
SGLS304A - JUNE 2005 - REVISED JUNE 2008

- Qualified for Automotive Applications
- Complete PWM Power Control Circuitry
- Completely Synchronized Operation
- Internal Undervoltage Lockout Protection
- Wide Supply Voltage Range
- Internal Short-Circuit Protection
- Oscillator Frequency . . . 500 kHz Max
- Variable Dead Time Provides Control Over Total Range
- Internal Regulator Provides a Stable 2.5-V Reference Supply
- Available in Q-Temp Automotive
   HighRel Automotive Applications
   Configuration Control / Print Support
   Qualification to Automotive Standards



#### description

The TL1451A incorporates on a single monolithic chip all the functions required in the construction of two pulse-width-modulation (PWM) control circuits. Designed primarily for power-supply control, the TL1451A contains an on-chip 2.5-V regulator, two error amplifiers, an adjustable oscillator, two dead-time comparators, undervoltage lockout circuitry, and dual common-emitter output transistor circuits.

The uncommitted output transistors provide common-emitter output capability for each controller. The internal amplifiers exhibit a common-mode voltage range from 1.04 V to 1.45 V. The dead-time control (DTC) comparator has no offset unless externally altered and can provide 0% to 100% dead time. The on-chip oscillator can be operated by terminating RT and CT. During low  $V_{CC}$  conditions, the undervoltage lockout control circuit feature locks the outputs off until the internal circuitry is operational.

The TL1451A is characterized for operation from -40°C to 125°C.

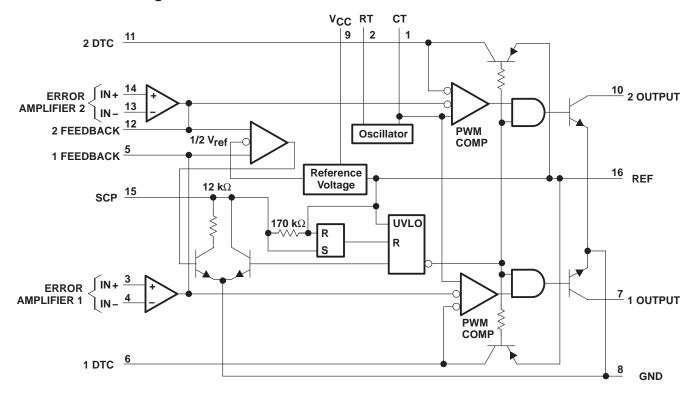
#### AVAILABLE OPTIONS†

|                | PACKAGED DEVICES <sup>‡</sup> |
|----------------|-------------------------------|
| TA             | TSSOP<br>(PW)§                |
| -40°C to 125°C | TL1451AQPWRQ1                 |

<sup>†</sup> For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at http://www.ti.com.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.




<sup>‡</sup> Package drawings, thermal data, and symbolization are available at http://www.ti.com/packaging.

<sup>§</sup> The PW package is only available left-end taped and reeled.

SGLS304A – JUNE 2005 – REVISED JUNE 2008

#### functional block diagram



#### **COMPONENT COUNT**

| Resistors   | 65  |
|-------------|-----|
| Capacitors  | 8   |
| Transistors | 105 |
| JFETs       | 18  |



SGLS304A - JUNE 2005 - REVISED JUNE 2008

## absolute maximum ratings over operating free-air temperature range†

| Supply voltage, V <sub>CC</sub>                              | 51 V                         |
|--------------------------------------------------------------|------------------------------|
| Amplifier input voltage, V <sub>I</sub>                      |                              |
| Collector output voltage, VO                                 |                              |
| Collector output current, IO                                 | 21 mA                        |
| Continuous power total dissipation                           | See Dissipation Rating Table |
| Operating free-air temperature range, T <sub>A</sub>         | –40°C to 125°C               |
| Storage temperature range, T <sub>stq</sub>                  | –65°C to 150°C               |
| Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds | 260°C                        |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

#### **DISSIPATION RATING TABLE**

| PACKAGE | $T_{\mbox{\scriptsize A}} \leq 25^{\circ}\mbox{\scriptsize C}$ POWER RATING | DERATING FACTOR<br>ABOVE T <sub>A</sub> = 25°C | T <sub>A</sub> = 70°C<br>POWER RATING | T <sub>A</sub> = 85°C<br>POWER RATING | T <sub>A</sub> = 125°C<br>POWER RATING |
|---------|-----------------------------------------------------------------------------|------------------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|
| PW      | 838 mW                                                                      | 6.7 mW/°C                                      | 536 mW                                | 436 mW                                | 168 mW                                 |

#### recommended operating conditions

|                                                | MIN  | MAX   | UNIT |
|------------------------------------------------|------|-------|------|
| Supply voltage, V <sub>CC</sub>                | 3.6  | 50    | V    |
| Amplifier input voltage, V <sub>I</sub>        | 1.05 | 1.45  | V    |
| Collector output voltage, VO                   |      | 50    | V    |
| Collector output current, IO                   |      | 20    | mA   |
| Current into feedback terminal                 |      | 45    | μΑ   |
| Feedback resistor, R <sub>F</sub>              | 100  |       | kΩ   |
| Timing capacitor, C <sub>T</sub>               | 150  | 15000 | pF   |
| Timing resistor, R <sub>T</sub>                | 5.1  | 100   | kΩ   |
| Oscillator frequency                           | 1    | 500   | kHz  |
| Operating free-air temperature, T <sub>A</sub> | -40  | 125   | °C   |



