• Menu
  • Product
  • Email
  • PDF
  • Order now
  • FDC1004-Q1 适用于电容式感应应用的 4 通道电容数字转换器

    • ZHCSDR2A April   2015  – October 2024 FDC1004-Q1

      PRODUCTION DATA  

  • CONTENTS
  • SEARCH
  • FDC1004-Q1 适用于电容式感应应用的 4 通道电容数字转换器
  1.   1
  2. 1 特性
  3. 2 应用
  4. 3 说明
  5. 4 Pin Configuration and Functions
  6. 5 Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 I2C Interface Voltage Level
    7. 5.7 I2C Interface Timing
    8. 5.8 Typical Characteristics
  7. 6 Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 The Shield
      2. 6.3.2 The CAPDAC
      3. 6.3.3 Capacitive System Offset Calibration
      4. 6.3.4 Capacitive Gain Calibration
    4. 6.4 Device Functional Modes
      1. 6.4.1 Single Ended Measurement
      2. 6.4.2 Differential Measurement
    5. 6.5 Programming
      1. 6.5.1 Serial Bus Address
      2. 6.5.2 Read/Write Operations
      3. 6.5.3 Device Usage
        1. 6.5.3.1 Measurement Configuration
        2. 6.5.3.2 Triggering Measurements
        3. 6.5.3.3 Wait for Measurement Completion
        4. 6.5.3.4 Read of Measurement Result
    6. 6.6 Register Maps
      1. 6.6.1 Registers
        1. 6.6.1.1 Capacitive Measurement Registers
      2. 6.6.2 Measurement Registers
      3. 6.6.3 Measurement Configuration Registers
      4. 6.6.4 FDC Configuration Register
      5. 6.6.5 Offset Calibration Registers
      6. 6.6.6 Gain Calibration Registers
      7. 6.6.7 Manufacturer ID Register
      8. 6.6.8 Device ID Register
  8. 7 Applications and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Liquid Level Sensor
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
      3. 7.2.3 Application Curve
    3. 7.3 Best Design Practices
    4. 7.4 Initialization Set Up
    5. 7.5 Power Supply Recommendations
    6. 7.6 Layout
      1. 7.6.1 Layout Guidelines
      2. 7.6.2 Layout Example
  9. 8 Device and Documentation Support
    1. 8.1 Documentation Support
      1. 8.1.1 Related Documentation
    2. 8.2 接收文档更新通知
    3. 8.3 支持资源
    4. 8.4 Trademarks
    5. 8.5 静电放电警告
    6. 8.6 术语表
  10. 9 Revision History
  11. 10Mechanical, Packaging, and Orderable Information
  12. 重要声明
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

Data Sheet

FDC1004-Q1 适用于电容式感应应用的 4 通道电容数字转换器

本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。

下载最新的英语版本

1 特性

  • 符合汽车应用要求
  • 具有符合 AEC-Q100 标准的下列特性
    • 器件温度等级 1:–40°C 至 125°C 环境工作温度范围
    • 器件 HBM ESD 分类等级 2
    • 器件 CDM ESD 分类等级 C5
  • 输入范围:±15pF
  • 测量分辨率:0.5fF
  • 最大偏移电容:100pF
  • 可编程输出速率:100/200/400S/s
  • 最大屏蔽负载:400pF
  • 电源电压:3.3V
  • 温度范围:–40° 至 125°C
  • 电流消耗:
    • 有效:750µA
    • 待机:29µA
  • 接口:I2C
  • 通道数量:4

2 应用

  • 接近传感器
  • 手势识别
  • 汽车车门/脚踢传感器
  • 汽车雨滴传感器
  • 远程和直接液位传感器
  • 高分辨率金属分析
  • 雨/雾/冰/雪传感器
  • 材料尺寸检测

3 说明

采用接地电容传感器的电容式感应是一种具有超低功耗、低成本和高分辨率的非接触式感应技术,适用于接近感应、手势识别、材料分析和远程液位感应等各类应用。电容式感应系统中的传感器可以采用任意金属或导体,因此可实现高度灵活的低成本系统设计。

FDC1004-Q1 是一款面向电容式传感解决方案的高分辨率 4 通道电容数字转换器,并且符合 AEC-Q100 标准。每个通道的满量程范围均为 ±15pF,可处理高达 100pF 的传感器偏移电容,该偏移电容既可以在内部编程,也可以是一个外部电容,用于跟踪环境随时间和温度的变化。凭借高偏移电容,可以使用远程传感器。

此外,FDC1004-Q1 还包含用于实现传感器屏蔽的屏蔽驱动器,不但可降低电磁干扰 (EMI),而且有助于聚焦电容传感器的感应方向。FDC1004-Q1 外形小巧,非常适合空间受限类应用。FDC1004-Q1 采用 10 引脚 VSSOP 封装,支持在量产过程中进行光学检测,并且具有一个用于连接 MCU 的 I2C 接口。

封装信息
器件型号 封装(1) 封装尺寸(2)
FDC1004-Q1 DGS(VSSOP,10) 3mm × 4.9mm
(1) 有关所有可用封装,请参阅节 10
(2) 封装尺寸(长 × 宽)为标称值,并包括引脚(如适用)。
FDC1004-Q1 典型应用典型应用

