High Volume Interactive

Where power supply design meets collaboration

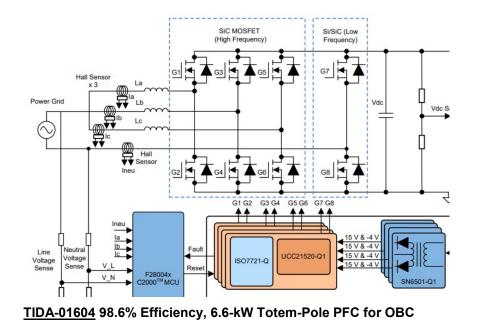
Isolated Bias Power Supply Architecture and Topology Trade-offs for HEV/EVs

By Jacob Vasquez

Acknowledgement: Peter Meaney, Billy Long, Xun Gong, Benjamin Lough

What will I get out of this session?

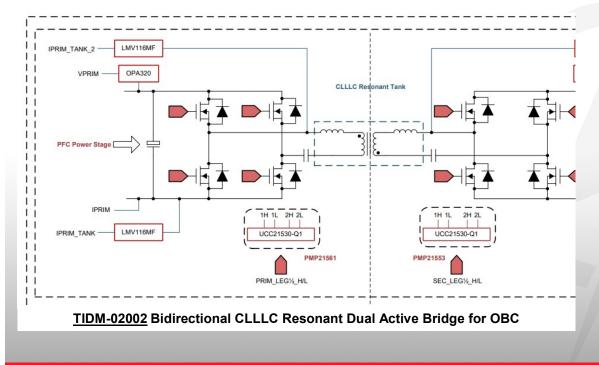
Purpose:


- Review the isolated bias power supply architectures and topologies and discuss their trade-offs
- 1. Isolated Bias Power Overview
- 2. Power Architecture
- 3. Topology Review
- 4. TI Solution Comparison

- Part numbers mentioned:
 - UCC21530-Q1
 - UCC2808A-1Q1
 - TPS40210-Q1
 - LM5180-Q1
 - SN6505B-Q1
 - LM5160-Q1
- Relevant applications:
 - On-board charger
 - DC/DC converter
 - Traction inverter

Isolated Bias Power Overview

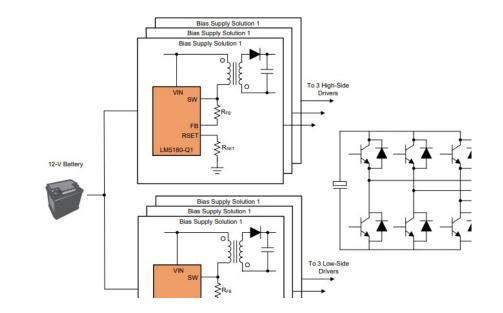
Isolated Bias Supply and Isolated Gate Driver Applications


Isolated gate drivers and their bias supplies are required to drive high-side and low-side SiC FETs or IGBTs in the:

- On-board charger
 - PFC stage
 - Isolated DC/DC stage
- DC/DC Converter
- Traction inverter

Isolated Bias Power Overview

Isolated Bias Supply and Isolated Gate Driver Applications

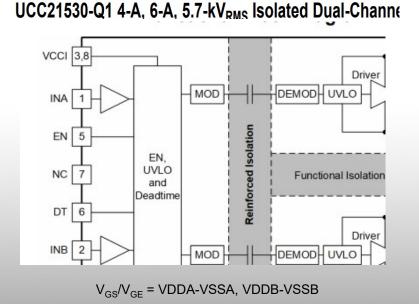

Isolated gate drivers and their bias supplies are required to drive high-side and low-side SiC FETs or IGBTs in the:

- On-board charger
 - PFC stage
 - Isolated DC/DC stage
- DC/DC Converter
- Traction inverter

Isolated Bias Power Overview

Isolated Bias Supply and Isolated Gate Driver Applications

TIDA-020014 Traction Inverter Power Stage with 3 options for IGBT/SiC Bias Supply Solution

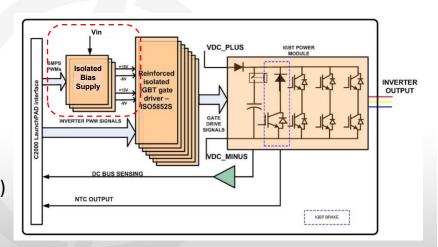

Isolated gate drivers and their bias supplies are required to drive high-side and low-side SiC FETs or IGBTs in the:

- On-board charger
 - PFC stage
 - Isolated DC/DC stage
- DC/DC Converter
- Traction inverter

Isolated Bias Power Overview

Isolated Gate Driver and Power Device Overview

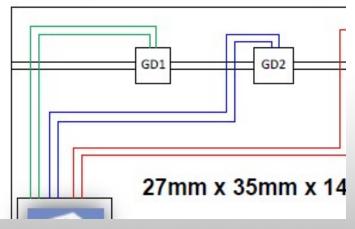
	Si MOSFETs	Si IGBTs	SiC MOSFETs
Circuit symbol		C G E	
Voltage rating	20 V-650 V	≥650 V	≥650 V
f_sw	Medium-high (>20 kHz)	Low-medium (5 kHz-20 kHz)	High (>50 kHz)
VDD	15 V	15 V	20 V
VSS	0 V	-10 V	-5 V
Optimal V _{GS} /V _{GE}	15V	25V	25 V
Typical applications	On-board charger, DC/DC Converter	HEV/EV traction inverters	On-board charger, DC/DC Converter, HEV/EV traction inverter
Power level	<3 kW	>3 kW	>5 kW


