• Menu
  • Product
  • Email
  • PDF
  • Order now
  • MSP430FR596x、MSP430FR594x 混合信号微控制器

    • ZHCSCH3G October   2012  – August 2018 MSP430FR5947 , MSP430FR59471 , MSP430FR5948 , MSP430FR5949 , MSP430FR5957 , MSP430FR5958 , MSP430FR5959 , MSP430FR5967 , MSP430FR5968 , MSP430FR5969 , MSP430FR59691

      PRODUCTION DATA.  

  • CONTENTS
  • SEARCH
  • MSP430FR596x、MSP430FR594x 混合信号微控制器
  1. 1器件概述
    1. 1.1 特性
    2. 1.2 应用
    3. 1.3 说明
    4. 1.4 功能框图
  2. 2修订历史记录
  3. 3Device Comparison
    1. 3.1 Related Products
  4. 4Terminal Configuration and Functions
    1. 4.1 Pin Diagrams
    2. 4.2 Signal Descriptions
      1. Table 4-1 Signal Descriptions
    3. 4.3 Pin Multiplexing
    4. 4.4 Connection of Unused Pins
  5. 5Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Active Mode Supply Current Into VCC Excluding External Current
    5. 5.5  Typical Characteristics – Active Mode Supply Currents
    6. 5.6  Low-Power Mode (LPM0, LPM1) Supply Currents Into VCC Excluding External Current
    7. 5.7  Low-Power Mode (LPM2, LPM3, LPM4) Supply Currents (Into VCC) Excluding External Current
    8. 5.8  Low-Power Mode (LPM3.5, LPM4.5) Supply Currents (Into VCC) Excluding External Current
    9. 5.9  Typical Characteristics, Low-Power Mode Supply Currents
    10. 5.10 Typical Characteristics, Current Consumption per Module
    11. 5.11 Thermal Resistance Characteristics
    12. 5.12 Timing and Switching Characteristics
      1. 5.12.1  Power Supply Sequencing
        1. Table 5-1 Brownout and Device Reset Power Ramp Requirements
        2. Table 5-2 SVS
      2. 5.12.2  Reset Timing
        1. Table 5-3 Reset Input
      3. 5.12.3  Clock Specifications
        1. Table 5-4 Low-Frequency Crystal Oscillator, LFXT
        2. Table 5-5 High-Frequency Crystal Oscillator, HFXT
        3. Table 5-6 DCO
        4. Table 5-7 Internal Very-Low-Power Low-Frequency Oscillator (VLO)
        5. Table 5-8 Module Oscillator (MODOSC)
      4. 5.12.4  Wake-up Characteristics
        1. Table 5-9  Wake-up Times From Low-Power Modes and Reset
        2. Table 5-10 Typical Wake-up Charge
        3. 5.12.4.1   Typical Characteristics, Average LPM Currents vs Wake-up Frequency
      5. 5.12.5  Digital I/Os
        1. Table 5-11 Digital Inputs
        2. Table 5-12 Digital Outputs
        3. 5.12.5.1   Typical Characteristics, Digital Outputs at 3.0 V and 2.2 V
        4. Table 5-13 Pin-Oscillator Frequency, Ports Px
        5. 5.12.5.2   Typical Characteristics, Pin-Oscillator Frequency
      6. 5.12.6  Timer_A and Timer_B
        1. Table 5-14 Timer_A
        2. Table 5-15 Timer_B
      7. 5.12.7  eUSCI
        1. Table 5-16 eUSCI (UART Mode) Clock Frequency
        2. Table 5-17 eUSCI (UART Mode)
        3. Table 5-18 eUSCI (SPI Master Mode) Clock Frequency
        4. Table 5-19 eUSCI (SPI Master Mode)
        5. Table 5-20 eUSCI (SPI Slave Mode)
        6. Table 5-21 eUSCI (I2C Mode)
      8. 5.12.8  ADC
        1. Table 5-22 12-Bit ADC, Power Supply and Input Range Conditions
        2. Table 5-23 12-Bit ADC, Timing Parameters
        3. Table 5-24 12-Bit ADC, Linearity Parameters With External Reference
        4. Table 5-25 12-Bit ADC, Dynamic Performance for Differential Inputs With External Reference
        5. Table 5-26 12-Bit ADC, Dynamic Performance for Differential Inputs With Internal Reference
        6. Table 5-27 12-Bit ADC, Dynamic Performance for Single-Ended Inputs With External Reference
        7. Table 5-28 12-Bit ADC, Dynamic Performance for Single-Ended Inputs With Internal Reference
        8. Table 5-29 12-Bit ADC, Dynamic Performance With 32.768-kHz Clock
        9. Table 5-30 12-Bit ADC, Temperature Sensor and Built-In V1/2
        10. Table 5-31 12-Bit ADC, External Reference
      9. 5.12.9  Reference
        1. Table 5-32 REF, Built-In Reference
