ISO7842x 器件是一款高性能四通道数字隔离器,隔离电压为 8000VPK。该器件已通过符合 VDE、CSA、CQC 和 TUV 标准的增强型隔离认证。在隔离互补金属氧化物半导体 (CMOS) 或者低电压互补金属氧化物半导体 (LVCMOS) 数字 I/O 时,该隔离器可提供高电磁抗扰度和低辐射,同时具备低功耗特性。每个隔离通道都有一个由二氧化硅 (SiO2) 绝缘隔栅分开的逻辑输入和输出缓冲器。
该器件配有使能引脚,可用于将多个主驱动应用中的相应输出置于 高阻抗状态, 也可用于降低功耗。ISO7842 器件具有 2 个正向通道和 2 个反向通道。如果出现输入功率或信号丢失,ISO7842 器件默认输出高电平,ISO7842F 器件默认输出低电平。有关更多详细信息,请参阅 Device Functional Modes器件功能模式部分。
与隔离式电源结合使用时,该器件有助于防止数据总线或者其他电路中的噪声电流进入本地接地,进而干扰或损坏敏感电路。凭借创新的芯片设计和布线技术,ISO7842 器件的电磁兼容性得到了显著增强,可确保提供系统级 ESD、EFT 和浪涌保护并符合辐射标准。
ISO7842 器件采用 16 引脚 SOIC 宽体 (DW) 和超宽体 (DWW) 封装。
产品型号 | 封装 | 封装尺寸(标称值) |
---|---|---|
ISO7842
ISO7842F |
DW (16) | 10.30mm x 7.50mm |
DWW (16) | 10.30mm x 14.0mm |
Changes from F Revision (April 2016) to G Revision
Changes from E Revision (March 2016) to F Revision
Changes from D Revision (December 2015) to E Revision
Changes from C Revision (July 2015) to D Revision
Changes from B Revision (April 2015) to C Revision
Changes from A Revision (November 2014) to B Revision
Changes from * Revision (October 2014) to A Revision
PIN | I/O | DESCRIPTION | |
---|---|---|---|
NAME | NO. | ||
EN1 | 7 | I | Output enable 1. Output pins on side 1 are enabled when EN1 is high or open and in high-impedance state when EN1 is low. |
EN2 | 10 | I | Output enable 2. Output pins on side 2 are enabled when EN2 is high or open and in high-impedance state when EN2 is low. |
GND1 | 2 | — | Ground connection for VCC1 |
8 | |||
GND2 | 9 | — | Ground connection for VCC2 |
15 | |||
INA | 3 | I | Input, channel A |
INB | 4 | I | Input, channel B |
INC | 12 | I | Input, channel C |
IND | 11 | I | Input, channel D |
OUTA | 14 | O | Output, channel A |
OUTB | 13 | O | Output, channel B |
OUTC | 5 | O | Output, channel C |
OUTD | 6 | O | Output, channel D |
VCC1 | 1 | — | Power supply, VCC1 |
VCC2 | 16 | — | Power supply, VCC2 |
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
VCC1, VCC2 |
Supply voltage(2) | –0.5 | 6 | V | |
Voltage | INx | –0.5 | VCCX + 0.5(3) | V | |
OUTx | –0.5 | VCCX + 0.5(3) | |||
ENx | –0.5 | VCCX + 0.5(3) | |||
IO | Output current | –15 | 15 | mA | |
Surge immunity | 12.8 | kV | |||
Tstg | Storage temperature | –65 | 150 | °C |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) | ±6000 | V |
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) | ±1500 |
MIN | NOM | MAX | UNIT | |||
---|---|---|---|---|---|---|
VCC1, VCC2 | Supply voltage | 2.25 | 5.5 | V | ||
IOH | High-level output current | VCCO(2) = 5 V | –4 | mA | ||
VCCO(2) = 3.3 V | –2 | |||||
VCCO(2) = 2.5 V | –1 | |||||
IOL | Low-level output current | VCCO(2) = 5 V | 4 | mA | ||
VCCO(2) = 3.3 V | 2 | |||||
VCCO(2) = 2.5 V | 1 | |||||
VIH | High-level input voltage | 0.7 × VCCI (2) | VCCI (2) | V | ||
VIL | Low-level input voltage | 0 | 0.3 × VCCI(2) | V | ||
DR | Signaling rate | 0 | 100 | Mbps | ||
TJ | Junction temperature(1) | –55 | 150 | °C | ||
TA | Ambient temperature | –55 | 25 | 125 | °C |
ISO7842 | UNIT | ||||
---|---|---|---|---|---|
THERMAL METRIC(1) | DW (SOIC) | DWW (SOIC) | |||
16 Pins | 16 Pins | ||||
RθJA | Junction-to-ambient thermal resistance | 78.9 | 78.9 | °C/W | |
RθJC(top) | Junction-to-case(top) thermal resistance | 41.6 | 41.1 | °C/W | |
RθJB | Junction-to-board thermal resistance | 43.6 | 49.5 | °C/W | |
ψJT | Junction-to-top characterization parameter | 15.5 | 15.2 | °C/W | |
ψJB | Junction-to-board characterization parameter | 43.1 | 48.8 | °C/W | |
RθJC(bottom) | Junction-to-case(bottom) thermal resistance | N/A | N/A | °C/W |
PARAMETER | TEST CONDITIONS | SPECIFICATION | UNIT | ||
---|---|---|---|---|---|
DW | DWW | ||||
GENERAL | |||||
CLR | External clearance(1) | Shortest pin-to-pin distance through air | >8 | >14.5 | mm |
CPG | External creepage(1) | Shortest pin-to-pin distance across the package surfaceHigh Voltage Feature Description | >8 | >14.5 | mm |
DTI | Distance through the insulation | Minimum internal gap (internal clearance) | >21 | >21 | μm |
CTI | Comparative tracking index | DIN EN 60112 (VDE 0303-11); IEC 60112; UL 746A | >600 | >600 | V |
Material group | I | I | |||
Overvoltage category per IEC 60664-1 | Rated mains voltage ≤ 600 VRMS | I–IV | I–IV | ||
Rated mains voltage ≤ 1000 VRMS | I–III | I–IV | |||
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12(2) | |||||
VIORM | Maximum repetitive peak isolation voltage | 2121 | 2828 | VPK | |
VIOWM | Maximum isolation working voltage | AC voltage (sine wave); Time dependent dielectric breakdown (TDDB) Test, see Figure 1 and Figure 2 | 1500 | 2000 | VRMS |
DC voltage | 2121 | 2828 | VDC | ||
VIOTM | Maximum transient isolation voltage | VTEST = VIOTM
t = 60 s (qualification) t= 1 s (100% production) |
8000 | 8000 | VPK |
VIOSM | Maximum surge isolation voltage(3) | Test method per IEC 60065, 1.2/50 µs waveform, VTEST = 1.6 × VIOSM = 12800 VPK (qualification) |
8000 | 8000 | VPK |
qpd | Apparent charge(4) | Method a: After I/O safety test subgroup 2/3, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.2 × VIORM = 2545 VPK (DW) and 3394 VPK (DWW), tm = 10 s |
≤5 | ≤5 | pC |
Method a: After environmental tests subgroup 1, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.6 × VIORM = 3394 VPK (DW) and 4525 VPK (DWW), tm = 10 s |
≤5 | ≤5 | |||
Method b1: At routine test (100% production) and preconditioning (type test) Vini = VIOTM, tini = 1 s; Vpd(m) = 1.875 × VIORM = 3977 VPK (DW) and 5303 VPK (DWW), tm = 1 s |
≤5 | ≤5 | |||
CIO | Barrier capacitance, input to output(5) | VIO = 0.4 × sin (2πft), f = 1 MHz | 2 | 2 | pF |
RIO | Isolation resistance, input to output(5) | VIO = 500 V, TA = 25°C | >1012 | >1012 | Ω |
VIO = 500 V, 100°C ≤ TA ≤ 125°C | >1011 | >1011 | |||
VIO = 500 V at TS = 150°C | >109 | >109 | |||
Pollution degree | 2 | 2 | |||
Climatic category | 55/125/21 | 55/125/21 | |||
UL 1577 | |||||
VISO | Withstand isolation voltage | VTEST = VISO = 5700 VRMS, t = 60 s (qualification), VTEST = 1.2 × VISO = 6840 VRMS, t = 1 s (100% production) |
5700 | 5700 | VRMS |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
IS | Safety input, output, or supply current | RθJA = 78.9°C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C | 288 | mA | ||
RθJA = 78.9°C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C | 440 | |||||
RθJA = 78.9°C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C | 576 | |||||
PS | Safety input, output, or total power | RθJA = 78.9°C/W, TJ = 150°C, TA = 25°C | 1584 | mW | ||
TS | Maximum safety temperature | 150 | °C |
The maximum safety temperature is the maximum junction temperature specified for the device. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the Thermal Information is that of a device installed on a high-K test board for leaded surface-mount packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance.