SGLS304A – JUNE 2005 – REVISED JUNE 2008

# electrical characteristics over recommended operating free-air temperature range, $V_{CC}$ = 6 V, f = 200 kHz (unless otherwise noted)

#### reference section

| 24244555                               | TEGT CONDITIONS                 |                                | Т    |        |      |      |
|----------------------------------------|---------------------------------|--------------------------------|------|--------|------|------|
| PARAMETER                              | TEST CONDIT                     | IONS                           | MIN  | TYP†   | MAX  | UNIT |
| 0                                      |                                 | T <sub>A</sub> = 25°C          | 2.4  | 2.5    | 2.6  |      |
| Output voltage (pin 16)                | $I_O = 1 \text{ mA}$            | T <sub>A</sub> = MIN and 125°C | 2.35 | 2.46   | 2.65 | V    |
| Output voltage change with temperature |                                 |                                |      | -0.63% | ±4%‡ |      |
|                                        |                                 | T <sub>A</sub> = 25°C          |      | 2.0    | 12.5 |      |
| Input voltage regulation               | V <sub>CC</sub> = 3.6 V to 40 V | T <sub>A</sub> = 125°C         |      | 0.7    | 15   | mV   |
|                                        |                                 | T <sub>A</sub> = MIN           |      | 0.3    | 30   |      |
|                                        |                                 | T <sub>A</sub> = 25°C          |      | 1      | 7.5  |      |
| Output voltage regulation              | I <sub>O</sub> = 0.1 mA to 1 mA | T <sub>A</sub> = 125°C         |      | 0.3    | 14   | mV   |
|                                        |                                 | $T_A = MIN$                    |      | 0.3    | 20   |      |
| Short-circuit output current           | V <sub>O</sub> = 0              |                                | 3    | 10     | 30   | mA   |

<sup>†</sup> All typical values are at T<sub>A</sub> = 25°C unless otherwise indicated.

#### undervoltage lockout section

| 242445                                     | T-01 00101710110       | TL1451AQ |                  |     |      |
|--------------------------------------------|------------------------|----------|------------------|-----|------|
| PARAMETER                                  | TEST CONDITIONS        | MIN      | TYP <sup>†</sup> | MAX | UNIT |
|                                            | T <sub>A</sub> = 25°C  |          | 2.72             |     |      |
| Upper threshold voltage (VCC)              | T <sub>A</sub> = 125°C |          | 1.7              |     | V    |
|                                            | $T_A = MIN$            |          | 3.15             |     |      |
| Lower threshold voltage (V <sub>CC</sub> ) | T <sub>A</sub> = 25°C  |          | 2.6              |     |      |
|                                            | T <sub>A</sub> = 125°C |          | 1.65             |     | V    |
|                                            | $T_A = MIN$            |          | 3.09             |     |      |
|                                            | T <sub>A</sub> = 25°C  | 80       | 120              |     |      |
| Hysteresis (V <sub>CC</sub> )              | T <sub>A</sub> = 125°C | 10       | 50               |     | mV   |
|                                            | $T_A = MIN$            | 10       | 60               |     |      |
|                                            | T <sub>A</sub> = 25°C  | 1.5      |                  |     |      |
| Reset threshold voltage (V <sub>CC</sub> ) | T <sub>A</sub> = 125°C | 0.95     |                  |     | V    |
|                                            | T <sub>A</sub> = MIN   | 1.5      |                  |     |      |

 $<sup>^{\</sup>dagger}$  All typical values are at T<sub>A</sub> = 25°C unless otherwise indicated.



<sup>&</sup>lt;sup>‡</sup>These parameters are not production tested.

SGLS304A - JUNE 2005 - REVISED JUNE 2008

#### short-circuit protection control section

| DADAMETED                               | TEST SOMBITIONS        | Т   | TL1451AQ |     |      |  |
|-----------------------------------------|------------------------|-----|----------|-----|------|--|
| PARAMETER                               | TEST CONDITIONS        | MIN | TYP†     | MAX | UNIT |  |
| <del></del>                             | T <sub>A</sub> = 25°C  | 650 | 700      | 750 |      |  |
| Input threshold voltage (SCP)           | T <sub>A</sub> = 125°C | 400 | 478      | 650 | mV   |  |
|                                         | $T_A = MIN$            | 800 | 880      | 950 |      |  |
| Standby voltage (SCP)                   |                        | 140 | 185      | 230 | mV   |  |
|                                         | T <sub>A</sub> = 25°C  |     | 60       | 120 |      |  |
| Latched input voltage (SCP)             | T <sub>A</sub> = 125°C |     | 70       | 120 | mV   |  |
|                                         | $T_A = MIN$            |     | 60       | 120 |      |  |
| Equivalent timing resistance            |                        |     | 170      |     | kΩ   |  |
| Comparator threshold voltage (FEEDBACK) |                        |     | 1.18     | ·   | V    |  |

 $<sup>^{\</sup>dagger}$  All typical values are at T<sub>A</sub> = 25°C unless otherwise indicated.

#### oscillator section

| DADAMETER                         | TEST SOUR                       |                            |                  |       |                   |     |
|-----------------------------------|---------------------------------|----------------------------|------------------|-------|-------------------|-----|
| PARAMETER                         | TEST CONDIT                     | MIN                        | TYP <sup>†</sup> | MAX   | UNIT              |     |
|                                   |                                 |                            |                  | 200   |                   |     |
| Frequency                         | KT = 10 K22                     | T <sub>A</sub> = 125°C     |                  | 195   |                   | kHz |
|                                   |                                 | $T_A = MIN$                | 19               |       |                   |     |
| Standard deviation of frequency   | $C_T = 330 \text{ pF},$         | $R_T = 10 \text{ k}\Omega$ |                  | 2%    |                   |     |
|                                   |                                 | $T_A = 25^{\circ}C$        |                  | 1%    |                   |     |
| Frequency change with voltage     | V <sub>CC</sub> = 3.6 V to 40 V | T <sub>A</sub> = 125°C     |                  | 1%    |                   |     |
|                                   |                                 | $T_A = MIN$                |                  | 3%    | _                 |     |
| Frequency change with temperature |                                 |                            |                  | 1.37% | ±10% <sup>‡</sup> |     |

<sup>†</sup> All typical values are at T<sub>A</sub> = 25°C unless otherwise indicated. ‡ These parameters are not production tested.

#### dead-time control section

| DADAMETED                                     | TEGT COMPLTIONS                | TL1451AQ         |      |                   |      |
|-----------------------------------------------|--------------------------------|------------------|------|-------------------|------|
| PARAMETER                                     | TEST CONDITIONS                | MIN              | TYP  | MAX               | UNIT |
| nput bias current (DTC)                       | T <sub>A</sub> = 25°C          |                  |      | 1                 | A    |
|                                               | T <sub>A</sub> = MIN and 125°C |                  |      | 3                 | μΑ   |
| Latch mode (source) current (DTC)             |                                | -80              | -145 |                   | μΑ   |
|                                               | T <sub>A</sub> = 25°C          | 2.3              |      |                   |      |
| Latched input voltage (DTC)                   | T <sub>A</sub> = 125°C         | 2.22             | 2.32 |                   | V    |
|                                               | $T_A = MIN$                    | 2.28             | 2.4  |                   |      |
| Input threshold voltage at f = 10 kHz (DTC)   | Zero duty cycle                |                  | 2.05 | 2.25 <sup>‡</sup> | V    |
| Imput tillestiold voltage at t = 10 km² (DTC) | Maximum duty cycle             | 1.2 <sup>‡</sup> | 1.45 |                   | ٧    |

<sup>†</sup> All typical values are at T<sub>A</sub> = 25°C unless otherwise indicated. ‡ These parameters are not production tested.



SGLS304A – JUNE 2005 – REVISED JUNE 2008

#### error-amplifier section

| 242445752                          | TEST COMPLETE                                     |                        | ΤL                 | _1451AQ          |      |      |
|------------------------------------|---------------------------------------------------|------------------------|--------------------|------------------|------|------|
| PARAMETER                          | TEST CONDITIO                                     | ONS                    | MIN                | TYP <sup>†</sup> | MAX  | UNIT |
|                                    |                                                   | T <sub>A</sub> = 25°C  |                    |                  | ±7   |      |
| Input offset voltage               | V <sub>O</sub> (FEEDBACK) = 1.25 V                | T <sub>A</sub> = 125°C |                    |                  | ±10  | mV   |
|                                    |                                                   | $T_A = MIN$            |                    |                  | ±12  |      |
|                                    |                                                   | T <sub>A</sub> = 25°C  |                    |                  | ±100 |      |
| Input offset current               | V <sub>O</sub> (FEEDBACK) = 1.25 V                | T <sub>A</sub> = 125°C |                    |                  | ±100 | nA   |
|                                    |                                                   | $T_A = MIN$            |                    |                  | ±200 |      |
|                                    |                                                   | T <sub>A</sub> = 25°C  |                    | 160              | 500  |      |
| Input bias current                 | VO (FEEDBACK) = 1.25 V                            | T <sub>A</sub> = 125°C |                    | 100              | 500  | nA   |
|                                    |                                                   | T <sub>A</sub> = MIN   |                    | 142              | 700  |      |
| Common-mode input voltage range    | V <sub>CC</sub> = 3.6 V to 40 V                   |                        | 1.05<br>to<br>1.45 |                  |      | V    |
|                                    |                                                   | T <sub>A</sub> = 25°C  | 70                 | 80               |      |      |
| Open-loop voltage amplification    | $R_F = 200 \text{ k}\Omega$                       | T <sub>A</sub> = 125°C | 70                 | 80               |      | dB   |
|                                    |                                                   | $T_A = MIN$            | 64                 | 80               |      |      |
| Unity-gain bandwidth               |                                                   |                        |                    | 1.5              |      | MHz  |
| Common-mode rejection ratio        |                                                   |                        | 60                 | 80               |      | dB   |
| Positive output voltage swing      |                                                   |                        | 2                  |                  |      | V    |
| Negative output voltage swing      |                                                   |                        |                    |                  | 1    | V    |
|                                    |                                                   | T <sub>A</sub> = 25°C  | 0.5                | 1.6              |      |      |
| Output (sink) current (FEEDBACK)   | $V_{ID} = -0.1 \text{ V}, V_{O} = 1.25 \text{ V}$ | T <sub>A</sub> = 125°C | 0.4                | 1.8              |      | mA   |
|                                    |                                                   | $T_A = MIN$            | 0.3                | 1.7              |      |      |
|                                    |                                                   | T <sub>A</sub> = 25°C  | -45                | -70              |      |      |
| Output (source) current (FEEDBACK) | $V_{ID} = 0.1 \text{ V}, V_{O} = 1.25 \text{ V}$  | T <sub>A</sub> = 125°C | -25                | -50              |      | μΑ   |
|                                    |                                                   | T <sub>A</sub> = MIN   | -15                | -70              |      |      |

 $<sup>^{\</sup>dagger}$  All typical values are at TA = 25  $^{\circ}$  C unless otherwise indicated.

#### output section

| 242445                       | TEST SOMETIONS         | TL1451AQ |                  |     |      |
|------------------------------|------------------------|----------|------------------|-----|------|
| PARAMETER                    | TEST CONDITIONS        | MIN      | TYP <sup>†</sup> | MAX | UNIT |
| Collector off-state current  | V <sub>O</sub> = 50 V  |          |                  | 10  | μА   |
| Output saturation voltage    | T <sub>A</sub> = 25°C  |          | 1.2              | 2   |      |
|                              | T <sub>A</sub> = 125°C |          | 1.6              | 2.4 | V    |
|                              | $T_A = MIN$            |          | 1.36             | 2.2 |      |
| Short-circuit output current | V <sub>O</sub> = 6 V   |          | 90               |     | mA   |

<sup>†</sup> All typical values are at T<sub>A</sub> = 25°C unless otherwise indicated.

#### pwm comparator section

|   | DADAMETER                                        | TEST CONDITIONS    | TL1451AQ         |                  |       |      |
|---|--------------------------------------------------|--------------------|------------------|------------------|-------|------|
|   | PARAMETER                                        | TEST CONDITIONS    | MIN              | TYP <sup>†</sup> | MAX   | UNIT |
| ı | Input threehold voltage at f = 10 kHz (EEEDDACK) | Zero duty cycle    |                  | 2.05             | 2.25‡ | V    |
|   | Input threshold voltage at f = 10 kHz (FEEDBACK) | Maximum duty cycle | 1.2 <sup>‡</sup> | 1.45             |       | v    |

<sup>†</sup> All typical values are at T<sub>A</sub> = 25°C unless otherwise indicated. ‡ These parameters are not production tested.



SGLS304A - JUNE 2005 - REVISED JUNE 2008

#### total device

| PARAMETER              | TEST CONDITIONS            | T   | UNIT |     |      |
|------------------------|----------------------------|-----|------|-----|------|
| PARAMETER              | TEST CONDITIONS            | MIN | TYP† | MAX | UNII |
| Standby supply current | Off-state                  |     | 1.3  | 1.8 | mA   |
| Average supply current | $R_T = 10 \text{ k}\Omega$ |     | 1.7  | 2.4 | mA   |

<sup>&</sup>lt;sup>†</sup> All typical values are at  $T_A = 25$ °C unless otherwise indicated.

#### PARAMETER MEASUREMENT INFORMATION

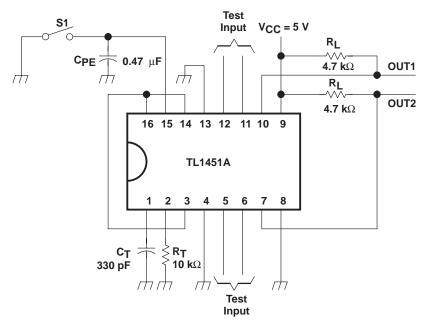
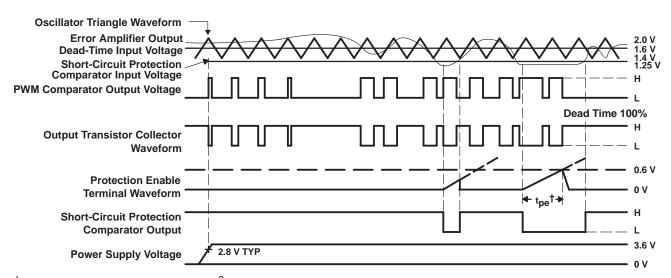




Figure 1. Test Circuit



† Protection Enable Time,  $t_{pe} = (0.051 \text{ x } 10^6 \text{ x } C_{pe})$  in seconds

