TPS65263 整合了三路同步降压转换器,支持 4.5V 至 18V 宽范围输入电压,该电压范围包括大部分中间总线关闭电压为 5、9、12 或 15V 的电源总线或电池。这款转换器具有恒定频率峰值电流模式,专用于简化应用,同时方便设计人员根据目标应用来优化系统。该器件工作频率为 600kHz,buck1 与 buck2 和 buck3 之间 180° 异相(buck2 和 buck3 同相运行)。
每个降压转换器的初始启动电压都可通过外部反馈电阻设定。可使用 I2C 受控 7 位 VID 对每个降压转换器的输出电压进行动态调整,范围为 0.68V 至 1.95V,步长为 10mV。可通过 I2C 总线 3 位控制对 VID 电压转换率进行编程,以优化 VID 电压转换期间的过冲/下冲。
TPS65263 中的每个降压转换器都可通过 I2C 加以控制,从而执行以下操作:启用/禁用输出电压、设置脉冲跳跃模式 (PSM) 或轻负载条件下的强制持续电流模式 (FCC) 以及读取电源正常状态、过流警告和温度警告。
TPS65263 具有过压保护、过流保护、短路保护和过热保护功能。
器件型号 | 封装 | 封装尺寸(标称值) |
---|---|---|
TPS65263 | RHB(VQFN,32) | 5.00mm × 5.00mm |
Changes from Revision B (May 2023) to Revision C (May 2023)
Changes from Revision A (September 2014) to Revision B (May 2023)
Changes from Revision * (June 2014) to Revision A (September 2014)
PART NUMBER | DESCRIPTION | COMMENTS |
---|---|---|
TPS65261/-1 | 4.5 to 18 V, triple bucks with input voltage power failure indicator | Triple bucks 3-A/2-A/2-A output current, features an open drain RESET signal to monitor input power failure, automatic power sequencing |
TPS65262/-1 | 4.5 to 18 V, triple bucks with dual adjustable LDOs | Triple bucks 3-A/1-A/1-A output current, automatic power sequencing. dual LDOs: TPS65262, 200 mA/100 mA; TPS65262-1, 350 mA/150 mA |
TPS65287 | 4.5 to 18 V, triple bucks with power switch and push button control | Triple bucks 3-A/2-A/2-A output current, up to 2.1-A USB power with over current setting by external resistor, push button control for intelligent system power-on/power-off operation |
TPS65288 | 4.5 to 18 V, triple bucks with dual power switches | Triple bucks 3-A/2-A/2-A output current, 2 USB power switches current limiting at typical 1.2 A (0.8, 1.0, 1.4, 1.6, 1.8, 2.0, 2.2 A available with manufacture trim options) |
PIN | DESCRIPTION | |
---|---|---|
NAME | NO. | |
EN3 | 1 | Enable for buck3. Float to enable. Can use this pin to adjust the input undervoltage lockout (UVLO) of buck3 with a resistor divider. |
SDA | 2 | I2C interface data pin |
SCL | 3 | I2C interface clock pin |
AGND | 4 | Analog ground common to buck controllers and other analog circuits. It must be routed separately from high current power grounds to the (–) terminal of bypass capacitor of input voltage VIN. |
VOUT2 | 5 | Buck2 output voltage sense pin. |
FB2 | 6 | Feedback Kelvin sensing pin for buck2 output voltage. Connect this pin to buck2 resistor divider. |
COMP2 | 7 | Error amplifier output and Loop compensation pin for buck2. Connect a series resistor and capacitor to compensate the control loop of buck2 with peak current PWM mode. |
SS2 | 8 | Soft-start and tracking input for buck2. An internal 5uA pullup current source is connected to this pin. The soft-start time can be programmed by connecting a capacitor between this pin and ground. |
BST2 | 9 | Boot strapped supply to the high side floating gate driver in buck2. Connect a capacitor (recommend 47nF) from BST2 pin to LX2 pin. |
LX2 | 10 | Switching node connection to the inductor and bootstrap capacitor for buck2. The voltage swing at this pin is from a diode voltage below the ground up to PVIN2 voltage. |
PGND2 | 11 | Power ground connection of buck2. Connect PGND2 pin as close as practical to the (–) terminal of PVIN2 input ceramic capacitor. |
PVIN2 | 12 | Input power supply for buck2. Connect PVIN2 pin as close as practical to the (+) terminal of an input ceramic capacitor (suggest 10 µF). |
PVIN3 | 13 | Input power supply for buck3. Connect PVIN3 pin as close as practical to the (+) terminal of an input ceramic capacitor (suggest 10 µF). |
PGND3 | 14 | Power ground connection of buck3. Connect PGND3 pin as close as practical to the (–) terminal of PVIN3 input ceramic capacitor. |
LX3 | 15 | Switching node connection to the inductor and bootstrap capacitor for buck3. The voltage swing at this pin is from a diode voltage below the ground up to PVIN3 voltage. |
BST3 | 16 | Boot strapped supply to the high side floating gate driver in buck3. Connect a capacitor (recommend 47 nF) from BST3 pin to LX3 pin. |
SS3 | 17 | Soft-start and tracking input for buck3. An internal 5-µA pullup current source is connected to this pin. The soft-start time can be programmed by connecting a capacitor between this pin and ground. |
COMP3 | 18 | Error amplifier output and Loop compensation pin for buck3. Connect a series resistor and capacitor to compensate the control loop of buck3 with peak current PWM mode. |
FB3 | 19 | Feedback Kelvin sensing pin for buck3 output voltage. Connect this pin to buck3 resistor divider. |
VOUT3 | 20 | Buck3 output voltage sense pin. |
VOUT1 | 21 | Buck1 output voltage sense pin. |
FB1 | 22 | Feedback Kelvin sensing pin for buck1 output voltage. Connect this pin to buck1 resistor divider. |
COMP1 | 23 | Error amplifier output and Loop compensation pin for buck1. Connect a series resistor and capacitor to compensate the control loop of buck1 with peak current PWM mode. |
SS1 | 24 | Soft-start and tracking input for buck1. An internal 5-µA pullup current source is connected to this pin. The soft-start time can be programmed by connecting a capacitor between this pin and ground. |
BST1 | 25 | Boot strapped supply to the high side floating gate driver in buck1. Connect a capacitor (recommend 47 nF) from BST1 pin to LX1 pin. |
LX1 | 26 | Switching node connection to the inductor and bootstrap capacitor for buck1. The voltage swing at this pin is from a diode voltage below the ground up to PVIN1 voltage. |
PGND1 | 27 | Power ground connection of Buck1. Connect PGND1 pin as close as practical to the (–) terminal of PVIN1 input ceramic capacitor. |
PVIN1 | 28 | Input power supply for buck1. Connect PVIN1 pin as close as practical to the (+) terminal of an input ceramic capacitor (suggest 10 µF). |
VIN | 29 | Buck controller power supply. |
V7V | 30 | Internal LDO for gate driver and internal controller. Connect a 10-µF capacitor from the pin to power ground. |
EN1 | 31 | Enable for buck1. Float to enable. Can use this pin to adjust the input UVLO of buck1 with a resistor divider. |
EN2 | 32 | Enable for buck2. Float to enable. Can use this pin to adjust the input UVLO of buck2 with a resistor divider. |
