ZHCABK1A February   2022  – March 2024 ADS1119 , ADS1120 , ADS1120-Q1 , ADS112C04 , ADS112U04 , ADS1130 , ADS1131 , ADS114S06 , ADS114S06B , ADS114S08 , ADS114S08B , ADS1158 , ADS1219 , ADS1220 , ADS122C04 , ADS122U04 , ADS1230 , ADS1231 , ADS1232 , ADS1234 , ADS1235 , ADS1235-Q1 , ADS124S06 , ADS124S08 , ADS1250 , ADS1251 , ADS1252 , ADS1253 , ADS1254 , ADS1255 , ADS1256 , ADS1257 , ADS1258 , ADS1258-EP , ADS1259 , ADS1259-Q1 , ADS125H01 , ADS125H02 , ADS1260 , ADS1260-Q1 , ADS1261 , ADS1261-Q1 , ADS1262 , ADS1263 , ADS127L01 , ADS130E08 , ADS131A02 , ADS131A04 , ADS131E04 , ADS131E06 , ADS131E08 , ADS131E08S , ADS131M02 , ADS131M03 , ADS131M04 , ADS131M06 , ADS131M08

 

  1.   1
  2.   摘要
  3.   商标
  4. 1电桥概述
  5. 2电桥结构
    1. 2.1 电桥拓扑结构中的有源元件
      1. 2.1.1 具有一个有源元件的电桥
        1. 2.1.1.1 使用电流激励在具有一个有源元件的电桥中降低非线性
      2. 2.1.2 在对面支路中具有两个有源元件的电桥
        1. 2.1.2.1 使用电流激励消除对面支路中具有两个有源元件的电桥中的非线性
      3. 2.1.3 在同一支路中具有两个有源元件的电桥
      4. 2.1.4 具有四个有源元件的电桥
    2. 2.2 应变仪和电桥结构
  6. 3电桥连接
    1. 3.1 比例式测量
    2. 3.2 四线电桥
    3. 3.3 六线电桥
  7. 4电桥测量的电气特性
    1. 4.1 电桥灵敏度
    2. 4.2 电桥电阻
    3. 4.3 输出共模电压
    4. 4.4 失调电压
    5. 4.5 满量程误差
    6. 4.6 非线性误差和迟滞
    7. 4.7 漂移
    8. 4.8 蠕变和蠕变恢复
  8. 5信号链设计注意事项
    1. 5.1 放大
      1. 5.1.1 仪表放大器
        1. 5.1.1.1 INA 架构和运行
        2. 5.1.1.2 INA 误差源
      2. 5.1.2 集成式 PGA
        1. 5.1.2.1 集成式 PGA 架构和运行
        2. 5.1.2.2 使用集成 PGA 的优点
    2. 5.2 噪声
      1. 5.2.1 ADC 噪声数据表
      2. 5.2.2 计算电桥测量系统的 NFC
    3. 5.3 通道扫描时间和信号带宽
      1. 5.3.1 噪声性能
      2. 5.3.2 ADC 转换延迟
      3. 5.3.3 数字滤波器频率响应
    4. 5.4 交流激励
    5. 5.5 校准
      1. 5.5.1 失调校准
      2. 5.5.2 增益校准
      3. 5.5.3 校准示例
  9. 6电桥测量电路
    1. 6.1 使用比例基准和单极低电压 (≤ 5V) 激励源的四线电阻式电桥测量
      1. 6.1.1 原理图
      2. 6.1.2 优缺点
      3. 6.1.3 参数和变量
      4. 6.1.4 设计说明
      5. 6.1.5 测量转换
      6. 6.1.6 通用寄存器设置
    2. 6.2 使用比例基准和单极低电压 (≤ 5V) 激励源的六线电阻式电桥测量
      1. 6.2.1 原理图
      2. 6.2.2 优缺点
      3. 6.2.3 参数和变量
      4. 6.2.4 设计说明
      5. 6.2.5 测量转换
      6. 6.2.6 通用的寄存器设置
    3. 6.3 使用伪比例基准和单极高电压 (> 5V) 激励源的四线电阻式电桥测量
      1. 6.3.1 原理图
      2. 6.3.2 优缺点
      3. 6.3.3 参数和变量
      4. 6.3.4 设计注意事项
      5. 6.3.5 测量转换
      6. 6.3.6 通用的寄存器设置
    4. 6.4 使用伪比例基准和非对称高电压 (> 5V) 激励源的四线电阻式电桥测量
      1. 6.4.1 原理图
      2. 6.4.2 优缺点
      3. 6.4.3 参数和变量
      4. 6.4.4 设计注意事项
      5. 6.4.5 测量转换
      6. 6.4.6 通用的寄存器设置
    5. 6.5 使用比例基准和电流激励的四线电阻式电桥测量
      1. 6.5.1 原理图
      2. 6.5.2 优缺点
      3. 6.5.3 参数和变量
      4. 6.5.4 设计注意事项
      5. 6.5.5 测量转换
      6. 6.5.6 通用寄存器设置
    6. 6.6 使用伪比例基准和单极低电压 (≤ 5V) 激励源,测量多个串联四线电阻式电桥
      1. 6.6.1 原理图
      2. 6.6.2 优缺点
      3. 6.6.3 参数和变量
      4. 6.6.4 设计说明
      5. 6.6.5 测量转换
      6. 6.6.6 通用的寄存器设置
    7. 6.7 使用带比例基准和单极低电压 (≤ 5V) 激励源的单通道 ADC 测量多个并联的四线电阻式电桥
      1. 6.7.1 原理图
      2. 6.7.2 优缺点
      3. 6.7.3 参数和变量
      4. 6.7.4 设计说明
      5. 6.7.5 测量转换
      6. 6.7.6 通用的寄存器设置
    8. 6.8 使用带比例基准和单极低电压 (≤ 5V) 激励源的多通道 ADC 测量多个并联的四线电阻式电桥
      1. 6.8.1 原理图
      2. 6.8.2 优缺点
      3. 6.8.3 参数和变量
      4. 6.8.4 设计说明
      5. 6.8.5 测量转换
      6. 6.8.6 通用的寄存器设置
  10. 7总结
  11. 8Revision History

设计说明

应用到电桥的单极激励电压 VEXCITATION 还用作 ADC 电源电压 (AVDD) 以及 ADC 基准电压 VREF。由于拉伸或压缩电桥电阻产生的微小变化,会使差分电桥输出电压发生变化。PGA 集成到 ADC 中,并增益该低电平信号,从而降低系统噪声并提高 ADC 满量程范围 (FSR) 的利用率。ADC 对这个经过放大的电压进行采样并对照 VREF 进行转换,该电压与用于激励电桥的电压相同,因此是比例电压。在比例基准配置中,VIN 和 VREF 中的激励源噪声和漂移都是相等的,从而有效地从 ADC 输出代码中消除了这些误差。

使用比例基准和单极低压 (≤ 5V) 电源的四线电阻式电桥测量需要:

  • 差分模拟输入(AINP 和 AINN)
  • 外部基准输入(专用引脚 使用模拟电源)
  • 低噪声放大器

首先,使用表 6-3 中的公式和表 6-2 中的参数,确定电桥的最大差分输出电压 VOUT(Bridge Max)。该值是电桥在正常运行条件下可以提供的最大输出电压,并对应于可以施加到电桥的最大负载 Load(Bridge Max)。如果系统不使用电桥的整个输出范围,则 VOUT(System Max) 定义的是施加到特定系统的最大差分输出信号,Load(System Max) 是对应的最大负载。例如,如果 VOUT(Bridge Max) 对应于 Load(Bridge Max) = 5kg,但系统规格只要求 Load(System Max) = 2.5kg,则 VOUT(System Max)方程式 38 给出:

方程式 38. VOUT(System Max) = VOUT(Bridge Max) × (2.5 kg / 5 kg) = VOUT(Bridge Max) / 2

请注意,如果 Load(System Max) = Load(Bridge Max),则 VOUT(System Max) = VOUT(Bridge Max)

确定了 VOUT(System Max) 后,要为 ADC PGA 选择对应的增益值。放大器增益应该是仍小于 ADC FSR 的最大允许值。在某些情况下,无法选择使用整个 ADC FSR 的放大器增益。虽然这通常是分辨率和易用性之间的一种可接受的折衷,但应确保在 ADC FSR 无法最大化的情况下仍然满足所有系统要求。

接下来,确保在空载条件下 (R1 = R2 = R3 = R4),电桥共模电压 VCM(Bridge)(参阅表 6-3)处于 ADC 放大器共模电压 VCM(ADC) 范围内。放大器共模范围随元件不同而变化,并将根据增益设置和电源电压在数据表中进行定义。不过,目标定为 VCM(Bridge) = AVDD/2 是明智的选择,因为这通常处于 VCM(ADC) 范围的中间,按照之前的步骤可以实现尽可能高的增益。此外,当 VEXCITATION = AVDD 时,图 6-1 中的电桥配置会在空载条件下固定将 VCM(Bridge) 设置为 AVDD/2。

最后,如果需要校准,请按照节 5.5中的说明操作。