#### mmWave sensors in robotics: technical deep dive





## **Detailed agenda**

- mmWave Sensing in Robotics how do robots "see" using mmWave?
  - Overview and market differentiation
  - mmWave Demo Visualizer
  - ROS (Robot OS) Point Cloud Visualizer lab on TI Resource Explorer
- Autonomous robot demonstration using ROS + TI mmWave sensor (IWR1443)
- Technical Deep Dive
  - Tuning the mmWave sensor configuration for a specific application
  - How the "Autonomous Robotics with ROS for mmWave" demo works
  - Tuning Robot OS parameters in the demo



## **Technical deep dive**

- Tuning the mmWave sensor configuration for a specific application
- How the "Autonomous Robotics with ROS for mmWave" demo works
- Tuning Robot OS parameters in the demo



# Tuning the mmWave sensor configuration for a specific application

• Goal is to create a mmWave sensor chirp configuration that satisfies the sensing needs of the application

| Development Stage | Method                                                                                                                                                                                                         |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Discover/Evaluate | <b>mmWave Demo Visualizer</b> can be used to create and test a chirp<br>configuration that will work with the mmWave SDK out-of-box demo<br>which is used in the "Autonomous Robotics with ROS for mmWave" lab |
| Evaluate/Design   | <b>mmWave Sensing Estimator</b> can be used to create more<br>advanced/customized chirp configurations that may not work with the<br>out-of-box demo and instead require a custom processing chain             |



#### **Creating a chirp configuration with mmWave Demo Visualizer**

Steps to create a chirp configuration:

- Select the desired parameters on the Configure tab in the mmWave Demo Visualizer
- Verify that the config works by sending the config to the mmWave device and review the live plots on the Plots tab
- Press the "Save Config to PC" button to save the chirp config to a file
- If you are on a Windows computer, copy the chirp config file to the Linux PC connected to the mmWave EVM

|                                      | Configure                                                      |                                               |  |
|--------------------------------------|----------------------------------------------------------------|-----------------------------------------------|--|
| Setup Details                        |                                                                | RCS                                           |  |
| Platform                             | xWR14xx •                                                      | Desired Radar Cross Section (sq. m) 0.5       |  |
| SDK version                          | 1.2 *                                                          | Maximum Range for desired RCS (m) 53.506      |  |
| Antenna Config (Azimuth Res - deg)   | 4Rx,3Tx(15 deg + Elevation •                                   | RCS at Max Unambiguous Range (sq. m) 0.000402 |  |
| Desirable Configuration              | Best Range Resolution •                                        | Console Messages                              |  |
| Frequency Band (GHz)                 | 77-81 •                                                        |                                               |  |
| Scene Selection                      |                                                                |                                               |  |
| Frame Rate (fps)                     |                                                                |                                               |  |
| Range Resolution (m)                 |                                                                |                                               |  |
| Maximum Unambiguous Range (m)        | 9.01                                                           |                                               |  |
| Maximum Radial Velocity (m/s)        | 0.21 5.06                                                      |                                               |  |
| Radial Velocity Resolution (m/s)     | 0.13 • 0.13                                                    |                                               |  |
| Object Detection                     |                                                                |                                               |  |
| Group Peaks from Same Object         | <ul> <li>Range Direction</li> <li>Doppler Direction</li> </ul> |                                               |  |
| Additional Algorithm Processing      | Remove Static Clutter                                          |                                               |  |
| Range Detection Threshold (0-100dB)  | 15                                                             |                                               |  |
| Range/Angle Blas Compensation config |                                                                |                                               |  |
| compRangeBiasAndRxChanPhase 0.0 1    | 010101010101010101010101010                                    |                                               |  |
| Plot Selection                       |                                                                |                                               |  |
| Scatter Plot                         | Range Azimuth Heat Map                                         |                                               |  |
| Range Profile                        | Range Doppler Heat Map                                         |                                               |  |
| Noise Profile                        | Statistics                                                     |                                               |  |
|                                      |                                                                |                                               |  |
| C                                    |                                                                |                                               |  |



#### Using the chirp configuration from the mmWave Demo Visualizer

- Chirp configurations generated from the mmWave Demo Visualizer can be used directly by the Robot OS mmWave labs
- It is possible to reconfigure the mmWave sensor after it is already running as long as the previous config used the same number of TX and RX antennas (command is given in ROS Point Cloud Visualizer user guide)
- It is also possible to replace the default config so that the new config is loaded when the lab is started (required if the number of TX/RX antennas differs)
  - Place the new chirp config file in the "~/catkin\_ws/src/ti\_mmwave\_rospkg/cfg" directory
  - Rename the original default config file to a different name
  - Rename the new config file to match the original default config file



#### **Creating a chirp configuration with mmWave Sensing Estimator**

- mmWave Sensing Estimator can be used to create more advanced / customized chirp configurations
- Inputs
  - Device type and number of antennas
  - Board-specific antenna gains
  - Regulatory Restrictions
  - Scene Parameters
  - Additional Parameters
- Outputs
  - Chirp Configuration Parameters
  - Information Only Parameters
  - Detectable Object Range (also for information only)
  - Errors (if config is not valid)

| ssumptions and Inputs             | Short Range De | fault •                  | Outputs and Chirp Design                    |                      |                                               |               |  |
|-----------------------------------|----------------|--------------------------|---------------------------------------------|----------------------|-----------------------------------------------|---------------|--|
| Device Specific Parameters        |                |                          | Detectable Object Range                     |                      |                                               |               |  |
| mmWave Sensor                     | IWR1443        | •                        | Max Range for Typical Detectable Object (m) | 52.04                | Min RCS Detectable at Max Range (m*2)         | 0.00          |  |
| # of Rx Antennas                  | 4              | Ŧ                        |                                             | Chirp Cycle Time     |                                               |               |  |
| # of Tx Antennas                  | 2              | •                        | Turn Off TX Ramp Start. Blait ADC           | Earping ADC Sam      | pling Time                                    |               |  |
| Board Specific Parameters         |                |                          | ADC Valid                                   | -                    | End ADC<br>Sampling                           | and a         |  |
| Transmit Antenna Gain (dB)        | 9              |                          | Idle Time Start Time                        | /                    | BLOE = Information of<br>BLACK = Front-end of | onfiguration. |  |
| Receive Antenna Gain (dB)         | 9 In De TX     |                          |                                             |                      |                                               |               |  |
| Pegulaton Pestrictions            |                |                          | Frequency<br>Start TX Start Time            |                      | •                                             |               |  |
| Frequency Range (GHz)             | 77 - 81        | •                        | -                                           | Transmitter is O     | N                                             |               |  |
| Maximum Bandwidth (MHz)           | 4000           |                          | Chirp Configuration Parameters              |                      |                                               |               |  |
| Transmit Power (dPm)              | 4000           |                          | Frequency Start (GHz)                       | 77                   | # of Chirp Loops                              | 27            |  |
| mansmit Power (dbm)               | 12             |                          | Frequency Slope (MHz/us)                    | 58,13                | Frame Periodicity (ms)                        | 100           |  |
| Scene Parameters                  |                | Frequency Slope Constant | 1204                                        | Idle Time (us)       | 7                                             |               |  |
| Ambient Temperature (deg Celcius) | 20             |                          | Sampling Rate (ksps)                        | 4306                 | ADC Valid Start Time (us)                     | 6.30          |  |
| Maximum Detectable Range (m)      | 10             |                          | # of Samples per Chirp                      | 223                  | Ramp End Time                                 | 59.09         |  |
| Range Resolution (cm)             | 5              |                          | Information Colo Descenders                 |                      |                                               |               |  |
| Maximum Velocity (km/h)           | 26             |                          | Rendwidth (A417)                            | 0404.04              | # of Dongo FET Ding                           | 050           |  |
| Velocity Resolution (km/h)        | 2              |                          | Bandwidth (MHz)                             | 3434.84              | # of Range FFT bins                           | 200           |  |
| Measurement Rate (Hz)             | 10             |                          | beat riequency (WHz)                        | 3.88                 | # of Doppler FFT Bins                         | 32            |  |
| Typical Detectable Object (m*2)   | Adult 🔻        | 1                        | Chirp Cycle Time (us)                       | 66.09                | Range Interbin Resolution (cm)                | 4.36          |  |
| A debut and the second second     |                |                          | Chirp Repetition Period (us)                | 132                  | Velocity Interbin Resolution (m/s)            | 0.47          |  |
| Additional Parameters             |                | Active Frame Time (ms)   | 3.56                                        | Radar Cube Size (KB) | 216                                           |               |  |
| Detection Loss (dD)               |                |                          |                                             |                      |                                               |               |  |
| System LOSS (GB)                  | 1              |                          | no errors are tound.                        |                      |                                               |               |  |
| Implementation Margin (dB)        | 2              |                          |                                             |                      |                                               |               |  |
| Detection SNR (dB)                | 12             |                          |                                             |                      |                                               |               |  |



#### Using the chirp configuration from the mmWave Sensing Estimator

- Chirp configurations generated from the mmWave Sensing Estimator may require a custom processing chain
- In that case, the mmWave SDK out-of-box demo code would need to be modified as follows:
  - If the command-line interface (CLI) rejects the new chirp config parameters, it would need to be modified
  - The mmWave SDK processing chain would need to be modified to support the dataflow, timing, and signal processing requirements for the new chirp configuration
- In order to work with the Robot OS mmWave labs, the modified mmWave SDK demo must still output the same detected object data format over the UART



## **Technical deep dive**

- Tuning the mmWave sensor configuration for a specific application
- How the "Autonomous Robotics with ROS for mmWave" demo works
- Tuning Robot OS parameters in the demo



## How the "Autonomous Robotics with ROS for mmWave" demo works



- ROS move\_base navigation package
  - Global costmap/planner to plot path
  - Local costmap/planner to account for robot movement capabilities
  - Added recovery behavior to clear obstacle map and re-scan when no path found
- ROS fake\_localization package
  - Allows user to set initial location and desired destination on map
- Sensors
  - Odometry to track location
  - TI mmWave for obstacle detection
- Map server
  - Made static so it can be used to define constrained area for robot to stay within



## **Technical deep dive**

- Tuning the mmWave sensor configuration for a specific application
- How the "Autonomous Robotics with ROS for mmWave" demo works
- Tuning Robot OS parameters in the demo



## **Tuning Robot OS parameters in the demo**

- ROS navigation stack is described at: <u>http://wiki.ros.org/navigation</u>
- In the demo, Robot OS navigation stack parameter files are located at: ~/catkin ws/src/turtlebot/turtlebot apps/turtlebot navigation/param/
- Parameter files:
  - costmap\_common\_params.yaml
  - global\_costmap\_params.yaml
  - global\_planner\_params.yaml, navfn\_global\_planner\_params.yaml
  - local\_costmap\_params.yaml
  - dwa\_local\_planner\_params.yaml
  - move\_base\_params.yaml
  - radar\_costmap\_params.yaml (used to override settings in other param files)



## Important tuning parameters for local planner

- dwa\_local\_planner\_params.yaml
  - Parameters described at: <u>http://wiki.ros.org/dwa\_local\_planner?distro=kinetic</u>
  - max\_vel\_x = maximum forward velocity (m/s)
  - acc\_lim\_x = maximum forward acceleration (m/s^2)
  - max\_rot\_vel = maximum rotational velocity (rad/s)
  - acc\_lim\_theta = maximum rotational acceleration (rad/s^2)
  - xy\_goal\_tolerance = tolerance (in meters) when trying to reach goal



## Important tuning parameters for costmaps

- costmap\_common\_params.yaml (radar\_costmap\_params.yaml overrides the global costmap inflation\_layer parameters)
  - Parameters described at: <u>http://wiki.ros.org/costmap\_2d?distro=kinetic</u> (in section "8.2 Layer Specifications")
  - robot\_radius = radius of robot (m)
  - obstacle\_layer
    - z\_voxels = number of cells in z-axis in 3D costmap occupancy "voxel" grid (max = 16)
    - z\_resolution = z resolution of 3D occupancy "voxel" grid (meters/cell), height of the grid is z\_resolution \* z\_voxels
    - mark\_threshold = maximum number of marked cells allowed in a column considered to be "free" (i.e. if more cells in column are marked, then the X/Y grid location is considered to be occupied)
    - obstacle\_range = maximum distance from the robot at which an obstacle will be inserted into the cost map (m)
  - inflation\_layer
    - inflation\_radius = max distance from an obstacle at which costs are incurred for planning paths
    - cost\_scaling\_factor = exponential rate at which the obstacle cost drops off



#### **Customer collateral**

| Content type                          | Content title                                                                                  | Link to content or more details                                                                                                                      |  |  |
|---------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Labs on TI CCS Resource<br>Explorer   | ROS Point Cloud Visualizer lab and<br>Autonomous Robotics with ROS for mmWave lab              | http://dev.ti.com/tirex/#/?link=Software%2FmmWave%20Sensors%<br>2FIndustrial%20Toolbox (under Labs)                                                  |  |  |
| Customer training series              | mmWave Training Series                                                                         | https://training.ti.com/mmwave-training-series                                                                                                       |  |  |
| Technical blog content or white paper | mmWave radar sensors in robotics applications                                                  | http://www.ti.com/lit/wp/spry311/spry311.pdf                                                                                                         |  |  |
| Selection and design tools and models | mmWave Sensing Estimator                                                                       | https://dev.ti.com/mmWaveSensingEstimator                                                                                                            |  |  |
|                                       | mmWave Demo Visualizer                                                                         | https://dev.ti.com/mmWaveDemoVisualizer                                                                                                              |  |  |
| Videos                                | mmWave Demo Visualizer video                                                                   | https://training.ti.com/mmwave-sdk-evm-out-box-demo                                                                                                  |  |  |
|                                       | ROS Point Cloud Visualizer lab video                                                           | https://youtu.be/INEGT10Mk9k                                                                                                                         |  |  |
|                                       | Autonomous Robotics with ROS for mmWave lab video                                              | https://training.ti.com/robotics-sense-and-avoid-demonstration-<br>using-ti-mmwave-sensors                                                           |  |  |
| Product and EVM pages                 | IWR1443 product page<br>IWR1443BOOST EVM page<br>IWR1642 product page<br>IWR1642BOOST EVM page | http://www.ti.com/product/IWR1443<br>http://www.ti.com/tool/IWR1443BOOST<br>http://www.ti.com/product/IWR1642<br>http://www.ti.com/tool/IWR1642BOOST |  |  |