PAD | — | There is no electric signal down bonded to thermal pad inside IC. Exposed thermal pad must be soldered to PCB for optimal thermal performance. |
MIN | MAX | UNIT | ||
---|---|---|---|---|
Voltage | PVIN1, PVIN2, PVIN3,VIN | –0.3 | 20 | V |
LX1, LX2, LX3 (maximum withstand voltage transient <20 ns) | –1.0 | 20 | ||
BST1, BST2, BST3 referenced to LX1, LX2, LX3 pins respectively | –0.3 | 7 | ||
EN1, EN2, EN3, V7V, VOUT1, VOUT2, VOUT3, SCL, SDA | –0.3 | 7 | ||
FB1, FB2, FB3, COMP1, COMP2, COMP3, SS1, SS2, SS3 | –0.3 | 3.6 | ||
AGND, PGND1, PGND2, PGND3 | –0.3 | 0.3 | ||
TJ | Operating junction temperature | –40 | 125 | °C |
Tstg | Storage temperature range | –55 | 150 | °C |
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) | –2000 | 2000 | V |
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) | –500 | 500 |
MIN | MAX | UNIT | ||
---|---|---|---|---|
Voltage | PVIN1, PVIN2, PVIN3,VIN | 4.5 | 18 | V |
LX1, LX2, LX3 (Maximum withstand voltage transient <20 ns) | –0.8 | 18 | ||
BST1, BST2, BST3 referenced to LX1, LX2, LX3 pins respectively | –0.1 | 6.8 | ||
EN1, EN2, EN3, V7V, VOUT1, VOUT2, VOUT3, SCL, SDA | –0.1 | 6.3 | ||
FB1, FB2, FB3, COMP1, COMP2, COMP3, SS1, SS2, SS3 | –0.1 | 3 | ||
TA | Operating ambient temperature | –40 | 85 | °C |
TJ | Operating junction temperature | –40 | 125 | °C |
THERMAL METRIC(1) | TPS65263 | UNIT | |
---|---|---|---|
RHB (32 PINS) | |||
RθJA | Junction-to-ambient thermal resistance | 33.3 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 25.7 | |
RθJB | Junction-to-board thermal resistance | 7.4 | |
ψJT | Junction-to-top characterization parameter | 0.3 | |
ψJB | Junction-to-board characterization parameter | 7.3 | |
RθJC(bot) | Junction-to-case (bottom) thermal resistance | 2.1 |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
INPUT SUPPLY VOLTAGE | ||||||
VIN | Input voltage range | 4.5 | 18 | V | ||
UVLO | VIN undervoltage lockout | VIN rising | 4 | 4.25 | 4.5 | V |
VIN falling | 3.5 | 3.75 | 4 | V | ||
Hysteresis | 500 | mV | ||||
IDDSDN | Shutdown supply current | EN1 = EN2 = EN3 = 0 V | 8 | µA | ||
IDDQ_NSW | Input quiescent current without buck1/2/3 switching | EN1 = EN2 = EN3 = 5 V, FB1 = FB2 = FB3 = 0.8 V | 740 | µA | ||
IDDQ_NSW1 | EN1 = 5 V, EN2 = EN3 = 0 V, FB1 = 0.8 V | 360 | µA | |||
IDDQ_NSW2 | EN2 = 5 V, EN1 = EN3 = 0 V, FB2 = 0.8 V | 380 | µA | |||
IDDQ_NSW3 | EN3 = 5 V, EN1 = EN2 = 0 V, FB3 = 0.8 V | 380 | µA | |||
V7V | V7V LDO output voltage | V7V load current = 0 A | 6 | 6.3 | 6.6 | V |
IOCP_V7V | V7V LDO current limit | 185 | mA | |||
FEEDBACK VOLTAGE REFERENCE | ||||||
VFB | Feedback voltage | VCOMP = 1.2 V, TJ = 25°C | 0.595 | 0.6 | 0.605 | V |
VCOMP = 1.2 V, TJ = –40°C to 125°C | 0.594 | 0.6 | 0.606 | V | ||
VLINEREG_BUCK | Line regulation-DC(1) | IOUT1 = 1.5 A, IOUT2 = 1 A, IOUT3 = 1 A, 5 V < PVINx < 18 V | 0.002 | %/V | ||
VLOADREG_BUCK | Load regulation-DC(1) | IOUTx = (10-100%) × IOUTx_max | 0.02 | %/A | ||
BUCK1, BUCK2, BUCK3 | ||||||
VENXH | EN1/2/3 high level input voltage | 1.2 | 1.26 | V | ||
VENXL | EN1/2/3 low level input voltage | 1.1 | 1.15 | V | ||
IENX1 | EN1/2/3 pullup current | ENx = 1 V | 3.8 | µA | ||
IENX2 | EN1/2/3 pullup current | ENx = 1.5 V | 6.8 | µA | ||
IENhys | Hysteresis current | 3 | µA | |||
ISSX | Soft start charging current | 4.3 | 5 | 6 | µA | |
TON_MIN | Minimum on time | 80 | 100 | ns | ||
Gm_EA | Error amplifier trans-conductance | –2 µA < ICOMPX < 2 µA | 300 | µS | ||
Gm_PS1/2/3 | COMP1/2/3 voltage to inductor current Gm(1) | ILX = 0.5 A | 7.4 | A/V | ||
ILIMIT1 | Buck1 peak inductor current limit | 4.5 | 5.5 | 6.5 | A | |
ILIMITSOURCE1 | Buck1 low side source current limit | 4.4 | A | |||
ILIMITSINK1 | Buck1 low side sink current limit | 1.3 | ||||
ILIMIT2/3 | buck2/3 peak inductor current limit | 2.6 | 3.3 | 4 | A | |
ILIMITSOURCE2/3 | Buck2/3 low side source current limit | 2.5 | ||||
ILIMITSINK2/3 | Buck2/3 low side sink current limit | 1 | A | |||
Rdson_HS1 | Buck1 high-side switch resistance | VIN = 12 V | 105 | mΩ | ||
Rdson_LS1 | Buck1 low-side switch resistance | VIN = 12 V | 65 | mΩ | ||
Rdson_HS2 | Buck2 high-side switch resistance | VIN = 12 V | 140 | mΩ | ||
Rdson_LS2 | Buck2 low-side switch resistance | VIN = 12 V | 90 | mΩ | ||
Rdson_HS3 | Buck3 high-side switch resistance | VIN = 12 V | 140 | mΩ | ||
Rdson_LS3 | Buck3 low-side switch resistance | VIN = 12 V | 90 | mΩ | ||
HICCUP TIMING | ||||||
THiccup_wait | Over current wait time(1) | 0.5 | ms | |||
THiccup_re | Hiccup time before restart(1) | 14 | ms | |||
OSCILLATOR | ||||||
FSW | Switching frequency | 550 | 600 | 650 | kHz | |
THERMAL PROTECTION | ||||||
TTRIP_OTP | Thermal protection trip point(1) | Temperature rising | 160 | °C | ||
THYST_OTP | Thermal protection Hysteresis(1) | Hysteresis | 20 | °C | ||
I2C INTERFACE | ||||||
Addr | Address(2) | 0x60H | ||||
VIH SDA,SCL | Input high voltage | 2 | V | |||
VIL SDA,SCL | Input low voltage | 0.4 | V | |||
II | Input current | SDA, SCL, VI = 0.4 to 4.5 V | –10 | 10 | µA | |
VOL SDA | SDA output low voltage | SDA open drain, IOL = 4 mA | 0.4 | V | ||
ƒ(SCL) | Maximum SCL clock frequency(2) | 400 | kHz | |||
tBUF | Bus free time between a STOP and START condition(2) | 1.3 | µs | |||
tHD_STA | Hold time (repeated) START condition(2) | 0.6 | µs | |||
tSU_STO | Setup time for STOP condition(2) | 0.6 | µs | |||
tLOW | LOW Period of the SCL Clock(2) | 1.3 | µs | |||
tHIGH | HIGH period of the SCL clock(2) | 0.6 | µs | |||
tSU_STA | Setup time for a repeated START condition(2) | 0.6 | µs | |||
tSU_DAT | Data setup time(2) | 0.1 | µs | |||
tHD_DAT | Data hold time(2) | 0 | 0.9 | µs | ||
tRCL | Rise time of SCL signal(2) | Capacitance of one bus line (pF) | 20 + 0.1CB | 300 | ns | |
tRCL1 | Rise time of SCL signal after a repeated START condition and after an acknowledge BIT(2) | Capacitance of one bus line (pF) | 20 + 0.1CB | 300 | ns | |
tFCL | Fall time of SCL signal(2) | Capacitance of one bus line (pF) | 20 + 0.1CB | 300 | ns | |
tRDA | Rise time of SDA signal(2) | Capacitance of one bus line (pF) | 20 + 0.1CB | 300 | ns | |
tFDA | Fall time of SDA signal(2) | Capacitance of one bus line (pF) | 20 + 0.1CB | 300 | ns | |
CB | Capacitance of bus line(SCL and SDA)(2) | 400 | pF |