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
VOH | High-level output voltage | IOH = –4 mA; see Figure 11 | VCCO(1) – 0.4 | VCCO(1) – 0.2 | V | ||
VOL | Low-level output voltage | IOL = 4 mA; see Figure 11 | 0.2 | 0.4 | V | ||
VI(HYS) | Input threshold voltage hysteresis | 0.1 × VCCI (1) | V | ||||
IIH | High-level input current | VIH = VCCI(1) at INx or ENx | 10 | μA | |||
IIL | Low-level input current | VIL = 0 V at INx or ENx | -10 | ||||
CMTI | Common-mode transient immunity | VI = VCCI(1) or 0 V, VCM = 1500 V; see Figure 14 | 100 | kV/μs | |||
CI | Input capacitance | VI = VCC/2 + 0.4 × sin (2πft), f = 1 MHz, VCC = 5 V | 2 | pF |
PARAMETER | TEST CONDITIONS | SUPPLY CURRENT | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|---|
ISO7842DW AND ISO7842FDW | |||||||
Supply current | Disable | EN1 = EN2 = 0V, VI = 0 V (ISO7842F), VI = VCCI(1) (ISO7842) | ICC1, ICC2 | 1 | 1.5 | mA | |
EN1 = EN2 = 0 V, VI = VCCI(1) (ISO7842F), VI = 0 V (ISO7842) | ICC1, ICC2 | 3.4 | 4.8 | mA | |||
DC signal | VI = 0 V (ISO7842F), VI = VCCI(1) (ISO7842) | ICC1, ICC2 | 2 | 2.7 | mA | ||
VI = VCCI(1) (ISO7842F), VI = 0 V (ISO7842) | ICC1, ICC2 | 4.4 | 6.1 | mA | |||
All channels switching with square wave clock input; CL = 15 pF |
1 Mbps | ICC1, ICC2 | 3.3 | 4.6 | mA | ||
10 Mbps | ICC1, ICC2 | 4.2 | 5.6 | mA | |||
100 Mbps | ICC1, ICC2 | 13.7 | 16.6 | mA | |||
ISO7842DWW AND ISO7842FDWW | |||||||
Supply current | Disable | EN1 = EN2 = 0V, VI = 0 V (ISO7842F), VI = VCCI(1) (ISO7842) | ICC1, ICC2 | 1 | 1.5 | mA | |
EN1 = EN2 = 0 V, VI = VCCI(1) (ISO7842F), VI = 0 V (ISO7842) | ICC1, ICC2 | 3.4 | 4.8 | mA | |||
DC signal | VI = 0 V (ISO7842F), VI = VCCI(1) (ISO7842) | ICC1, ICC2 | 2 | 2.8 | mA | ||
VI = VCCI(1) (ISO7842F), VI = 0 V (ISO7842) | ICC1, ICC2 | 4.4 | 6.3 | mA | |||
All channels switching with square wave clock input; CL = 15 pF |
1 Mbps | ICC1, ICC2 | 3.4 | 4.7 | mA | ||
10 Mbps | ICC1, ICC2 | 4.3 | 5.9 | mA | |||
100 Mbps | ICC1, ICC2 | 14 | 17.3 | mA |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
VOH | High-level output voltage | IOH = –2 mA; see Figure 11 | VCCO(1) – 0.4 | VCCO(1) – 0.2 | V | ||
VOL | Low-level output voltage | IOL = 2 mA; see Figure 11 | 0.2 | 0.4 | V | ||
VI(HYS) | Input threshold voltage hysteresis | 0.1 × VCCI(1) | V | ||||
IIH | High-level input current | VIH = VCCI(1) at INx or ENx | 10 | μA | |||
IIL | Low-level input current | VIL = 0 V at INx or ENx | –10 | μA | |||
CMTI | Common-mode transient immunity | VI = VCCI(1) or 0 V, VCM = 1500 V; see Figure 14 | 100 | kV/μs |
PARAMETER | TEST CONDITIONS | SUPPLY CURRENT | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|---|
ISO7842DW AND ISO7842FDW | |||||||
Supply current | Disable | EN1 = EN2 = 0 V, VI = 0 V (ISO7842F), VI = VCCI(1) (ISO7842) | ICC1, ICC2 | 1 | 1.5 | mA | |
