Input Filter (Resistance) Error TI Precision Labs – Current Sense Amplifiers

Presented and prepared by Peter Iliya

1

Input Filter Error for Current Sense Amplifiers (CSA)

Device Errors:

2

The CSA Input Bias Stage

Four basic CSA topologies and example devices

Standard Single-Stage, Voltage-Feedback CSA

Current-Feedback, Current-Output CSA with Trimmed Transconductance Resistors

Modeling the CSA

Both models are equivalent

5

Example - Overview

Problem: Noisy load.

Solution: Insert differential input filter with 1.6 kHz cuttoff frequency.

Analysis: Use discrete simulation model of INA185 to determine new circuit gain and errors with $100-\Omega/1\%$ input resistors.

Example 1 – Analysis, create discrete model

Example – Determine new gain (2 ways)

Example – Determine positive gain error

Example – Determine negative gain error

Example – Determine new input offset

Example – Filter error summary

Specification	INA185A4 with no input resistors	INA185A4 with 100- Ω/1% input resistors	INA185A4 with 100- Ω/0.1% input resistors
$V_{OS_TOTAL_MAX}$ at 20-V V_{CM}	± 141 μV	+ 328 μV, - 326 μV (~± 186 μV due to filter)	+ 165 μV, - 164 μV (~± 23 μV due to filter)
Gain (typical)	200 V/V	178.57 V/V	
Gain error (maximum)	± 0.25%	+2.16%, -2.97%	+2.07%, -2.86%
		٨	

Gain error is dominated by the \pm 20% variation* over process in absolute values of R_{FB}, R_{INT}, and R_{DIFE}. Offset error dominated by R_F tolerance and IB_{CM} .

*Note that the ±20% process variation of R_{FB}, R_{INT}, and R_{DIFF} is a conservative judgment based upon capabilities of the process technology and may differ for other devices.

To find more current sense amplifier technical resources and search products, visit ti.com/currentsense

Input Filter (Resistance) Error TI Precision Labs – Current Sense Amplifiers

Quiz

- 1. Select all of the following that are true about CSAs
 - Differential input resistances can be in the range of a few k Ω . a.
 - Input bias stages require differential input bias currents to partially power the CSA. b.
 - Input bias stages require common-mode input bias currents to partially power the C. CSA.
 - The internal resistors (RBIAS, RINT, and RFB) can all vary by ±20% due to d. temperature variation.

- 2. Select all of the following that are true about CSAs with input filters:
 - Input filters will cause the gain from shunt voltage to device output to be increased. a.
 - Input filters will cause the gain error variation to increase. b.
 - The offset error due to the input filter will be dominated by the tolerance of the input C. resistors chosen.
 - If the input filter capacitor chosen is too large, then the device could become d. unstable.
 - The new circuit gain will be dependent upon the common-mode input bias current. e.

- 3. A system designer needs a CSA with an input filter with 100- Ω input resistors (RF). Which device will yield the lowest input filter error?
 - a. The INA190A3 or the INA185A3?

4

4. A system designer is using an input filter for the INA185A4 and decides to calibrate the circuit's offset and gain error. She notices that error increased unexpectedly when the common-mode voltage level changed from 20-V to 10-V and the temperature was stable. What happened?

Answers

- 1. Select all of the following that are true about CSAs
 - Differential input resistances can be in the range of a few $k\Omega$. a.
 - Input bias stages require differential input bias currents to partially power the CSA. b.
 - Input bias stages require common-mode input bias currents to partially power the C. CSA.
 - The internal resistors (RBIAS, RINT, and RFB) can all vary by ±20% due to d. temperature variation.

- 2. Select all of the following that are true about CSAs with input filters:
 - Input filters will cause the gain from shunt voltage to device output to be increased. a.
 - Input filters will cause the gain error variation to increase. b.
 - The offset error due to the input filter will be dominated by the tolerance of the input C. resistors chosen.
 - If the input filter capacitor chosen is too large, then the device could become d. unstable.
 - The new circuit gain will be dependent upon the common-mode input bias current. e.

- 3. A system designer needs a CSA with an input filter with 100- Ω input resistors (RF). Which device will yield the lowest input filter error?
 - a. The INA190A3 or the INA185A3?

Answer: The INA190A3 will yield a lower error due to input filter because it is a high-input impedance CSA with lower input bias currents.

4. A system designer is using an input filter for the INA185A4 and decides to calibrate the circuit's offset and gain error. She notices that error increased unexpectedly when the common-mode voltage level changed from 20-V to 10-V and the temperature was stable. What happened?

Answer: The error increased because the common-mode voltage (V_{CM}) was not stable. Once the V_{CM} changes, the IB_{CM} will also change and this affects the input offset voltage due to input filters for CSAs.