      10. 5.12.10 Comparator
        1. Table 5-33 Comparator_E
      11. 5.12.11 FRAM
        1. Table 5-34 FRAM
    13. 5.13 Emulation and Debug
      1. Table 5-35 JTAG and Spy-Bi-Wire Interface
  6. 6Detailed Description
    1. 6.1  Overview
    2. 6.2  CPU
    3. 6.3  Operating Modes
      1. 6.3.1 Peripherals in Low-Power Modes
        1. 6.3.1.1 Idle Currents of Peripherals in LPM3 and LPM4
    4. 6.4  Interrupt Vector Table and Signatures
    5. 6.5  Memory Organization
    6. 6.6  Bootloader (BSL)
    7. 6.7  JTAG Operation
      1. 6.7.1 JTAG Standard Interface
      2. 6.7.2 Spy-Bi-Wire Interface
    8. 6.8  FRAM
    9. 6.9  Memory Protection Unit Including IP Encapsulation
    10. 6.10 Peripherals
      1. 6.10.1  Digital I/O
      2. 6.10.2  Oscillator and Clock System (CS)
      3. 6.10.3  Power-Management Module (PMM)
      4. 6.10.4  Hardware Multiplier (MPY)
      5. 6.10.5  Real-Time Clock (RTC_B) (Only MSP430FR596x and MSP430FR594x)
      6. 6.10.6  Watchdog Timer (WDT_A)
      7. 6.10.7  System Module (SYS)
      8. 6.10.8  DMA Controller
      9. 6.10.9  Enhanced Universal Serial Communication Interface (eUSCI)
      10. 6.10.10 TA0, TA1
      11. 6.10.11 TA2, TA3
      12. 6.10.12 TB0
      13. 6.10.13 ADC12_B
      14. 6.10.14 Comparator_E
      15. 6.10.15 CRC16
      16. 6.10.16 AES256 Accelerator
      17. 6.10.17 True Random Seed
      18. 6.10.18 Shared Reference (REF)
      19. 6.10.19 Embedded Emulation
        1. 6.10.19.1 Embedded Emulation Module (EEM)
        2. 6.10.19.2 EnergyTrace++ Technology
      20. 6.10.20 Peripheral File Map
    11. 6.11 Input/Output Diagrams
      1. 6.11.1  Capacitive Touch Functionality Ports P1, P2, P3, P4, and PJ
      2. 6.11.2  Port P1 (P1.0 to P1.2) Input/Output With Schmitt Trigger
      3. 6.11.3  Port P1 (P1.3 to P1.5) Input/Output With Schmitt Trigger
      4. 6.11.4  Port P1 (P1.6 and P1.7) Input/Output With Schmitt Trigger
      5. 6.11.5  Port P2 (P2.0 to P2.2) Input/Output With Schmitt Trigger
      6. 6.11.6  Port P2 (P2.3 and P2.4) Input/Output With Schmitt Trigger
      7. 6.11.7  Port P2 (P2.5 and P2.6) Input/Output With Schmitt Trigger
      8. 6.11.8  Port P2 (P2.7) Input/Output With Schmitt Trigger
      9. 6.11.9  Port P3 (P3.0 to P3.3) Input/Output With Schmitt Trigger
      10. 6.11.10 Port P3 (P3.4 to P3.7) Input/Output With Schmitt Trigger
      11. 6.11.11 Port P4 (P4.0 to P4.3) Input/Output With Schmitt Trigger
      12. 6.11.12 Port P4 (P4.4 to P4.7) Input/Output With Schmitt Trigger
      13. 6.11.13 Port PJ, PJ.4 and PJ.5 Input/Output With Schmitt Trigger
      14. 6.11.14 Port PJ (PJ.6 and PJ.7) Input/Output With Schmitt Trigger
      15. 6.11.15 Port PJ (PJ.0 to PJ.3) JTAG Pins TDO, TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger
    12. 6.12 Device Descriptor (TLV)
    13. 6.13 Identification
      1. 6.13.1 Revision Identification
      2. 6.13.2 Device Identification
      3. 6.13.3 JTAG Identification
  7. 7Applications, Implementation, and Layout
    1. 7.1 Device Connection and Layout Fundamentals
      1. 7.1.1 Power Supply Decoupling and Bulk Capacitors
      2. 7.1.2 External Oscillator
      3. 7.1.3 JTAG
      4. 7.1.4 Reset
      5. 7.1.5 Unused Pins
      6. 7.1.6 General Layout Recommendations
      7. 7.1.7 Do's and Don'ts
    2. 7.2 Peripheral- and Interface-Specific Design Information
      1. 7.2.1 ADC12_B Peripheral
        1. 7.2.1.1 Partial Schematic
        2. 7.2.1.2 Design Requirements
        3. 7.2.1.3 Detailed Design Procedure
        4. 7.2.1.4 Layout Guidelines
  8. 8器件和文档支持
    1. 8.1  入门和后续步骤
    2. 8.2  器件命名规则
    3. 8.3  工具和软件
    4. 8.4  文档支持
    5. 8.5  相关链接
    6. 8.6  社区资源
    7. 8.7  商标
    8. 8.8  静电放电警告
    9. 8.9  出口管制提示
    10. 8.10 术语表
  9. 9机械、封装和可订购信息
  10. 重要声明
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

DATA SHEET

MSP430FR596x、MSP430FR594x 混合信号微控制器

本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。

1 器件概述

1.1 特性

  • 嵌入式微控制器
    • 高达 16MHz 时钟频率的 16 位 RISC 架构
    • 3.6V 至 1.8V 的宽电源电压范围(最低电源电压受限于 SVS 电平,请参阅 SVS 规格)
  • 经优化的超低功耗模式
    • 工作模式:大约 100µA/MHz
    • 待机(具有低功率低频内部时钟源 (VLO) 的 LPM3):0.4µA(典型值)
    • 实时时钟 (LPM3.5):0.25µA(典型值) (1)
    • 关断 (LPM4.5):0.02µA(典型值)
    • 1. 实时时钟 (RTC) 由 3.7pF 晶振计时。
  • 超低功耗铁电 RAM (FRAM)
    • 高达 64KB 的非易失性存储器
    • 超低功耗写入
    • 125ns 每个字的快速写入(4ms 内写入 64KB)
    • 统一标准存储器 = 单个空间内的程序 + 数据 + 存储
    • 1015 写入周期持久性
    • 抗辐射和非磁性
  • 智能数字外设
    • 32 位硬件乘法器 (MPY)
    • 3 通道内部 DMA
    • 具有日历和报警功能的实时时钟 (RTC)
    • 5 个 16 位定时器,每个定时器具有多达 7 个捕捉/比较寄存器
    • 16 位循环冗余校验器 (CRC)
  • 高性能模拟
    • 16 通道模拟比较器
    • 12 位模数转换器 (ADC)
      具有内部基准和采样保持
      和高达 16 个外部输入通道
  • 多功能输入/输出端口
    • 所有引脚支持电容触摸功能,无需外部组件
    • 可每位、每字节和每字访问(成对访问)
    • 所有端口上,从 LPM 中的边沿可选唤醒
    • 所有端口上可编程上拉和下拉
  • 代码安全性和加密
    • 128 位或 256 位 AES 安全加密和解密协处理器(只适用于 MSP430FR59xx)
    • 针对随机数生成算法的随机数种子
  • 增强型串行通信
    • eUSCI_A0 和 eUSCI_A1 支持
      • 支持自动波特率侦测的通用异步收发器 (UART)
      • IrDA 编码和解码
      • 串行外设接口 (SPI)
    • eUSCI_B0 支持
      • 支持多个从器件寻址的 I2C
      • SPI
    • 硬件 UART 和 I2C 引导加载程序 (BSL)
  • 灵活时钟系统
    • 具有 10 个可选厂家调整频率的定频数控振荡器 (DCO)
    • 低功率低频内部时钟源 (VLO)
    • 32kHz 晶振 (LFXT)
    • 高频晶振 (HFXT)
  • 开发工具和软件
    • 自由的专业开发环境 具有 EnergyTrace++™技术
    • 开发套件 (MSP-TS430RGZ48C)
  • 系列产品成员
    • 器件比较 汇总了可用器件变型和封装类型
  • 要获得完整的模块说明,请参见《MSP430FR58xx、MSP430FR59xx 和 MSP430FR6xx 系列用户指南》

1.2 应用

  • 计量
  • 能量采集传感器节点
  • 可穿戴电子产品
  • 传感器管理
  • 数据日志

1.3 说明

MSP430™超低功耗 (ULP) FRAM 平台将独特的嵌入式 FRAM 和整体超低功耗系统架构组合在一起,从而使得创新人员能够以较少的能源预算增加性能。FRAM 技术以低很多的功耗将 SRAM 的速度、灵活性和耐久性与闪存的稳定性和可靠性组合在一起。

MSP430 ULP FRAM 产品系列包含一组采用 FRAM 的多种器件、ULP 16 位 MSP430 CPU 以及适用于各种 应用的智能外设。ULP 架构特有 7 种低功耗模式,针对在能量受限应用中延长电池使用寿命进行了 优化。

器件信息(1)

器件型号 封装 封装尺寸(2)
MSP430FR5969IRGZ VQFN (48) 7mm x 7mm
MSP430FR5959IRHA VQFN (40) 6mm × 6mm
MSP430FR5959IDA TSSOP (38) 12.5mm x 6.2mm
(1) 要获得所有可用器件的最新部件、封装和订购信息,请参见封装选项附录(Section 9)或浏览 TI 网站 www.ti.com.cn。
(2) 这里显示的尺寸为近似值。要获得包含误差值的封装尺寸,请参见机械数据(Section 9)。

1.4 功能框图

Figure 1-1 显示了器件的功能方框图。

MSP430FR5969 MSP430FR59691 MSP430FR5968 MSP430FR5967 MSP430FR5959 MSP430FR5958 MSP430FR5957 MSP430FR5949 MSP430FR5948 MSP430FR5947 MSP430FR59471 bd_wolverine.gif
A. 低频 (LF) 晶体振荡器和对应的 LFXIN 和 LFXOUT 引脚只在 MSP430FR5x6x 和 MSP430FR5x4x 器件上提供。
RTC_B 仅可与 MSP430FR5x6x 和 MSP430FR5x4x 器件中的 LF 晶体振荡器配合使用。
B. 高频 (HF) 晶体振荡器和对应的 HFXIN 和 HFXOUT 引脚只在 MSP430FR5x6x 和 MSP430FR5x5x 器件上提供。
只具有 HF 晶体振荡器的 MSP430FR5x5x 器件不包括 RTC_B 模块。
Figure 1-1 功能方框图

2 修订历史记录

Changes from March 10, 2017 to August 29, 2018

  • Updated Section 3.1, Related ProductsGo
  • Added note (1) to Table 5-2, SVSGo
  • Changed capacitor value from 4.7 µF to 470 nF in Figure 7-5, ADC12_B Grounding and Noise ConsiderationsGo
  • Changed capacitor value from 4.7 µF to 470 nF in the last paragraph of Section 7.2.1.2, Design RequirementsGo
  • 更新了Section 8.2 器件命名规则 中的文本和图Go

3 Device Comparison

Table 3-1 summarizes the available family members.

Table 3-1 Device Comparison(7)(8)

DEVICE FRAM
(KB)
SRAM
(KB)
CLOCK SYSTEM ADC12_B Comp_E Timer_A(1) Timer_B(2) eUSCI AES BSL I/O PACKAGE
A(3) B(4)
MSP430FR5969 64 2 DCO
HFXT
LFXT
16 ext, 2 int ch. 16 ch. 3, 3(5)
2, 2(6)
7 2 1 yes UART 40 48 RGZ
MSP430FR59691 64 2 DCO
HFXT
LFXT
16 ext, 2 int ch. 16 ch. 3, 3(5)
2, 2(6)
7 2 1 yes I2C 40 48 RGZ
MSP430FR5968 48 2 DCO
HFXT
LFXT
16 ext, 2 int ch. 16 ch. 3, 3(5)
2, 2(6)
7 2 1 yes UART 40 48 RGZ
MSP430FR5967 32 1 DCO
HFXT
LFXT
16 ext, 2 int ch. 16 ch. 3, 3(5)
2, 2(6)
7 2 1 yes UART 40 48 RGZ
MSP430FR5949 64 2 DCO
LFXT
14 ext, 2 int ch. 16 ch. 3, 3(5)
2, 2(6)
7 2 1 yes UART 33 40 RHA
12 ext,
2 int ch.
31 38 DA
MSP430FR5948 48 2 DCO
LFXT
14 ext,
2 int ch.
16 ch. 3, 3(5)
2, 2(6)
7 2 1 yes UART 33 40 RHA
12 ext,
2 int ch.
31 38 DA
MSP430FR5947 32 1 DCO
LFXT
14 ext,
2 int ch.
16 ch. 3, 3(5)
2, 2(6)
7 2 1 yes UART 33 40 RHA
12 ext,
2 int ch.
31 38 DA
MSP430FR59471 32 1 DCO
LFXT
14 ext,
2 int ch.
16 ch. 3, 3(5)
2, 2(6)
7 2 1 yes I2C 33 40 RHA
MSP430FR5959 64 2 DCO
HFXT
14 ext,
2 int ch.
16 ch. 3, 3(5)
2, 2(6)
7 2 1 yes UART 33 40 RHA
12 ext,
2 int ch.
31 38 DA
MSP430FR5958 48 2 DCO
HFXT
14 ext,
2 int ch.
16 ch. 3, 3(5)
2, 2(6)
7 2 1 yes UART 33 40 RHA
12 ext,
2 int ch.
31 38 DA
MSP430FR5957 32 1 DCO
HFXT
14 ext,
2 int ch.
16 ch. 3, 3(5)
2, 2(6)
7 2 1 yes UART 33 40 RHA
12 ext,
2 int ch.
31 38 DA
(1) Each number in the sequence represents an instantiation of Timer_A with its associated number of capture/compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 capture/compare registers and PWM output generators and the second instantiation having 5 capture/compare registers and PWM output generators, respectively.
(2) Each number in the sequence represents an instantiation of Timer_B with its associated number of capture/compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first instantiation having 3 capture/compare registers and PWM output generators and the second instantiation having 5 capture/compare registers and PWM output generators, respectively.
(3) eUSCI_A supports UART with automatic baud-rate detection, IrDA encode and decode, and SPI.
(4) eUSCI_B supports I2C with multiple slave addresses, and SPI.
(5) Timers TA0 and TA1 provide internal and external capture/compare inputs and internal and external PWM outputs.
(6) Timers TA2 and TA3 provide only internal capture/compare inputs and only internal PWM outputs (if any).
(7) For the most current device, package, and ordering information for all available devices, see the Package Option Addendum in Section 9, or see the TI website at www.ti.com.
(8) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/packaging.