Power device ratings and applications

Isolated Bias Power Overview

Isolated Bias Supply Requirements

- Tight output voltage regulation (+/- 5% for IGBT)
- Relatively high efficiency (Greater than 80%)
- Robust EMI/EMC performance
- Small solution size
- Protection features (OVP, OCP, short circuit protection, OTP)



Power Architecture

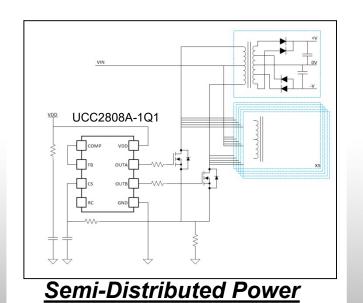
Centralized Power Architecture

Distributed Power

One transformer is used to generate the bias voltages for all IGBT or SiC gate drivers

Advantages

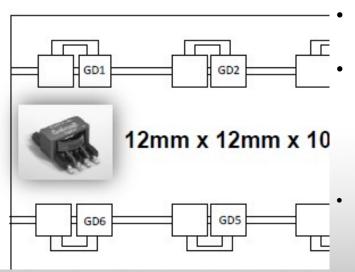
- ✓ Low component count
- ✓ Low cost
- ✓ Generic controllers and external FETs allows second sourcing


Disadvantages

- Bulky transformer, harder to pass shock test.
- Common mode current can disturb functionality of low voltage circuits
- Complex PCB routing
- Lack of Redundancy

Power Architecture

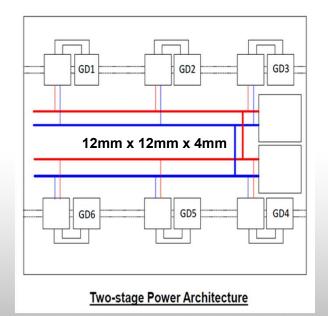
Semi-distributed Power Architecture



- Multiple transformers are used to generate the bias voltages for IGBT or SiC gate drivers, but there is not an individual power stage for each gate driver
- Advantages
 - ✓ Simpler transformer construction and PCB Layout
 - ✓ Better bias power quality
 - ✓ Distribution of weight for ease of passing shock
 - ✓ Generic controllers and external FETs allows second sourcing
- Disadvantages
 - Higher component count than centralized
 - Relatively high cost
 - Lack of Redundancy

Power Architecture

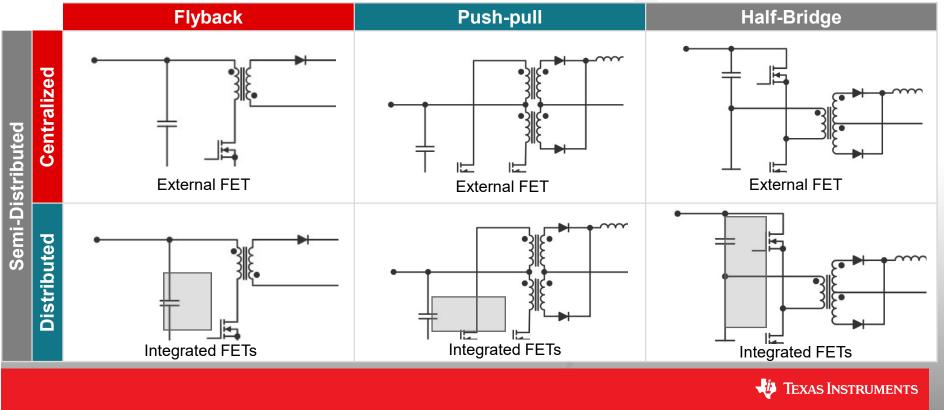
Distributed Power Architecture



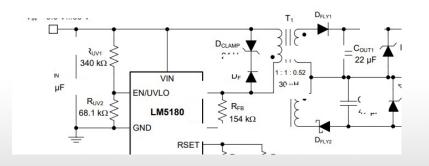
- Individual gate driver bias supply for each IGBT or SiC gate driver
- Advantages
 - ✓ Robustness against power supply failure
 - ✓ Simpler transformer construction and PCB Layout
 - ✓ Better bias power quality
 - ✓ Distribution of weight for ease of passing shock
- Disadvantages
 - Higher component count
 - High cost

Power Architecture

Two-Stage Distributed Power Architecture



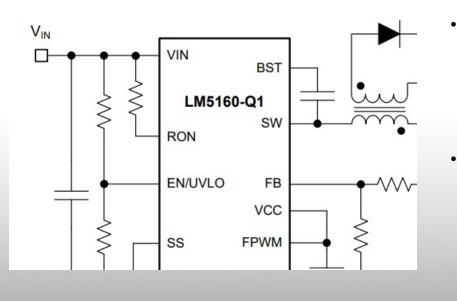
- Individual gate driver bias supply for each IGBT or SiC gate driver with 2 pre-regulated rails for redundancy
- Advantages
 - ✓ Increased robustness against power supply failure
 - ✓ Simpler transformer construction and PCB layout
 - ✓ Better bias power quality
 - ✓ Distribution of weight for ease of passing shock
- Disadvantages
 - Highest component count
 - High cost


Topology Review

Topology Overview

Topology Review

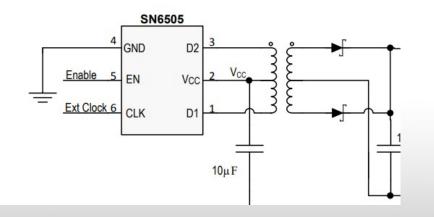
Flyback Topology



- Advantages
 - ✓ Operation directly off 12V battery for single stage solution
 - ✓ Regulated output (PSR)
 - ✓ Low component count
- Disadvantages
 - Switching frequency limitation
 - Prone to EMI issues due to switch node ringing and primary-secondary capacitance
 - Requires a snubber to avoid overstress on power MOSFET

Topology Review

Fly-Buck Topology

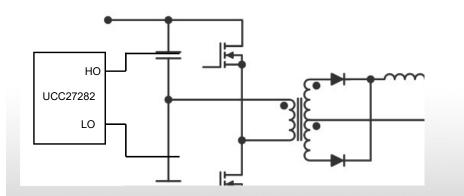


- Advantages
 - Operation directly off 12V battery for single stage solution
 - ✓ Regulated output without optocoupler
 - ✓ Low component count
- Disadvantages
 - High leakage inductance can degrade load regulation
 - Duty cycle limitation
 - Magnetic design complexity

Topology Review

Push-pull Topology

- Advantages
 - ✓ Design simplicity due to open loop configuration
 - More efficiently utilizes the transformer core's magnetizing current enables smaller transformer than flyback
 - ✓ Suitable for high frequency operation
 - Lower primary secondary capacitance for reduction in common mode noise compared to flyback
 - Disadvantages


٠

- Two primary windings
- FETs see twice the input voltage
- Requires a pre-regulated rail
- Output regulation can be challenging

Topology Review

Half-bridge Topology



- Advantages
 - ✓ Design simplicity due to open loop configuration
 - More efficiently utilizes the transformer core's magnetizing current enables smaller transformer than flyback
 - ✓ Suitable for high frequency operation
 - Lower primary secondary capacitance for reduction in common mode noise compared to flyback
- Disadvantages
 - Requires floating high side gate drive
 - Requires capacitor bridge
 - Requires a pre-regulated rail
 - Output regulation can be challenging

TI Solution Comparison

TI Solution Comparison – TIDA-020014 and PMP10654

Top side

TPS40210-Q1 Flyback Controller

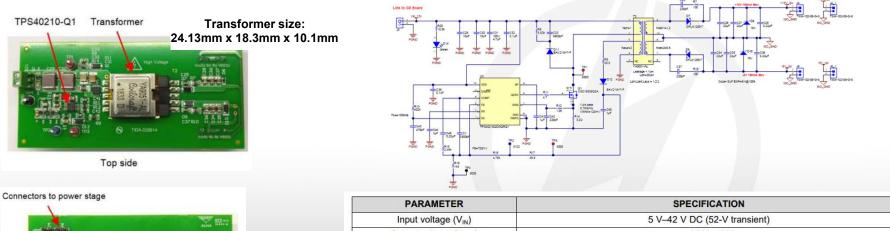
Top side

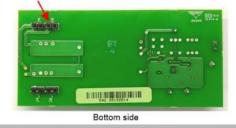
Buck + SN6505B-Q1 Push-Pull

LM5180-Q1 Flyback Converter

Transformer

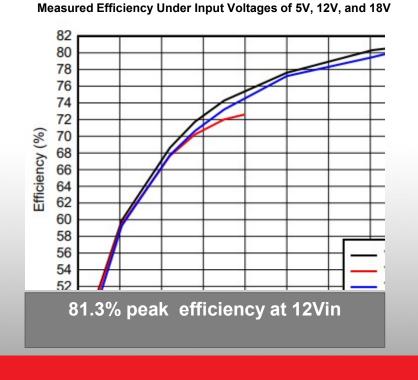
LM5160-Q1



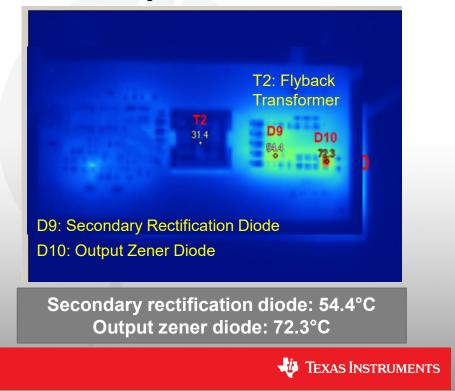

LM5160-Q1 Fly-Buck Converter

TI Solution Comparison

TPS40210-Q1 flyback controller solution

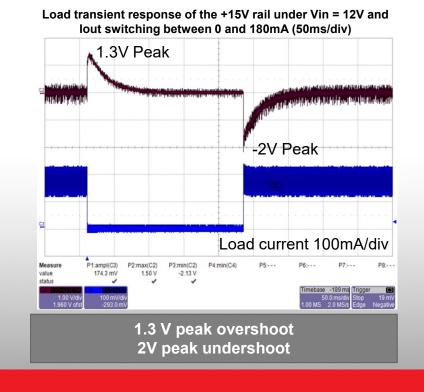


PARAMETER	SPECIFICATION		
Input voltage (V _{IN})	5 V-42 V DC (52-V transient)		
Output voltage (V _{OUT})	+15 V, –9 V		
Output ripple	±3%		
Maximum output current (I _{out_max})	180 mA		
Switching frequency	100 kHz		
Output power (P _{out_max})	4.32 W		
Efficiency	> 81% peak, 80% at full load		

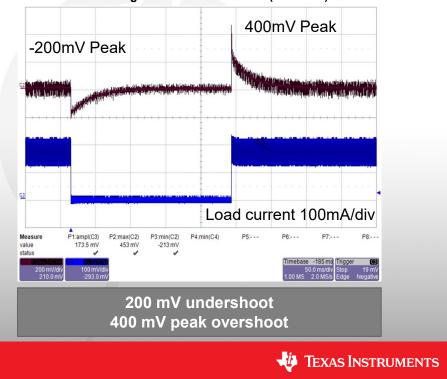


TI Solution Comparison

TPS40210-Q1 Efficiency and Thermal performance

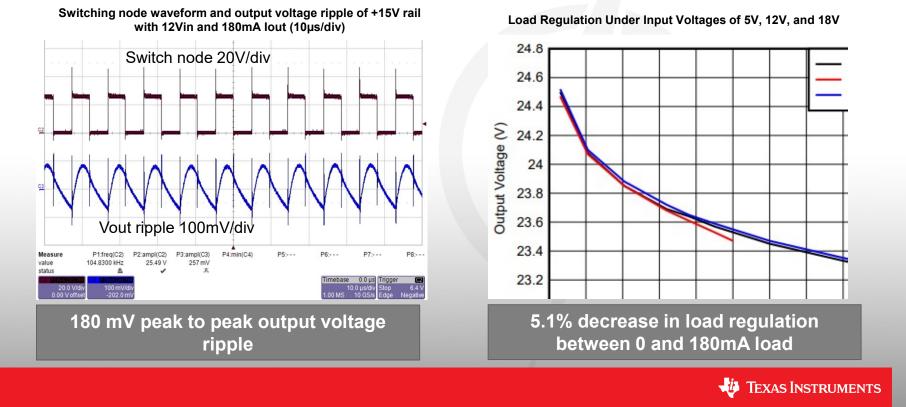


Thermal Image with Vin = 12V and lout = 180mA

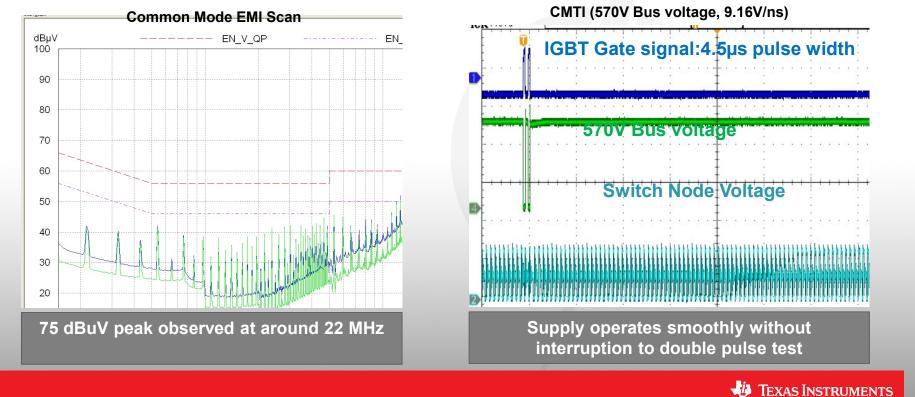


TI Solution Comparison

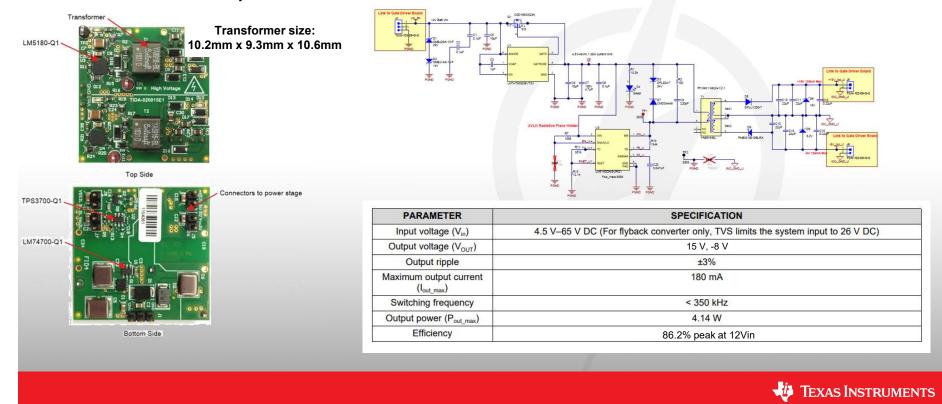
TPS40210-Q1 Load Transient Response



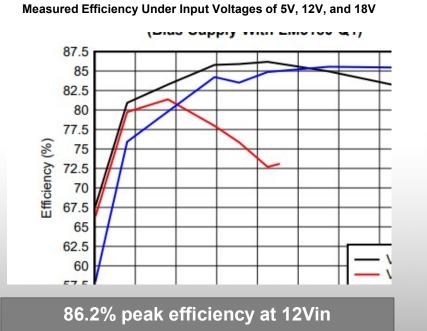
Load transient response of the -9V rail under Vin = 12V and lout switching between 0 and 180mA (50ms/div)


TI Solution Comparison

TPS40210-Q1 Output Voltage Ripple and Load Regulation


TI Solution Comparison

TPS40210-Q1 Common Mode EMI and CMTI


TI Solution Comparison

LM5180-Q1 flyback converter solution overview

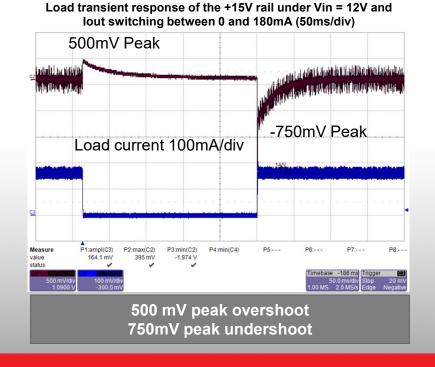
TI Solution Comparison

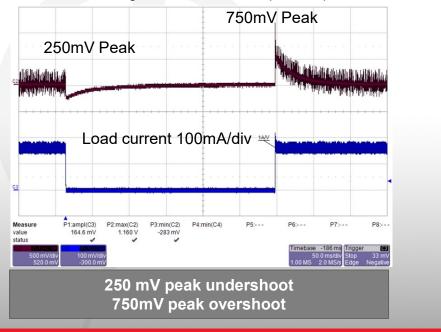
LM5180-Q1 Efficiency and Thermal Performance

 Band D5:
 D8
 Socondary

 D8 exification Diode
 D8
 Socondary

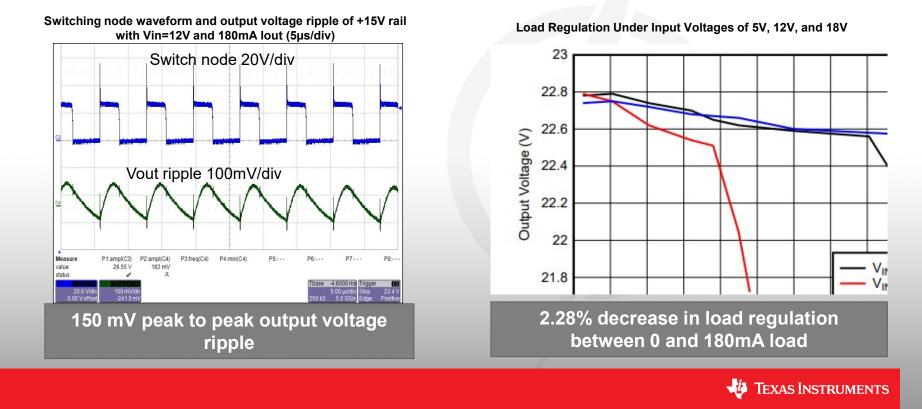
 Secondary
 D8
 Socondary

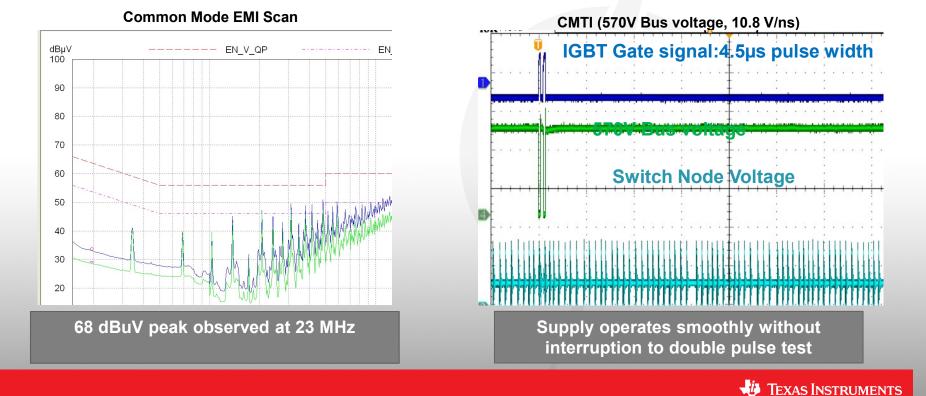

 Rectification Diode
 Socondary


Thermal Image with Vin = 12V and lout = 180mA

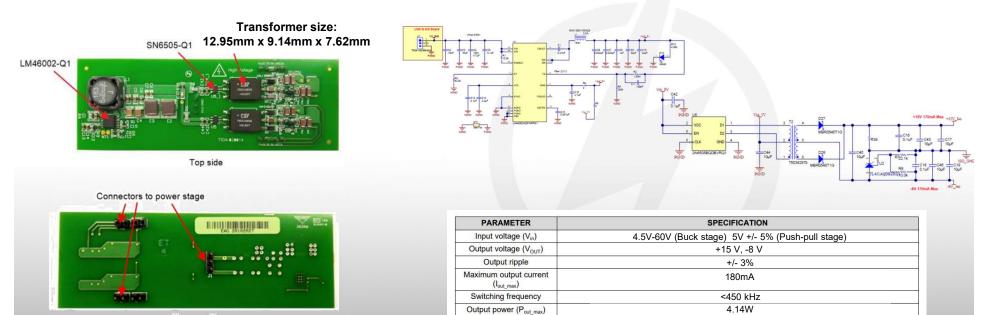
TI Solution Comparison

LM5180-Q1 Load Transient Response


Load transient response of the -8V rail under Vin = 12V and lout switching between 0 and 180mA (50ms/div)


TI Solution Comparison

LM5180-Q1 Output Voltage Ripple and Load Regulation

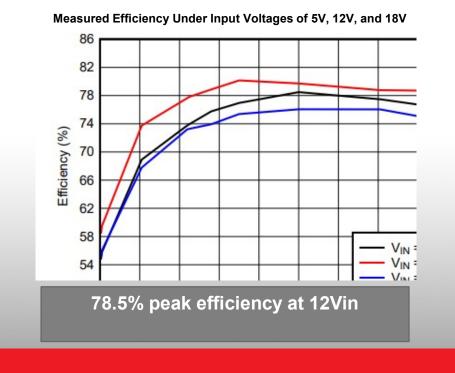

TI Solution Comparison

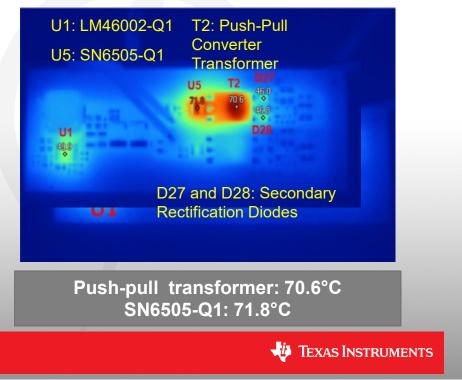
LM5180-Q1 Common Mode EMI Scan and CMTI

TI Solution Comparison

LM46002A-Q1 Buck + SN6505B-Q1 Push-pull Solution Overview

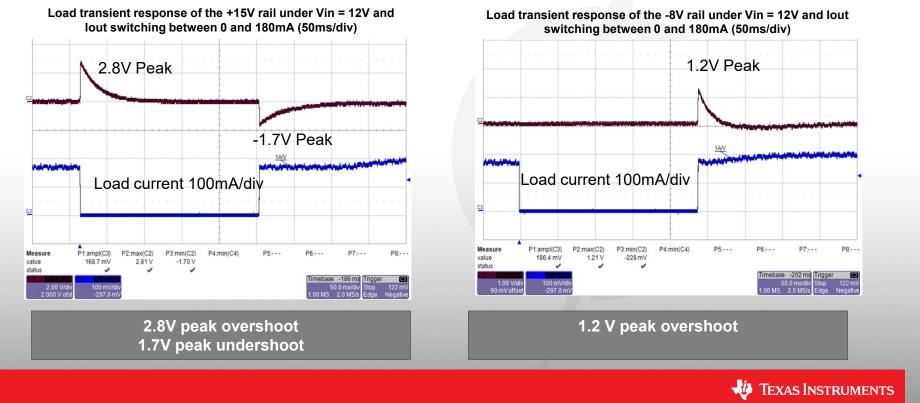
Efficiency


Bottom side

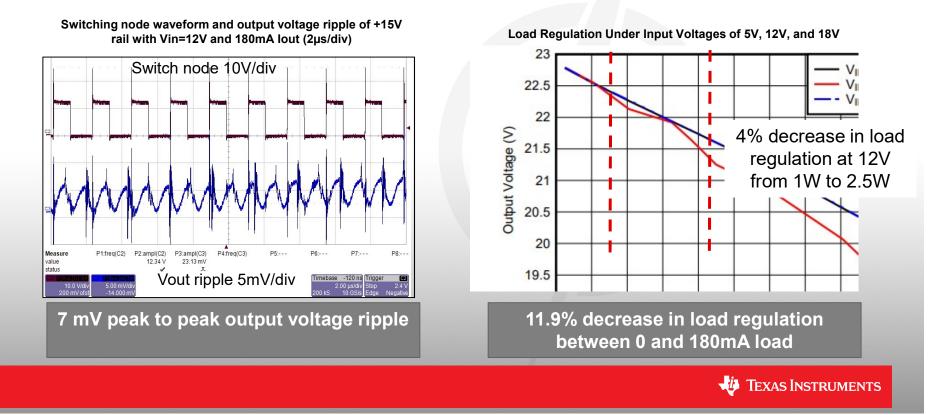

78.5% peak at 12Vin

TI Solution Comparison

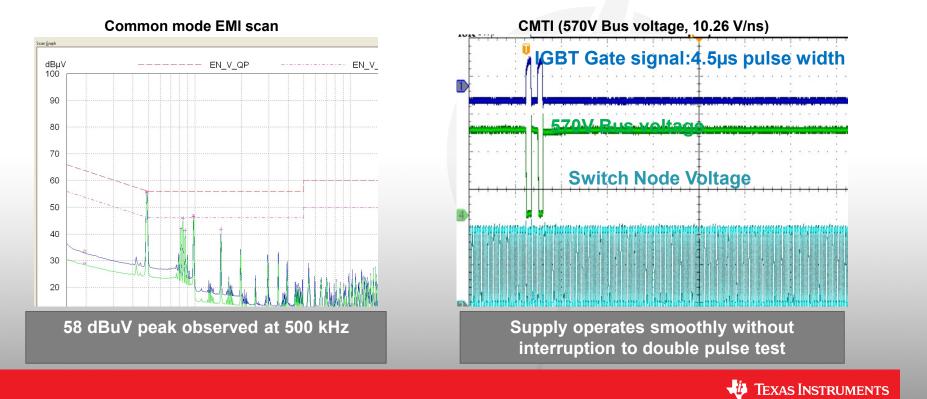
Buck + SN6505B-Q1 Efficiency and Thermal Performance



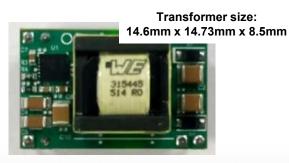
Thermal Image with Vin = 12V and lout = 180mA


TI Solution Comparison

Buck + SN6505B-Q1 Load Transient Response


TI Solution Comparison

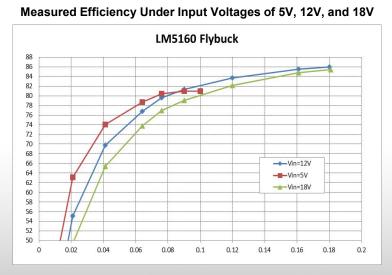
Buck + SN6505B-Q1 Output Voltage Ripple and Load Regulation


TI Solution Comparison

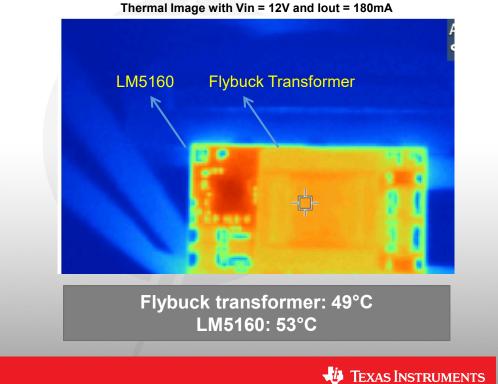
SN6505-Q1 Common Mode EMI Scan and CMTI

TI Solution Comparison

LM5160-Q1 Fly-buck converter solution

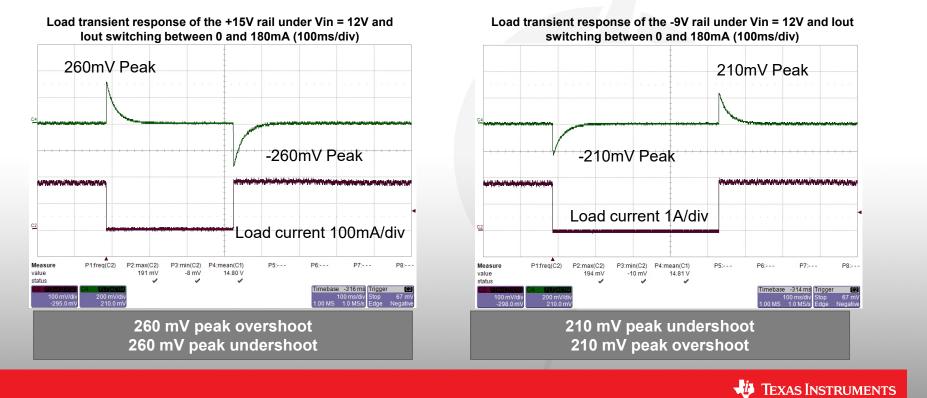

		115.6 D1 75001424 - R5160M-60TR1 22,# A1	+15V @ 200mA VI0 2 1 I GND 28 HTSW-100 07 G-5
VIN BV 20V GND HTSW-100-0 S	Few-210kHz 1 1 1 1 1 1 1 1 1 1 1 1 1		-9V @ 200mA
aio	LMSTRGALINTR BV ON	vpri / VPRI HTSW-102-07-G-S -15.3V	

PARAMETER	SPECIFICATION		
Input voltage (V _{in})	12V nominal, 8V – 20V		
Output voltage (V _{OUT})	+15 V, -9 V		
Output ripple	+/- 3%		
Maximum output current (I _{out_max})	200mA		
Switching frequency	210 kHz		
Output power (Pout_max)	4.8W		
Efficiency	86% peak at 12Vin		

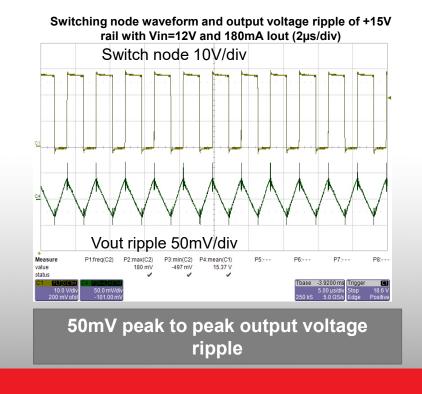


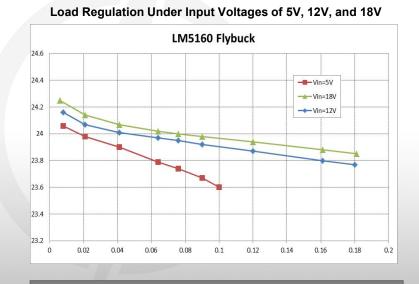
TI Solution Comparison

LM5160-Q1 Efficiency and Thermal



85.9% peak efficiency at 12Vin


TI Solution Comparison


LM5160-Q1 Load Transient Response

TI Solution Comparison

LM5160-Q1 Output Voltage and Load Regulation

1.6% decrease in load regulation between 0 and 180mA load

TI Solution Comparison

Comparison of TI solutions

Solution	Cpri_Sec (pF)	Tx_Vol (mm^3)	Isolation Voltage (kV _{RMS})	Sw Freq (kHz)	Common mode EMI Performance
TPS40210-Q1 Flyback Controller	31	4459	5000	110	75 dBuV peak at 20MHz
LM5180-Q1 Flyback Converter	24	1006	1500	340	68 dBuV peak at 28MHz
Buck with SN6505-Q1 push-pull transformer driver	8.7	947	3125	430	57 dBuV peak at 500kHz
LM5160-Q1 Flybuck Converter		1827	2500	210	

TI Solution Comparison

Comparison of TI solutions

Topology	Efficiency	Load Regulation	Load Transients	Solution Size (Dual)	Cost	Design Simplicity	Common mode EMI
LM5180-Q1 Flyback Converter	86.2% peak at 12Vin	2.28% decrease	3.3% Overshoot 5% Undershoot	37mm X38mm	High	Simple	
TPS40210-Q1 Flyback Controller	81.3% peak at 12Vin	5.1% decrease	8.6% Overshoot 13% Undershoot	160mm X64mm	Lowest	Simple	
Buck with SN6505- Q1 push-pull	78.5% peak at 12Vin	11.9% decrease	18.7% Overshoot 11.3% Undershoot	55mm x28mm	Low	Simple	
LM5160-Q1 Flybuck Converter	85.9% peak at 12Vin	1.6% decrease	1.7% Overshoot 1.7% Undershoot	42mm X38mm	High	Complex	
🐺 Texas Instruments							

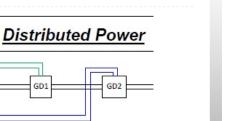
Summary

- HEV/EV powertrain applications
- Power architectures and their trade-offs
 - Centralized, Semi-Distributed, Distributed, and Two-stage Distributed
- Topology Comparison
 - Flyback, Fly-buck, Push-pull, and Half-Bridge
- TI solution comparison
 - TIDA-020014 and PMP10654

Summary

- HEV/EV powertrain applications
- Power architectures and their trade-offs
 - Centralized, Semi-Distributed, Distributed, and Two-stage Distributed
- Topology Comparison
 - Flyback, Fly-buck, Push-pull, and Half-Bridge
- TI solution comparison
 - TIDA-020014 and PMP10654

Power Architecture Summary


Centralized

Advantages

- \checkmark Low component count
- \checkmark Low cost
- Second sourcing \checkmark

Disadvantages

- Bulky transformer
- Poor bias power quality
- **Complex PCB layout**
- Lack of redundancy

Semi-Distributed

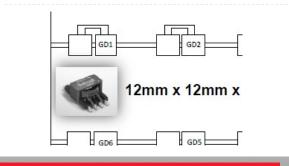
Advantages

- Simpler transformer construction \checkmark
- Simplified PCB Layout \checkmark
- \checkmark Better bias power quality
- \checkmark Distribution of weight
- \checkmark Second sourcing

Disadvantages

- Higher component count than centralized
- Higher cost than centralized
- Lack of redundancy _

Distributed


Power Architecture

Advantages

- Robustness against power supply failure \checkmark
- Simpler transformer construction \checkmark
- Simplified PCB Layout \checkmark
- \checkmark
- Better bias power quality Distribution of weight for ease of passing \checkmark shock

Disadvantages

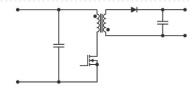
- Highest component count
- Highest cost _

TEXAS INSTRUMENTS

Summary

- HEV/EV powertrain applications
- Power architectures and their trade-offs
 - Centralized, Semi-Distributed, Distributed, and Two-stage Distributed
- Topology Comparison
 - Flyback, Fly-buck, Push-pull, and Half-Bridge
- TI solution comparison
 - TIDA-020014 and PMP10654

Topology Summary


Flyback

Advantages

- \checkmark Operates directly off-battery
- Regulated output (PSR) \checkmark
- \checkmark Low Component count

Disadvantages

- Switching frequency limitation
- Prone to EMI issues
- Requires a snubber

External FET: TPS40210-Q1, UCC2813-5-Q1, LM5155-01 Integrated FET: LM5180-Q1

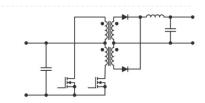
Fly-buck

Advantages

- \checkmark Operates directly off-battery
- \checkmark Regulated output without opto
- \checkmark Low Component count

Disadvantages

- High leakage inductance can degrade load regulation
- Duty cycle limitation _ Magnetic design complexity


Push-Pull

Advantages

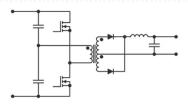
- Design simplicity due to open loop \checkmark configuration
- √
- \checkmark

Disadvantages

- Requires a pre-regulated rail
- Output regulation can be challenging
- Two primary windings
- External FETs see twice the Vin

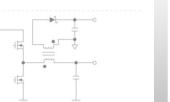
External FET: UCC2808A-1Q1/2Q1, LM25037-Q1 Integrated FET: SN6505B-Q1

Half-Bridge


Topology review

Advantages

- Design simplicity due to open loop √ configuration
- Suitable for high frequency \checkmark
- ✓ Smaller magnetics
- \checkmark Low primary-secondary capacitance


Disadvantages

- Requires a pre-regulated rail _
- Output regulation can be challenging _
- Requires floating high side gate driver

External FET: TPS28225-Q1

Integrated FET: LM5161-Q1, LM5160-Q1

- Suitable for high frequency
- \checkmark Smaller magnetics
- Low primary-secondary capacitance

Summary

- HEV/EV powertrain applications
- Power architectures and their trade-offs
 - Centralized, Semi-Distributed, Distributed, and Two-stage Distributed
- Topology Comparison
 - Flyback, Fly-buck, Push-pull, and Half-Bridge
- TI solution comparison
 - TIDA-020014 and PMP10654

© Copyright 2017 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

