• Menu
  • Product
  • Email
  • PDF
  • Order now
  • INA301-Q1 具有高速过流保护比较器的 36V 汽车类高速、零漂移、电压输出电流分流监视器

    • ZHCSF49B April   2016  – April 2022 INA301-Q1

      PRODUCTION DATA  

  • CONTENTS
  • SEARCH
  • INA301-Q1 具有高速过流保护比较器的 36V 汽车类高速、零漂移、电压输出电流分流监视器
  1. 1 特性
  2. 2 应用
  3. 3 说明
  4. 4 Revision History
  5. 5 Pin Configuration and Functions
  6. 6 Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. 7 Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Alert Output ( ALERT Pin)
      2. 7.3.2 Current-Limit Threshold
        1. 7.3.2.1 Resistor-Controlled Current Limit
          1. 7.3.2.1.1 Resistor-Controlled, Current-Limit Example
        2. 7.3.2.2 Voltage-Source-Controlled Current Limit
      3. 7.3.3 Hysteresis
    4. 7.4 Device Functional Modes
      1. 7.4.1 Alert Mode
        1. 7.4.1.1 Transparent Output Mode
        2. 7.4.1.2 Latch Output Mode
  8. 8 Applications and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Selecting a Current-Sensing Resistor
        1. 8.1.1.1 Selecting a Current-Sensing Resistor Example
      2. 8.1.2 Input Filtering
      3. 8.1.3 INA301-Q1 Operation With Common-Mode Voltage Transients Greater Than 36 V
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
  9. 9 Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 接收文档更新通知
    3. 11.3 支持资源
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 术语表
  12. 12Mechanical, Packaging, and Orderable Information
  13. 重要声明
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

DATA SHEET

INA301-Q1 具有高速过流保护比较器的 36V 汽车类高速、零漂移、电压输出电流分流监视器

本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。

1 特性

  • 符合汽车应用要求
  • 具有符合 AEC-Q100 标准的下列特性:
    • 器件温度等级 1:–40°C 至 +125°C 的工作环境温度范围
    • 器件 HBM ESD 分类等级 2
    • 器件 CDM ESD 分类等级 C6
  • 提供功能安全
    • 有助于进行功能安全系统设计的文档
  • 宽共模输入范围:0V 至 36V
  • 双输出:放大器和比较器输出
  • 高精度放大器:
    • 失调电压:35 µV(最大值)
    • 失调电压漂移:0.5 µV/°C(最大值)
    • 增益误差:0.1%(最大值)
    • 增益误差漂移:10 ppm/°C
  • 可用放大器增益:
    • INA301A1-Q1:20 V/V
    • INA301A2-Q1:50 V/V
    • INA301A3-Q1:100 V/V
  • 可编程警报阈值,通过单个电阻器设置
  • 总警报响应时间:1 µs
  • 透明模式和锁存模式下的开漏输出
  • 封装:VSSOP-8

2 应用

  • 电磁阀控制
  • 低侧电机监控
  • 电子动力转向
  • 电动座椅
  • 电动车窗
  • 车身控制模块
  • 电子控制单元
  • 过流保护
  • 电子保险丝

3 说明

INA301-Q1 由高共模电流感测放大器和高速比较器组成,通过测量电流感测或分流电阻两侧的电压并将该电压与定义的阈值限值相比较来提供过流保护。此器件具有一个可调限制阈值范围,此范围由单个外部限值设定电阻器设置。该分流监控器能够在 0V 至 36V 的共模电压范围内测量差分电压信号,与电源电压无关。

开漏报警输出可配置为透明模式(输出状态与输入状态保持一致)或锁存模式(复位锁存时清除报警输出)。器件报警响应时间不到 1 µs,能够快速检测过流事件。

这款器件由 2.7V-5.5V 单电源供电运行,汲取的最大电源电流为 700 µA。该器件在 -40°C 至 +125°C 的扩展级温度范围下额定运行,并且采用 8 引脚 VSSOP 封装。

器件信息(1)
器件型号封装封装尺寸(标称值)
INA301-Q1VSSOP (8)3.00mm × 3.00mm
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。