3.1 Related Products

For information about other devices in this family of products or related products, see the following links.

    TI 16-bit and 32-bit microcontrollers

    High-performance, low-power solutions to enable the autonomous future

    Products for MSP430 ultra-low-power sensing and measurement microcontrollers

    One platform. One ecosystem. Endless possibilities.

    Products for MSP430 ultrasonic and performance sensing microcontrollers

    Ultra-low-power single-chip MCUs with integrated sensing peripherals

    Companion Products for MSP430FR5969

    Review products that are frequently purchased or used with this product.

    Reference Designs for MSP430FR5969

    The TI Designs Reference Design Library is a robust reference design library that spans analog, embedded processor, and connectivity. Created by TI experts to help you jump start your system design, all TI Designs include schematic or block diagrams, BOMs, and design files to speed your time to market. Search and download designs at ti.com/tidesigns.

4 Terminal Configuration and Functions

4.1 Pin Diagrams

Figure 4-1 shows the 48-pin RGZ package for the MSP430FR596x and MSP430FR596x1 MCUs.

MSP430FR5969 MSP430FR59691 MSP430FR5968 MSP430FR5967 MSP430FR5959 MSP430FR5958 MSP430FR5957 MSP430FR5949 MSP430FR5948 MSP430FR5947 MSP430FR59471 Wolverine_48QFN.gif

NOTE:

TI recommends connecting the QFN package pad to VSS.

NOTE:

On devices with UART BSL: P2.0: BSLTX; P2.1: BSLRX

NOTE:

On devices with I2C BSL: P1.6: BSLSDA; P1.7: BSLSCL
Figure 4-1 48-Pin RGZ Package (Top View) – MSP430FR596x and MSP430FR596x1

Figure 4-2 shows the 40-pin RHA package for the MSP430FR594x and MSP430FR594x1 MCUs (LFXT only).

MSP430FR5969 MSP430FR59691 MSP430FR5968 MSP430FR5967 MSP430FR5959 MSP430FR5958 MSP430FR5957 MSP430FR5949 MSP430FR5948 MSP430FR5947 MSP430FR59471 Wolverine_40QFN.gif

NOTE:

TI recommends connecting the QFN package pad to VSS.

NOTE:

On devices with UART BSL: P2.0: BSLTX; P2.1: BSLRX

NOTE:

On devices with I2C BSL: P1.6: BSLSDA; P1.7: BSLSCL
Figure 4-2 40-Pin RHA Package (Top View) – MSP430FR594x and MSP430FR594x1

Figure 4-3 shows the 38-pin DA package for the MSP430FR594x MCUs (LFXT only).

MSP430FR5969 MSP430FR59691 MSP430FR5968 MSP430FR5967 MSP430FR5959 MSP430FR5958 MSP430FR5957 MSP430FR5949 MSP430FR5948 MSP430FR5947 MSP430FR59471 Wolverine_38SSOP.gif

NOTE:

On devices with UART BSL: P2.0: BSLTX; P2.1: BSLRX
Figure 4-3 38-Pin DA Package (Top View) – MSP430FR594x

Figure 4-4 shows the 40-pin RHA package for the MSP430FR595x MCUs (HFXT only).

MSP430FR5969 MSP430FR59691 MSP430FR5968 MSP430FR5967 MSP430FR5959 MSP430FR5958 MSP430FR5957 MSP430FR5949 MSP430FR5948 MSP430FR5947 MSP430FR59471 WolverineHF_40QFN.gif

NOTE:

TI recommends connecting the QFN package pad to VSS.

NOTE:

On devices with UART BSL: P2.0: BSLTX; P2.1: BSLRX
Figure 4-4 40-Pin RHA Package (Top View) – MSP430FR595x

Figure 4-5 shows the 38-pin DA package for the MSP430FR595x MCUs (HFXT only).

MSP430FR5969 MSP430FR59691 MSP430FR5968 MSP430FR5967 MSP430FR5959 MSP430FR5958 MSP430FR5957 MSP430FR5949 MSP430FR5948 MSP430FR5947 MSP430FR59471 WolverineHF_38SSOP.gif

NOTE:

On devices with UART BSL: P2.0: BSLTX; P2.1: BSLRX
Figure 4-5 38-Pin DA Package (Top View) – MSP430FR595x

4.2 Signal Descriptions

Table 4-1 describes the signals for all device variants and package options.

Table 4-1 Signal Descriptions

TERMINAL I/O(2) DESCRIPTION
NAME NO.(1)
RGZ RHA DA
P1.0/TA0.1/DMAE0/ RTCCLK/A0/C0/VREF-/ VeREF- 1 1 5 I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
TA0 CCR1 capture: CCI1A input, compare: Out1
External DMA trigger
RTC clock calibration output (not available on MSP430FR5x5x devices)
Analog input A0 for ADC
Comparator input C0
Output of negative reference voltage
Input for an external negative reference voltage to the ADC
P1.1/TA0.2/TA1CLK/ COUT/A1/C1/VREF+/ VeREF+ 2 2 6 I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
TA0 CCR2 capture: CCI2A input, compare: Out2
TA1 input clock
Comparator output
Analog input A1 for ADC
Comparator input C1
Output of positive reference voltage
Input for an external positive reference voltage to the ADC
P1.2/TA1.1/TA0CLK/ COUT/A2/C2 3 3 7 I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
TA1 CCR1 capture: CCI1A input, compare: Out1
TA0 input clock
Comparator output
Analog input A2 for ADC
Comparator input C2
P3.0/A12/C12 4 4 8 I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
Analog input A12 for ADC
Comparator input C12
P3.1/A13/C13 5 5 9 I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
Analog input A13 for ADC
Comparator input C13
P3.2/A14/C14 6 6 10 I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
Analog input A14 for ADC
Comparator input C14
P3.3/A15/C15 7 7 11 I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
Analog input A15 for ADC
Comparator input C15
P4.7 8 N/A N/A I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
P1.3/TA1.2/UCB0STE/ A3/C3 9 8 12 I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
TA1 CCR2 capture: CCI2A input, compare: Out2
Slave transmit enable – eUSCI_B0 SPI mode
Analog input A3 for ADC
Comparator input C3
P1.4/TB0.1/UCA0STE/ A4/C4 10 9 13 I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
TB0 CCR1 capture: CCI1A input, compare: Out1
Slave transmit enable – eUSCI_A0 SPI mode
Analog input A4 for ADC
Comparator input C4
P1.5/TB0.2/UCA0CLK/ A5/C5 11 10 14 I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
TB0 CCR2 capture: CCI2A input, compare: Out2
Clock signal input – eUSCI_A0 SPI slave mode,
Clock signal output – eUSCI_A0 SPI master mode
Analog input A5 for ADC
Comparator input C5
PJ.0/TDO/TB0OUTH/ SMCLK/SRSCG1/C6 12 11 15 I/O General-purpose digital I/O
Test data output port
Switch all PWM outputs high impedance input – TB0
SMCLK output
Low-Power Debug: CPU Status Register Bit SCG1
Comparator input C6
PJ.1/TDI/TCLK/MCLK/ SRSCG0/C7 13 12 16 I/O General-purpose digital I/O
Test data input or test clock input
MCLK output
Low-Power Debug: CPU Status Register Bit SCG0
Comparator input C7
PJ.2/TMS/ACLK/ SROSCOFF/C8 14 13 17 I/O General-purpose digital I/O
Test mode select
ACLK output
Low-Power Debug: CPU Status Register Bit OSCOFF
Comparator input C8
PJ.3/TCK/ SRCPUOFF/C9 15 14 18 I/O General-purpose digital I/O
Test clock
Low-Power Debug: CPU Status Register Bit CPUOFF
Comparator input C9
P4.0/A8 16 15 N/A I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
Analog input A8 for ADC
P4.1/A9 17 16 N/A I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
Analog input A9 for ADC
P4.2/A10 18 N/A N/A I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
Analog input A10 for ADC
P4.3/A11 19 N/A N/A I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
Analog input A11 for ADC
P2.5/TB0.0/UCA1TXD/ UCA1SIMO 20 17 19 I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
TB0 CCR0 capture: CCI0B input, compare: Out0
Transmit data – eUSCI_A1 UART mode
Slave in, master out – eUSCI_A1 SPI mode
P2.6/TB0.1/UCA1RXD/ UCA1SOMI 21 18 20 I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
TB0 CCR1 compare: Out1
Receive data – eUSCI_A1 UART mode
Slave out, master in – eUSCI_A1 SPI mode
TEST/SBWTCK 22 19 21 I Test mode pin – select digital I/O on JTAG pins
Spy-Bi-Wire input clock
RST/NMI/SBWTDIO 23 20 22 I/O Reset input active low
Nonmaskable interrupt input
Spy-Bi-Wire data input/output
P2.0/TB0.6/UCA0TXD/ UCA0SIMO/TB0CLK/ ACLK 24 21 23 I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
TB0 CCR6 capture: CCI6B input, compare: Out6
Transmit data – eUSCI_A0 UART mode
BSL Transmit (UART BSL)
Slave in, master out – eUSCI_A0 SPI mode
TB0 clock input
ACLK output
P2.1/TB0.0/UCA0RXD/ UCA0SOMI/TB0.0 25 22 24 I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
TB0 CCR0 capture: CCI0A input, compare: Out0
Receive data – eUSCI_A0 UART mode
BSL receive (UART BSL)
Slave out, master in – eUSCI_A0 SPI mode
TB0 CCR0 capture: CCI0A input, compare: Out0
P2.2/TB0.2/UCB0CLK 26 23 25 I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
TB0 CCR2 compare: Out2
Clock signal input – eUSCI_B0 SPI slave mode
Clock signal output – eUSCI_B0 SPI master mode
P3.4/TB0.3/SMCLK 27 24 26 I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
TB0 CCR3 capture: CCI3A input, compare: Out3
SMCLK output
P3.5/TB0.4/COUT 28 25 27 I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
TB0 CCR4 capture: CCI4A input, compare: Out4
Comparator output
P3.6/TB0.5 29 26 28 I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
TB0 CCR5 capture: CCI5A input, compare: Out5
P3.7/TB0.6 30 27 29 I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
TB0 CCR6 capture: CCI6A input, compare: Out6
P1.6/TB0.3/UCB0SIMO/ UCB0SDA/TA0.0 31 28 30 I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
TB0 CCR3 capture: CCI3B input, compare: Out3
Slave in, master out – eUSCI_B0 SPI mode
I2C data – eUSCI_B0 I2C mode
BSL Data (I2C BSL)
TA0 CCR0 capture: CCI0A input, compare: Out0
P1.7/TB0.4/UCB0SOMI/ UCB0SCL/TA1.0 32 29 31 I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
TB0 CCR4 capture: CCI4B input, compare: Out4
Slave out, master in – eUSCI_B0 SPI mode
I2C clock – eUSCI_B0 I2C mode
BSL clock (I2C BSL)
TA1 CCR0 capture: CCI0A input, compare: Out0
P4.4/TB0.5 33 30 32 I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
TB0CCR5 capture: CCI5B input, compare: Out5
P4.5 34 N/A N/A I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
P4.6 35 N/A N/A I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
DVSS 36 31 33 Digital ground supply
DVCC 37 32 34 Digital power supply
P2.7 38 33 35 I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
P2.3/TA0.0/UCA1STE/ A6/C10 39 34 36 I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
TA0 CCR0 capture: CCI0B input, compare: Out0
Slave transmit enable – eUSCI_A1 SPI mode
Analog input A6 for ADC
Comparator input C10
P2.4/TA1.0/UCA1CLK/ A7/C11 40 35 37 I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5
TA1 CCR0 capture: CCI0B input, compare: Out0
Clock signal input – eUSCI_A1 SPI slave mode
Clock signal output – eUSCI_A1 SPI master mode
Analog input A7 for ADC
Comparator input C11
AVSS 41 36 38 Analog ground supply
PJ.6/HFXIN 42 37 1 I/O General-purpose digital I/O
Input for high-frequency crystal oscillator HFXT (in RHA and DA packages: MSP430FR595x devices only)
PJ.7/HFXOUT 43 38 2 I/O General-purpose digital I/O
Output for high-frequency crystal oscillator HFXT (in RHA and DA packages: MSP430FR595x devices only)
AVSS 44 N/A N/A Analog ground supply
PJ.4/LFXIN 45 37 1 I/O General-purpose digital I/O
Input for low-frequency crystal oscillator LFXT (in RHA and DA packages: MSP430FR594x devices only)
PJ.5/LFXOUT 46 38 2 I/O General-purpose digital I/O
Output of low-frequency crystal oscillator LFXT (in RHA and DA packages: MSP430FR594x devices only)
AVSS 47 39 3 Analog ground supply
AVCC 48 40 4 Analog power supply
QFN Pad Pad Pad N/A QFN package exposed thermal pad. TI recommends connection to VSS.
(1) N/A = not available
(2) I = input, O = output

4.3 Pin Multiplexing

Pin multiplexing for these devices is controlled by both register settings and operating modes (for example, if the device is in test mode). For details of the settings for each pin and diagrams of the multiplexed ports, see Section 6.11.

4.4 Connection of Unused Pins

Table 4-2 lists the correct termination of all unused pins.

Table 4-2 Connection of Unused Pins(1)

PIN POTENTIAL COMMENT
AVCC DVCC
AVSS DVSS
Px.0 to Px.7 Open Set to port function, output direction (PxDIR.n = 1)
RST/NMI DVCC or VCC 47-kΩ pullup or internal pullup selected with 2.2-nF (10-nF(2)) pulldown
PJ.0/TDO
PJ.1/TDI
PJ.2/TMS
PJ.3/TCK
Open The JTAG pins are shared with general-purpose I/O function (PJ.x). If not used as JTAG pins, these pins should be switched to port function, output direction. When used as JTAG pins, these pins should remain open.
TEST Open This pin always has an internal pulldown enabled.
(1) Any unused pin with a secondary function that is shared with general-purpose I/O should follow the Px.0 to Px.7 unused pin connection guidelines.
(2) The pulldown capacitor should not exceed 2.2 nF when using devices in Spy-Bi-Wire mode or in 4-wire JTAG mode with TI tools like FET interfaces or GANG programmers. If JTAG or Spy-Bi-Wire access is not needed, up to a 10-nF pulldown capacitor may be used.

5 Specifications

5.1 Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Voltage applied at DVCC and AVCC pins to VSS –0.3 4.1 V
Voltage difference between DVCC and AVCC pins(2) ±0.3 V
Voltage applied to any pin (3) –0.3 VCC + 0.3 V
(4.1 Max)
V
Diode current at any device pin ±2 mA
Storage temperature, Tstg(4) –40 125 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) Voltage differences between DVCC and AVCC exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and FRAM.
(3) All voltages referenced to VSS.
(4) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.

5.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±1000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±250
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±1000 V may actually have higher performance.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V may actually have higher performance.

5.3 Recommended Operating Conditions

Typical data are based on VCC = 3.0 V, TA = 25°C (unless otherwise noted)
MIN NOM MAX UNIT
VCC Supply voltage range applied at all DVCC and AVCC pins(1)(2)(3) 1.8(6) 3.6 V
VSS Supply voltage applied at all DVSS and AVSS pins 0 V
TA Operating free-air temperature –40 85 °C
TJ Operating junction temperature –40 85 °C
CDVCC Capacitor value at DVCC(4) 1–20% µF
fSYSTEM Processor frequency (maximum MCLK frequency)(5) No FRAM wait states
(NWAITSx = 0)
0 8(8) MHz
With FRAM wait states
(NWAITSx = 1)(7)
0 16(9)
fACLK Maximum ACLK frequency 50 kHz
fSMCLK Maximum SMCLK frequency 16(9) MHz
(1) TI recommends powering AVCC and DVCC pins from the same source. At a minimum, during power up, power down, and device operation, the voltage difference between AVCC and DVCC must not exceed the limits specified in Absolute Maximum Ratings. Exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and FRAM.
(2) See Table 5-1 for additional important information.
(3) Modules may have a different supply voltage range specification. See the specification of the respective module in this data sheet.
(4) Connect a low-ESR capacitor with at least the value specified and a maximum tolerance of 20% as close as possible to the DVCC pin.
(5) Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.
(6) The minimum supply voltage is defined by the supervisor SVS levels. See Table 5-2 for the values.
(7) Wait states only occur on actual FRAM accesses; that is, on FRAM cache misses. RAM and peripheral accesses are always executed without wait states.
(8) DCO settings and HF crystals with a typical value less or equal the specified MAX value are permitted.
(9) DCO settings and HF crystals with a typical value less or equal the specified MAX value are permitted. If a clock sources with a larger typical value is used, the clock must be divided in the clock system.

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale