

Presented by: Ashley Kang

Prepared by: Ashley Kang, Jacob Freet

Prerequisites

Electrical characterization: Stability

Following prerequisites are recommended prior to proceeding though the handbook

Prerequisites:

TI-Precision Labs (TIPL) courses:

TIPL - Op Amps: Stability ti.com/op-amps-stability-training

Pocket reference:

Training: Analog Engineer's Pocket Reference ti.com/analogrefguide

Application handbook:

A-B-A: Board Level Troubleshooting

ti.com/board-level-troubleshooting

Simulation tools:

Simulations are presented within the handbook. It is recommended to install TINA-TI TINA-TI can be downloaded for free on ti.com; ti.com/tina-ti

Detecting oscillations using OPA846

Overview:

- Detecting oscillations for a linear amplifier can be challenging.
- Three different techniques will be covered to measure oscillations:
 - Supply Current (Quiescent Current)
 - Output waveform via oscilloscope
 - Antenna method
- The OPA846 has been configured to a low gain amplifier.
 - The datasheet defines that the device is stable for gains > 7.

Bench setup:

- TINA-TI simulation can be used to simulate oscillation behavior.
- Representative image of how the EVM is configured, adding to oscillation effect
 - Low gain set by feedback loop
 - Capacitor attached to the output / inverting input pin

FEATURES

- HIGH BANDWIDTH: 400MHz (G = +10)
- LOW INPUT VOLTAGE NOISE: 1.2nV/√Hz
- VERY LOW DISTORTION: -100dBc (5MHz)
- HIGH SLEW RATE: 625V/µs
- HIGH DC ACCURACY: V_{IO} ±150µV
- LOW SUPPLY CURRENT: 12.6mA
- HIGH GAIN BANDWIDTH PRODUCT: 1750MHz
- STABLE FOR GAINS ≥ 7

Figure: Representative circuit diagram created in TINA-TI.

Detecting oscillations

Test #1: Supply Current (IQ)

- Measuring a high supply current (or quiescent current) can be an indicator of oscillations.
 - High supply current can be a symptom of oscillations. Not all oscillating parts will have a high supply current.
- This can be measured by connecting the multimeter in series to the supply pin.

		OPA846ID, IDBV						
		TYP	TYP MIN/MAX OVER TEMPERATURE					
PARAMETER	CONDITIONS	+25°C	+25°C ⁽¹⁾	0°C to 70°C (2)	-40°C to +85°C (2)	UNITS	MIN/ MAX	TEST LEVEL ⁽³⁾
POWER SUPPLY Specified Operating Voltage Maximum Operating Voltage		±5	±6	±6	±6	V V	typ max	C A
Maximum Quiescent Current	$V_S = \pm 5V$	12.6	12.9	13.0	13.2	mA	max	Α
Minimum Quiescent Current Power-Supply Rejection Ratio (-PSRR)	$V_S = \pm 5V$ $-V_S = -4.5$ to -5.5 (Input Referred)	12.6 95	12.3 90	12.1 88	11.8 85	mA dB	min min	A A

http://www.ti.com/lit/ds/symlink/opa846.pdf

Detecting oscillations

Test #2: Output Waveform

- Oscillations can be observed by monitoring the output waveform on an oscilloscope.
 - Oscilloscope bandwidth should match or be greater than the bandwidth of the TI device.
 - Example: OPA846
 - Since the part is operating in the non-linear region, the waveform shape and frequency will vary.
- No input signal is needed in this case as the oscillations are high magnitude.
 - If there are low-level oscillations present, a spectrum analyzer would be needed.

Test #3: Antenna Method

- If the output signal is not readily accessible, a loop antenna connected to an oscilloscope can be used.
- Current is induced in the coil by the magnetic field created by the output oscillations.
 - This waveform can be then seen on the oscilloscope.

