Innovating in Automotive Lighting with OpAmps

Matt Sullivan & Michael Helmlinger

Automotive Systems – Body Electronics and Lighting

1

Detailed agenda

- Automotive Lighting Overview
- TIDA-01183: Single Stage DRL with Accurate Timer
 - 555 Timer feedback and filter
- TIDA-01382: Single Stage DRL with Thermal Foldback
 - Analog signal conditioning for temperature-based current limiting
- TIDA-01581: Single Stage DRL design with
 - Multi-String Current Balancing
 - Fault Detection
 - Thermal Foldback
- TIDA- 01520: Dual Stage (Boost + Buck) Headlight Design
 - Pre-boost control using dynamic headroom feedback

Automotive lighting overview

- Existing LED Driver portfolio with customizable discrete circuitry allows for a flexible design to meet specific needs
- OpAmp building blocks help realize complex and flexible lighting solutions
- TI Designs enable customer to realize LED lighting solutions quickly

Automotive lighting overview

	#Project SBE-2	#Project EE	#Account s SBE-2	#Account s EE	Socket WIN %	% ID	SBE-2 Pending Amount	SBE-2 Lost Amount	SBE-2 Win Amount
Exterior Lighting - Fog Light	:	5 28	3 4	1 14	4 50%	. 18%	6 \$0.00) \$338.76k	\$1.61M
Exterior Lighting - Headlight	14	7 468	3 24	1 46	65%	31%	6 \$4.56N	\$9.64M	\$8.91M
Exterior Lighting - Rear Light	70	6 21 ⁻	1 18	3 32	2 60%	36%	6 \$2.30N	\$2.23M	\$4.05M
Exterior Lighting - Small Light	-	7 32	2 6	6 1	5 65%	22%	6 \$10.02k	\$464.10k	\$318.33k
Interior Lighting		5 7	6 4	1 20	<u> </u>	7%	6 \$228.15k	\$0.00	\$34.82k

Automotive lighting overview

Systems-level problem solving

Four problems to be solved:

- 1. Timer inaccuracy for improved dimming
- 2. Thermal inaccuracies and runaway of LEDs
- 3. Inefficiencies due to multi-stage LED drivers
- 4. Proper brightness balancing for multi-string designs

Accurate PWM dimming

Timer inaccuracy

PROBLEM

- TLC555-Q1 provides analog PWM for LED dimming without using an MCU
- Several levels of inaccuracy
 - Propagation delay
 - ON-state resistance process variation
 - Internal resistor divider-based reference process variation

Frequency (Hz)

Timer inaccuracy

SOLUTION

- External accurate reference to avoid 555 reference inaccuracy
- Filtered duty cycle of TLC555 examined with 0.5% accurate TL431 reference
- Resultant output fed back to CONT controls TRIG and THRES reference voltages and removes internal process variance
- Opamp Feedback compensates for additional external RC variance

Frequency (Hz)

Accurate timer

Questions to ask:

Do you need improve the accuracy of a TLC555 Timer?

Select Op Amp Based on:

- Low voltage, rail-to-rail input and output
- Good CMRR and PSRR, low Vos

Recommended Op Amps:

• OPA2377-Q1

TIDA-01183 Accurate PWM Generation with TLC555 for DRL/PSTN

Design Features

- Operates from Automotive Battery (6V to 45V)
- PWM dimming range 5% to 80%
- Buck/Boost topology (470kHz)
- Operates through cold crank, jump start, and load dump (IEC61000-4)
- Reverse battery protected
- EMI Filter

Tools & Resources

- TIDA-01183 Tools Folder
- Test Data/Design Guide
- Design Files: Schematics, BOM and BOM Analysis

Design Benefits

- Accurate PWM +/- 2% Dimming
- Cost-effective no uC needed
- Small form factor
- CISPR25 Class 3 compliant
- ISO 11452-4 Bulk Current Injection Tolerant

LED thermal stability

LED thermal stability

PROBLEM

- LEDs in an automotive environment can quickly exceed rated maximum temperatures
- Current needs to be limited dependent on temperature

OSRAM OSTAR Headlamp LED Model: LE UW D1W1 01

LED thermal stability

SOLUTION

- Modern LED drivers like the TPS92691 utilize a IADJ pin to set the current limit
- Thermal foldback through use of temp sense device (LMTxxx, NTC, etc) and opamp can control the IADJ pin with a slope to lower as temperature rises
- Opamp Gain settings control slope for customization

Foldback with LMT87 and no additional slope control

Thermal foldback

NTC sensing and signal conditioning

TIDA-01382

Automotive DRL LED Driver Reference Design with Linear Thermal Foldback

Design Features

- Operates from Automotive Battery (6V to 45V)
- Boost topology (470kHz)
- · Operates through cold crank, jump start, and load dump
- Reverse battery protected
- EMI Filter

Design Benefits

- Accurate Temperature +/- 2.7°C
- Small form factor
- CISPR25 Class 3 compliant
- ISO 11452-4 Bulk Current Injection Tolerant

Tools & Resources

- TIDA-01382 Tools Folder
- Test Data/Design Guide
- **Design Files:** Schematics, BOM and BOM Analysis, Design Files

Copyright © 2016, Texas Instruments Incorporated

Dual stage LED driver efficiency

Dual stage driver efficiency

PROBLEM

- The main power loss in Linear LED drivers is simply the LED current times the voltage drop on the LED driver
- To keep the losses and temperature at a low level the voltage drop should be kept small
- Since the LED forward voltage is varying with process, temperature and current the voltage drop on the Linear driver is changing

Dual stage driver efficiency

SOLUTION

- To keep the voltage drop at a minimum headroom control can be used
- Dual stage LED driver systems (boost + Linear or buck + linear) can be regulated dynamically based on the varying forward voltage

Dynamic Headroom Control Voltage Sensing

TIDA-01520 50W Dual Stage LED driver for automotive headlights

Features

- Wide input voltage range: 13.5V Typical, 6-18V Continuous
- Supports dynamic loads
- Dual Stage: Boost + 2 Buck LED drivers
- Each channel up to 14 LED's @ 25W
- 1A output current per string
- Reverse battery protection
- CISPR25 Class 3 compliant

Applications

<u>Automotive Headlight</u>

Benefits

- Adaptable to Different System Power Requirements
 - · Flexible number of Buck LED driver's
 - Boost with optional dual phase operation
- Automatic output voltage adaption of boost controller to longest LED string used
- Enables customer to realize LED lighting solution quickly (no SPI programming, no uC necessary, cost effective)

- TIDA-01520 Tools Folder
- Design Guide
- **Design Files:** Schematics, BOM, Gerbers, Software, etc.
- Device Datasheets:
 - LM5122-Q1
 - TPS92515HV-Q1

Multi-string current balancing and protection

Multi-String current balancing and protection

PROBLEM

- To drive a long LED string like in a Daytime running light high voltage is required
- Single String solution with 10-15 LED would require 50-60V at output of LED driver
- Multi-string solutions with a single LED driver need additional regulation and protection

Multi-String current balancing and protection

SOLUTION

- Opamp-based current mirror for balancing
- String currents at the same level independent of process and temperature variations and minimizes maximum voltage requirements
- Comparator-based protection circuitry allows for current limiting in cases where one string exhibits a fault condition to prevent overheating and overcurrent conditions

Current Balancing LED Strings Low Side Sensing and Current Mirror Control

Questions to ask:

- Do you need to balance the current between multiple LED Strings?
- Are there concerns for process and temperature variation between multiple LED strings?

Select Op Amp Based on:

- Input common-mode voltage range (should include ground)
- DC accuracy requirements (Ib, Vos, Vos drift)

Recommended Op Amps:

- TLV316-Q1
- OPA377-Q1

TIDA-01581 Automotive Daytime Running Light Dual String LED Driver Reference Design with Current Balancing and Adjustable Thermal Foldback

Features	Benefits					
 Wide Input Voltage 4.5 V to 65 V High Accuracy LED Current Balancing (<1%) Adjustable Thermal Foldback 'Position' and 'DRL' Lighting Modes Using PWM Current Limiting Incase of Open Circuit Failure Spread Spectrum Frequency Modulation CISPR25 Class 5 EMI Tested 	 Requires a single LED controller Lower driving voltage can be used Ensures equal brightness of LED strings Open/short circuit failure over current protection Thermal protection Operates without a microcontroller 					
Applications Daytime Running Lights (DRL) Rear Lighting Front Lighting 	TIDA-01581					
Tools & Resources	LM2901-Q1					
 TIDA-01581 and/or Tools Folder Design Guide Design Files: Schematics, BOM, Gerbers, Software, etc. Device Datasheets: - TPS92692-Q1 - TLV2316-Q1 - LMT87-Q1 - LM2901-Q1 	Car Battery EMI Filter TPS92692-Q1 Dual String LED Board					

Summary

- OpAmp Building Blocks help drive innovation and improve Automotive lighting designs!
- For more information on Automotive Body and Lighting and details on these TI Designs, please see TI.com/body

THANK YOU!

Summary

- OpAmp Building Blocks help drive innovation and improve Automotive lighting designs!
- SEM will continue to help Find More, Win More and increase the ID% for our building block parts!
- For more information on Automotive Body and Lighting and details on these TI Designs, please see TI.com/body