4 Pin Configuration and Functions

FDC1004-Q1 DGS Package10 Pin VSSOPTop ViewFigure 4-1 DGS Package10 Pin VSSOPTop View
Table 4-1 Pin Functions
PIN TYPE(1) DESCRIPTION
NAME NO.
SHLD1 1 A Capacitive Input Active AC Shielding.
CIN1 2 A Capacitive Input. The measured capacitance is connected between the CIN1 pin and GND. If not used, leave this pin as an open circuit.
CIN2 3 A Capacitive Input. The measured capacitance is connected between the CIN2 pin and GND. If not used, leave this pin as an open circuit.
CIN3 4 A Capacitive Input. The measured capacitance is connected between the CIN3 pin and GND. If not used, leave this pin as an open circuit.
CIN4 5 A Capacitive Input. The measured capacitance is connected between the CIN4 pin and GND. If not used, leave this pin as an open circuit.
SHLD2 6 A Capacitive Input Active AC Shielding.
GND 7 G Ground
VDD 8 P Power Supply Voltage. Decouple this pin to GND, using a low impedance capacitor, for example in combination with a 1μF tantalum and a 0.1μF multilayer ceramic.
SCL 9 I Serial Interface Clock Input. Connects to the controller clock line. Requires pullup resistor if not already provided elsewhere in the system.
SDA 10 I/O Serial Interface Bidirectional Data. Connects to the controller data line. Requires a pullup resistor if not provided elsewhere in the system.
(1) P=Power, G=Ground, I=Input, O=Output, A=Analog, I/O=Bidirectional Input/Output

5 Specifications

5.1 Absolute Maximum Ratings

See (1)
MINMAXUNIT
Input voltageVDD–0.36V
SCL, SDA–0.36V
at any other pin–0.3VDD+0.3V
Input currentat any pin3mA
Junction temperature(2)150°C
Storage TemperatureTSTG-65150°C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The maximum power dissipation is a function of TJ(MAX), RθJA, and the ambient temperature, TA. The maximum allowable power dissipation at any ambient temperature is PDMAX = (TJ(MAX) - TA)/ RθJA. All numbers apply for packages soldered directly onto a PC board.

5.2 ESD Ratings

VALUEUNIT
V(ESD)Electrostatic dischargeHuman-body model (HBM), per AEC Q100-002(1)±2000V
Charged-device model (CDM), per AEC Q100-011±750
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

5.3 Recommended Operating Conditions

Over operating temperature range (unless otherwise noted)
MINNOMMAXUNIT
Supply voltage (VDD-GND)33.33.6V
Temperature–40125°C

5.4 Thermal Information

THERMAL METRIC(1)FDC1004-Q1UNIT
VSSOP (DGS)
10 PINS
RθJAJunction-to-ambient thermal resistance46.8°C/W
RθJCJunction-to-case(top) thermal resistance48.7°C/W
RθJBJunction-to-board thermal resistance70.6°C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application note.

5.5 Electrical Characteristics

Over recommended operating temperature range, VDD = 3.3V, for TA = 25°C (unless otherwise noted). (1)
PARAMETERTEST CONDITIONMIN(2)TYP(3)MAX(2)UNIT
POWER SUPPLY
IDDSupply currentConversion mode; Digital input to VDD or GND750950µA
Standby; Digital input to VDD or GND2970µA
CAPACITIVE INPUT
ICRInput conversion range±15pF
COMAXMax input offset capacitanceper channel, Series resistance at CINn n=1.4 = 0 Ω100pF
RESEffective resolution (5)Sample rate = 100S/s (4)16bit
EONOutput noiseSample rate = 100S/s (4)33.2aF/√Hz
ERRAbsolute errorafter offset calibration±6fF
TcCOFFOffset deviation over temperature-40°C < T < 125°C46fF
GERRGain error0.2%
tcGGain drift vs temperature-40°C < T < 125°C-37.5ppm/°C
PSRRDC power supply rejection3V < VDD < 3.6V, single-ended mode (channel vs GND)13.6fF/V
CAPDAC
FRCAPDACFull-scale range96.9pF
TcCOFFCAPDACOffset drift vs temperature-40°C < T < 125°C30fF
EXCITATION
ƒFrequency25kHz
VACAC voltage across capacitance2.4Vpp
VDCAverage DC voltage across capacitance1.2V
SHIELD
DRVDriver capabilityƒ = 25kHz, SHLDn to GND, n = 1,2400pF
(1) Electrical Characteristics Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that TJ=TA. No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where TJ>TA. Absolute Maximum Ratings indicate junction temperature limits beyond which the device can be permanently degraded, either mechanically or electrically.
(2) Limits are ensured by testing, design, or statistical analysis at 25Degree C. Limits over the operating temperature range are ensured through correlations using statistical quality control (SQC) method.
(3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values can vary over time and also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.
(4) No external capacitance connected.
(5) Effective resolution is the ratio of converter full scale range to RMS measurement noise.

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale