ISO5851 是一款用于 IGBT 和 MOSFET 的 5.7 kVRMS 增强型隔离栅极驱动器,具有 2.5A 的拉电流能力和 5A 的灌电流能力。输入端由 3V 至 5.5V 的单电源供电运行。输出侧支持的电源电压范围为 15V 至 30V。两路互补 CMOS 输入控制栅极驱动器输出状态。76ns 的短暂传播时间保证了对于输出级的精确控制。
内置的去饱和 (DESAT) 故障检测功能可识别 IGBT 何时处于过载状态。当检测到 DESAT 时,栅极驱动器输出会被拉低为 VEE2 电势,从而将 IGBT 立即关断。
当发生去饱和故障时,器件会通过隔离隔栅发送故障信号,以将输入端的 FLT 输出拉为低电平并阻断隔离器的输入。FLT 的输出状态将被锁存,可通过 RST 输入上的低电平有效脉冲复位。
器件型号 | 封装 | 封装尺寸(标称值) |
---|---|---|
ISO5851 | SOIC (16) | 10.30mm x 7.50mm |
Changes from Revision B (January 2017) to Revision C (May 2023)
Changes from Revision A (June 2015) to Revision B (January 2017)
Changes from Revision * (June 2015) to Revision A (June 2015)
如果在由双极输出电源供电的正常运行期间关断 IGBT,输出电压会被硬钳位为 VEE2。如果输出电源为单极,那么可采用有源米勒钳位,这种钳位会在一条低阻抗路径上灌入米勒电流,从而防止 IGBT 在高电压瞬态条件下发生动态导通。
当发生去饱和故障时,器件会通过隔离隔栅发送故障信号,以将输入端的 FLT 输出拉为低电平并阻断隔离器的输入。FLT 的输出状态将被锁存,可通过 RST 输入上的低电平有效脉冲复位。
如果在由双极输出电源供电的正常运行期间关断 IGBT,输出电压会被硬钳位为 VEE2。如果输出电源为单极,那么可采用有源米勒钳位,这种钳位会在一条低阻抗路径上灌入米勒电流,从而防止 IGBT 在高电压瞬态条件下发生动态导通。
栅极驱动器是否准备就绪待运行由两个欠压锁定电路控制,这两个电路会监视输入端和输出端的电源。如果任意一端电源不足,RDY 输出会变为低电平;否则,该输出为高电平。
ISO5851 采用 16 引脚小外形尺寸集成电路 (SOIC) 封装。此器件的额定工作环境温度范围为 -40°C 至 +125°C。
PIN | I/O | DESCRIPTION | |
---|---|---|---|
NAME | NO. | ||
CLAMP | 7 | O | Miller clamp output |
DESAT | 2 | I | Desaturation voltage input |
FLT | 13 | O | Fault output, low-active during DESAT condition |
GND1 | 9, 16 | — | Input ground |
GND2 | 3 | — | Gate drive common. Connect to IGBT emitter. |
IN+ | 10 | I | Non-inverting gate drive voltage control input |
IN– | 11 | I | Inverting gate drive voltage control input |
NC | 4 | — | Not connected |
OUT | 6 | O | Gate drive voltage output |
RDY | 12 | O | Power-good output, active high when both supplies are good. |
RST | 14 | I | Reset input, apply a low pulse to reset fault latch. |
VCC1 | 15 | — | Positive input supply (3 V to 5.5 V) |
VCC2 | 5 | — | Most positive output supply potential. |
VEE2 | 1, 8 | — | Output negative supply. Connect to GND2 for Unipolar supply application. |
MIN | MAX | UNIT | ||||
---|---|---|---|---|---|---|
VCC1 | Supply voltage input side | GND1 – 0.3 | 6 | V | ||
VCC2 | Positive supply voltage output side | VCC2 – GND2 | –0.3 | 35 | V | |
VEE2 | Negative supply voltage output side | VEE2 – GND2 | –17.5 | 0.3 | V | |
V(SUP2) | Total supply output voltage | VCC2 – VEE2 | –0.3 | 35 | V | |
VOUT | Gate driver output voltage | VEE2 – 0.3 | VCC2 + 0.3 | V | ||
I(OUTH) | Gate driver high output current | Gate driver high output current max pulse width = 10 μs, max duty cycle = 0.2% | 2.7 | A | ||
I(OUTL) | Gate driver low output current | Gate driver high output current max pulse width = 10 μs, max duty cycle = 0.2% | 5.5 | A | ||
V(LIP) | Voltage at IN+, IN–, FLT, RDY, RST | GND1 – 0.3 | VCC1 + 0.3 | V | ||
I(LOP) | Output current of FLT, RDY | 10 | mA | |||
V(DESAT) | Voltage at DESAT | GND2 – 0.3 | VCC2 + 0.3 | V | ||
V(CLAMP) | Clamp voltage | VEE2 – 0.3 | VCC2 + 0.3 | V | ||
TJ | Junction temperature | –40 | 150 | °C | ||
TSTG | Storage temperature | –65 | 150 | °C |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±4000 | V |
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±1500 |
MIN | NOM | MAX | UNIT | ||
---|---|---|---|---|---|
VCC1 | Supply voltage input side | 3 | 5.5 | V | |
VCC2 | Positive supply voltage output side (VCC2 – GND2) | 15 | 30 | V | |
VEE2 | Negative supply voltage output side (VEE2 – GND2) | –15 | 0 | V | |
V(SUP2) | Total supply voltage output side (VCC2 – VEE2) | 15 | 30 | V | |
VIH | High-level input voltage (IN+, IN–, RST) | 0.7 × VCC1 | VCC1 | V | |
VIL | Low-level input voltage (IN+, IN–, RST) | 0 | 0.3 × VCC1 | V | |
tUI | Pulse width at IN+, IN– for full output (CLOAD = 1 nF) | 40 | ns | ||
tRST | Pulse width at RST for resetting fault latch | 800 | ns | ||
TA | Ambient temperature | –40 | 25 | 125 | °C |
THERMAL METRIC(1) | ISO5851 | UNIT | |
---|---|---|---|
DW (SOIC) | |||
16 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 99.6 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 48.5 | °C/W |
RθJB | Junction-to-board thermal resistance | 56.5 | °C/W |
ψJT | Junction-to-top characterization parameter | 29.2 | °C/W |
ψJB | Junction-to-board characterization parameter | 56.5 | °C/W |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
PD | Maximum power dissipation(1) | 1255 | mW | |||
PID | Maximum input power dissipation | 175 | mW | |||
POD | Maximum output power dissipation | 1080 | mW |
PARAMETER | TEST CONDITIONS | SPECIFICATION | UNIT | |
---|---|---|---|---|
CLR | External clearance(1) | Shortest terminal-to-terminal distance through air | 8 | mm |
CPG | External creepage(1) | Shortest terminal-to-terminal distance across the package surface | 8 | mm |
DTI | Distance through the insulation | Minimum internal gap (internal clearance) | 21 | μm |
CTI | Comparative tracking index | DIN EN 60112 (VDE 0303-11); IEC 60112; UL 746A | >600 | V |
Material group | According to IEC 60664-1 | I | ||
Overvoltage category per IEC 60664-1 | Rated mains voltage ≤ 600 VRMS | I-IV | ||
Rated mains voltage ≤ 1000 VRMS | I-III | |||
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12(2) | ||||
VIORM | Maximum repetitive peak isolation voltage | AC voltage (bipolar) | 2121 | VPK |
VIOWM | Maximum isolation working voltage | AC voltage. Time dependent dielectric breakdown (TDDB) Test, see Figure 7-1 | 1500 | VRMS |
DC voltage | 2121 | VDC | ||
VIOTM | Maximum Transient isolation voltage | VTEST = VIOTM, t = 60 sec (qualification), t = 1 sec (100% production) | 8000 | VPK |
VIOSM | Maximum surge isolation voltage(3) | Test method per IEC 60065, 1.2/50 μs waveform, VTEST = 1.6 x VIOSM = 12800 VPK (qualification) | 8000 | |
qpd | Apparent charge(4) | Method a: After I/O safety test subgroup 2/3, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.2 × VIORM = 2545 VPK, tm = 10 s | ≤5 | pC |
Method a: After environmental tests subgroup 1, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.6 × VIORM = 3394 VPK, tm = 10 s | ≤5 | |||
Method b1: At routine test (100% production) and preconditioning (type test) Vini = VIOTM, tini = 60 s; Vpd(m) = 1.875× VIORM = 3977 VPK, tm = 10 s | ≤5 | |||
RIO | Isolation resistance, input to output(5) | VIO = 500 V at TS | > 109 | Ω |
VIO = 500 V, TA = 25°C | >1012 | Ω | ||
VIO = 500 V, 100°C ≤ TA ≤ 125°C | >1011 | Ω | ||
CIO | Barrier capacitance, input to output(5) | VIO = 0.4 x sin (2πft), f = 1 MHz | ~1 | pF |
Pollution degree | 2 | |||
Climatic category | 40/125/21 | |||
UL 1577 | ||||
VISO | Withstanding Isolation voltage | VTEST = VISO, t = 60 sec (qualification), VTEST = 1.2 × VISO = 6840 VRMS, t = 1 sec (100% production) | 5700 | VRMS |
VDE | CSA | UL | CQC | TUV |
---|---|---|---|---|
Certified according to DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 and DIN EN 60950-1 (VDE 0805 Teil 1):2011-01 | Certified according to CSA Component Acceptance Notice 5A, IEC 60950-1, and IEC 60601-1 | Certified according to UL 1577 Component Recognition Program | Certified according to GB 4943.1-2011 | Certified according to EN 61010-1:2010 (3rd Ed) and EN 60950-1:2006/A11:2009/A1:2010/ A12:2011/A2:2013 |
Reinforced Insulation Maximum Transient isolation voltage, 8000 VPK; Maximum surge isolation voltage, 8000 VPK, Maximum repetitive peak isolation voltage, 2121 VPK | Isolation Rating of 5700 VRMS; Reinforced insulation per CSA 60950-1- 07+A1+A2 and IEC 60950-1 (2nd Ed.), 800 VRMS max working voltage (pollution degree 2, material group I) ; 2 MOPP (Means of Patient Protection) per CSA 60601-1:14 and IEC 60601-1 Ed. 3.1, 250 VRMS (354 VPK) max working voltage | Single Protection, 5700 VRMS | Reinforced Insulation, Altitude ≤ 5000m, Tropical climate, 400 VRMS maximum working voltage | 5700 VRMS Reinforced insulation per EN 61010-1:2010 (3rd Ed) up to working voltage of 600 VRMS 5700 VRMS Reinforced insulation per EN 60950-1:2006/A11:2009/A1:2010/ A12:2011/A2:2013 up to working voltage of 800 VRMS |
Certification completed Certificate number: 40040142 | Certification completed Master contract number: 220991 | Certification completed File number: E181974 | Certification completed Certificate number: CQC16001141761 Additional manufacturing certification pending | Certification completed Client ID number: 77311 |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
IS | Safety input, output or supply current | RθJA = 99.6°C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C | 349 | mA | |||
RθJA = 99.6°C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C | 228 | ||||||
RθJA = 99.6°C/W, VI = 15 V, TJ = 150°C, TA = 25°C | 84 | ||||||
RθJA = 99.6°C/W, VI = 30 V, TJ = 150°C, TA = 25°C | 42 | ||||||
PS | Safety input, output, or total power | RθJA = 99.6°C/W, TJ = 150°C, TA = 25°C | 1255(1) | mW | |||
TS | Maximum ambient safety temperature | 150 | °C |
The safety-limiting constraint is the maximum junction temperature specified in the data sheet. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the Section 7.4 table is that of a device installed on a high-K test board for leaded surface-mount packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance.
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
VOLTAGE SUPPLY | |||||||
VIT+(UVLO1) | Positive-going UVLO1 threshold voltage input side (VCC1 – GND1) | 2.25 | V | ||||
VIT-(UVLO1) | Negative-going UVLO1 threshold voltage input side (VCC1 – GND1) | 1.7 | V | ||||
VHYS(UVLO1) | UVLO1 Hysteresis voltage (VIT+ – VIT–) input side | 0.24 | V | ||||
VIT+(UVLO2) | Positive-going UVLO2 threshold voltage output side (VCC2 – GND2) | 12 | 13 | V | |||
VIT-(UVLO2) | Negative-going UVLO2 threshold voltage output side (VCC2 – GND2) | 9.5 | 11 | V | |||
VHYS(UVLO2) | UVLO2 Hysteresis voltage (VIT+ – VIT–) output side | 1 | V | ||||
IQ1 | Input supply quiescent current | 2.8 | 4.5 | mA | |||
IQ2 | Output supply quiescent current | 3.6 | 6 | mA | |||
LOGIC I/O | |||||||
VIT+(IN, RST) | Positive-going input threshold voltage (IN+, IN–, RST) | 0.7 × VCC1 | V | ||||
VIT-(IN, RST) | Negative-going input threshold voltage (IN+, IN–, RST) | 0.3 × VCC1 | V | ||||
VHYS(IN, RST) | Input hysteresis voltage (IN+, IN–, RST) | 0.15 × VCC1 | V | ||||
IIH | High-level input leakage at (IN+) | IN+ = VCC1 | 100 | µA | |||
IIL | Low-level input leakage at (IN–, RST) | IN– = GND1, RST = GND1 | –100 | µA | |||
IPU | Pull-up current of FLT, RDY | V(RDY) = GND1, V(FLT) = GND1 | 100 | µA | |||
VOL | Low-level output voltage at FLT, RDY | I(FLT) = 5 mA | 0.2 | V | |||
GATE DRIVER STAGE | |||||||
V(OUTPD) | Active output pulldown voltage | IOUT = 200 mA, VCC2 = open | 2 | V | |||
V(OUTH) | High-level output voltage | IOUT = –20 mA | VCC2 – 0.5 | VCC2 – 0.24 | V | ||
V(OUTL) | Low-level output voltage | IOUT = 20 mA | VEE2 + 13 | VEE2 + 50 | mV | ||
I(OUTH) | High-level output peak current | IN+ = high, IN– = low, VOUT = VCC2 - 15 V |
1.5 | 2.5 | A | ||
I(OUTL) | Low-level output peak current | IN+ = low, IN– = high, VOUT = VEE2 + 15 V |
3.4 | 5 | A | ||
ACTIVE MILLER CLAMP | |||||||
V(CLP) | Low-level clamp voltage | I(CLP) = 20 mA | VEE2 + 0.015 | VEE2 + 0.08 | V | ||
I(CLP) | Low-level clamp current | V(CLAMP) = VEE2 + 2.5 V | 1.6 | 2.5 | A | ||
V(CLTH) | Clamp threshold voltage | 1.6 | 2.1 | 2.5 | V | ||
SHORT CIRCUIT CLAMPING | |||||||
V(CLP_OUT) | Clamping voltage (VOUT - VCC2) |
IN+ = high, IN– = low, tCLP = 10 µs, I(OUTH) = 500 mA | 0.8 | 1.3 | V | ||
V(CLP_CLAMP) | Clamping voltage (VCLP - VCC2) |
IN+ = high, IN– = low, tCLP = 10 µs, I(CLP) = 500 mA | 1.3 | V | |||
V(CLP_CLAMP) | Clamping voltage at CLAMP | IN+ = High, IN– = Low, I(CLP) = 20 mA | 0.7 | 1.1 | V | ||
DESAT PROTECTION | |||||||
I(CHG) | Blanking capacitor charge current | V(DESAT) - GND2 = 2 V | 0.42 | 0.5 | 0.58 | mA | |
I(DCHG) | Blanking capacitor discharge current | V(DESAT) - GND2 = 6 V | 9 | 14 | mA | ||
V(DSTH) | DESAT threshold voltage with respect to GND2 | 8.3 | 9 | 9.5 | V | ||
V(DSL) | DESAT voltage with respect to GND2, when OUT is driven low | 0.4 | 1 | V |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
tr | Output signal rise time | CLOAD = 1 nF, see Figure 8-1, Figure 8-2, and Figure 8-3 | 12 | 20 | 35 | ns |
tf | Output signal fall time | 12 | 20 | 37 | ns | |
tPLH, tPHL | Propagation Delay | 76 | 110 | ns | ||
tsk-p | Pulse Skew |tPHL – tPLH| | 20 | ns | |||
tsk-pp | Part-to-part skew | 30(1) | ns | |||
tGF | Glitch filter on IN+, IN–, RST | 20 | 30 | 40 | ns | |
tDESAT (10%) | DESAT sense to 10% OUT delay | 300 | 415 | 500 | ns | |
tDESAT (GF) | DESAT glitch filter delay | 330 | ns | |||
tDESAT ( FLT) | DESAT sense to FLT-low delay | see Figure 8-3 | 2000 | 2420 | ns | |
tLEB | Leading edge blanking time | see Figure 8-1 and Figure 8-2 | 330 | 400 | 500 | ns |
tGF(RSTFLT) | Glitch filter on RST for resetting FLT | 300 | 800 | ns | ||
CI | Input capacitance(2) | VI = VCC1 /2 + 0.4 x sin (2πft), f = 1 MHz, VCC1 = 5 V | 2 | pF | ||
CMTI | Common-mode transient immunity | VCM = 1500 V, see Figure 8-4 | 100 | 120 | kV/μs |