
mmWave sensors in robotics: technical deep dive

10



Detailed agenda

• mmWave Sensing in Robotics – how do robots “see” using mmWave?
– Overview and market differentiation

– mmWave Demo Visualizer

– ROS (Robot OS) Point Cloud Visualizer lab on TI Resource Explorer

• Autonomous robot demonstration using ROS + TI mmWave sensor (IWR1443)

• Technical Deep Dive
– Tuning the mmWave sensor configuration for a specific application

– How the “Autonomous Robotics with ROS for mmWave” demo works

– Tuning Robot OS parameters in the demo

11



Technical deep dive
• Tuning the mmWave sensor configuration for a specific application

• How the “Autonomous Robotics with ROS for mmWave” demo works

• Tuning Robot OS parameters in the demo

12



Tuning the mmWave sensor configuration for a 
specific application
• Goal is to create a mmWave sensor chirp configuration 

that satisfies the sensing needs of the application

13

Development Stage Method

Discover/Evaluate
mmWave Demo Visualizer can be used to create and test a chirp 
configuration that will work with the mmWave SDK out-of-box demo 

which is used in the “Autonomous Robotics with ROS for mmWave” lab

Evaluate/Design

mmWave Sensing Estimator can be used to create more 
advanced/customized chirp configurations that may not work with the 

out-of-box demo and instead require a custom processing chain



Creating a chirp configuration with mmWave Demo Visualizer

Steps to create a chirp 
configuration:

• Select the desired parameters on the 
Configure tab in the mmWave Demo 
Visualizer

• Verify that the config works by sending 
the config to the mmWave device and 
review the live plots on the Plots tab

• Press the “Save Config to PC” button 
to save the chirp config to a file

• If you are on a Windows computer, 
copy the chirp config file to the Linux 
PC connected to the mmWave EVM

14



Using the chirp configuration from the mmWave Demo Visualizer

15

• Chirp configurations generated from the mmWave Demo Visualizer can be used 
directly by the Robot OS mmWave labs

• It is possible to reconfigure the mmWave sensor after it is already running as 
long as the previous config used the same number of TX and RX antennas 
(command is given in ROS Point Cloud Visualizer user guide)

• It is also possible to replace the default config so that the new config is loaded 
when the lab is started (required if the number of TX/RX antennas differs)
– Place the new chirp config file in the “~/catkin_ws/src/ti_mmwave_rospkg/cfg” directory

– Rename the original default config file to a different name

– Rename the new config file to match the original default config file



Creating a chirp configuration with mmWave Sensing Estimator

• mmWave Sensing Estimator can be used 
to create more advanced / customized 
chirp configurations 

• Inputs
– Device type and number of antennas

– Board-specific antenna gains

– Regulatory Restrictions

– Scene Parameters

– Additional Parameters

• Outputs
– Chirp Configuration Parameters

– Information Only Parameters

– Detectable Object Range (also for 
information only)

– Errors (if config is not valid)

16



Using the chirp configuration from the mmWave Sensing Estimator

17

• Chirp configurations generated from the mmWave Sensing Estimator may 
require a custom processing chain 

• In that case, the mmWave SDK out-of-box demo code would need to be 
modified as follows:
– If the command-line interface (CLI) rejects the new chirp config parameters, it would 

need to be modified 

– The mmWave SDK processing chain would need to be modified to support the 
dataflow, timing, and signal processing requirements for the new chirp configuration

• In order to work with the Robot OS mmWave labs, the modified mmWave SDK 
demo must still output the same detected object data format over the UART



Technical deep dive
• Tuning the mmWave sensor configuration for a specific application

• How the “Autonomous Robotics with ROS for mmWave” demo works

• Tuning Robot OS parameters in the demo

18



How the “Autonomous Robotics with ROS for 
mmWave” demo works

19

• ROS move_base navigation package
– Global costmap/planner to plot path

– Local costmap/planner to account for 
robot movement capabilities

– Added recovery behavior to clear 
obstacle map and re-scan when no 
path found

• ROS fake_localization package
– Allows user to set initial location and 

desired destination on map

• Sensors
– Odometry to track location

– TI mmWave for obstacle detection

• Map server
– Made static so it can be used to define 

constrained area for robot to stay within



Technical deep dive
• Tuning the mmWave sensor configuration for a specific application

• How the “Autonomous Robotics with ROS for mmWave” demo works

• Tuning Robot OS parameters in the demo

20



Tuning Robot OS parameters in the demo
• ROS navigation stack is described at: http://wiki.ros.org/navigation

• In the demo, Robot OS navigation stack parameter files are located at: 
~/catkin_ws/src/turtlebot/turtlebot_apps/turtlebot_navigation/param/

• Parameter files:
– costmap_common_params.yaml

– global_costmap_params.yaml

– global_planner_params.yaml, navfn_global_planner_params.yaml

– local_costmap_params.yaml

– dwa_local_planner_params.yaml

– move_base_params.yaml

– radar_costmap_params.yaml (used to override settings in other param files)

21



Important tuning parameters for local planner 

• dwa_local_planner_params.yaml

– Parameters described at: http://wiki.ros.org/dwa_local_planner?distro=kinetic

– max_vel_x = maximum forward velocity (m/s)

– acc_lim_x = maximum forward acceleration (m/s^2)

– max_rot_vel = maximum rotational velocity (rad/s)

– acc_lim_theta = maximum rotational acceleration (rad/s^2)

– xy_goal_tolerance = tolerance (in meters) when trying to reach goal

22



Important tuning parameters for costmaps

23

• costmap_common_params.yaml (radar_costmap_params.yaml overrides the global costmap
inflation_layer parameters)

– Parameters described at: http://wiki.ros.org/costmap_2d?distro=kinetic (in section “8.2 Layer 
Specifications”)

– robot_radius = radius of robot (m)

– obstacle_layer
• z_voxels = number of cells in z-axis in 3D costmap occupancy “voxel” grid (max = 16)
• z_resolution = z resolution of 3D occupancy “voxel” grid (meters/cell), height of the grid is 

z_resolution * z_voxels
• mark_threshold = maximum number of marked cells allowed in a column considered to be "free“ 

(i.e. if more cells in column are marked, then the X/Y grid location is considered to be occupied)
• obstacle_range = maximum distance from the robot at which an obstacle will be inserted into the 

cost map (m)

– inflation_layer
• inflation_radius = max distance from an obstacle at which costs are incurred for planning paths
• cost_scaling_factor = exponential rate at which the obstacle cost drops off



Customer collateral

24

Content type Content title Link to content or more details

Labs on TI CCS Resource
Explorer

ROS Point Cloud Visualizer lab and
Autonomous Robotics with ROS for mmWave lab

http://dev.ti.com/tirex/#/?link=Software%2FmmWave%20Sensors%
2FIndustrial%20Toolbox (under Labs)

Customer training series mmWave Training Series https://training.ti.com/mmwave-training-series

Technical blog content or 
white paper

mmWave radar sensors in robotics applications http://www.ti.com/lit/wp/spry311/spry311.pdf

Selection and design tools 
and models

mmWave Sensing Estimator https://dev.ti.com/mmWaveSensingEstimator

mmWave Demo Visualizer https://dev.ti.com/mmWaveDemoVisualizer

Videos
mmWave Demo Visualizer video https://training.ti.com/mmwave-sdk-evm-out-box-demo

ROS Point Cloud Visualizer lab video https://youtu.be/lNEGT10Mk9k

Autonomous Robotics with ROS for mmWave lab 
video

https://training.ti.com/robotics-sense-and-avoid-demonstration-
using-ti-mmwave-sensors

Product and EVM pages IWR1443 product page
IWR1443BOOST EVM page
IWR1642 product page
IWR1642BOOST EVM page

http://www.ti.com/product/IWR1443
http://www.ti.com/tool/IWR1443BOOST
http://www.ti.com/product/IWR1642
http://www.ti.com/tool/IWR1642BOOST