Figure 2. TL1451A Timing Diagram



# TRIANGLE OSCILLATOR FREQUENCY vs

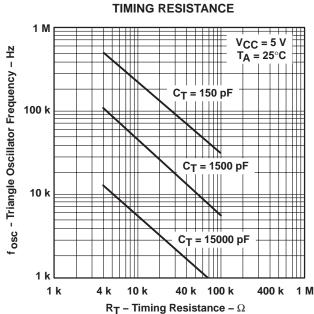



Figure 3

## TRIANGLE WAVEFORM SWING VOLTAGE



Figure 5

# OSCILLATOR FREQUENCY VARIATION vs

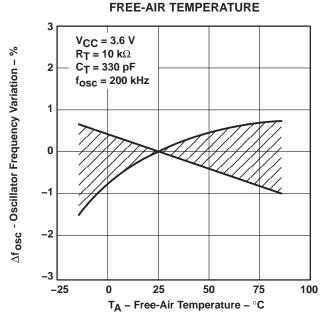



Figure 4

# TRIANGLE WAVEFORM PERIOD

# TIMING CAPACITANCE

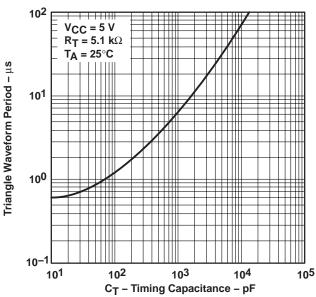



Figure 6



# REFERENCE OUTPUT VOLTAGE VARIATION

## FREE-AIR TEMPERATURE

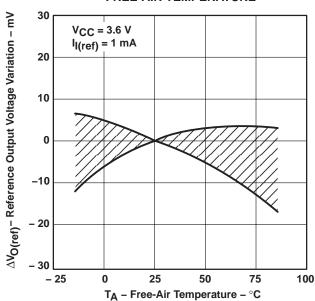



Figure 7

# REFERENCE OUTPUT VOLTAGE VARIATION vs FREE-AIR TEMPERATURE




Figure 8

# REFERENCE OUTPUT VOLTAGE

#### vs SUPPLY VOLTAGE

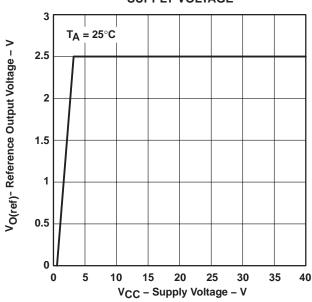



Figure 9

# DROPOUT VOLTAGE VARIATION

## FREE-TEMPERATURE

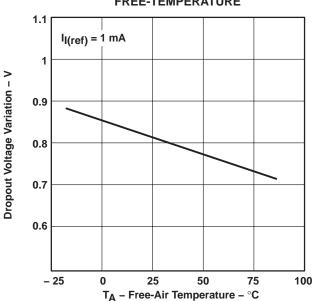
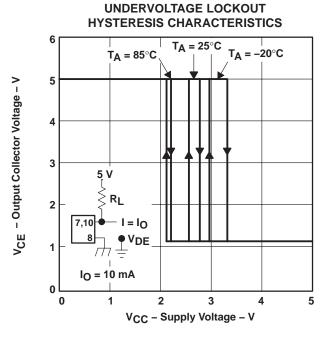




Figure 10





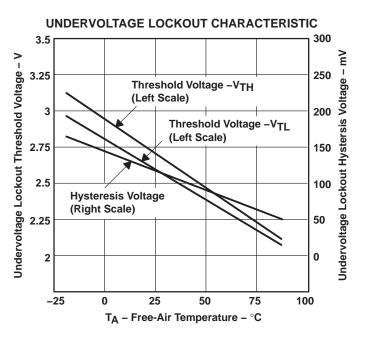



Figure 11

Figure 12

#### SHORT-CIRCUIT PROTECTION CHARACTERISTICS

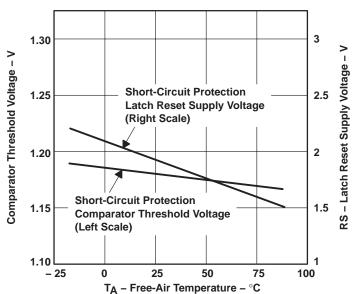



Figure 13



# PROTECTION ENABLE TIME vs

# PROTECTION ENABLE CAPACITANCE 18 15 19 9 0 50 100 150 200 250 CPE – Protection Enable Capacitance – µF

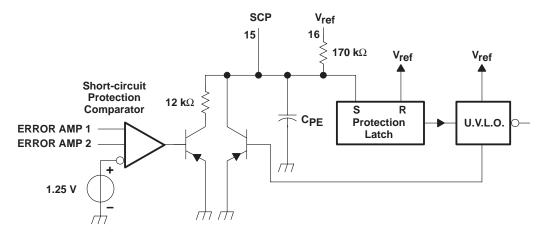
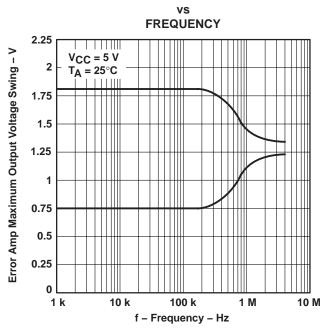




Figure 14

#### **ERROR AMP MAXIMUM OUTPUT VOLTAGE SWING**



#### **OPEN-LOOP VOLTAGE AMPLIFICATION**

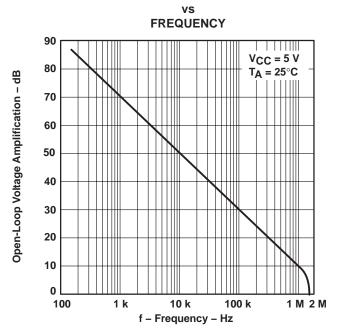



Figure 15

Figure 16

# GAIN (AMPLIFIER IN UNITY-GAIN CONFIGURATION)

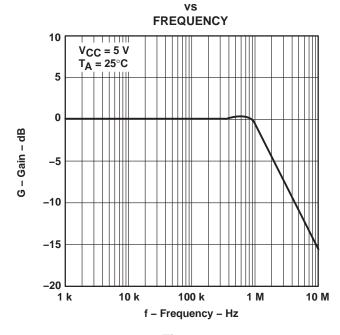
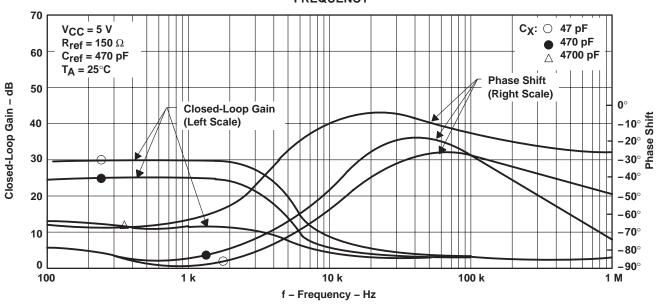




Figure 17



#### **CLOSED-LOOP GAIN AND PHASE SHIFT**

# FREQUENCY



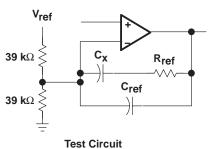



Figure 18

#### **CLOSED-LOOP GAIN AND PHASE SHIFT**

#### **FREQUENCY** 70 V<sub>C</sub>C = 5 V C<sub>X</sub>: ○ 47 pF $R_{ref}$ = 15 $\Omega$ • 470 pF 60 $C_{ref} = 470 pF$ △ 4700 pF T<sub>A</sub> = 25°C **Phase Shift** Closed-Loop Gain - dB 50 (Right Scale) **Closed-Loop Gain** -10° 01--20° -30° -40 (Left Scale) 30 -40° 20 -50° -60° $\boldsymbol{-70^{\circ}}$ 10 -80° 0 -90° 100 1 k 10 k 100 k 1 M f - Frequency - Hz

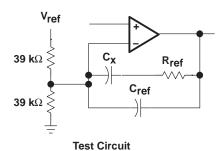
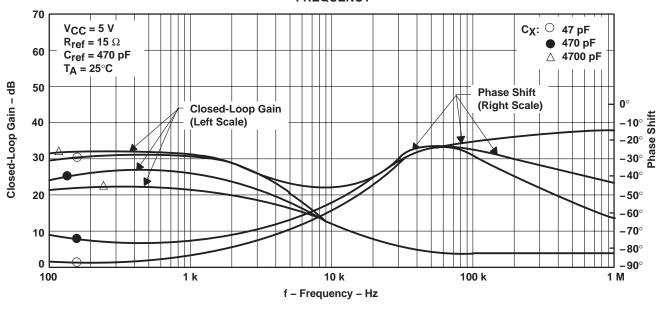




Figure 19

#### **CLOSED-LOOP GAIN AND PHASE SHIFT**

# FREQUENCY



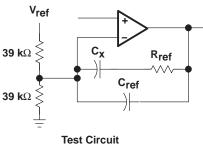
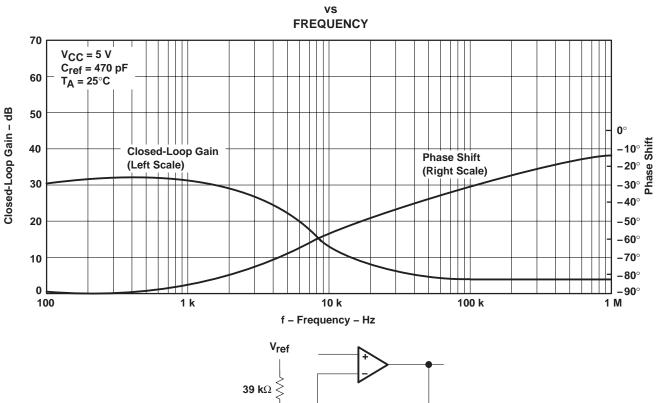




Figure 20

#### **CLOSED-LOOP GAIN AND PHASE SHIFT**



Test Circuit

 $\mathbf{c}_{\text{ref}}$ 

Figure 21

**39 k**Ω ≶

#### **OUTPUT SINK CURRENT**

#### **COLLECTOR OUTPUT SATURATION VOLTAGE**

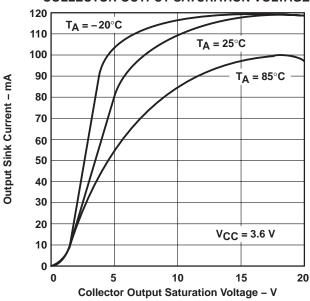



Figure 22

#### **MAXIMUM OUTPUT VOLTAGE SWING**

#### VS

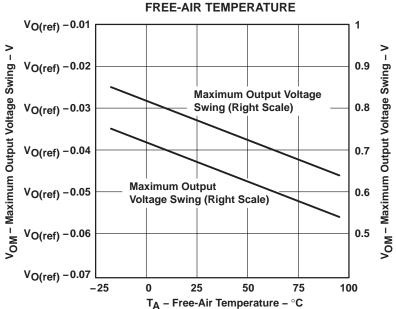
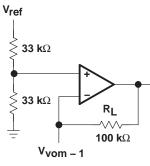




Figure 23



 $V_{CC} = 3.6 \text{ V}$   $R_L = 100 \text{ k}\Omega$   $V_{OM+1} = 1.25 \text{ V}$   $V_{OM} = 1 = 1.15 \text{ V}$  (Right Scale)  $V_{OM} = 1 = 1.35 \text{ V}$  (Left Scale)

**TEST CIRCUIT** 



## **OUTPUT TRANSISTOR ON DUTY CYCLE DEAD-TIME INPUT VOLTAGE** 0 $V_{CC} = 3.6 V$ 10 $R_T = 10k\Omega$ Output Transistor "On" Duty Cycle - % $C_T = 330 pF$ 20 30 40 50 60 70 90 100 0.5 2 3.5 Dead-Time Input Voltage - V

Figure 24

## STANDBY CURRENT FREE-AIR TEMPERATURE **Average Supply Current** 2 $V_{CC} = 6 \text{ V}, R_T = 10 \text{ k}\Omega,$ $C_{T} = 330 \text{ pF}$ 1.75 ICC - Supply Current - mA 1.5 Stand-By Current, V<sub>CC</sub> = 40 V, No Load 1.25 Stand-By Current, V<sub>CC</sub> = 3.6 V, No Load 1 0.75 0.5 0.25 0 -25 100 T<sub>A</sub> - Free-Air Temperature - °C Figure 26

0

0

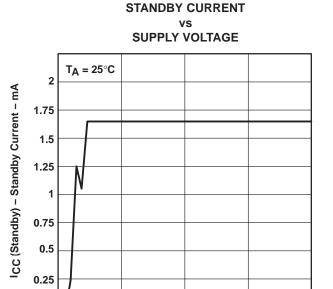



Figure 25

# MAXIMUM CONTINUOUS POWER DISSIPATION vs

20

V<sub>CC</sub> - Supply Voltage - V

40

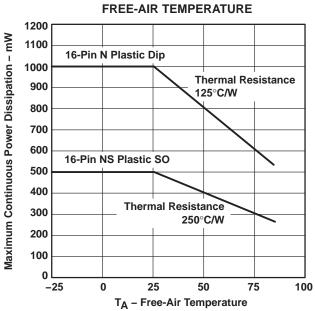
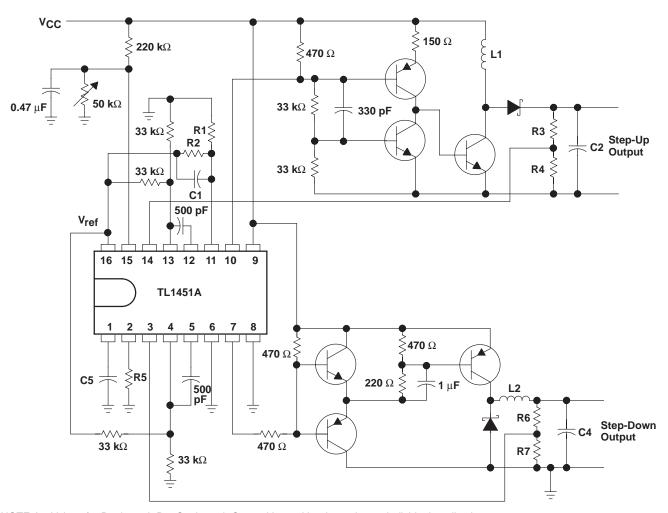




Figure 27

SGLS304A - JUNE 2005 - REVISED JUNE 2008

#### **APPLICATION INFORMATION**



NOTE A: Values for R1 through R7, C1 through C4, and L1 and L2 depend upon individual application.

Figure 28. High-Speed Dual Switching Regulator



#### PACKAGE OPTION ADDENDUM

10-Dec-2020

#### PACKAGING INFORMATION

www.ti.com

| Orderable Device | Status (1) | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan     | Lead finish/<br>Ball material | MSL Peak Temp      | Op Temp (°C) | Device Marking<br>(4/5) | Samples |
|------------------|------------|--------------|--------------------|------|----------------|--------------|-------------------------------|--------------------|--------------|-------------------------|---------|
| TL1451AQPWRG4Q1  | ACTIVE     | TSSOP        | PW                 | 16   | 2000           | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM | -40 to 125   | 1451AQ                  | Samples |
| TL1451AQPWRQ1    | ACTIVE     | TSSOP        | PW                 | 16   | 2000           | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM | -40 to 125   | 1451AQ                  | Samples |

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

**Green:** TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

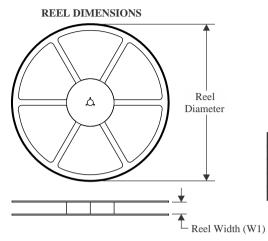


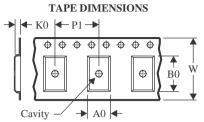
## **PACKAGE OPTION ADDENDUM**

10-Dec-2020

#### OTHER QUALIFIED VERSIONS OF TL1451A-Q1:

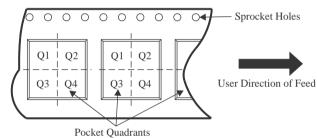
● Enhanced Product: TL1451A-EP


NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Enhanced Product Supports Defense, Aerospace and Medical Applications

## **PACKAGE MATERIALS INFORMATION**

www.ti.com 3-Jun-2022

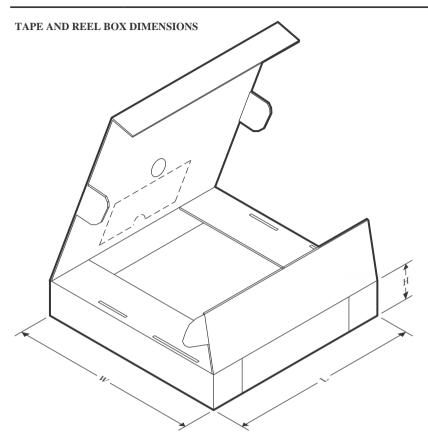

#### TAPE AND REEL INFORMATION





| A0 | Dimension designed to accommodate the component width     |  |  |  |  |  |  |  |
|----|-----------------------------------------------------------|--|--|--|--|--|--|--|
| В0 | Dimension designed to accommodate the component length    |  |  |  |  |  |  |  |
| K0 | Dimension designed to accommodate the component thickness |  |  |  |  |  |  |  |
| W  | Overall width of the carrier tape                         |  |  |  |  |  |  |  |
| P1 | Pitch between successive cavity centers                   |  |  |  |  |  |  |  |

#### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

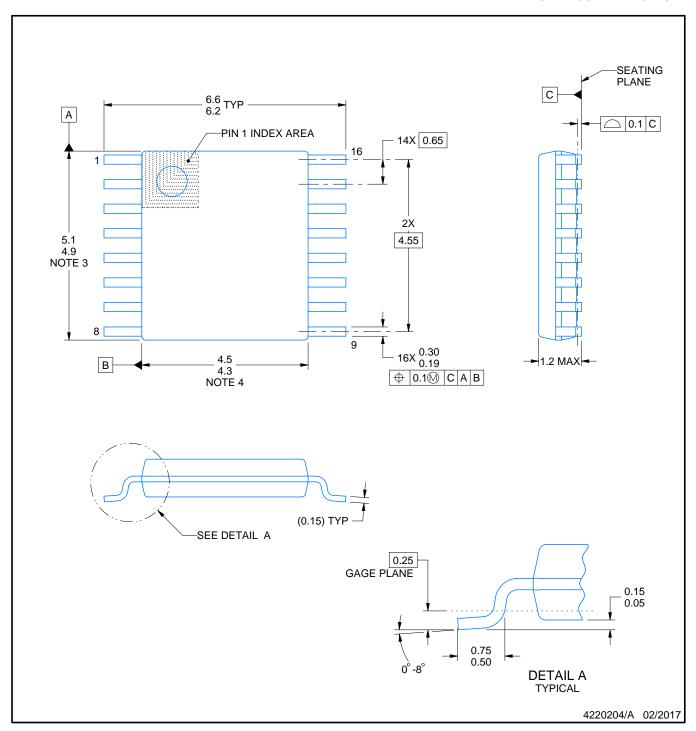



#### \*All dimensions are nominal

| Device          | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|-----------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| TL1451AQPWRG4Q1 | TSSOP           | PW                 | 16 | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| TL1451AQPWRQ1   | TSSOP           | PW                 | 16 | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |

# **PACKAGE MATERIALS INFORMATION**

www.ti.com 3-Jun-2022




#### \*All dimensions are nominal

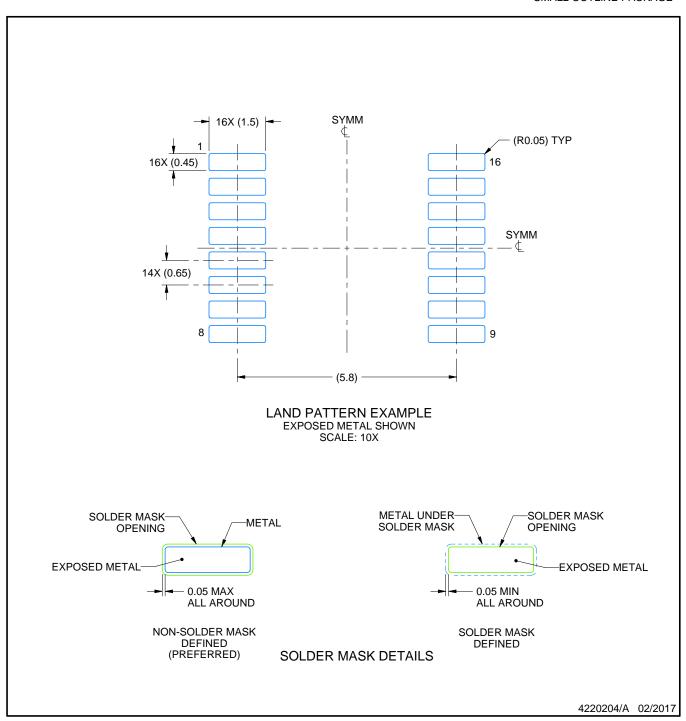
| Device          | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-----------------|--------------|-----------------|------|------|-------------|------------|-------------|
| TL1451AQPWRG4Q1 | TSSOP        | PW              | 16   | 2000 | 356.0       | 356.0      | 35.0        |
| TL1451AQPWRQ1   | TSSOP        | PW              | 16   | 2000 | 356.0       | 356.0      | 35.0        |



SMALL OUTLINE PACKAGE



#### NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

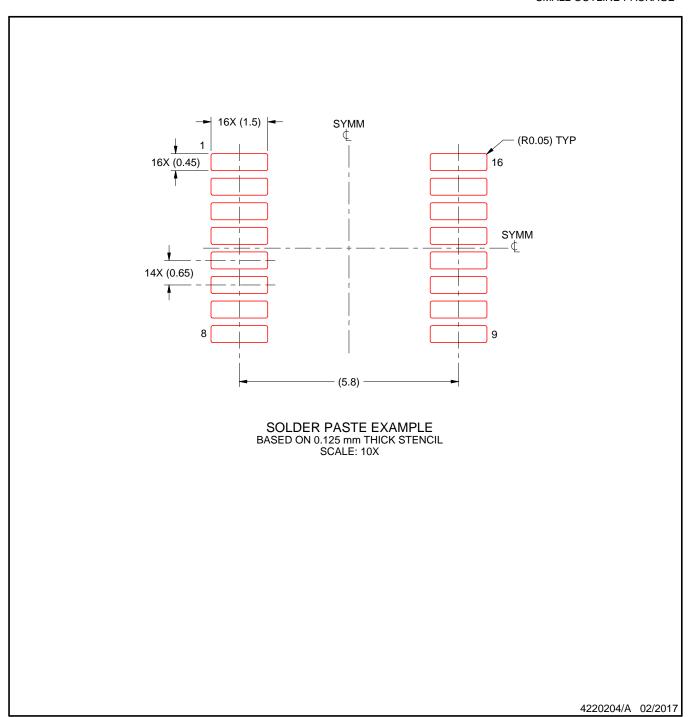
  2. This drawing is subject to change without notice.

  3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



SMALL OUTLINE PACKAGE




NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



SMALL OUTLINE PACKAGE



NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.



#### **IMPORTANT NOTICE AND DISCLAIMER**

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated