ZHCSJO8 May   2019 OPA818

ADVANCE INFORMATION for pre-production products; subject to change without notice.  

  1. 特性
  2. 应用
    1.     高速光学前端
  3. 说明
    1.     光电二极管电容与 3dB 带宽间的关系
  4. 修订历史记录
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics: VS = ±5 V
    6. 6.6 Typical Characteristics: VS = ±5 V
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Input and ESD Protection
      2. 7.3.2 Feedback Pin
      3. 7.3.3 Decompensated Architecture With Wide Gain-Bandwidth Product
      4. 7.3.4 Low Input Capacitance
    4. 7.4 Device Functional Modes
      1. 7.4.1 Split-Supply Operation (+4/–2 V to ±6.5 V)
      2. 7.4.2 Single-Supply Operation (6 V to 13 V)
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Wideband, Noninverting Operation
      2. 8.1.2 Wideband, Transimpedance Design Using OPA818
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Thermal Considerations
    2. 10.2 Layout Example
  11. 11器件和文档支持
    1. 11.1 接收文档更新通知
    2. 11.2 社区资源
    3. 11.3 商标
    4. 11.4 静电放电警告
    5. 11.5 Glossary
  12. 12机械、封装和可订购信息
    1. 12.1 Package Option Addendum
      1. 12.1.1 Packaging Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Electrical Characteristics: VS = ±5 V

at TA ≈ 25°C, VS+ = +5 V, VS– = –5 V, closed-loop gain (G) = 7 V/V, common-mode voltage (VCM) = midsupply, RF = 301 Ω, RL = 100 Ω to midsupply (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
AC PERFORMANCE
SSBW Small-signal bandwidth VO = 100 mVPP 790 MHz
G = 10, VO = 100 mVPP 440
PM Phase margin 50 °
Frequency response peaking 1.4 dB
LSBW Large-signal bandwidth VO = 2 VPP 400 MHz
GBWP Gain-bandwidth product G = 101 V/V, VO = 100 mVPP, RF = 3.01 kΩ 2700 MHz
Bandwdith for 0.1dB flatness VO = 100 mVPP 125 MHz
SR Slew rate (20%-80%) VO = 4-V step, rising and falling 1400 V/µs
VO = 4-V step, rising and falling, G = 10 1340 V/µs
tr/tf Rise and fall time (10%-90%) VO = 350-mV step (input tr/tf = 0.4 ns) 0.52 ns
tS Settling time to 0.1% VO = 2-V step (input tr = 0.8 ns) 5.7 ns
tS Settling time to 0.01% VO = 2-V step (input tr = 0.8 ns) 12 ns
Overshoot and undershoot VO = 2-V step (input tr/tf = 0.8 ns) 0.2%
Overdrive recovery time VO = (VS– – 1 V) to (VS+ + 1 V) ns
HD2 Second-order harmonic distortion VO = 2 VPP f = 1 MHz –84 dBc
f = 10 MHz –64
f = 50 MHz –52
VO = 2 VPP,
RL = 1 kΩ,
f = 10 MHz –71
HD3 Third-order harmonic distortion VO = 2 VPP f = 1 MHz –106 dBc
f = 10 MHz –96
f = 50 MHz –74
VO = 2 VPP,
RL = 1 kΩ,
f = 10 MHz –82
en Input voltage noise f ≥ 150 kHz 2.2 nV/√Hz
1/f corner 15 kHz
in Input current noise f = 10 kHz 2.5 fA/√Hz
f = 1 MHz 145 fA/√Hz
ZO Closed-loop output impedance f = 10 MHz 0.2 Ω
DC PERFORMANCE
AOL Open-loop voltage gain f = DC, VO = ±2 V 85 92 dB
VOS Input offset voltage 0.35 1.25 mV
TA = –40°C to +85°C 1.8
Input offset voltage drift(1) TA = –40°C to +85°C 3 20 µV/°C
IB Input bias current(2) –20 4 20 pA
TA = –40°C to +85°C –500 500
IOS Input offset current(2) –20 1 20 pA
TA = –40°C to +85°C –500 500
CMRR Common-mode rejection ratio f = DC, VCM = ±0.5 V 73 90 dB
f = DC, VCM = ±0.5 V, TA = –40°C to +85°C 70 dB
Internal feedback trace resistance Device turned OFF, OUT to FB pin resistance 1.2 1.6 2 Ω
INPUT
Common-mode input impedance 500 || 1.9 GΩ || pF
Differential input impedance 500 || 0.5 GΩ || pF
Most positive input voltage(3) VS+ – 3.6 VS+ – 3.2 V
Most negative input voltage(3) VS– VS– + 0.25 V
ΔVOS at most positive input voltage(4) VCM = VS+ – 3.6 V –1 0.03 1 mV
VCM = VS+ – 3.6 V, TA = -40°C to +85°C –1.5 –1.5 mV
ΔVOS at most negative input voltage(4) VCM = VS– + 0.25 V –1 –0.23 1 mV
VCM = VS– + 0.25 V, TA = -40°C to +85°C –1.5 –1.5 mV
OUTPUT
VOH Output voltage swing high VS+ – 1.2 VS+ – 1 V
TA = –40°C to +85°C VS+ – 1.3 V
RL = 1 kΩ VS+ – 1 VS+ – 0.9 V
RL = 1 kΩ, TA = –40°C to +85°C VS+ – 1.2 V
VOL Output voltage swing low VS– + 1.2 VS– + 1.33 V
TA = –40°C to +85°C VS– + 1.4 V
RL = 1 kΩ VS– + 1.1 VS– + 1.2 V
RL = 1 kΩ, TA = –40°C to +85°C VS– + 1.3 V
IO_MAX Linear output drive VOUT = ±2.75 V, RL to midsupply =
50 Ω, [ΔVOS from no-load VOS] ≤ 1 mV
±55 mA
VOUT = ±2.5 V, RL to midsupply =
50 Ω, [ΔVOS from no-load VOS] ≤ 1 mV,
TA = –40°C to +85°C
±50 mA
ISC Output short-circuit current ±100 mA
CLOAD Capacitive load drive 30% overshoot, VOUT step = 200 mV 2 pF
G = 10, 30% overshoot 2 pF
POWER SUPPLY
VS Single-supply operating range 6 10 13 V
IQ Quiescent current per channel No load 27 27.7 29 mA
No load, TA = –40°C to +85°C 23 31.5 mA
IQ drift No load, TA = –40°C to +85°C 42 µA/°C
PSRR+ Positive power supply rejection ratio ΔVS+ = ±0.25 V 75 95 dB
ΔVS+ = ±0.25 V, TA = –40°C to +85°C 70 dB
PSRR– Negative power supply rejection ratio ΔVS– = ±0.25 V 80 94 dB
ΔVS– = ±0.25 V, TA = –40°C to +85°C 74 dB
POWER DOWN
VTH_EN Enable voltage threshold Power on when PD > VTH_EN, No Load VS+ – 1 V
VTH_DIS Disable voltage threshold Power down when PD < VTH_DIS, No Load VS+ – 3 V
Power-down VCC IQ No Load 27 40 µA
PD pin bias current(2) No load, PD = VS+ –3 –2 µA
No load, PD = VS– 13 20 µA
Turnon time delay Time to VO = 90% of final value 270 ns
Turnoff time delay Time to VO = 10% of original value 230 ns
Input offset voltage drift and input bias current drift are average values calculated by taking data at the end-points, computing the difference, and dividing by the temperature range.
Current is considered positive out of the pin. IOS = IB+ – IB–.
Defined by ΔVOS at most positive/negative input voltage specification
ΔVOS = |VOS at specified VCM – VOS at 0 V VCM|