in HS free-running (continuous) mode. This feature eliminates the need for an external reference clock reducing system costs.
The reference clock source is selected by HS_CLK_SRC (CSR 0×0A.0) programmed through the local I2C interface. If an external reference clock is selected, it is multiplied by the factor in REFCLK_MULTIPLIER (CSR 0×0B.1:0) to generate the LVDS output clock. When an external reference clock is selected, it must be between 25 MHz and 154 MHz. If the DSI channel A clock is selected, it is divided by the factor in DSI_CLK_DIVIDER (CSR 0×0B.7:3) to generate the LVDS output clock. Additionally, LVDS_CLK_RANGE (CSR 0×0A.3:1) and CH_DSI_CLK_RANGE(CSR 0×12) must be set to the frequency range of the LVDS output clock and DSI Channel A input clock respectively for the internal PLL to operate correctly. After these settings are programmed, PLL_EN (CSR 0×0D.0) must be set to enable the internal PLL.