ZHCSQV1C March   2020  – December 2022 TCAN1463-Q1

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. 说明(续)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  ESD Ratings - IEC Specifications
    4. 7.4  Recommended Operating Conditions
    5. 7.5  Thermal Information
    6. 7.6  Power Dissipation Ratings
    7. 7.7  Power Supply Characteristics
    8. 7.8  Electrical Characteristics
    9. 7.9  Timing Requirements
    10. 7.10 Switching Characteristics
    11. 7.11 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
      1. 9.1.1 Signal Improvement
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Supply Pins
        1. 9.3.1.1 VSUP Pin
        2. 9.3.1.2 VCC Pin
        3. 9.3.1.3 VIO Pin
      2. 9.3.2 Digital Inputs and Outputs
        1. 9.3.2.1 TXD Pin
        2. 9.3.2.2 RXD Pin
        3. 9.3.2.3 nFAULT Pin
        4. 9.3.2.4 EN Pin
        5. 9.3.2.5 nSTB Pin
        6. 9.3.2.6 INH_MASK Pin
      3. 9.3.3 GND
      4. 9.3.4 INH Pin
      5. 9.3.5 WAKE Pin
      6. 9.3.6 CAN Bus Pins
      7. 9.3.7 Faults
        1. 9.3.7.1 Internal and External Fault Indicators
          1. 9.3.7.1.1 Power-Up (PWRON Flag)
          2. 9.3.7.1.2 Wake-Up Request (WAKERQ Flag)
          3. 9.3.7.1.3 Undervoltage Faults
            1. 9.3.7.1.3.1 Undervoltage on VSUP
            2. 9.3.7.1.3.2 Undervoltage on VCC
            3. 9.3.7.1.3.3 Undervoltage on VIO
          4. 9.3.7.1.4 CAN Bus Fault (CBF Flag)
          5. 9.3.7.1.5 TXD Clamped Low (TXDCLP Flag)
          6. 9.3.7.1.6 TXD Dominant State Timeout (TXDDTO Flag)
          7. 9.3.7.1.7 TXD Shorted to RXD Fault (TXDRXD Flag)
          8. 9.3.7.1.8 CAN Bus Dominant Fault (CANDOM Flag)
      8. 9.3.8 Local Faults
        1. 9.3.8.1 TXD Clamped Low (TXDCLP)
        2. 9.3.8.2 TXD Dominant Timeout (TXD DTO)
        3. 9.3.8.3 Thermal Shutdown (TSD)
        4. 9.3.8.4 Undervoltage Lockout (UVLO)
        5. 9.3.8.5 Unpowered Devices
        6. 9.3.8.6 Floating Terminals
        7. 9.3.8.7 CAN Bus Short-Circuit Current Limiting
    4. 9.4 Device Functional Modes
      1. 9.4.1 Operating Mode Description
        1. 9.4.1.1 Normal Mode
        2. 9.4.1.2 Silent Mode
        3. 9.4.1.3 Standby Mode
        4. 9.4.1.4 Go-To-Sleep Mode
        5. 9.4.1.5 Sleep Mode
          1. 9.4.1.5.1 Remote Wake Request via Wake-Up Pattern (WUP)
          2. 9.4.1.5.2 Local Wake-Up (LWU) via WAKE Input Terminal
      2. 9.4.2 CAN Transceiver
        1. 9.4.2.1 CAN Transceiver Operation
          1. 9.4.2.1.1 CAN Transceiver Modes
            1. 9.4.2.1.1.1 CAN Off Mode
            2. 9.4.2.1.1.2 CAN Autonomous: Inactive and Active
            3. 9.4.2.1.1.3 CAN Active
          2. 9.4.2.1.2 Driver and Receiver Function Tables
          3. 9.4.2.1.3 CAN Bus States
  10. 10Application Information Disclaimer
    1. 10.1 Application Information
      1. 10.1.1 Typical Application
      2. 10.1.2 Design Requirements
        1. 10.1.2.1 Bus Loading, Length and Number of Nodes
      3. 10.1.3 Detailed Design Procedure
        1. 10.1.3.1 CAN Termination
      4. 10.1.4 Application Curves
      5. 10.1.5 Power Supply Recommendations
      6. 10.1.6 Layout
        1. 10.1.6.1 Layout Guidelines
        2. 10.1.6.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
    2. 11.2 接收文档更新通知
    3. 11.3 支持资源
    4. 11.4 商标
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 术语表
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

INH_MASK Pin

INH_MASK is a logic-level input signal, referenced to VIO, from a CAN FD controller to the TCAN1463-Q1. The INH_MASK input pin can be used to disable and enable the INH function when in Silent mode. This feature can be used to control the power supply to any power-intensive system blocks to avoid powering up the system blocks from low-power mode due to spurious wake-up events. INH_MASK function should not be used if the INH is used to control the power supply to the transceiver or the controller behind the transceiver - using INH_MASK in such a scenario would prevent the device from entering silent mode and enabling the INH function. See Figure 10-2 for an example application schematic for using INH_MASK function.

INH_MASK has a pull-down resistor that forces the INH feature to the enable state upon a cold start. To activate INH_MASK, the transceiver must be in silent mode. Once in silent mode, the INH_MASK pin is pulled high for t > tINH_MASK, disabling INH. The TCAN1463-Q1 latches this value and retains it through VCC and VIO power cycles and state transitions. The latched value is lost if the TCAN1463-Q1 enters an undervoltage fault on VSUP. To enable INH function again, the transceiver must be in Silent mode, and the INH_MASK pin must be pulled low for t > tINH_MASK. See Figure 8-10 and Figure 8-11 for the procedure to use the INH_MASK feature.

The TCAN1463-Q1 reports a change in state of INH_MASK to the system controller by the driving nFAULT low while in silent mode. To use nFAULT=low as an acknowledgment for the change in state of INH_MASK , nFAULT must be high (that is, no pre-existing faults) before initiating the change in state of INH_MASK. A mode transition into normal, standby, go-to-sleep, or sleep mode clears the nFAULT pin.