EN1 = EN2 = 0 V, VI = VCCI(1) (ISO7842F), VI = 0 V (ISO7842) | ICC1, ICC2 | 3.4 | 4.8 | mA | |||
DC signal | VI = 0 V (ISO7842F), VI = VCCI(1) (ISO7842) | ICC1, ICC2 | 2 | 2.7 | mA | ||
VI = VCCI(1) (ISO7842F), VI = 0 V (ISO7842) | ICC1, ICC2 | 4.4 | 6.1 | mA | |||
All channels switching with square wave clock input; CL = 15 pF |
1 Mbps | ICC1, ICC2 | 3.3 | 4.5 | mA | ||
10 Mbps | ICC1, ICC2 | 4 | 5.2 | mA | |||
100 Mbps | ICC1, ICC2 | 10.8 | 12.9 | mA | |||
ISO7842DWW and ISO7842FDWW | |||||||
Supply current | Disable | EN1 = EN2 = 0 V, VI = 0 V (ISO7842F), VI = VCCI(1) (ISO7842) | ICC1, ICC2 | 1 | 1.5 | mA | |
EN1 = EN2 = 0 V, VI = VCCI(1) (ISO7842F), VI = 0 V (ISO7842) | ICC1, ICC2 | 3.4 | 4.8 | mA | |||
DC signal | VI = 0 V (ISO7842F), VI = VCCI(1) (ISO7842) | ICC1, ICC2 | 2 | 2.8 | mA | ||
VI = VCCI(1) (ISO7842F), VI = 0 V (ISO7842) | ICC1, ICC2 | 4.4 | 6.3 | mA | |||
All channels switching with square wave clock input; CL = 15 pF |
1 Mbps | ICC1, ICC2 | 3.4 | 4.7 | mA | ||
10 Mbps | ICC1, ICC2 | 4.1 | 5.5 | mA | |||
100 Mbps | ICC1, ICC2 | 11 | 13.6 | mA |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
VOH | High-level output voltage | IOH = –1 mA; see Figure 11 | VCCO(1) – 0.4 | VCCO(1) – 0.2 | V | ||
VOL | Low-level output voltage | IOL = 1 mA; see Figure 11 | 0.2 | 0.4 | V | ||
VI(HYS) | Input threshold voltage hysteresis | 0.1 × VCCI(1) | V | ||||
IIH | High-level input current | VIH = VCCI(1) at INx or ENx | 10 | μA | |||
IIL | Low-level input current | VIL = 0 V at INx or ENx | –10 | μA | |||
CMTI | Common-mode transient immunity | VI = VCCI(1) or 0 V, VCM = 1500 V; see Figure 14 | 100 | kV/μs |
PARAMETER | TEST CONDITIONS | SUPPLY CURRENT | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|---|
ISO7842DW AND ISO7842FDW | |||||||
Supply current | Disable | EN1 = EN2 = 0 V, VI = 0 V (ISO7842F), VI = VCCI(1) (ISO7842) | ICC1, ICC2 | 1 | 1.5 | mA | |
EN1 = EN2 = 0 V, VI = VCCI(1) (ISO7842F), VI = 0 V (ISO7842) | ICC1, ICC2 | 3.4 | 4.8 | mA | |||
DC signal | VI = 0 V (ISO7842F), VI = VCCI(1) (ISO7842) | ICC1, ICC2 | 2 | 2.7 | mA | ||
VI = VCCI(1) (ISO7842F), VI = 0 V (ISO7842) | ICC1, ICC2 | 4.4 | 6.1 | mA | |||
All channels switching with square wave clock input; CL = 15 pF |
1 Mbps | ICC1, ICC2 | 3.2 | 4.5 | mA | ||
10 Mbps | ICC1, ICC2 | 3.7 | 5.1 | mA | |||
100 Mbps | ICC1, ICC2 | 8.9 | 10.8 | mA | |||
ISO7842DWW AND ISO7842FDWW | |||||||
Supply current | Disable | EN1 = EN2 = 0 V, VI = 0 V (ISO7842F), VI = VCCI(1) (ISO7842) | ICC1, ICC2 | 1 | 1.5 | mA | |
EN1 = EN2 = 0 V, VI = VCCI(1) (ISO7842F), VI = 0 V (ISO7842) | ICC1, ICC2 | 3.4 | 4.8 | mA | |||
DC signal | VI = 0 V (ISO7842F), VI = VCCI(1) (ISO7842) | ICC1, ICC2 | 2 | 2.8 | mA | ||
VI = VCCI(1) (ISO7842F), VI = 0 V (ISO7842) | ICC1, ICC2 | 4.4 | 6.3 | mA | |||
All channels switching with square wave clock input; CL = 15 pF |
1 Mbps | ICC1, ICC2 | 3.3 | 4.6 | mA | ||
10 Mbps | ICC1, ICC2 | 3.8 | 5.3 | mA | |||
100 Mbps | ICC1, ICC2 | 9 | 11.5 | mA |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
tPLH, tPHL | Propagation delay time | See Figure 11 | 6 | 11 | 16 | ns | |
PWD | Pulse width distortion(1) |tPHL – tPLH| | 0.55 | 4.1 | ns | |||
tsk(o) | Channel-to-channel output skew time(2) | Same-direction channels | 2.5 | ns | |||
tsk(pp) | Part-to-part skew time(3) | 4.5 | ns | ||||
tr | Output signal rise time | See Figure 11 | 1.7 | 3.9 | ns | ||
tf | Output signal fall time | 1.9 | 3.9 | ns | |||
tPHZ | Disable propagation delay, high-to-high impedance output | See Figure 12 | 12 | 20 | ns | ||
tPLZ | Disable propagation delay, low-to-high impedance output | 12 | 20 | ns | |||
tPZH | Enable propagation delay, high impedance-to-high output for ISO7842 | 10 | 20 | ns | |||
Enable propagation delay, high impedance-to-high output for ISO7842F | 2 | 2.5 | μs | ||||
tPZL | Enable propagation delay, high impedance-to-low output for ISO7842 | 2 | 2.5 | μs | |||
Enable propagation delay, high impedance-to-low output for ISO7842F | 10 | 20 | ns | ||||
tfs | Default output delay time from input power loss | Measured from the time VCC goes below 1.7 V. See Figure 13 | 0.2 | 9 | μs | ||
tie | Time interval error | 216 – 1 PRBS data at 100 Mbps | 0.90 | ns |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
tPLH, tPHL | Propagation delay time | See Figure 11 | 6 | 10.8 | 16 | ns | |
PWD | Pulse width distortion(1) |tPHL – tPLH| | 0.7 | 4.2 | ns | |||
tsk(o) | Channel-to-channel output skew time(2) | Same-direction channels | 2.2 | ns | |||
tsk(pp) | Part-to-part skew time(3) | 4.5 | ns | ||||
tr | Output signal rise time | See Figure 11 | 0.8 | 3 | ns | ||
tf | Output signal fall time | 0.8 | 3 | ns | |||
tPHZ | Disable propagation delay, high-to-high impedance output | See Figure 12 | 17 | 32 | ns | ||
tPLZ | Disable propagation delay, low-to-high impedance output | 17 | 32 | ns | |||
tPZH | Enable propagation delay, high impedance-to-high output for ISO7842 | 17 | 32 | ns | |||
Enable propagation delay, high impedance-to-high output for ISO7842F | 2 | 2.5 | μs | ||||
tPZL | Enable propagation delay, high impedance-to-low output for ISO7842 | 2 | 2.5 | μs | |||
Enable propagation delay, high impedance-to-low output for ISO7842F | 17 | 32 | ns | ||||
tfs | Default output delay time from input power loss | Measured from the time VCC goes below 1.7 V. See Figure 13 | 0.2 | 9 | μs | ||
tie | Time interval error | 216 – 1 PRBS data at 100 Mbps | 0.91 | ns |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
tPLH, tPHL | Propagation delay time | See Figure 11 | 7.5 | 11.7 | 17.5 | ns | |
PWD | Pulse width distortion(1) |tPHL – tPLH| | 0.66 | 4.2 | ns | |||
tsk(o) | Channel-to-channel output skew time(2) | Same-direction Channels | 2.2 | ns | |||
tsk(pp) | Part-to-part skew time(3) | 4.5 | ns | ||||
tr | Output signal rise time | See Figure 11 | 1 | 3.5 | ns | ||
tf | Output signal fall time | 1.2 | 3.5 | ns | |||
tPHZ | Disable propagation delay, high-to-high impedance output | See Figure 12 | 22 | 45 | ns | ||
tPLZ | Disable propagation delay, low-to-high impedance output | 22 | 45 | ns | |||
tPZH | Enable propagation delay, high impedance-to-high output for ISO7842 | 18 | 45 | ns | |||
Enable propagation delay, high impedance-to-high output for ISO7842F | 2 | 2.5 | μs | ||||
tPZL | Enable propagation delay, high impedance-to-low output for ISO7842 | 2 | 2.5 | μs | |||
Enable propagation delay, high impedance-to-low output for ISO7842F | 18 | 45 | ns | ||||
tfs | Default output delay time from input power loss | Measured from the time VCC goes below 1.7 V. See Figure 13 | 0.2 | 9 | μs | ||
tie | Time interval error | 216 – 1 PRBS data at 100 Mbps | 0.91 | ns |
TA upto 150°C | Operating lifetime = 34 years | |
Stress-voltage frequency = 60 Hz | ||
Isolation working voltage = 2000 VRMS |
TA = 25°C | CL = 15 pF |
TA = 25°C |
The ISO7842 device uses an ON-OFF keying (OOK) modulation scheme to transmit the digital data across a silicon-dioxide based isolation barrier. The transmitter sends a high-frequency carrier across the barrier to represent one digital state and sends no signal to represent the other digital state. The receiver demodulates the signal after advanced signal conditioning and produces the output through a buffer stage. If the EN pin is low then the output goes to high impedance. The ISO7842 device also incorporates advanced circuit techniques to maximize the CMTI performance and minimize the radiated emissions because of the high-frequency carrier and IO buffer switching. The conceptual block diagram of a digital capacitive isolator, Figure 15, shows a functional block diagram of a typical channel.
Figure 16 shows a conceptual detail of how the ON-OFF keying scheme works.
Table 1 lists the device features.
PART NUMBER | CHANNEL DIRECTION | RATED ISOLATION | MAXIMUM DATA RATE | DEFAULT OUTPUT |
---|---|---|---|---|
ISO7842 | 2 Forward, |
5700 VRMS / 8000 VPK (1) | 100 Mbps | High |
2 Reverse | ||||
ISO7842F | 2 Forward, |
5700 VRMS / 8000 VPK (1) | 100 Mbps | Low |
2 Reverse |
Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge (ESD), electrical fast transient (EFT), surge, and electromagnetic emissions. These electromagnetic disturbances are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level performance and reliability depends, to a large extent, on the application board design and layout, the ISO7842 device incorporates many chip-level design improvements for overall system robustness. Some of these improvements include
Table 2 lists the ISO7842 functional modes.
VCCI | VCCO | INPUT (INx)(3) |
OUTPUT ENABLE (ENx) |
OUTPUT (OUTx) |
COMMENTS |
---|---|---|---|---|---|
PU | PU | H | H or open | H | Normal Operation: A channel output assumes the logic state of its input. |
L | H or open | L | |||
Open | H or open | Default | Default mode: When INx is open, the corresponding channel output goes to its default logic state. Default= High for ISO7842 and Low for ISO7842F. | ||
X | PU | X | L | Z | A low value of Output Enable causes the outputs to be high-impedance |
PD | PU | X | H or open | Default | Default mode: When VCCI is unpowered, a channel output assumes the logic state based on the selected default option. Default= High for IISO7842 and Low for ISO7842F. When VCCI transitions from unpowered to powered-up, a channel output assumes the logic state of its input. When VCCI transitions from powered-up to unpowered, channel output assumes the selected default state. |
X | PD | X | X | Undetermined | When VCCO is unpowered, a channel output is undetermined (2). When VCCO transitions from unpowered to powered-up, a channel output assumes the logic state of its input |
NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.
The ISO7842 device is a high-performance, quad-channel digital isolator with a 5.7-kVRMS isolation voltage per UL 1577. The device comes with enable pins on each side that can be used to put the respective outputs in high impedance for multi-master driving applications and reduce power consumption. The ISO7842 device uses single-ended CMOS-logic switching technology. The supply voltage range is from 2.25 V to 5.5 V for both supplies, VCC1 and VCC2. When designing with digital isolators, keep in mind that because of the single-ended design structure, digital isolators do not conform to any specific interface standard and are only intended for isolating single-ended CMOS or TTL digital signal lines. The isolator is typically placed between the data controller (that is, μC or UART), and a data converter or a line transceiver, regardless of the interface type or standard.
Figure 18 shows the typical isolated RS-232 interface implementation.
For this design example, use the parameters shown in Table 3.
PARAMETER | VALUE |
---|---|
Supply voltage | 2.25 to 5.5 V |
Decoupling capacitor between VCC1 and GND1 | 0.1 µF |
Decoupling capacitor from VCC2 and GND2 | 0.1 µF |
Unlike optocouplers, which require external components to improve performance, provide bias, or limit current, the ISO7842 device only requires two external bypass capacitors to operate.
The typical eye diagram of the ISO7842 device indicates low jitter and wide open eye at the maximum data rate of 100 Mbps.
To help ensure reliable operation at data rates and supply voltages, a 0.1-μF bypass capacitor is recommended at input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the supply pins as possible. If only a single primary-side power supply is available in an application, isolated power can be generated for the secondary-side with the help of a transformer driver such as Texas InstrumentsSN6501. For such applications, detailed power supply design and transformer selection recommendations are available in SN6501 Transformer Driver for Isolated Power Supplies.
A minimum of four layers is required to accomplish a low EMI PCB design (see Figure 21). Layer stacking should be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency signal layer.
If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the power and ground plane of each power system can be placed closer together, thus increasing the high-frequency bypass capacitance significantly.
For detailed layout recommendations, refer to Digital Isolator Design Guide.
For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength and stiffness, and the self-extinguishing flammability-characteristics.
以下表格列出了快速访问链接。范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买链接。
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.
E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 JESD48最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的TI 销售条款与条件。
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为有必要时才会使用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应用相关的风险,客户应提供充分的设计与操作安全措施。
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权限作出任何保证或解释。TI所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它知识产权方面的许可。
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件或服务的所有明示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而对 TI及其代理造成的任何损失。
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。
只有那些 TI 特别注明属于军用等级或“增强型塑料”的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面向军事或航空航天用途的 TI组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有法律和法规要求。
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949要求,TI不承担任何责任。
德州仪器在线技术支持社区: www.deyisupport.com
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122
Copyright© 2016, 德州仪器半导体技术(上海)有限公司