SLVS978D March 2010 – September 2016 TPS61310 , TPS61311
PRODUCTION DATA.
| MIN | MAX | UNIT | ||
|---|---|---|---|---|
| Voltage | AVIN, VOUT, SW, LED1, LED2, LED3, SCL, SDA, STRB0, STRB1, NRESET, GPIO/PG, Tx-MASK, TS | –0.3 | 7 | V |
| Current on GPIO/PG | ±25 | mA | ||
| Power dissipation | Internally limited | |||
| Operating ambient temperature, TA(2) | –40 | 85 | °C | |
| Maximum operating junction temperature, TJ(2) | 150 | °C | ||
| Storage temperature, Tstg | –65 | 150 | °C | |
| VALUE | UNIT | |||
|---|---|---|---|---|
| V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±2000 | V |
| Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±500 | |||
| MIN | MAX | UNIT | ||
|---|---|---|---|---|
| TJ | Operating junction temperature | –40 | 125 | °C |
| THERMAL METRIC(1) | TPS6131x | UNIT | |
|---|---|---|---|
| YFF (DSBGA) | |||
| 20 PINS | |||
| RθJA | Junction-to-ambient thermal resistance | 71 | °C/W |
| RθJC(top) | Junction-to-case (top) thermal resistance | 0.4 | °C/W |
| RθJB | Junction-to-board thermal resistance | 21 | °C/W |
| ψJT | Junction-to-top characterization parameter | 1.9 | °C/W |
| ψJB | Junction-to-board characterization parameter | 11.2 | °C/W |
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|
| SUPPLY CURRENT | ||||||
| VIN | Input voltage | 2.5 | 5.5 | V | ||
| IQ | Operating quiescent current into AVIN | IOUT = 0 mA, device not switching (Power Safe Mode), –40°C ≤ TJ ≤ 85°C | 590 | 700 | µA | |
| IOUT(DC) = 0 mA, PWM operation VOUT = 4.95 V, voltage regulation mode |
11.3 | mA | ||||
| ISD | Shutdown current | –40°C ≤ TJ ≤ 85°C | 1 | 5 | µA | |
| VUVLO | Undervoltage lockout threshold (analog circuitry) |
VIN falling | 2.3 | 2.4 | V | |
| OUTPUT | ||||||
| VOUT | Output voltage | Current regulation mode | VIN | 5.5 | V | |
| Voltage regulation mode | 3.825 | 5.7 | ||||
| Internal feedback voltage accuracy | 2.5 V ≤ VIN ≤ 4.8 V, –20°C ≤ TJ ≤ 125°C, Boost mode, PWM voltage regulation | –2% | 2% | |||
| Power-save mode ripple voltage | IOUT = 10 mA | 0.015 × VOUT | VP–P | |||
| OVP | Output overvoltage protection | VOUT rising, 0000 ≤ OV[3:0] ≤ 0100 | 4.5 | 4.65 | 4.8 | V |
| VOUT rising, 0101 ≤ OV[3:0] ≤ 1111 | 5.8 | 6 | 6.2 | |||
| Output overvoltage protection hysteresis | VOUT falling | 0.15 | ||||
| POWER SWITCH | ||||||
| rDS(on) | Switch MOSFET ON-resistance | VOUT = VGS = 3.6 V | 90 | mΩ | ||
| Rectifier MOSFET ON-resistance | VOUT = VGS = 3.6 V | 135 | mΩ | |||
| Ilkg(SW) | Leakage into SW | VOUT = 0 V, SW = 3.6 V, –40°C ≤ TJ ≤ 85°C | 0.3 | 4 | µA | |
| Ilim | Rectifier valley current limit (open loop) | VOUT = 4.95 V, –20°C ≤ TJ ≤ 85°C, PWM operation, relative to selected ILIM |
–15% | 15% | ||
| OSCILLATOR | ||||||
| fOSC | Oscillator frequency | 1.92 | MHz | |||
| fACC | Oscillator frequency | –10% | 7% | |||
| THERMAL SHUTDOWN, HOT DIE DETECTOR | ||||||
| Thermal shutdown(2) | 140 | 160 | °C | |||
| Thermal shutdown hysteresis(2) | 20 | °C | ||||
| Hot die detector accuracy(2) | –8 | 8 | °C | |||
| LED CURRENT REGULATOR | ||||||
| LED1 and LED3 current accuracy(1) | 0.4 V ≤ VLED[1,3] ≤ 2 V, 0 mA ≤ ILED[1,3] ≤ 100 mA, TJ = 85°C |
–10% | 10% | |||
| 0.4 V ≤ VLED[1,3] ≤ 2 V, 100 mA < ILED[1,3] ≤ 400 mA, TJ = 85°C |
–7.5% | 7.5% | ||||
| LED2 current accuracy(1) | 0.4 V ≤ VLED2 ≤ 2 V, 0 mA ≤ ILED2 ≤ 250 mA, TJ = 85°C |
–10% | 10% | |||
| 0.4 V ≤ VLED2 ≤ 2 V, 250 mA ≤ ILED2 ≤ 800 mA, TJ = 85°C |
–7.5% | 7.5% | ||||
| LED1 and LED3 current matching(1) | –10% | 10% | ||||
| LED1, LED2, and LED3 current temperature coefficient | 0.05 | %/°C | ||||
| INDLED current accuracy | 1.5 V ≤ (VIN – VINDLED) ≤ 2.5 V 2.6 mA ≤ IINDLED ≤ 15.8 mA, TJ = 25°C |
–20% | 20% | |||
| INDLED current temperature coefficient | 0.05 | %/°C | ||||
| LED1, LED2, and LED3 sense voltage | ILED[1,2,3] = full-scale current | 400 | mV | |||
| VDO | VOUT dropout voltage | IOUT = –15.8 mA, TJ = 25°C, device not switching | 250 | mV | ||
| LED1, LED2, and LED3 input leakage current | VLED[1,2,3] = VOUT = 5 V, –40°C ≤ TJ ≤ 85°C | 0.1 | 4 | µA | ||
| INDLED input leakage current | VINDLED = 0 V, –40°C ≤ TJ ≤ 85°C | 0.1 | 1 | µA | ||
| LED TEMPERATURE MONITORING | ||||||
| IO(TS) | Temperature Sense Current Source | Thermistor bias current | 23.8 | µA | ||
| TS Resistance (Warning Temperature) | LEDWARN bit = 1 | 39 | 44.5 | 50 | kΩ | |
| TS Resistance (Hot Temperature) | LEDHOT bit = 1 | 12.5 | 14.5 | 16.5 | kΩ | |
| SDA, SCL, GPIO/PG, Tx-MASK, STRB0, STRB1, NRESET | ||||||
| V(IH) | High-level input voltage | 1.2 | V | |||
| V(IL) | Low-level input voltage | 0.4 | V | |||
| V(OL) | Low-level output voltage (SDA) | IOL = 8 mA | 0.3 | V | ||
| Low-level output voltage (GPIO) | DIR = 1, IOL = 5 mA | 0.3 | ||||
| V(OH) | High-level output voltage (GPIO) | DIR = 1, GPIOTYPE = 0, IOH = 8 mA | VIN – 0.4 | V | ||
| I(LKG) | Logic input leakage current | Input connected to VIN or GND, –40°C ≤ TJ ≤ 85°C | 0.01 | 0.1 | µA | |
| RPD | STRB0, STRB1 pulldown resistance | STRB0, STRB1 ≤ 0.4 V | 400 | kΩ | ||
| NRESET pulldown resistance | NRESET ≤ 0.4 V | 400 | ||||
| Tx-MASK pulldown resistance | Tx-MASK ≤ 0.4 V | 400 | ||||
| C(IN) | SDA Input Capacitance | SDA = VIN or GND | 9 | pF | ||
| SCL Input Capacitance | SCL = VIN or GND | 4 | ||||
| GPIO/PG Input Capacitance | DIR = 0, GPIO/PG = VIN or GND | 9 | ||||
| STRB0 Input Capacitance | STRB0 = VIN or GND | 3 | ||||
| STRB1 Input Capacitance | STRB1 = VIN or GND | 3 | ||||
| NRESET Input Capacitance | NRESET = VIN or GND | 3.5 | ||||
| Tx-MASK Input Capacitance | Tx-MASK = VIN or GND | 4 | ||||
| TIMING | ||||||
| tNRESET | Reset pulse width | 10 | µs | |||
| Start-up time | From shutdown into video light mode ILED = 150 mA |
1.2 | ms | |||
| LED current settling time(3) triggered by a rising edge on STRB0 | MODE_CTRL[1:0] = 10, ILED2 = from 0 mA to 950 mA | 500 | µs | |||
| LED current settling time(3) triggered by Tx-MASK | MODE_CTRL[1:0] = 10, ILED2 = from 950 mA to 150 mA | 20 | µs | |||
| MIN | MAX | UNIT | |||
|---|---|---|---|---|---|
| f(SCL) | SCL Clock Frequency | Standard mode | 100 | kHz | |
| Fast mode | 400 | ||||
| High-speed mode (write operation), CB – 100 pF max | 3.4 | MHz | |||
| High-speed mode (read operation), CB – 100 pF max | 3.4 | ||||
| High-speed mode (write operation), CB – 400 pF max | 1.7 | ||||
| High-speed mode (read operation), CB – 400 pF max | 1.7 | ||||
| tBUF | Bus Free Time Between a STOP and START Condition | Standard mode | 4.7 | µs | |
| Fast mode | 1.3 | ||||
| tHD, tSTA | Hold Time (Repeated) START Condition |
Standard mode | 4 | µs | |
| Fast mode | 600 | ns | |||
| High-speed mode | 160 | ||||
| tLOW | LOW Period of the SCL Clock | Standard mode | 4.7 | µs | |
| Fast mode | 1.3 | ||||
| High-speed mode, CB – 100 pF max | 160 | ns | |||
| High-speed mode, CB – 400 pF max | 320 | ||||
| tHIGH | HIGH Period of the SCL Clock | Standard mode | 4 | µs | |
| Fast mode | 600 | ns | |||
| High-speed mode, CB – 100 pF max | 60 | ||||
| High-speed mode, CB – 400 pF max | 120 | ||||
| tSU, tSTA | Setup Time for a Repeated START Condition | Standard mode | 4.7 | µs | |
| Fast mode | 600 | ns | |||
| High-speed mode | 160 | ||||
| tSU, tDAT | Data Setup Time | Standard mode | 250 | ns | |
| Fast mode | 100 | ||||
| High-speed mode | 10 | ||||
| tHD, tDAT | Data Hold Time | Standard mode | 0 | 3.45 | µs |
| Fast mode | 0 | 0.9 | |||
| High-speed mode, CB – 100 pF max | 0 | 70 | ns | ||
| High-speed mode, CB – 400 pF max | 0 | 150 | |||
| tRCL | Rise Time of SCL Signal | Standard mode | 20 + 0.1 × CB | 1000 | ns |
| Fast mode | 20 + 0.1 × CB | 300 | |||
| High-speed mode, CB – 100 pF max | 10 | 40 | |||
| High-speed mode, CB – 400 pF max | 20 | 80 | |||
| tRCL1 | Rise Time of SCL Signal After a Repeated START Condition and After an Acknowledge BIT | Standard mode | 20 + 0.1 × CB | 1000 | ns |
| Fast mode | 20 + 0.1 × CB | 300 | |||
| High-speed mode, CB – 100 pF max | 10 | 80 | |||
| High-speed mode, CB – 400 pF max | 20 | 160 | |||
| tFCL | Fall Time of SCL Signal | Standard mode | 20 + 0.1 × CB | 300 | ns |
| Fast mode | 20 + 0.1 × CB | 300 | |||
| High-speed mode, CB – 100 pF max | 10 | 40 | |||
| High-speed mode, CB – 400 pF max | 20 | 80 | |||
| tRDA | Rise Time of SDA Signal | Standard mode | 20 + 0.1 × CB | 1000 | ns |
| Fast mode | 20 + 0.1 × CB | 300 | |||
| High-speed mode, CB – 100 pF max | 10 | 80 | |||
| High-speed mode, CB – 400 pF max | 20 | 160 | |||
| tFDA | Fall Time of SDA Signal | Standard mode | 20 + 0.1 × CB | 300 | ns |
| Fast mode | 20 + 0.1 × CB | 300 | |||
| High-speed mode, CB – 100 pF max | 10 | 80 | |||
| High-speed mode, CB – 400 pF max | 20 | 160 | |||
| tSU, tSTO | Setup Time for STOP Condition | Standard mode | 4 | µs | |
| Fast mode | 600 | ns | |||
| High-speed mode | 160 | ||||
| CB | Capacitive Load for SDA and SCL | 400 | pF | ||
| PACKAGE | POWER RATING (TA = 25°C) | DERATING FACTOR ABOVE TA = 25°C(1) |
|---|---|---|
| YFF | 1.4 W | 14 mW/°C |
Figure 1. Serial Interface Timing For F/S-Mode
Figure 2. Serial Interface Timing For H/S-Mode
| CAPTION | FIGURE | |
|---|---|---|
| LED Power Efficiency | Input Voltage | Figure 3, Figure 4 |
| DC Input Current | Input Voltage | Figure 5 |
| LED Current | LED Pin Headroom Voltage | Figure 6, Figure 7 |
| LED Current | LED Current Digital Code | Figure 8, Figure 9, Figure 10, Figure 11 |
| INDLED Current | INDLED Pin Headroom Voltage | Figure 12 |
| Efficiency | Output Current | Figure 13, Figure 14 |
| DC Output Voltage | Load Current | Figure 15, Figure 16 |
| Maximum Output Current | Input Voltage | Figure 17 |
| DC Precharge Current | Differential I/O Voltage | Figure 18, Figure 19 |
| Supply Current | Input Voltage | Figure 20 |
| Temperature Detection Threshold | Figure 21, Figure 22 | |
| Junction Temperature | Port Voltage | Figure 23 |
Figure 3. LED Power Efficiency vs Input Voltage
Figure 5. DC Input Current vs Input Voltage
Figure 4. LED Power Efficiency vs Input Voltage
Figure 6. LED2 Current vs LED2 Pin Headroom Voltage
Figure 7. LED1 + LED3 Current vs
Figure 9. LED1, LED3 Current vs
Figure 11. LED1, LED3 Current vs
Figure 13. Efficiency vs Output Current
Figure 15. DC Output Voltage vs Load Current
Figure 17. Maximum Output Current vs Input Voltage
Figure 19. DC Precharge Current vs
Figure 21. Temperature Detection Threshold
Figure 23. Junction Temperature vs Port Voltage
Figure 8. LED2 Current vs LED2 Current Digital Code
Figure 10. LED2 Current vs LED2 Current Digital Code
Figure 12. INDLED Current vs
Figure 14. Efficiency vs Output Current
Figure 16. DC Output Voltage vs Load Current
Figure 18. DC Precharge Current vs
Figure 20. Supply Current vs Input Voltage
Figure 22. Temperature Detection Threshold