GUID-67B73B6B-FF24-46A3-98B4-DE7C656689AF-low.gif典型应用

4 Revision History

Changes from Revision A (June 2016) to Revision B (April 2022)

  • 添加了“功能安全”信息Go
  • Changed the Power Supply Recommendations sectionGo

Changes from Revision * (April 2016) to Revision A (June 2016)

  • 已从产品预发布更改为量产数据Go

5 Pin Configuration and Functions

Figure 5-1 DGK Package8-Pin VSSOPTop View
Table 5-1 Pin Functions
PIN I/O DESCRIPTION
NO. NAME
1 VS Analog Power supply, 2.7 V to 5.5 V
2 OUT Analog output Output voltage
3 LIMIT Analog input Alert threshold limit input; see the Section 7.3.2 section for details on setting the limit threshold.
4 GND Analog Ground
5 RESET Digital input Transparent or latch mode selection input
6 ALERT Digital output Overlimit alert, active-low, open-drain output
7 IN– Analog input Negative voltage input. Connect to load side of the shunt resistor.
8 IN+ Analog input Positive voltage input. Connect to supply side of the shunt resistor.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MINMAXUNIT
Supply voltage, VS6V
Analog inputs (IN+, IN–)Differential (VIN+) – (VIN–)(2)–4040V
Common-mode(3)GND – 0.340
Analog inputLIMIT pinGND – 0.3(VS) + 0.3V
Analog outputOUT pinGND – 0.3(VS) + 0.3V
Digital inputRESET pinGND – 0.3(VS) + 0.3V
Digital outputALERT pinGND – 0.36V
Operating temperature, TA–55150°C
Junction temperature, TJ150°C
Storage temperature, Tstg–65150°C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) VIN+ and VIN– are the voltages at the IN+ and IN– pins, respectively.
(3) Input voltage can exceed the voltage shown without causing damage to the device if the current at that pin is limited to 5 mA.

6.2 ESD Ratings

VALUEUNIT
V(ESD)Electrostatic dischargeHuman-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)±2000V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)±1000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MINNOMMAXUNIT
VCMCommon-mode input voltage12V
VSOperating supply voltage2.755.5V
TAOperating free-air temperature–40125°C

6.4 Thermal Information

THERMAL METRIC(1)INA301-Q1UNIT
DGK (VSSOP)
8 PINS
RθJAJunction-to-ambient thermal resistance161.5°C/W
RθJC(top)Junction-to-case (top) thermal resistance62.3°C/W
RθJBJunction-to-board thermal resistance81.4°C/W
ψJTJunction-to-top characterization parameter6.8°C/W
ψJBJunction-to-board characterization parameter80°C/W
RθJC(bot)Junction-to-case (bottom) thermal resistanceN/A°C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

at TA = 25°C, VSENSE = VIN+ – VIN– = 10 mV, VS = 5 V, VIN+ = 12 V, and VLIMIT = 2 V (unless otherwise noted)
PARAMETERTEST CONDITIONSMINTYPMAXUNIT
INPUT
VCMCommon-mode input voltage range036V
VINDifferential input voltage rangeVIN = VIN+ – VIN–, INA301A1-Q10250mV
VIN = VIN+ – VIN–, INA301A2-Q10100
VIN = VIN+ – VIN–, INA301A3-Q1050
CMRCommon-mode rejectionINA301A1-Q1, VIN+ = 0 V to 36 V,
TA = –40°C to +125°C
100110dB
INA301A2-Q1, VIN+ = 0 V to 36 V,
TA = –40°C to +125°C
106118
INA301A3-Q1, VIN+ = 0 V to 36 V,
TA = –40°C to +125°C
110120
VOSOffset voltage, RTI(1)INA301A1-Q1±25±125µV
INA301A2-Q1±15±50
INA301A3-Q1±10±35
dVOS/dTOffset voltage drift, RTI(1)TA= –40°C to +125°C0.10.5µV/°C
PSRRPower-supply rejection ratioVS = 2.7 V to 5.5 V, VIN+ = 12 V,
TA = –40°C to +125°C
±0.1±10µV/V
IBInput bias currentIB+, IB–120µA
IOSInput offset currentVSENSE = 0 mV±0.1µA
OUTPUT
GGainINA301A1-Q120V/V
INA301A2-Q150
INA301A3-Q1100
Gain errorINA301A1-Q1, VOUT = 0.5 V to VS – 0.5 V±0.03%±0.1%
INA301A2-Q1, VOUT = 0.5 V to VS – 0.5 V±0.05%±0.15%
INA301A3-Q1, VOUT = 0.5 V to VS – 0.5 V±0.11%±0.2%
TA= –40°C to 125°C310ppm/°C
Nonlinearity errorVOUT = 0.5 V to VS – 0.5 V±0.01%
Maximum capacitive loadNo sustained oscillation500pF
VOLTAGE OUTPUT
Swing to VS power-supply railRL = 10 kΩ to GND,
TA = –40°C to +125°C
VS – 0.05VS – 0.1V
Swing to GNDRL = 10 kΩ to GND,
TA = –40°C to +125°C
VGND + 20VGND + 30mV
FREQUENCY RESPONSE
BWBandwidthINA301A1-Q1550kHz
INA301A2-Q1500
INA301A3-Q1450
SRSlew rate4V/µs
NOISE, RTI(1)
Voltage noise density30nV/√ Hz
COMPARATOR
tpTotal alert propagation delayInput overdrive = 1 mV0.751µs
Slew-rate-limited tpVOUT step = 0.5 V to 4.5 V, VLIMIT = 4 V11.5
ILIMITLimit threshold output currentTA = 25°C79.78080.3µA
TA = –40°C to +125°C79.280.8
VOSComparator offset voltageINA301A1-Q113.5mV
INA301A2-Q114
INA301A3-Q11.54.5
VHYSHysteresisINA301A1-Q120mV
INA301A2-Q150
INA301A3-Q1100
VIHHigh-level input voltage1.46V
VILLow-level input voltage00.4V
VOLAlert low-level output voltageIOL = 3 mA70300mV
ALERT pin leakage input currentVOH = 3.3 V0.11µA
Digital leakage input current0 ≤ VIN ≤ VS1µA
POWER SUPPLY
IQQuiescent currentVSENSE = 0 mV, TA = 25°C500650µA
TA = –40°C to +125°C700
(1) RTI = referred-to-input.

6.6 Typical Characteristics

at TA = 25°C, VS = 5 V, VIN+ = 12 V, and alert pullup resistor = 10 kΩ (unless otherwise noted)

GUID-1A347FD0-B9A0-4468-A97E-1CC7013DF1A8-low.gif
Figure 6-1 Input Offset Voltage Distribution (INA301A1-Q1)
GUID-732C2D21-8843-403D-83AA-EDC1AE7C6D25-low.gif
Figure 6-3 Input Offset Voltage Distribution (INA301A3-Q1)
GUID-EF94C034-EC9F-4D53-91D7-4732E71F757F-low.gif
Figure 6-5 Common-Mode Rejection Ratio Distribution (INA301A1-Q1)
GUID-E18FC477-7F0A-4178-B4A8-3A3B27140DCF-low.gif
Figure 6-7 Common-Mode Rejection Ratio Distribution (INA301A3-Q1)
GUID-E0CBE2AA-F77A-431E-A743-680C586A2BD4-low.gif
Figure 6-9 Common-Mode Rejection Ratio vs. Frequency
GUID-35413971-03C7-47A5-8CEA-748AAFA6816A-low.gif
Figure 6-11 Gain Error Distribution (INA301A2-Q1)
GUID-803D69F5-5511-4F32-968E-C4C5BE82BCAA-low.gif
Figure 6-13 Gain Error vs. Temperature
GUID-9D2B1E2E-F5A1-4F3F-97EE-3D2F3F8ADF55-low.gif
Figure 6-15 Power-Supply Rejection Ratio vs. Frequency
GUID-FA789DDC-B6C5-43CD-99C4-5B6E0F2F4940-low.gif
VS = 5 V
Figure 6-17 Input Bias Current vs. Common-Mode Voltage
GUID-EAAC1BFF-2D92-4924-BA24-C9CB6E3E90C4-low.gif
Figure 6-19 Input Bias Current vs. Temperature
GUID-395B424D-0893-438C-8B3E-9179AB147241-low.gif
Figure 6-21 Quiescent Current vs. Temperature
GUID-347B13EB-59C1-4DA2-8C78-EAF9B767A9D8-low.gif
Figure 6-23 0.1-Hz to 10-Hz Referred-to-Input Voltage Noise
GUID-F61D16D2-00AE-49D9-BEE7-BAABA9EBA630-low.gif
4-VPP output step
Figure 6-25 Voltage Output Falling Step Response
GUID-7D836333-DE15-4DDD-BAC8-6AD3EB802BE7-low.gif
Figure 6-27 Start-Up Response
GUID-82282A05-29CB-491D-BC4F-7767CA94220B-low.gif
Figure 6-29 Total Propagation Delay (INA301A1-Q1)
GUID-12592F21-104C-449C-8D0D-1611F23A00DB-low.gif
Figure 6-31 Total Propagation Delay (INA301A3-Q1)
GUID-70543B12-BAE1-41BF-9272-90AE91FCA666-low.gif
Figure 6-33 Comparator Alert VOL vs. IOL
GUID-B10EC8D1-E4FF-4EE0-894E-8B6E6715E241-low.gif
Figure 6-35 Comparator Reset Response
GUID-FFBC3091-9E45-4A34-870F-2A9BB55E69EE-low.gif
Figure 6-2 Input Offset Voltage Distribution (INA301A2-Q1)
GUID-62BCA9C0-6F35-4538-9C38-CBBE7B147F60-low.gif
Figure 6-4 Input Offset Voltage vs. Temperature
GUID-1473284C-F1C6-482D-A873-710DF8EE6319-low.gif
Figure 6-6 Common-Mode Rejection Ratio Distribution (INA301A2-Q1)
GUID-FB576D18-E87E-47E8-B5AE-2FCF6C206873-low.gif
Figure 6-8 Common-Mode Rejection Ratio vs. Temperature
GUID-38CABE02-66E4-4A17-8D95-AA2FABC36F38-low.gif
Figure 6-10 Gain Error Distribution (INA301A1-Q1)
GUID-2E8C586B-CE2A-4792-890D-BDD405DAF9D5-low.gif
Figure 6-12 Gain Error Distribution (INA301A3-Q1)
GUID-843DC063-FD52-4A08-A910-00BC6CB83ADA-low.gif
Figure 6-14 Gain vs. Frequency
GUID-55A1B386-DFC4-4328-8DB4-E4C1FE5B8A73-low.gif
Figure 6-16 Output Voltage Swing vs. Output Current
GUID-6EB19AF6-64C2-4489-8269-74A85908D163-low.gif
VS = 0 V
Figure 6-18 Input Bias Current vs. Common-Mode Voltage
GUID-3C1E249D-45D8-4774-9071-9B678EBD6FE3-low.gif
Figure 6-20 Quiescent Current vs. Supply Voltage
GUID-6CDB2208-0AF3-4AE5-A6C3-EBC9AA878C0C-low.gif
Figure 6-22 Input-Referred Voltage Noise vs. Frequency
GUID-2CD75E26-59BE-4606-8074-B465FF3726E0-low.gif
4-VPP output step
Figure 6-24 Voltage Output Rising Step Response
GUID-B9DF280F-0F24-412E-8360-1D51379FD7C0-low.gif
Figure 6-26 Common-Mode Voltage Transient Response
GUID-A0F01181-7B8B-4DB8-95DE-6331BF56F392-low.gif
Figure 6-28 Limit Current Source vs. Temperature
GUID-AC54A2FB-3A14-4EAC-AB9B-7945EBB2DF0D-low.gif
Figure 6-30 Total Propagation Delay (INA301A2-Q1)
GUID-C294660B-2AB2-4FA3-8D00-2EC85063102D-low.gif
VOD = 1 mV
Figure 6-32 Comparator Propagation Delay vs. Temperature
GUID-C15A4AFE-E12D-497B-98A4-7FB85D9B41E8-low.gif
Figure 6-34 Hysteresis vs. Temperature

7 Detailed Description

7.1 Overview

The INA301-Q1 is a 36-V common-mode, zero-drift topology, current-sensing amplifier that can be used in both low-side and high-side configurations. These specially-designed, current-sensing amplifiers are able to accurately measure voltages developed across current-sensing resistors (also known as current-shunt resistors) on common-mode voltages that far exceed the supply voltage powering the device. Current can be measured on input voltage rails as high as 36 V, and the device can be powered from supply voltages as low as 2.7 V. The device can also withstand the full 36-V common-mode voltage at the input pins when the supply voltage is removed without causing damage.

The zero-drift topology enables high-precision measurements with maximum input offset voltages as low as 35 μV with a temperature contribution of only 0.5 μV/°C over the full temperature range of –40°C to +125°C. The low total offset voltage of the INA301-Q1 enables smaller current-sense resistor values to be used, and allows for a more efficient system operation without sacrificing measurement accuracy resulting from the smaller input signal.

The INA301-Q1 uses a single external resistor to allow for a simple method of setting the corresponding current threshold level for the device to use for out-of-range comparison. Combining the precision measurement of the current-sense amplifier and the onboard comparator enables an all-in-one overcurrent detection device. This combination creates a highly-accurate solution that is capable of fast detection of out-of-range conditions, and allows the system to take corrective actions to prevent potential component or system-wide damage.

7.2 Functional Block Diagram

GUID-37211F27-E06C-43E7-A89A-501F4CAE717D-low.gif

7.3 Feature Description

7.3.1 Alert Output ( ALERT Pin)

The device ALERT pin is an active-low, open-drain output that is designed to be pulled low when the input conditions are detected to be out-of-range. Add a 10-kΩ pullup resistor from ALERT pin to the supply voltage. This open-drain pin can be pulled up to a voltage beyond the VS supply voltage, but must not exceed 5.5 V.

Figure 7-1 shows the alert output response of the internal comparator. When the output voltage of the amplifier is less than the voltage developed at the LIMIT pin, the comparator output is in the default high state. When the amplifier output voltage exceeds the threshold voltage set at the LIMIT pin, the comparator output becomes active and pulls low. This active low output indicates that the measured signal at the amplifier input has exceeded the programmed threshold level, indicating an overcurrent or out-of-range condition has occurred.

GUID-3AB0B68A-ADC7-4C9A-A317-C09A9E8D8366-low.pngFigure 7-1 Overcurrent Alert Response

7.3.2 Current-Limit Threshold

The INA301-Q1 determines if an overcurrent event is present by comparing the amplified measured voltage developed across the current-sensing resistor to the corresponding signal developed at the LIMIT pin. The threshold voltage for the LIMIT pin is set using a single external resistor, or by connecting an external voltage source to the LIMIT pin.

7.3.2.1 Resistor-Controlled Current Limit

The typical method for setting the limit threshold voltage is to connect a resistor from the LIMIT pin to ground. The value of this resistor, RLIMIT, is chosen in order to create a corresponding voltage at the LIMIT pin equivalent to the output voltage, VOUT, when the maximum desired load current is flowing through the current-sensing resistor. An internal 80-µA current source is connected to the LIMIT pin to create a corresponding voltage used to compare to the amplifier output voltage, depending on the value of the RLIMIT resistor.

In the equations from Table 7-1, VTRIP represents the overcurrent threshold that the device is programmed to monitor, and VLIMIT is the programmed signal set to detect the VTRIP level.

Table 7-1 Calculating the Threshold-Limit-Setting Resistor, RLIMIT
PARAMETEREQUATION
VTRIPVOUT at the desired-current trip valueILOAD × RSENSE x Gain
VLIMITThreshold limit voltageVLIMIT = VTRIP
ILIMIT × RLIMIT
RLIMITThreshold limit-setting resistor valueVLIMIT / ILIMIT
VLIMIT / 80 µA

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale