High Where power supply design meets collaboration

Demystifying active-clamp flyback loop compensation

Pei-Hsin Liu

What will I get out of this session?

- Purpose:
 - 1. Analyze the small-signal properties of CCM and TM operations of ACF
 - 2. Address the benefit and stability issue of burst mode operation of ACF
 - 3. Introduce design guides based on the analytical model and two simple ripple compensation methods to stabilize the burst control loop

- Relevant End Equipment:
 - 1. High density AC adapter or charger
 - 2. USB power delivery chargers
 - 3. AC/DC or DC/DC auxiliary power supply

Content

- Small-signal model of current-mode controlled ACF
- Burst mode operation as light load operation of ACF
- Ripple compensation to stabilize burst mode control
- Serial damping for ACF with π output filter
- Summary

Quasi-resonance (QR) vs. active clamp (ACF)

TI active clamp flyback (ACF) vs. existing solutions

Efficiency difference on 45W adapter (22W/in³)

- Si ACF provides 3.6% improvement over Si QR at 265V_{AC}
- With same EMI filter, Si ACF is 1% lower than GaN ACF at 90V_{AC}

Cont. conduction mode (CCM) vs. transition mode (TM)

- PWMH turns off by a programmable clock
- PWML turns on after $t_{D(H-L)}$ delay
- PWML turns off by a peak current loop

(Legacy controller: UCC289x)

- PWMH turns off by a separate ZVS loop (like a negative valley current loop)
- PWML turns on after $t_{D(H-L)}$ delay
- PWML turns off by a peak current loop

(New controller: UCC28780)

Small-signal property in CCM operation

- Need slope compensation to damp $f_{SW}/2$ double pole to stabilize the peak current loop as duty cycle > 50%
- Phase delay of RHP zero limits system bandwidth

Small-signal property in TM operation

- PWML off by peak current loop; PWMH off by ZVS loop
- Inherently stable; no need slope compensation
- No RHP zero results in a higher bandwidth design

 \succ V_{CST} to V_o transfer function: Gain (dB) ESR Zero of Co Frequency Phase (°) -90 -180 -270 -360

Frequency

Proposed modeling methodology for TM ACF

Small-signal model and simulation verification

Content

- Small-signal model of current-mode controlled ACF
- Burst mode operation as light load operation of ACF
- Ripple compensation to stabilize burst mode control
- Serial damping for ACF with π output filter
- Summary

Issue of ACF light load efficiency

Current mode control only can not maintain light load efficiency

Optimize avg. eff. with burst setting of UCC28780

Adaptive burst mode (ABM) of UCC28780

Condition: $P_{OUT(MAX)} = 45 \text{ W}, V_{O} = 20 \text{ V}, \text{RM8LP}, Q_{L} \& Q_{H} (650 \text{V}/500 \text{m}\Omega/\text{GaN}), \text{ SR} (150 \text{V}/9.3 \text{m}\Omega/\text{Si})$

Simplified ABM loop with ripple regulator

- Feedback loop filters part of the switching-ripple and retains burst ripple for regulation
- Down slope of output voltage ripple generated by the output load discharging the output capacitor
- The down slope of feedback signal (I_{FB}) intersecting with I_{REF} to trigger next burst packet

Content

- Small-signal model of current-mode controlled ACF
- Burst mode operation as light load operation of ACF
- Ripple compensation to stabilize burst mode control
- Serial damping for ACF with π output filter
- Summary

Stability issue from phase delay of feedback signal

Regulation method:

Consequence of large phase delay between I_{FB} and V₀:

Solution: passive ripple compensation

- R_{BIAS1} and C_{DIFF} compensate phase delay from optocoupler - ω_{P1} and ω_{FB} attenuate switching ripple but not burst ripple

Stability issue with low-ESR cap

- Power stage: primary resonance ACF in ABM of UCC28780
- Condition: V_{BULK}=120V, V_O=20V, I_O=0.5A, C_O=680 \mu F

Closed loop with electrolytic cap

Always 4 PWML pulses per burst packet

Closed loop with polymer cap

4~14 PWML pulses in different burst packets

Burst-ripple magnitude with low-ESR cap is too small to maintain consistent burst package, so the noise-sensitive burst loop impairs output ripple and aggravates audible noise

Stability issue with 2nd-order filter

Filter effect on burst ripple

 $L_0 \& C_{01}$ resonance creates ringing on output ripple, which may trigger next burst package prematurely - Close loop test with π filter

Every first $L_0 \& C_{01}$ ringing reaches I_{REF} , so the adjacent burst bundles together and results in higher voltage ripple, amplified low-frequency audible noise

Solution: active ripple compensation (ARC)

- Used for ACF with low-ESR output capacitor or 2nd-order output filter
 - I_{COMP} to push the undesirable ripple and switching noise away from intersection point with I_{REF}, so consistent burst packets can be obtained

No ARC:

>

ARC performance with low-ESR output cap

- Power stage: primary-resonance ACF in ABM of UCC28780
- Condition: V_{BULK}=120V, V_O=20V, I_O=0.5A, C_O=680 μ F using polymer capacitor

4~14 PWML pulses in different burst packets

Always 3 PWML pulses per burst packet

ARC is effective on ABM with low-ESR output capacitor

ARC performance with output π filter

Serial damping

Content

- Small-signal model of current-mode controlled ACF
- Burst mode operation as light load operation of ACF
- Ripple compensation to stabilize burst mode control
- Serial damping for ACF with π output filter
- Summary

Issues of 2nd-order filter w/o damping for ACF

Cause: large $L_0 \& C_{01}$ resonance ripple changes V_{Co1} every cycle, so the resonance current on I_{PRI} is not consistent

Concept serial damping technique

Serial damping can effectively reduce peaking of L_0C_{01} double pole

Bode plot of V_o(s) / I_{SEC}(s):

Design and trade-off of damping strength

Design example: V_{AC} =90V, V_{O} =20V, P_{O} =45W, Secondary-resonance ACF, C_{O1} =66 μ F ceramic, C_{O2} =680 μ F polymer L_{O} =1 μ H Strong damping:

$$L_{DAMP} \approx 0.13 \cdot L_{O}$$
 $R_{DAMP} \approx \sqrt{\frac{L_{O}}{C_{O1}}}$

L_{DAMP} = 150nH results in 0.5% eff drop at 90V_{AC}

Weak damping:

$$L_{DAMP} > 0.13 \cdot L_O \quad R_{DAMP} > \sqrt{\frac{L_O}{C_{O1}}}$$

 L_{DAMP} = 680nH results in 0.15% eff drop at 90V_{AC}

Too strong damping traps AC current in the damping circuit and affects full load efficiency

ACF with weak damped output π filter

- Power stage: secondary-resonance ACF in ABM of UCC28780
- Condition: V_{BULK} =120V, V_{O} =20V, I_{O} =0.5A, C_{O1} =66µF (ceramic),

 $L_0=1\mu H, C_{02}=680\mu F$ (polymer)

- Weak damping: L_{DAMP} =680nH, R_{DAMP} =0.68 Ω

> Without serial damping (ARC only):

With weak serial damping :

Weak seral damping ensures consistent SR driving pulse and ABM operation

Component selection on the weak damping

Summary

- The efficiency advantage of ACF with TI's new ACF chipsets is demonstrated and compared with QR on a high-density 45W adapter operating > 130kHz
- A unique small-signal modeling technique for ACF is proposed and the distinctive plant characteristic under CCM and TM operations are compared
- The light load efficiency advantage of ACF in burst mode is demonstrated and the stability and SR operation issues are highlighted
- Two ripple compensation techniques and a serial damping method are described that effectively stabilize both burst control loop and SR operation

© Copyright 2017 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com