• Menu
  • Product
  • Email
  • PDF
  • Order now
  • TLV61220 采用薄型 SOT-23 封装的低输入电压升压转换器

    • ZHCS918A May   2012  – December 2014 TLV61220

      PRODUCTION DATA.  

  • CONTENTS
  • SEARCH
  • TLV61220 采用薄型 SOT-23 封装的低输入电压升压转换器
  1. 1 特性
  2. 2 应用范围
  3. 3 说明
  4. 4 典型应用电路原理图
  5. 5 修订历史记录
  6. 6 Device Options
  7. 7 Pin Configuration and Functions
  8. 8 Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Typical Characteristics
  9. 9 Parameter Measurement Information
  10. 10Detailed Description
    1. 10.1 Overview
    2. 10.2 Functional Block Diagram
    3. 10.3 Feature Description
      1. 10.3.1 Controller Circuit
        1. 10.3.1.1 Startup
        2. 10.3.1.2 Operation at Output Overload
        3. 10.3.1.3 Undervoltage Lockout
        4. 10.3.1.4 Overvoltage Protection
        5. 10.3.1.5 Overtemperature Protection
    4. 10.4 Device Functional Modes
      1. 10.4.1 Device Enable and Shutdown Mode
  11. 11Application and Implementation
    1. 11.1 Application Information
    2. 11.2 Typical Application
      1. 11.2.1 Design Requirements
      2. 11.2.2 Detailed Design Procedure
        1. 11.2.2.1 Adjustable Output Voltage Version
        2. 11.2.2.2 Inductor Selection
        3. 11.2.2.3 Capacitor Selection
          1. 11.2.2.3.1 Input Capacitor
          2. 11.2.2.3.2 Output Capacitor
      3. 11.2.3 Application Curves
  12. 12Power Supply Recommendations
  13. 13Layout
    1. 13.1 Layout Guidelines
    2. 13.2 Layout Example
    3. 13.3 Thermal Considerations
  14. 14器件和文档支持
    1. 14.1 器件支持
      1. 14.1.1 第三方产品免责声明
    2. 14.2 文档支持
      1. 14.2.1 相关文档 
    3. 14.3 商标
    4. 14.4 静电放电警告
    5. 14.5 术语表
  15. 15机械、封装和可订购信息
  16. 重要声明
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

DATA SHEET

TLV61220 采用薄型 SOT-23 封装的低输入电压升压转换器

本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。

1 特性

  • 在典型工作条件下效率高达 95%
  • 5.5μA 静态电流
  • 负载的启动输入电压为 0.7V
  • 运行输入电压范围为 0.7V 至 5.5V
  • 停机期间具有导通功能
  • 最小开关电流为 200mA
  • 保护特性:
    • 输出过压
    • 过热
    • 输入欠压闭锁
  • 可调节输出电压范围为 1.8V 至 5.5V
  • 小型 6 引脚超薄小外形尺寸晶体管 (SOT)-23 封装

2 应用范围

  • 电池供电类 应用
    • 1 至 3 节碱性电池、镍镉电池 (NiCd) 或者镍氢电池 (NiMH)
    • 1 节锂离子或者锂离子一次性电池
  • 太阳能或燃料电池供电 应用
  • 消费类及便携式医疗产品
  • 个人护理产品
  • 白色或者状态发光二极管 (LED)
  • 智能电话

3 说明

TLV61220 器件可以为由单节、2 节或 3 节碱性、镍镉或镍氢电池或单节锂离子或锂聚合物电池供电的产品提供电源解决方案。可实现的输出电流取决于输入输出电压比。升压转换器建立在采用同步整流的磁滞控制器拓扑基础之上,能够以最少的静态电流实现最高的效率。可通过一个外部电阻分压器对此可调版本的输出电压进行设定,或者可将此电压内部设定为一个固定值。此转换器可由一个特定的使能引脚关闭。关闭时,电池消耗降至最低。此器件采用一个 6 引脚超薄 SOT-23 封装 (DBV)。

空白

器件信息(1)

器件型号 封装 封装尺寸(标称值)
TLV61220 SOT (6) 2.90mm x 1.60mm
  1. 如需了解所有可用封装,请见数据表末尾的可订购产品附录。

4 典型应用电路原理图

TLV61220 pmi_schem776rev7[1].gif

5 修订历史记录

Changes from * Revision (May 2012) to A Revision

  • Added ESD 额定值表,特性 描述部分,器件功能模式,应用和实施部分,电源相关建议部分,布局部分,器件和文档支持部分以及机械、封装和可订购信息部分Go

6 Device Options

TA OUTPUT VOLTAGE
DC/DC
PACKAGE PART NUMBER
–40°C to 85°C Adjustable 6-Pin SOT-23 TLV61220DBV

7 Pin Configuration and Functions

DBV Package
6 Pins
Top View
TLV61220 po_lvs510.gif

Pin Functions

PIN I/O DESCRIPTION
NAME NO.
EN 3 I Enable input (VBAT enabled, GND disabled)
FB 4 I Voltage feedback for programming the output voltage
GND 2 — IC ground connection for logic and power
SW 1 I Boost and rectifying switch input
VBAT 6 I Supply voltage
VOUT 5 O Boost converter output

