ZHCSHX4B November   2017  – June 2019 DLP3030-Q1

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     Device Images
      1.      DLPDLP3030-Q1 系统框图
  4. 修订历史记录
  5. Pin Configuration and Functions
    1.     Pin Configurations and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  Storage Conditions
    3. 6.3  ESD Ratings
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Thermal Information
    6. 6.6  Electrical Characteristics
    7. 6.7  Timing Requirements
    8. 6.8  Switching Characteristics
    9. 6.9  System Mounting Interface Loads
    10. 6.10 Physical Characteristics of the Micromirror Array
    11. 6.11 Optical Characteristics of the Micromirror Array
    12. 6.12 Window Characteristics
    13. 6.13 Chipset Component Usage Specification
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Micromirror Array
      2. 7.3.2 Double Data Rate (DDR) Interface
      3. 7.3.3 Micromirror Switching Control
      4. 7.3.4 DMD Voltage Supplies
      5. 7.3.5 Logic Reset
      6. 7.3.6 Temperature Sensing Diode
        1. 7.3.6.1 Temperature Sense Diode Theory
      7. 7.3.7 Active Array Temperature
      8. 7.3.8 DMD JTAG Interface
    4. 7.4 Optical Performance
      1. 7.4.1 Numerical Aperture and Stray Light Control
      2. 7.4.2 Pupil Match
      3. 7.4.3 Illumination Overfill and Alignment
    5. 7.5 DMD Image Quality Specification
    6. 7.6 Definition of Micromirror Landed-On/Landed-Off Duty Cycle
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 HUD Reference Design and LED Controller Reference Design
    3. 8.3 Application Mission Profile Consideration
  9. Power Supply Recommendations
    1. 9.1 Power Supply Sequencing Requirements
      1. 9.1.1 Power Up and Power Down
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Temperature Diode Pins
    3. 10.3 Layout Example
  11. 11器件和文档支持
    1. 11.1 器件支持
      1. 11.1.1 器件命名规则
      2. 11.1.2 器件标记
    2. 11.2 文档支持
      1. 11.2.1 相关文档
    3. 11.3 接收文档更新通知
    4. 11.4 社区资源
    5. 11.5 商标
    6. 11.6 静电放电警告
    7. 11.7 器件处理
    8. 11.8 Glossary
  12. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Power Supply Sequencing Requirements

  • VBIAS, VCC, VOFFSET, VREF, VRESET, VSS are required to operate the DMD.

CAUTION

  • For reliable operation of the DMD, the following power supply sequencing requirements must be followed. Failure to adhere to the prescribed power up and power down procedures may affect device reliability.
  • The VCC, VREF, VOFFSET, VBIAS, and VRESET power supplies have to be coordinated during power up and power down operations. Failure to meet any of the below requirements will result in a significant reduction in the DMD’s reliability and lifetime. Refer to Figure 18. VSS must also be connected.

DMD Power Supply Power Up Procedure:

  • During power up, VCC and VREF must always start and settle before VOFFSET, VBIAS and VRESET voltages are applied to the DMD.
  • During power up, VBIAS does not have to start after VOFFSET. However, it is a strict requirement that the delta between VBIAS and VOFFSET must be within ±8.75 V (refer to Note 1 for Figure 18).
  • During power up, the DMD’s LVCMOS input pins shall not be driven high until after VCC and VREF have settled at operating voltage.
  • During power up, there is no requirement for the relative timing of VRESET with respect to VOFFSET and VBIAS.
  • Power supply slew rates during power up are flexible, provided that the transient voltage levels follow the requirements listed above and in Recommended Operating Conditions and in Figure 18.

DMD Power Supply Power Down Procedure

  • VCC and VREF must be supplied until after VBIAS, VRESET and VOFFSET are discharged to within 4 V of ground.
  • During power down it is not mandatory to stop driving VBIAS prior to VOFFSET, but it is a strict requirement that the delta between VBIAS and VOFFSET must be within ± 8.75 V (refer to Note 1 for Figure 18).
  • During power down, the DMD’s LVCMOS input pins must be less than VREF + 0.3 V.
  • During power down, there is no requirement for the relative timing of VRESET with respect to VOFFSET and VBIAS.
  • Power supply slew rates during power down are flexible, provided that the transient voltage levels follow the requirements listed above in Recommended Operating Conditions and in Figure 18.