ZHCSLK1C February   2022  – December 2023 LMQ66410-Q1 , LMQ66420-Q1 , LMQ66430-Q1

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 器件比较表
  6. 引脚配置和功能
  7. 规格
    1. 6.1 绝对最大额定值
    2. 6.2 ESD 等级
    3. 6.3 建议运行条件
    4. 6.4 热性能信息
    5. 6.5 电气特性
    6. 6.6 系统特性
    7. 6.7 典型特性
  8. 详细说明
    1. 7.1 概述
    2. 7.2 功能方框图
    3. 7.3 特性说明
      1. 7.3.1  启用、启动和关断
      2. 7.3.2  外部 CLK SYNC(通过 MODE/SYNC)
        1. 7.3.2.1 脉冲相关 MODE/SYNC 引脚控制
      3. 7.3.3  电源正常输出运行
      4. 7.3.4  内部 LDO、VCC 和 VOUT/FB 输入
      5. 7.3.5  自举电压和 VBOOT-UVLO(BOOT 端子)
      6. 7.3.6  输出电压选择
      7. 7.3.7  展频
      8. 7.3.8  软启动和从压降中恢复
        1. 7.3.8.1 从压降中恢复
      9. 7.3.9  电流限制和短路
      10. 7.3.10 热关断
      11. 7.3.11 输入电源电流
    4. 7.4 器件功能模式
      1. 7.4.1 关断模式
      2. 7.4.2 待机模式
      3. 7.4.3 工作模式
        1. 7.4.3.1 CCM 模式
        2. 7.4.3.2 自动模式 – 轻负载运行
          1. 7.4.3.2.1 二极管仿真
          2. 7.4.3.2.2 降频
        3. 7.4.3.3 FPWM 模式 – 轻负载运行
        4. 7.4.3.4 最短导通时间(高输入电压)运行
        5. 7.4.3.5 压降
  9. 应用和实施
    1. 8.1 应用信息
    2. 8.2 典型应用
      1. 8.2.1 设计 1 - 2.2MHz 下的汽车同步降压稳压器
        1. 8.2.1.1 设计要求
        2. 8.2.1.2 详细设计过程
          1. 8.2.1.2.1  选择开关频率
          2. 8.2.1.2.2  设置输出电压
            1. 8.2.1.2.2.1 用于实现可调节输出的 VOUT/FB
          3. 8.2.1.2.3  电感器选型
          4. 8.2.1.2.4  输出电容器选型
          5. 8.2.1.2.5  输入电容器选型
          6. 8.2.1.2.6  CBOOT
          7. 8.2.1.2.7  VCC
          8. 8.2.1.2.8  CFF 选型
          9. 8.2.1.2.9  外部 UVLO
          10. 8.2.1.2.10 最高环境温度
        3. 8.2.1.3 应用曲线
      2. 8.2.2 设计 2 - 400kHz 时的汽车同步降压稳压器
        1. 8.2.2.1 设计要求
        2. 8.2.2.2 详细设计过程
        3. 8.2.2.3 应用曲线
    3. 8.3 优秀设计实践
    4. 8.4 电源建议
    5. 8.5 布局
      1. 8.5.1 布局指南
        1. 8.5.1.1 接地及散热注意事项
      2. 8.5.2 布局示例
  10. 器件和文档支持
    1. 9.1 器件支持
      1. 9.1.1 第三方产品免责声明
      2. 9.1.2 器件命名规则
    2. 9.2 文档支持
      1. 9.2.1 相关文档
    3. 9.3 接收文档更新通知
    4. 9.4 支持资源
    5. 9.5 商标
    6. 9.6 静电放电警告
    7. 9.7 术语表
  11. 10修订历史记录
  12. 11机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

电源建议

输入电源的特性必须符合本数据表中的规格 的要求。此外,输入电源必须能够向负载稳压器提供所需的输入电流。可以使用方程式 13 来估算平均输入电流。

方程式 13. IIN=VOUT×IOUTVIN×η

其中

  • η 是效率。

如果稳压器通过长导线或 PCB 布线连接到输入电源,则需要特别谨慎,以实现良好的性能。输入电缆的寄生电感和电阻可能会对稳压器的运行造成不良影响。寄生电感与低 ESR 陶瓷输入电容器相结合,可形成欠阻尼谐振电路,从而在稳压器的输入端产生过压瞬变。每当负载瞬态施加到输出时,寄生电阻都会导致 VIN 引脚上的电压下降。如果应用的工作电压接近最小输入电压,此下降会导致稳压器暂时关断并复位。要解决此类问题,最好的办法是限制输入电源与稳压器之间的距离,或者设法将铝或钽输入电容器与陶瓷电容器并联使用。这些类型的电容器的中等 ESR 有助于抑制输入谐振电路并减少任何过冲。20µF 至 100µF 范围内的值通常足以提供输入抑制,并有助于在大负载瞬态期间保持输入电压稳定。

有时,出于其他系统注意事项,在稳压器前面使用输入滤波器。除非经过精心设计,否则这可能会导致不稳定以及上面提到的一些影响。“AN-2162:轻松解决直流/直流转换器的传导 EMI 问题”用户指南 提供了一些为任何开关稳压器设计输入滤波器时的实用建议。

在某些情况下,稳压器的输入端使用瞬态电压抑制器 (TVS)。一类此器件具有迅速反向 特性(晶闸管类型)。不建议使用具有此类特性的器件。当 TVS 触发时,钳位电压降至非常低的值。如果该电压小于稳压器的输出电压,则输出电容器通过器件向输入端放电。这种不受控制的电流可能会损坏器件。