ZHCABK1A February   2022  – March 2024 ADS1119 , ADS1120 , ADS1120-Q1 , ADS112C04 , ADS112U04 , ADS1130 , ADS1131 , ADS114S06 , ADS114S06B , ADS114S08 , ADS114S08B , ADS1158 , ADS1219 , ADS1220 , ADS122C04 , ADS122U04 , ADS1230 , ADS1231 , ADS1232 , ADS1234 , ADS1235 , ADS1235-Q1 , ADS124S06 , ADS124S08 , ADS1250 , ADS1251 , ADS1252 , ADS1253 , ADS1254 , ADS1255 , ADS1256 , ADS1257 , ADS1258 , ADS1258-EP , ADS1259 , ADS1259-Q1 , ADS125H01 , ADS125H02 , ADS1260 , ADS1260-Q1 , ADS1261 , ADS1261-Q1 , ADS1262 , ADS1263 , ADS127L01 , ADS130E08 , ADS131A02 , ADS131A04 , ADS131E04 , ADS131E06 , ADS131E08 , ADS131E08S , ADS131M02 , ADS131M03 , ADS131M04 , ADS131M06 , ADS131M08

 

  1.   1
  2.   摘要
  3.   商标
  4. 1电桥概述
  5. 2电桥结构
    1. 2.1 电桥拓扑结构中的有源元件
      1. 2.1.1 具有一个有源元件的电桥
        1. 2.1.1.1 使用电流激励在具有一个有源元件的电桥中降低非线性
      2. 2.1.2 在对面支路中具有两个有源元件的电桥
        1. 2.1.2.1 使用电流激励消除对面支路中具有两个有源元件的电桥中的非线性
      3. 2.1.3 在同一支路中具有两个有源元件的电桥
      4. 2.1.4 具有四个有源元件的电桥
    2. 2.2 应变仪和电桥结构
  6. 3电桥连接
    1. 3.1 比例式测量
    2. 3.2 四线电桥
    3. 3.3 六线电桥
  7. 4电桥测量的电气特性
    1. 4.1 电桥灵敏度
    2. 4.2 电桥电阻
    3. 4.3 输出共模电压
    4. 4.4 失调电压
    5. 4.5 满量程误差
    6. 4.6 非线性误差和迟滞
    7. 4.7 漂移
    8. 4.8 蠕变和蠕变恢复
  8. 5信号链设计注意事项
    1. 5.1 放大
      1. 5.1.1 仪表放大器
        1. 5.1.1.1 INA 架构和运行
        2. 5.1.1.2 INA 误差源
      2. 5.1.2 集成式 PGA
        1. 5.1.2.1 集成式 PGA 架构和运行
        2. 5.1.2.2 使用集成 PGA 的优点
    2. 5.2 噪声
      1. 5.2.1 ADC 噪声数据表
      2. 5.2.2 计算电桥测量系统的 NFC
    3. 5.3 通道扫描时间和信号带宽
      1. 5.3.1 噪声性能
      2. 5.3.2 ADC 转换延迟
      3. 5.3.3 数字滤波器频率响应
    4. 5.4 交流激励
    5. 5.5 校准
      1. 5.5.1 失调校准
      2. 5.5.2 增益校准
      3. 5.5.3 校准示例
  9. 6电桥测量电路
    1. 6.1 使用比例基准和单极低电压 (≤ 5V) 激励源的四线电阻式电桥测量
      1. 6.1.1 原理图
      2. 6.1.2 优缺点
      3. 6.1.3 参数和变量
      4. 6.1.4 设计说明
      5. 6.1.5 测量转换
      6. 6.1.6 通用寄存器设置
    2. 6.2 使用比例基准和单极低电压 (≤ 5V) 激励源的六线电阻式电桥测量
      1. 6.2.1 原理图
      2. 6.2.2 优缺点
      3. 6.2.3 参数和变量
      4. 6.2.4 设计说明
      5. 6.2.5 测量转换
      6. 6.2.6 通用的寄存器设置
    3. 6.3 使用伪比例基准和单极高电压 (> 5V) 激励源的四线电阻式电桥测量
      1. 6.3.1 原理图
      2. 6.3.2 优缺点
      3. 6.3.3 参数和变量
      4. 6.3.4 设计注意事项
      5. 6.3.5 测量转换
      6. 6.3.6 通用的寄存器设置
    4. 6.4 使用伪比例基准和非对称高电压 (> 5V) 激励源的四线电阻式电桥测量
      1. 6.4.1 原理图
      2. 6.4.2 优缺点
      3. 6.4.3 参数和变量
      4. 6.4.4 设计注意事项
      5. 6.4.5 测量转换
      6. 6.4.6 通用的寄存器设置
    5. 6.5 使用比例基准和电流激励的四线电阻式电桥测量
      1. 6.5.1 原理图
      2. 6.5.2 优缺点
      3. 6.5.3 参数和变量
      4. 6.5.4 设计注意事项
      5. 6.5.5 测量转换
      6. 6.5.6 通用寄存器设置
    6. 6.6 使用伪比例基准和单极低电压 (≤ 5V) 激励源,测量多个串联四线电阻式电桥
      1. 6.6.1 原理图
      2. 6.6.2 优缺点
      3. 6.6.3 参数和变量
      4. 6.6.4 设计说明
      5. 6.6.5 测量转换
      6. 6.6.6 通用的寄存器设置
    7. 6.7 使用带比例基准和单极低电压 (≤ 5V) 激励源的单通道 ADC 测量多个并联的四线电阻式电桥
      1. 6.7.1 原理图
      2. 6.7.2 优缺点
      3. 6.7.3 参数和变量
      4. 6.7.4 设计说明
      5. 6.7.5 测量转换
      6. 6.7.6 通用的寄存器设置
    8. 6.8 使用带比例基准和单极低电压 (≤ 5V) 激励源的多通道 ADC 测量多个并联的四线电阻式电桥
      1. 6.8.1 原理图
      2. 6.8.2 优缺点
      3. 6.8.3 参数和变量
      4. 6.8.4 设计说明
      5. 6.8.5 测量转换
      6. 6.8.6 通用的寄存器设置
  10. 7总结
  11. 8Revision History

使用集成 PGA 的优点

使用具有集成 PGA 的 ADC 的一个优点是,集成器件不需要在 INA 解决方案中使用输出缓冲差分放大器(请参阅图 5-1)。与使用外部 INA 相比,去除此元件可降低噪声。例如,在 0.1Hz 至 10Hz 频率范围内,INA826 具有 0.52µVPP 的输入基准噪声,而在使用 FIR 滤波器的情况下,ADS1235 在 10 个样本/秒 (SPS) 速率下的噪声为 0.096µVPP

该集成 PGA 的另一项优势是增益已经过出厂修整。此过程通常可得到比 INA 和外部 RG 组合增益误差更低的误差。例如,ADS1235 的典型增益误差为 0.05%。而 INA826 增益误差为 0.04%,这不包括 RG 产生的任何其他增益误差。例如,与使用 ADS1235 集成 PGA 相比,选择初始容差为 0.1% 的 RG 电阻器会使增益误差增加一倍以上。