

TI Precision Labs - Magnetic Position Sensing

Presented and prepared by Gloria Kim

What is Hall effect?

Permanent magnet

- Neodymium-Iron-Boron (NdFeB)
 - ➤ Highest B_r
 - > -11% per +100°C

- > Temperature consistency
- > -2% per +100°C
- Samarium-Cobalt (SmCo)
 - ➤ Best for high temperatures
 - > -4% per +100°C

Magnets and flux density

- Two main sources: magnets and current
- "Flux": the sum of magnetic field lines passing through a specified area.
- "Flux density": magnetic force
 - > Flux per mm²
 - ➤ Units: gauss (G) or tesla (T)
 - > 10 G = 1 mT
 - ➤ Earth's field ≈ 0.05 mT

Determining a magnet's flux density vs. distance

- 1. Magnet datasheet
- 2. Simulation (FEMM, COMSOL, ANSYS Maxwell)
- 3. Measurement (gaussmeter/teslameter, linear Hall)
- 4. TI magnetic field calculator

Industry devices: Hall elements and ICs

Hall effect latches

Hall effect latch

Indicates the most recently measured magnetic flux density. These are used in rotary applications such as BLDC motor sensors and incremental encoding.

- Motors
- Incremental encoders

Incremental Rotary Encoder Design Considerations http://www.ti.com/lit/pdf/sboa200

Hall effect switch

Hall effect switch

Indicates the presence or absence of magnetic flux density compared to a defined threshold.

- Unipolar switch responds only to south magnetic poles
- Omnipolar switch responds to both south and north magnetic poles

OUT

Single-axis linear Hall effect sensor

Linear Hall effect sensors

Outputs a signal that is proportional to magnetic flux density in order to measure precise movement.

Common package types

2 packages, 2 sensing directions

To find more magnetic position sensing technical resources and search products, visit ti.com/halleffect