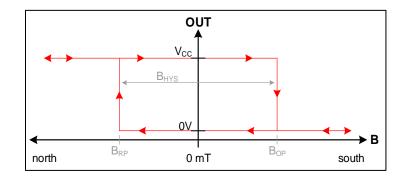
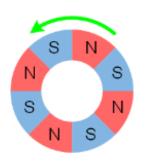
Bandwidth vs. Power Tradeoffs in Digital Hall Sensor Switches & Latches

TI Precision Labs - Getting Started With Hall Effect Sensors

Presented by Manny Soltero

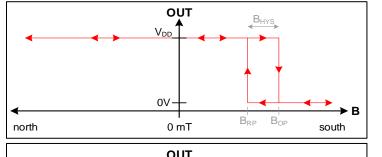

Prepared by Ihsane Wadjinny

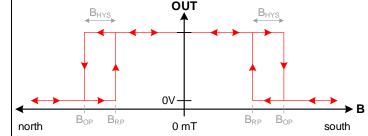


Hall effect switch and latch sensors

Hall effect latch

Indicates the most recently measured magnetic flux density. These are used in rotary applications such as BLDC motor sensors and incremental encoding.

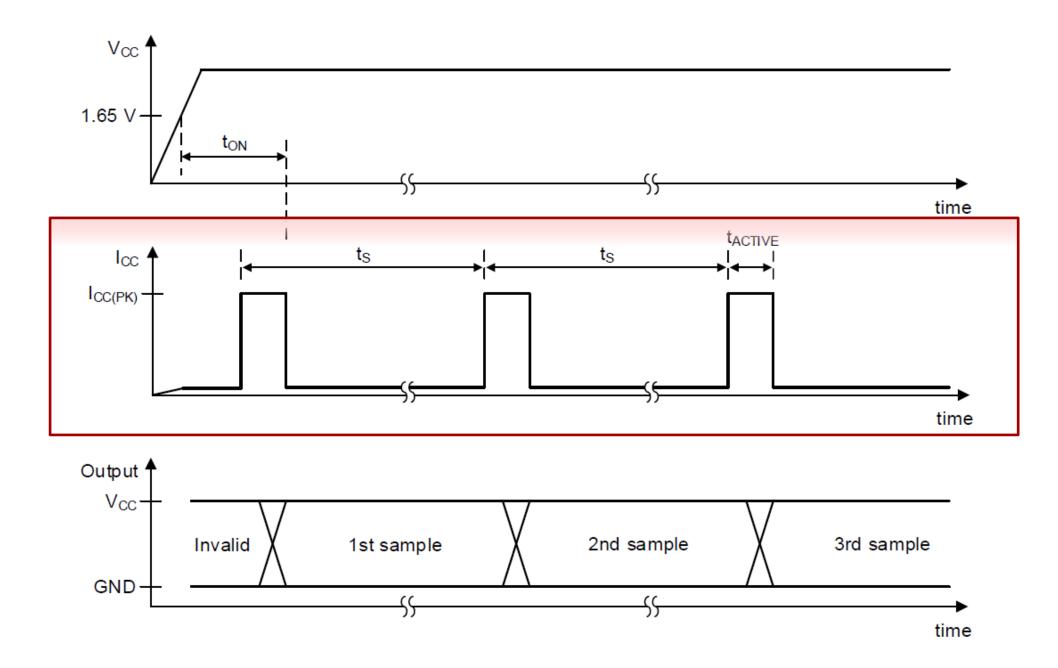



Hall effect switch

Indicates the presence or absence of magnetic flux density compared to a defined threshold.

- Unipolar switch Responds only to south magnetic poles
- Omnipolar switch Responds to both south and north magnetic poles

Omnipolar


Bandwidth vs. power

	High bandwidth digital switches and latches	Low power digital switches and latches
Sensing bandwidth	10 to 40kHz	5 Hz to 5 kHz
Current consumption	~1 to 5 mA	1 to 150 μA

DRV5032

DU, FA, F	C, FD, AJ, ZE VERSIONS					
f _S	Frequency of magnetic sampling		13.3	20	37	Hz
ts	Period of magnetic sampling		27	50	75	ms
I _{CC(AVG)}	Average current consumption	V _{CC} = 1.8 V		1.3		μА
		V _{CC} = 3 V		1.6	3.5	
		V _{CC} = 5 V		2.3		
FB VERSI	ION					
f _S	Frequency of magnetic sampling		3.5	5	8.5	Hz
ts	Period of magnetic sampling		117	200	286	ms
I _{CC(AVG)}		V _{CC} = 1.8 V		0.54		
	Average current consumption	V _{CC} = 3 V		0.69	1.8	μA
		V _{CC} = 5 V		1.06		

Bandwidth vs. power

Example applications for low power Hall effect sensors

Door/window open close detection

Electricity meters to detect magnetic tampering

Phone/Tablet smart-cover closure

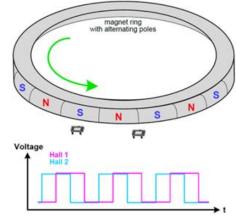
Washer/Dryer doors

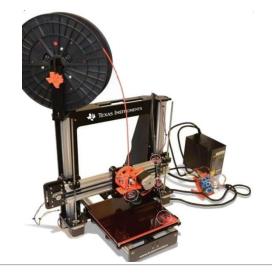
Example applications for high bandwidth Hall effect sensors

Power tool BLDC motors using Latches for commutation

BLDC motors using Latches for commutation

Switches used in flow meters


Support collateral


High bandwidth reference designs

TIDA-00480: Hall sensor rotary encoder

TIDA-00405: 3D Printer controller (12V) reference design

Low power reference designs

TIDA-01066: Low-power door and window sensor with sub-1GHz and 10-Year Coin Cell Battery Life Reference Design

TIDA-00839: Magnetic tamper detection using low-power Hall effect sensors reference design

To find more magnetic position sensing technical resources and search products, visit ti.com/halleffect