8 Specifications

8.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
VIN Input voltage on VBAT, SW, VOUT, EN, FB –0.3 7.5 V
TJ Operating junction temperature –40 150 °C
Tstg Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

8.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

8.3 Recommended Operating Conditions

MIN NOM MAX UNIT
VIN Supply voltage at VIN 0.7 5.5 V
TA Operating free air temperature range –40 85 °C
TJ Operating virtual junction temperature range –40 125 °C

8.4 Thermal Information

THERMAL METRIC(1) TLV61220 UNIT
DBV
6 PINS
RθJA Junction-to-ambient thermal resistance 185.7 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 124.3
RθJB Junction-to-board thermal resistance 31.3
ψJT Junction-to-top characterization parameter 22.9
ψJB Junction-to-board characterization parameter 30.8
RθJC(bot) Junction-to-case (bottom) thermal resistance N/A
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

8.5 Electrical Characteristics

over recommended free-air temperature range and over recommended input voltage range (typical at an ambient temperature range of 25°C) (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
DC/DC STAGE
VIN Input voltage range 0.7 5.5 V
VIN Minimum input voltage at startup RLoad ≥ 150 Ω 0.7 V
VOUT TLV61220 output voltage range VIN < VOUT 1.8 5.5 V
VFB TLV61220 feedback voltage 483 500 513 mV
ILH Inductor current ripple 200 mA
ISW switch current limit VOUT = 3.3 V, VIN = 1.2 V, TA = 25 °C 220 400 mA
VOUT = 3.3 V, TA = -40°C to 85 °C 180 400 mA
VOUT = 3.3 V, TA = 0°C to 85 °C 200 400 mA
RDS(on) Rectifying switch on resistance, HSD VOUT = 3.3 V 1000 mΩ
VOUT = 5 V 700 mΩ
Main switch on resistance, LSD VOUT = 3.3 V 600 mΩ
VOUT = 5 V 550 mΩ
Line regulation VIN < VOUT 0.5%
Load regulation VIN < VOUT 0.5%
IQ Quiescent current VIN IO = 0 mA, VEN = VIN = 1.2 V, VOUT = 3.3 V
0.5 0.9 μA
VOUT 5 7.5 μA
ISD Shutdown current VIN VEN = 0 V, VIN = 1.2 V, VOUT ≥ VIN 0.2 0.5 μA
ILKG Leakage current into VOUT VEN = 0 V, VIN = 1.2 V, VOUT = 3.3 V 1 μA
Leakage current into SW VEN = 0 V, VIN = 1.2 V, VSW = 1.2 V, VOUT ≥ VIN 0.01 0.2 μA
IFB TLV61220 Feedback input current VFB = 0.5 V 0.01 μA
IEN EN input current Clamped on GND or VIN (VIN < 1.5 V) 0.005 0.1 μA
CONTROL STAGE
VIL EN input low voltage VIN ≤ 1.5 V 0.2 × VIN V
VIH EN input high voltage VIN ≤ 1.5 V 0.8 × VIN V
VIL EN input low voltage 5 V > VIN > 1.5 V 0.4 V
VIH EN input high voltage 5 V > VIN > 1.5 V 1.2 V
VUVLO Undervoltage lockout threshold for turn off VIN decreasing 0.5 0.7 V
Overvoltage protection threshold 5.5 7.5 V
Overtemperature protection 140 °C
Overtemperature hysteresis 20 °C

8.6 Typical Characteristics

Table 1. Table of Graphs

FIGURE
Output Current Input Voltage, ISW = 330 mA, Minimum ISW= 200 mA, VO = 1.8V Figure 1
Input Voltage, ISW = 400 mA, Minimum ISW = 200 mA, VO = 3.3V Figure 2
Input Voltage, ISW = 380 mA, Minimum ISW = 200 mA, VO = 5V Figure 3
Efficiency vs Output Current, VO = 1.8 V, VI = [0.7 V; 1.2 V; 1.5 V] Figure 4
vs Output Current, VO = 3.3 V, VI = [0.7 V; 1.2 V; 2.4V; 3V] Figure 5
vs Output Current, VO = 5 V, VI = [0.7 V; 1.2 V; 3.6V; 4.2V] Figure 6
Efficiency vs Input Voltage, VO = 1.8 V, IO = [100µA; 1mA ; 10mA; 50mA] Figure 7
vs Input Voltage, VO = 3.3 V, IO = [100µA; 1mA ; 10mA; 50mA] Figure 8
vs Input Voltage, VO = 5 V, IO = [100µA; 1mA ; 10mA; 50mA] Figure 9
Output Voltage vs Output Current, VO = 1.8 V, VI = [0.7 V; 1.2 V] Figure 10
vs Output Current, VO = 3.3 V, VI = [0.7 V; 1.2 V; 2.4 V] Figure 11
TLV61220 Figure13.gif
VO = 1.8 V
Figure 1. Maximum Output Current vs Input Voltage
TLV61220 Figure15.gif
VO = 5 V
Figure 3. Maximum Output Current vs Input Voltage
TLV61220 Figure2rrev2.gif
Figure 5. Efficiency vs Output Current and Input Voltage
TLV61220 Figure45.gif
Figure 7. Efficiency vs Input Voltage and Output Current
TLV61220 Figure6.gif
Figure 9. Efficiency vs Input Voltage and Output Current
TLV61220 Figure8.gif
Figure 11. Output Voltage vs Output Current and Input Voltage
TLV61220 Figure14.gif
VO = 3.3 V
Figure 2. Maximum Output Current vs Input Voltage
TLV61220 figure1rev2.gif
Figure 4. Efficiency vs Output Current and Input Voltage
TLV61220 Figure3rev1.gif
Figure 6. Efficiency vs Input Voltage and Output Current
TLV61220 Figure52.gif
Figure 8. Efficiency vs Input Voltage and Output Current
TLV61220 Figure7.gif
Figure 10. Output Voltage vs Output Current and Input Voltage

9 Parameter Measurement Information

TLV61220 pmi_schem776rev5[1].gif Figure 12. Parameter Measurement Schematic

10 Detailed Description

10.1 Overview

The TLV61220 is a high performance, highly efficient boost converter. To achieve high efficiency the power stage is realized as a synchronous boost topology. For the power switching two actively controlled low RDS(on) power MOSFETs are implemented.

10.2 Functional Block Diagram

TLV61220 funbd_adj_lvs.gif

10.3 Feature Description

10.3.1 Controller Circuit

The device is controlled by a hysteretic current mode controller. This controller regulates the output voltage by keeping the inductor ripple current constant in the range of 200 mA and adjusting the offset of this inductor current depending on the output load. In case the required average input current is lower than the average inductor current defined by this constant ripple the inductor current gets discontinuous to keep the efficiency high at low load conditions.

TLV61220 HCM_slvs776.gif Figure 13. Hysteretic Current Operation

The output voltage VOUT is monitored via the feedback network which is connected to the voltage error amplifier. To regulate the output voltage, the voltage error amplifier compares this feedback voltage to the internal voltage reference and adjusts the required offset of the inductor current accordingly. An external resistor divider needs to be connected.

The self oscillating hysteretic current mode architecture is inherently stable and allows fast response to load variations. It also allows using inductors and capacitors over a wide value range.

10.3.1.1 Startup

After the EN pin is tied high, the device starts to operate. In case the input voltage is not high enough to supply the control circuit properly a startup oscillator starts to operate the switches. During this phase the switching frequency is controlled by the oscillator and the maximum switch current is limited. As soon as the device has built up the output voltage to about 1.8 V, high enough for supplying the control circuit, the device switches to its normal hysteretic current mode operation. The startup time depends on input voltage and load current.

10.3.1.2 Operation at Output Overload

If in normal boost operation the inductor current reaches the internal switch current limit threshold the main switch is turned off to stop further increase of the input current.

In this case the output voltage will decrease since the device can not provide sufficient power to maintain the set output voltage.

If the output voltage drops below the input voltage the backgate diode of the rectifying switch gets forward biased and current starts flow through it. This diode cannot be turned off, so the current finally is only limited by the remaining DC resistances. As soon as the overload condition is removed, the converter resumes providing the set output voltage.

10.3.1.3 Undervoltage Lockout

An implemented undervoltage lockout function stops the operation of the converter if the input voltage drops below the typical undervoltage lockout threshold. This function is implemented in order to prevent malfunctioning of the converter.

10.3.1.4 Overvoltage Protection

If, for any reason, the output voltage is not fed back properly to the input of the voltage amplifier, control of the output voltage will not work anymore. Therefore an overvoltage protection is implemented to avoid the output voltage exceeding critical values for the device and possibly for the system it is supplying. For this protection the TLV61220 output voltage is also monitored internally. In case it reaches the internally programmed threshold of 6.5 V typically the voltage amplifier regulates the output voltage to this value.

If the TLV61220 is used to drive LEDs, this feature protects the circuit if the LED fails.

10.3.1.5 Overtemperature Protection

The device has a built-in temperature sensor which monitors the internal IC junction temperature. If the temperature exceeds the programmed threshold (see electrical characteristics table), the device stops operating. As soon as the IC temperature has decreased below the programmed threshold, it starts operating again. To prevent unstable operation close to the region of overtemperature threshold, a built-in hysteresis is implemented.

10.4 Device Functional Modes

10.4.1 Device Enable and Shutdown Mode

The device is enabled when EN is set high and shut down when EN is low. During shutdown, the converter stops switching and all internal control circuitry is turned off. In this case the input voltage is connected to the output through the back-gate diode of the rectifying MOSFET. This means that there always will be voltage at the output which can be as high as the input voltage or lower depending on the load.

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale