
Dynamic Multi-protocol Manager with demo

Thomas Almholt

Low Power Wireless Group

1

Dynamic Multi-protocol Manager overview

• Motivation for using a multi protocol manager

• Main Challenges of using a multi protocol manager

• High level design

• Basic scheduling concept overview

– Operating system versus Radio scheduling

• Demo time

– Sub1Ghz network with BLE based phone connectivity

2

3

 Sub1Ghz

Concentrator

(CC1312)

BLE Central

(Smart Phone)

Sub1Ghz Node +

BLE Peripheral

(CC1352)

Sub-1

BLE (2.4G)

DMM Node

Sub1Ghz Node

(CC1312)

Basic example use cases:

• Access sensors information on smart phone

• Control devices using smart phone

• Provision devices using smart phone

Motivation of Dynamic Multi-protocol Manager

4

Main Challenges

Execute multiple protocol stacks concurrently on a single radio device:

– Protocol stacks are designed assuming complete guaranteed access to radio

– Any Loss of packet transmission / reception is assumed to be due to packet loss

Fully functional BLE with Sub1GHz

– BLE spec defines many operations that are time critical

– Device specific constraints on BLE parameters

– Sub1Ghz low data rates consume a lot of radio time

Scheduling of radio events across stacks

– Rescheduling or aborting of radio events can have impact on Sub1GHz / BLE performance

– BLE performance impact can be visible to the user directly

– Application level state changes can also impact performance

– scheduling problem: optimally schedule radio events such that radio utilization is 100% given a

set of timing constraints per stack across all available stacks and user policy

5

High level design concepts of Dynamic Multi-protocol Manager

• There is typically one or more

application stacks for each

communication stack, here we

are showing one for each.

• The application knows the state it

is in and therefore can provide

this information to the multi

protocol manager.

• The multi protocol manager

evaluates parameters such at

stack states, priority tables and

runtime priority selection

• The multi protocol manager

provides all inputs to the RF

driver.

6

Fundamental Functions of Dynamic Multi-protocol Manager

Multi protocol manager is a cross-layered software module

– That is aware of the stack states, uses inputs from the application user on stack-level

prioritization, aware of RF command queue and accordingly schedules RF driver operations

Adapt to use-case (Policy)

– Policy lets user customize to his/her use case

– User can provide inputs on stack states and priorities to influence DMM behavior

Priority Arbitration and Scheduling

– Assign priorities for low level stack RF operations and determine who is high/low.

– Determine execution time points of RF operations. This can result in delays or stop/reschedule

of certain operations

Application coordination

– Sub1Ghz/Zigbee application info sharing/control with BLE

7

A task can be modeled as (C, T, D)

- C execution time, T min. inter-arrival time, D Deadline

- Assume implicit deadline tasks T = D

- Utilization U = C/T. Ex: C= 2 units and T = 10 units, then U = 20%

- Lower frequency implies longer C and hence consumes more U given T

Priorities for tasks

- based on scheduling algorithms

- based on combination of policies and scheduling algorithm

- Higher priority task pre-empt lower priority tasks

These OS scheduling concepts are borrowed for multiple protocol manager

- But there is a caveat…

time

C

T = D

Basic scheduling concepts overview

8

Real-time operation system (RTOS) vs Radio Scheduling

DMM needs to ensure multiple stack commands can be globally optimally scheduled

given timing constraints of each of the stacks and user policies

9

• The multi protocol manager is fundamentally a lossy system:

– For obvious physical limitations if the sum of radio utilization of individual protocol stacks is greater than

(>) 100% then this will result in loss.

– The multi protocol manager main function is to reduce this loss in cases when the utilization is << 100%.

• The multi protocol manager uses dynamic scheduling

–Fixed priority schedulers are known to provide infeasible schedule when utilization is < 100% [1].

–Dynamic priority schedulers are known to be more efficient [1].

–Uses a combination of priority and “deadlines” to schedule radio commands.

Scheduling

[1] JCL Liu, JW Layland, “Scheduling algorithms for multiprogramming in a hard real-time environment”, Journal of ACM 1973.

10

• The multi protocol manager uses dynamic scheduling

- Uses a combination of priority and “deadlines” to schedule radio commands.

– The multi protocol manager is more efficient in terms of utilization of radio than fixed TDMA based

scheduling:

– No matter granularity of time slot, RF operation time duration will *not* always be perfect integer multiples of

time slots

A1(2, 5), B1(4,7)

U ~ 0.97

Scheduling

11

Simple example showing use of policy changing scheduling priority at run-time

Dynamic priority policy manager

12

Specific example instance of Dynamic Multi-protocol Manager

13

• Easylink WSN node remote display:

- Sub1GHz WSN node + BLE peripheral concurrent operation

- Smart phone app (ex: LightBlue) can update WSN node and WSN concentrator parameter

- Smart phone app can be used to read WSN node sensor data

- Supports Sub1GHz 150 Kbps and LRM

• TI15.4 Stack Sensor remote display:

- Only supports TI15.4 Sub1GHz Frequency Hopping Mode: 15.4 FH + BLE peripheral

- Supports provisioning of 15.4 FH Sensor using SmartPhone App

- Supports reading/control of 15.4 FH sensor data and report interval using smart phone app

Multi protocol manager examples in latest SDK

14

• Can provision 15.4 Sensor FH using BLE smart phone app:

- Network PAN ID

- Channel Mask

- Security Key

• Sequence of Operations:

time

BLE ADV +

BLE connected

User connects and provides

provisioning params

DMM

Device

User

Phone

15.4 FH Scanning

and Association

User phone disconnected.

Waits for 15.4 association to

complete.

BLE “pause”:

new policy

Concurrent 15.4 FH +

BLE ADV/Connected

User connects back and views

sensor data

TI 15.4 Stack with Frequency hopping + BLE Example

15

• Typically targeted for “light-weight” BLE application usage

• Keep BLE radio utilization lower compared to lower data rate Sub1GHz

• Lossy System

• Whose lose is more tolerable? Sub1GHz or BLE?

• Intermittent BLE connection events misses is “OK”.

• General Recommendation:

• Keep BLE connection interval < 200 ms

• Have Sub1GHz at higher priority

• Note DMM automagically makes BLE higher priority at connection setup time alone

• Also in future will automagically make BLE higher priority when at risk of losing BLE

connection

Usage Guidelines

The Dynamic Multi-protocol Manager Policy Table

• Each stack describes the possible states it can be in

• The policy table maps all possible combinations of stack states

• Each state combination, called policy, configures:

– Priority

– Time constraints

– Stack pause

• Can specify a default «catch-all» policy

16

The Dynamic Multi-protocol Manager archtecture

17

The Dynamic Multi-protocol Manager archtecture

• Stacks submits RF commands unbeknownst of the DMM

– The DMM Scheduler intercepts all RF commands

– Decides what to schedule based on:

• What are the current stack priorities?

• What are the timing constraints of the stacks?

• Are there any commands in the RF queue, and what priority do they have?

• How does the DMM intercept RF commands?

– RF driver API remapped/redefined to DMM scheduler API

– Ex. any calls to RF_scheduleCmd() will be replaced by

DMMSch_rfScheduleCmd()

18

The Dynamic Multi-protocol Manager archtecture

• RF command scheduling

– The actual scheduling behavior is defined by the current scheduling policy

– Schedules on the following parameters:

• Stack priority (DMMPOLICY_PRIORITY_HIGH or DMMPOLICY_PRIORITY_LOW)

• Timing constraint (DMMPOLICY_TIME_CRITICAL or DMMPOLICY_TIME_NONE_CRITICAL)

• Start time of the RF command (when using absolute triggers)

• End time of the RF command (if applicable)

– RF commands posted as high priority will stay as high priority

19

Custom Stack Integration

• Create or extend the DMM policy table

– Identify a set of stack states

– Create policies from different combinations of stack states

• Make the stack DMM-aware

– Include the DMM RF API remapping instead of the RF driver

• Add stack state transitions in the application task

• Initialize the DMM and register clients during startup

20

Case Study: Prop. Collector + BLE Peripheral

• Consider a Collector / Sensor pair with a simplified beacon mode protocol
– Sensor connects to the Collector by an association process

– Sensor communicates with Collector under fixed time slots

– Synchronizes with beacon messages

• BLE Simple Peripheral

– Default example project from SDK

– Long Range advertisements disabled

• DMM Device will be Proprietary Collector + BLE Peripheral

21

Case Study: Enable Multi-protocol Manager for BLE-Stack

• BLE Peripheral stack states

– Advertising: when adverstising connectible

– Connecting: when in the process of connecting to a central device

– Connected: when connected to a central device

– Any: any other state

• Make the BLE-stack DMM-aware

– In «ble_user_config.c» configure

• fastStateUpdateCb to an application callback

• bleStackType to DMMPolicy_StackType_BlePeripheral

– Add the USE_DMM define

• Update Stack states in the application

– Update stack states in fastStateUpdateCb based on internal stack changes

– Update stack states in application based on stack messages

22

Case Study: Enable Multi-protocol Manager for BLE-Stack

23

Case Study: Enable Multi-protocol Manager for BLE-Stack

24

Case Study: Enable Multi-protocol Manager for Prop. Collector

• Proprietary Collector stack states

– Idle: when Collector is sleeping

– Listen for Node: when Collector is waiting for a Sensor

– Join Request: when Collector is processing a join request from a new Sensor

– Send Beacon: when Collector is sending a Beacon

– Any: any other state

• Make the Collector «stack» DMM-aware

– Make sure the DMM RF API remapping is included instead of the RF driver

• Update Stack states

– Most likely a simple implementation of the Collector «stack»

– Update radio-specific stack states in the «stack»

– Update application-specific stack states in the application

25

Case Study: Create a Policy Table

26

Case Study: Initialize Multi-protocol Manager

• Initialize the DMM in main()

– Initialize and open the DMM policy manager

– Initialize and open the DMM scheduler

• Register clients with the DMM Scheduler

– DMM client in this case is the Task handle that the stack is running in

– BLE-stack task handle available via the ICall API

– Collector-stack task handle should be trivial to retrieve

• Set the default states for the stacks

– BLE Peripheral is set to Advertising

– RF Collector is set to Idle

27

Multi-protocol Manager debugging

• Route the RF Core PA and LNA signals to GPIO pins

– Any two unused IOs can be used

– The mapping is permanent as long as the PIN driver is initialized and opened correctly

• Probe the two IOs with a Logic Analyzer to view RF activity

28

Multi-protocol Manager debugging

• Below is a full period of the DMM Device from the Case Study

• A closer look at the BLE advertisements

29

Multi-protocol Manager debugging

• Below illustrates one connection window when a BLE Central performs a connection

• Below illustrates a full period while connected to both a Sensor and a BLE Central

30

End

31

